1
|
Meinhold S, Zdanowicz R, Giese C, Glockshuber R. Dimerization of a 5-kDa domain defines the architecture of the 5-MDa gammaproteobacterial pyruvate dehydrogenase complex. SCIENCE ADVANCES 2024; 10:eadj6358. [PMID: 38324697 PMCID: PMC10849603 DOI: 10.1126/sciadv.adj6358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The Escherichia coli pyruvate dehydrogenase complex (PDHc) is a ~5 MDa assembly of the catalytic subunits pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). The PDHc core is a cubic complex of eight E2 homotrimers. Homodimers of the peripheral subunits E1 and E3 associate with the core by binding to the peripheral subunit binding domain (PSBD) of E2. Previous reports indicated that 12 E1 dimers and 6 E3 dimers bind to the 24-meric E2 core. Using an assembly arrested E2 homotrimer (E23), we show that two of the three PSBDs in the E23 dimerize, that each PSBD dimer cooperatively binds two E1 dimers, and that E3 dimers only bind to the unpaired PSBD in E23. This mechanism is preserved in wild-type PDHc, with an E1 dimer:E2 monomer:E3 dimer stoichiometry of 16:24:8. The conserved PSBD dimer interface indicates that PSBD dimerization is the previously unrecognized architectural determinant of gammaproteobacterial PDHc megacomplexes.
Collapse
Affiliation(s)
| | | | - Christoph Giese
- ETH Zürich, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | | |
Collapse
|
2
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Salinas ND, Ma R, Dickey TH, McAleese H, Ouahes T, Long CA, Miura K, Lambert LE, Tolia NH. A potent and durable malaria transmission-blocking vaccine designed from a single-component 60-copy Pfs230D1 nanoparticle. NPJ Vaccines 2023; 8:124. [PMID: 37596283 PMCID: PMC10439124 DOI: 10.1038/s41541-023-00709-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
Malaria transmission-blocking vaccines (TBVs) reduce disease transmission by breaking the continuous cycle of infection between the human host and the mosquito vector. Domain 1 (D1) of Pfs230 is a leading TBV candidate and comprises the majority of transmission-reducing activity (TRA) elicited by Pfs230. Here we show that the fusion of Pfs230D1 to a 60-copy multimer of the catalytic domain of dihydrolipoyl acetyltransferase protein (E2p) results in a single-component nanoparticle composed of 60 copies of the fusion protein with high stability, homogeneity, and production yields. The nanoparticle presents a potent human transmission-blocking epitope within Pfs230D1, indicating the antigen is correctly oriented on the surface of the nanoparticle. Two vaccinations of New Zealand White rabbits with the Pfs230D1 nanoparticle elicited a potent and durable antibody response with high TRA when formulated in two distinct adjuvants suitable for translation to human use. This single-component nanoparticle vaccine may play a key role in malaria control and has the potential to improve production pipelines and the cost of manufacturing of a potent and durable TBV.
Collapse
Affiliation(s)
- Nichole D Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rui Ma
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly McAleese
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Lynn E Lambert
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Yang L, Wagner T, Mechaly A, Boyko A, Bruch EM, Megrian D, Gubellini F, Alzari PM, Bellinzoni M. High resolution cryo-EM and crystallographic snapshots of the actinobacterial two-in-one 2-oxoglutarate dehydrogenase. Nat Commun 2023; 14:4851. [PMID: 37563123 PMCID: PMC10415282 DOI: 10.1038/s41467-023-40253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.
Collapse
Affiliation(s)
- Lu Yang
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, 430207, PR China
| | - Tristan Wagner
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, D-28359, Bremen, Germany
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, Plateforme de Cristallographie, F-75015, Paris, France
| | - Alexandra Boyko
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- BostonGene, Yerevan, Armenia
| | - Eduardo M Bruch
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
- Sanofi, In vitro Biology, Integrated Drug Discovery, 350 Water St, Cambridge, MA, 02141, USA
| | - Daniela Megrian
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Pedro M Alzari
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France
| | - Marco Bellinzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, F-75015, Paris, France.
| |
Collapse
|
5
|
Liu S, Xia X, Zhen J, Li Z, Zhou ZH. Structures and comparison of endogenous 2-oxoglutarate and pyruvate dehydrogenase complexes from bovine kidney. Cell Discov 2022; 8:126. [PMID: 36414632 PMCID: PMC9681731 DOI: 10.1038/s41421-022-00487-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
The α-keto acid dehydrogenase complex family catalyzes the essential oxidative decarboxylation of α-keto acids to yield acyl-CoA and NADH. Despite performing the same overarching reaction, members of the family have different component structures and structural organization between each other and across phylogenetic species. While native structures of α-keto acid dehydrogenase complexes from bacteria and fungi became available recently, the atomic structure and organization of their mammalian counterparts in native states remain unknown. Here, we report the cryo-electron microscopy structures of the endogenous cubic 2-oxoglutarate dehydrogenase complex (OGDC) and icosahedral pyruvate dehydrogenase complex (PDC) cores from bovine kidney determined at resolutions of 3.5 Å and 3.8 Å, respectively. The structures of multiple proteins were reconstructed from a single lysate sample, allowing direct structural comparison without the concerns of differences arising from sample preparation and structure determination. Although native and recombinant E2 core scaffold structures are similar, the native structures are decorated with their peripheral E1 and E3 subunits. Asymmetric sub-particle reconstructions support heterogeneity in the arrangements of these peripheral subunits. In addition, despite sharing a similar monomeric fold, OGDC and PDC E2 cores have distinct interdomain and intertrimer interactions, which suggests a means of modulating self-assembly to mitigate heterologous binding between mismatched E2 species. The lipoyl moiety lies near a mobile gatekeeper within the interdomain active site of OGDC E2 and PDC E2. Analysis of the twofold related intertrimer interface identified secondary structural differences and chemical interactions between icosahedral and cubic geometries of the core. Taken together, our study provides a direct structural comparison of OGDC and PDC from the same source and offers new insights into determinants of interdomain interactions and of architecture diversity among α-keto acid dehydrogenase complexes.
Collapse
Affiliation(s)
- Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Zihang Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Functional Versatility of the Human 2-Oxoadipate Dehydrogenase in the L-Lysine Degradation Pathway toward Its Non-Cognate Substrate 2-Oxopimelic Acid. Int J Mol Sci 2022; 23:ijms23158213. [PMID: 35897808 PMCID: PMC9367764 DOI: 10.3390/ijms23158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The human 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA and NADH (+H+). Genetic findings have linked the DHTKD1 encoding 2-oxoadipate dehydrogenase (E1a), the first component of the OADHc, to pathogenesis of AMOXAD, eosinophilic esophagitis (EoE), and several neurodegenerative diseases. A multipronged approach, including circular dichroism spectroscopy, Fourier Transform Mass Spectrometry, and computational approaches, was applied to provide novel insight into the mechanism and functional versatility of the OADHc. The results demonstrate that E1a oxidizes a non-cognate substrate 2-oxopimelate (OP) as well as OA through the decarboxylation step, but the OADHc was 100-times less effective in reactions producing adipoyl-CoA and NADH from the dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3). The results revealed that the E2o is capable of producing succinyl-CoA, glutaryl-CoA, and adipoyl-CoA. The important conclusions are the identification of: (i) the functional promiscuity of E1a and (ii) the ability of the E2o to form acyl-CoA products derived from homologous 2-oxo acids with five, six, and even seven carbon atoms. The findings add to our understanding of both the OADHc function in the L-lysine degradative pathway and of the molecular mechanisms leading to the pathogenesis associated with DHTKD1 variants.
Collapse
|
7
|
Harnessing Rare Actinomycete Interactions and Intrinsic Antimicrobial Resistance Enables Discovery of an Unusual Metabolic Inhibitor. mBio 2022; 13:e0039322. [PMID: 35608300 PMCID: PMC9239090 DOI: 10.1128/mbio.00393-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial natural products have historically been a deep source of new medicines, but their slowed discovery in recent decades has put a premium on developing strategies that enhance the likelihood of capturing novel compounds. Here, we used a straightforward approach that capitalizes on the interactive ecology of “rare” actinomycetes. Specifically, we screened for interactions that triggered the production of antimicrobials that inhibited the growth of a bacterial strain with exceptionally diverse natural antimicrobial resistance. This strategy led to the discovery of a family of antimicrobials we term the dynaplanins. Heterologous expression enabled identification of the dynaplanin biosynthetic gene cluster, which was missed by typical algorithms for natural product gene cluster detection. Genome sequencing of partially resistant mutants revealed a 2-oxo acid dehydrogenase E2 subunit as the likely molecular target of the dynaplanins, and this finding was supported by computational modeling of the dynaplanin scaffold within the active site of this enzyme. Thus, this simple strategy, which leverages microbial interactions and natural antibiotic resistance, can enable discovery of molecules with unique antimicrobial activity. In addition, these results indicate that primary metabolism may be a direct target for inhibition via chemical interference in competitive microbial interactions.
Collapse
|
8
|
Engineering the 2-Oxoglutarate Dehydrogenase Complex to Understand Catalysis and Alter Substrate Recognition. REACTIONS 2022. [DOI: 10.3390/reactions3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The E. coli 2-oxoglutarate dehydrogenase complex (OGDHc) is a multienzyme complex in the tricarboxylic acid cycle, consisting of multiple copies of three components, 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3), which catalyze the formation of succinyl-CoA and NADH (+H+) from 2-oxoglutarate. This review summarizes applications of the site saturation mutagenesis (SSM) to engineer E. coli OGDHc with mechanistic and chemoenzymatic synthetic goals. First, E1o was engineered by creating SSM libraries at positions His260 and His298.Variants were identified that: (a) lead to acceptance of substrate analogues lacking the 5-carboxyl group and (b) performed carboligation reactions producing acetoin-like compounds with good enantioselectivity. Engineering the E2o catalytic (core) domain enabled (a) assignment of roles for pivotal residues involved in catalysis, (b) re-construction of the substrate-binding pocket to accept substrates other than succinyllysyldihydrolipoamide and (c) elucidation of the mechanism of trans-thioesterification to involve stabilization of a tetrahedral oxyanionic intermediate with hydrogen bonds by His375 and Asp374, rather than general acid–base catalysis which has been misunderstood for decades. The E. coli OGDHc is the first example of a 2-oxo acid dehydrogenase complex which was evolved to a 2-oxo aliphatic acid dehydrogenase complex by engineering two consecutive E1o and E2o components.
Collapse
|
9
|
Actinobacteria challenge the paradigm: A unique protein architecture for a well-known, central metabolic complex. Proc Natl Acad Sci U S A 2021; 118:2112107118. [PMID: 34819376 DOI: 10.1073/pnas.2112107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high-molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.
Collapse
|
10
|
Škerlová J, Berndtsson J, Nolte H, Ott M, Stenmark P. Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion. Nat Commun 2021; 12:5277. [PMID: 34489474 PMCID: PMC8421416 DOI: 10.1038/s41467-021-25570-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle by converting pyruvate into acetyl-coenzyme A. PDHc encompasses three enzymatically active subunits, namely pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Dihydrolipoyl transacetylase is a multidomain protein comprising a varying number of lipoyl domains, a peripheral subunit-binding domain, and a catalytic domain. It forms the structural core of the complex, provides binding sites for the other enzymes, and shuffles reaction intermediates between the active sites through covalently bound lipoyl domains. The molecular mechanism by which this shuttling occurs has remained elusive. Here, we report a cryo-EM reconstruction of the native E. coli dihydrolipoyl transacetylase core in a resting state. This structure provides molecular details of the assembly of the core and reveals how the lipoyl domains interact with the core at the active site.
Collapse
Affiliation(s)
- Jana Škerlová
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jens Berndtsson
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hendrik Nolte
- grid.419502.b0000 0004 0373 6590Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Martin Ott
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden ,grid.8761.80000 0000 9919 9582Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Pål Stenmark
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden ,grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Nagy B, Polak M, Ozohanics O, Zambo Z, Szabo E, Hubert A, Jordan F, Novaček J, Adam-Vizi V, Ambrus A. Structure of the dihydrolipoamide succinyltransferase (E2) component of the human alpha-ketoglutarate dehydrogenase complex (hKGDHc) revealed by cryo-EM and cross-linking mass spectrometry: Implications for the overall hKGDHc structure. Biochim Biophys Acta Gen Subj 2021; 1865:129889. [PMID: 33684457 DOI: 10.1016/j.bbagen.2021.129889] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The human mitochondrial alpha-ketoglutarate dehydrogenase complex (hKGDHc) converts KG to succinyl-CoA and NADH. Malfunction of and reactive oxygen species generation by the hKGDHc as well as its E1-E2 subcomplex are implicated in neurodegenerative disorders, ischemia-reperfusion injury, E3-deficiency and cancers. METHODS We performed cryo-EM, cross-linking mass spectrometry (CL-MS) and molecular modeling analyses to determine the structure of the E2 component of the hKGDHc (hE2k); hE2k transfers a succinyl group to CoA and forms the structural core of hKGDHc. We also assessed the overall structure of the hKGDHc by negative-stain EM and modeling. RESULTS We report the 2.9 Å resolution cryo-EM structure of the hE2k component. The cryo-EM map comprises density for hE2k residues 151-386 - the entire (inner) core catalytic domain plus a few additional residues -, while residues 1-150 are not observed due to the inherent flexibility of the N-terminal region. The structure of the latter segment was also determined by CL-MS and homology modeling. Negative-stain EM on in vitro assembled hKGDHc and previous data were used to build a putative overall structural model of the hKGDHc. CONCLUSIONS The E2 core of the hKGDHc is composed of 24 hE2k chains organized in octahedral (8 × 3 type) assembly. Each lipoyl domain is oriented towards the core domain of an adjacent chain in the hE2k homotrimer. hE1k and hE3 are most likely tethered at the edges and faces, respectively, of the cubic hE2k assembly. GENERAL SIGNIFICANCE The revealed structural information will support the future pharmacologically targeting of the hKGDHc.
Collapse
Affiliation(s)
- Balint Nagy
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Martin Polak
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Zsofia Zambo
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Eszter Szabo
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Agnes Hubert
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jiří Novaček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vera Adam-Vizi
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Kyrilis FL, Semchonok DA, Skalidis I, Tüting C, Hamdi F, O'Reilly FJ, Rappsilber J, Kastritis PL. Integrative structure of a 10-megadalton eukaryotic pyruvate dehydrogenase complex from native cell extracts. Cell Rep 2021; 34:108727. [PMID: 33567276 DOI: 10.1016/j.celrep.2021.108727] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/02/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
The pyruvate dehydrogenase complex (PDHc) is a giant enzymatic assembly involved in pyruvate oxidation. PDHc components have been characterized in isolation, but the complex's quaternary structure has remained elusive due to sheer size, heterogeneity, and plasticity. Here, we identify fully assembled Chaetomium thermophilum α-keto acid dehydrogenase complexes in native cell extracts and characterize their domain arrangements utilizing mass spectrometry, activity assays, crosslinking, electron microscopy (EM), and computational modeling. We report the cryo-EM structure of the PDHc core and observe unique features of the previously unknown native state. The asymmetric reconstruction of the 10-MDa PDHc resolves spatial proximity of its components, agrees with stoichiometric data (60 E2p:12 E3BP:∼20 E1p: ≤ 12 E3), and proposes a minimum reaction path among component enzymes. The PDHc shows the presence of a dynamic pyruvate oxidation compartment, organized by core and peripheral protein species. Our data provide a framework for further understanding PDHc and α-keto acid dehydrogenase complex structure and function.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Dmitry A Semchonok
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Ioannis Skalidis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany
| | - Francis J O'Reilly
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany.
| |
Collapse
|
13
|
Chakraborty J, Nemeria NS, Zhang X, Nareddy PR, Szostak M, Farinas E, Jordan F. Engineering 2‐
oxoglutarate
dehydrogenase to a 2‐oxo
aliphatic
dehydrogenase complex by optimizing consecutive components. AIChE J 2019. [DOI: 10.1002/aic.16769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joydeep Chakraborty
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark New Jersey
| | | | - Xu Zhang
- Department of Chemistry Rutgers University Newark New Jersey
| | | | - Michal Szostak
- Department of Chemistry Rutgers University Newark New Jersey
| | - Edgardo Farinas
- Department of Chemistry and Environmental Science New Jersey Institute of Technology Newark New Jersey
| | - Frank Jordan
- Department of Chemistry Rutgers University Newark New Jersey
| |
Collapse
|
14
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
15
|
Jiang J, Baiesc FL, Hiromasa Y, Yu X, Hui WH, Dai X, Roche TE, Zhou ZH. Atomic Structure of the E2 Inner Core of Human Pyruvate Dehydrogenase Complex. Biochemistry 2018; 57:2325-2334. [PMID: 29608861 DOI: 10.1021/acs.biochem.8b00357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) is a large multienzyme complex that catalyzes the irreversible conversion of pyruvate to acetyl-coenzyme A with reduction of NAD+. Distinctive from PDCs in lower forms of life, in mammalian PDC, dihydrolipoyl acetyltransferase (E2; E2p in PDC) and dihydrolipoamide dehydrogenase binding protein (E3BP) combine to form a complex that plays a central role in the organization, regulation, and integration of catalytic reactions of PDC. However, the atomic structure and organization of the mammalian E2p/E3BP heterocomplex are unknown. Here, we report the structure of the recombinant dodecahedral core formed by the C-terminal inner-core/catalytic (IC) domain of human E2p determined at 3.1 Å resolution by cryo electron microscopy (cryoEM). The structure of the N-terminal fragment and four other surface areas of the human E2p IC domain exhibit significant differences from those of the other E2 crystal structures, which may have implications for the integration of E3BP in mammals. This structure also allowed us to obtain a homology model for the highly homologous IC domain of E3BP. Analysis of the interactions of human E2p or E3BP with their adjacent IC domains in the dodecahedron provides new insights into the organization of the E2p/E3BP heterocomplex and suggests a potential contribution by E3BP to catalysis in mammalian PDC.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Flavius L Baiesc
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yasuaki Hiromasa
- Faculty of Agriculture, Attached Promotive Center for International Education and Research of Agriculture , Kyushu University , Fukuoka 812-8581 , Japan.,Department of Biochemistry and Molecular Biophysics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wong Hoi Hui
- California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Xinghong Dai
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Thomas E Roche
- Department of Biochemistry and Molecular Biophysics , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics , University of California, Los Angeles , Los Angeles , California 90095 , United States.,California Nanosystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
16
|
Artiukhov AV, Graf AV, Bunik VI. Directed regulation of multienzyme complexes of 2-oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-oxo acids. BIOCHEMISTRY (MOSCOW) 2016; 81:1498-1521. [DOI: 10.1134/s0006297916120129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Hezaveh S, Zeng AP, Jandt U. Human Pyruvate Dehydrogenase Complex E2 and E3BP Core Subunits: New Models and Insights from Molecular Dynamics Simulations. J Phys Chem B 2016; 120:4399-409. [DOI: 10.1021/acs.jpcb.6b02698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Samira Hezaveh
- Institute of Bioprocess and
Biosystem Engineering, Hamburg University of Technology, Denickestrasse
15, 21071 Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and
Biosystem Engineering, Hamburg University of Technology, Denickestrasse
15, 21071 Hamburg, Germany
| | - Uwe Jandt
- Institute of Bioprocess and
Biosystem Engineering, Hamburg University of Technology, Denickestrasse
15, 21071 Hamburg, Germany
| |
Collapse
|
18
|
Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016; 45:6213-6249. [DOI: 10.1039/c6cs00177g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein cages have become essential tools in bionanotechnology due to their well-defined, monodisperse, capsule-like structure. Combining them with synthetic polymers greatly expands their application, giving rise to novel nanomaterials fore.g.drug-delivery, sensing, electronic devices and for uses as nanoreactors.
Collapse
Affiliation(s)
- Martin Rother
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Wyss Institute for Biologically Inspired Engineering
- Harvard University
- Cambridge
- USA
| | - Kasper Renggli
- Department of Biosystems Science and Engineering
- ETH Zürich
- 4058 Basel
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
19
|
Guo H, Madzak C, Du G, Zhou J. Mutagenesis of conserved active site residues of dihydrolipoamide succinyltransferase enhances the accumulation of α-ketoglutarate in Yarrowia lipolytica. Appl Microbiol Biotechnol 2015; 100:649-59. [PMID: 26428234 DOI: 10.1007/s00253-015-6995-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/30/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
α-Ketoglutarate (α-KG) is an important intermediate in the tricarboxylic acid cycle and has broad applications. The mitochondrial ketoglutarate dehydrogenase (KGDH) complex catalyzes the oxidation of α-KG to succinyl-CoA. Disruption of KGDH, which may enhance the accumulation of α-KG theoretically, was found to be lethal to obligate aerobic cells. In this study, individual overexpression of dihydrolipoamide succinyltransferase (DLST), which serves as the inner core of KGDH, decreased overall activity of the enzyme complex. Furthermore, two conserved active site residues of DLST, His419, and Asp423 were identified. In order to determine whether these residues are engaged in enzyme reaction or not, these two conserved residues were individually mutated. Analysis of the kinetic parameters of the enzyme variants provided evidence that the catalytic reaction of DLST depended on residues His419 and Asp423. Overexpression of mutated DLST not only impaired balanced assembly of KGDH, but also disrupted the catalytic integrity of the enzyme complex. Replacement of the Asp423 residue by glutamate increased extracellular α-KG by 40 % to 50 g L(-1) in mutant strain. These observations uncovered catalytic roles of two conserved active site residues of DLST and provided clues for effective metabolic strategies for rational carbon flux control for the enhanced production of α-KG and related bioproducts.
Collapse
Affiliation(s)
- Hongwei Guo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Catherine Madzak
- UMR1238 Microbiologie et Génétique Moléculaire, INRA/CNRS/AgroPan's Tech, CBAI, BP 01, 78850, Thiverval-Grignon, France
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
20
|
Abstract
The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT or wax ester synthase) catalyzes the terminal reaction in the bacterial wax ester biosynthetic pathway, utilizing a range of alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. The wild-type wax ester synthase Maqu_0168 from Marinobacter aquaeolei VT8 exhibits a preference for longer fatty alcohols, while applications with smaller alcohols would yield products with desired biotechnological properties. Small and medium chain length alcohol substrates are much poorer substrates for the native enzyme, which may hinder broad application of the wax ester synthase in many proposed biosynthetic schemes. Developing approaches to improve enzyme activity toward specific smaller alcohol substrates first requires a clear understanding of which amino acids of the primary sequences of these enzymes contribute to substrate specificity in the native enzyme. In this report, we surveyed a range of potential residues and identified the leucine at position 356 and methionine at position 405 in Maqu_0168 as residues that affected selectivity toward small, branched, and aromatic alcohols when substituted with different amino acids. This analysis provides evidence of residues that line the binding site for wax ester synthase, which will aid rational approaches to improve this enzyme with specific substrates.
Collapse
|
21
|
Smith CA, Toth M, Weiss TM, Frase H, Vakulenko SB. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2754-64. [PMID: 25286858 PMCID: PMC4188014 DOI: 10.1107/s1399004714017635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/31/2014] [Indexed: 11/11/2022]
Abstract
Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and enterococcal pathogens is primarily conferred by the bifunctional enzyme AAC(6')-Ie-APH(2'')-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6')-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2'')-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2'')-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6')-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6')-Ie enzyme is joined to APH(2'')-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2'')-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6')-Ie-APH(2'')-Ia enzyme.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| | - Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
22
|
Wang H, Sun C, Jiang R, He Q, Yang Y, Tian Z, Tian Z, Xie C. The dihydrolipoyl acyltransferase gene BCE2 participates in basal resistance against Phytophthora infestans in potato and Nicotiana benthamiana. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:907-14. [PMID: 24913048 DOI: 10.1016/j.jplph.2014.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Dihydrolipoyl acyltransferase (EC 2.3.1.12), a branched-chain α-ketoacid dehydrogenase E2 subunit (BCE2), catalyzes the transfer of the acyl group from the lipoyl moiety to coenzyme A. However, the role of BCE2 responding to biotic stress in plant is not clear. In this study, we cloned and characterized a BCE2 gene from potato, namely StBCE2, which was previously suggested to be involved in Phytophthora infestans-potato interaction. We found that the expression of StBCE2 was strongly induced by both P. infestans isolate HB09-14-2 and salicylic acid. Besides, when the homolog of StBCE2 in Nicotiana benthamiana named NbBCE2 was silenced, plants showed increased susceptibility to P. infestans and reduced accumulation of hydrogen peroxide (H2O2). Furthermore, we found that a marker gene NbrbohB involved in the production of reactive oxygen species, was also suppressed in NbBCE2-silenced plants. However, silencing of NbBCE2 had no significant effect on the hypersensitive responses trigged by INF1, R3a-AVR3a(KI) pair or Rpi-vnt1.1-AVR-vnt1.1 pair. Our results suggest that BCE2 is associated with the basal resistance to P. infestans by regulating H2O2 production.
Collapse
Affiliation(s)
- Hongyang Wang
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chunlian Sun
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rui Jiang
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qin He
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu Yang
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim Basin 843300, People's Republic of China
| | - Zhejuan Tian
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhendong Tian
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Conghua Xie
- National Center for Vegetable Improvement (Central China), Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
23
|
Wang J, Nemeria NS, Chandrasekhar K, Kumaran S, Arjunan P, Reynolds S, Calero G, Brukh R, Kakalis L, Furey W, Jordan F. Structure and function of the catalytic domain of the dihydrolipoyl acetyltransferase component in Escherichia coli pyruvate dehydrogenase complex. J Biol Chem 2014; 289:15215-30. [PMID: 24742683 DOI: 10.1074/jbc.m113.544080] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The Escherichia coli pyruvate dehydrogenase complex (PDHc) catalyzing conversion of pyruvate to acetyl-CoA comprises three components: E1p, E2p, and E3. The E2p is the five-domain core component, consisting of three tandem lipoyl domains (LDs), a peripheral subunit binding domain (PSBD), and a catalytic domain (E2pCD). Herein are reported the following. 1) The x-ray structure of E2pCD revealed both intra- and intertrimer interactions, similar to those reported for other E2pCDs. 2) Reconstitution of recombinant LD and E2pCD with E1p and E3p into PDHc could maintain at least 6.4% activity (NADH production), confirming the functional competence of the E2pCD and active center coupling among E1p, LD, E2pCD, and E3 even in the absence of PSBD and of a covalent link between domains within E2p. 3) Direct acetyl transfer between LD and coenzyme A catalyzed by E2pCD was observed with a rate constant of 199 s(-1), comparable with the rate of NADH production in the PDHc reaction. Hence, neither reductive acetylation of E2p nor acetyl transfer within E2p is rate-limiting. 4) An unprecedented finding is that although no interaction could be detected between E1p and E2pCD by itself, a domain-induced interaction was identified on E1p active centers upon assembly with E2p and C-terminally truncated E2p proteins by hydrogen/deuterium exchange mass spectrometry. The inclusion of each additional domain of E2p strengthened the interaction with E1p, and the interaction was strongest with intact E2p. E2p domain-induced changes at the E1p active site were also manifested by the appearance of a circular dichroism band characteristic of the canonical 4'-aminopyrimidine tautomer of bound thiamin diphosphate (AP).
Collapse
Affiliation(s)
- Junjie Wang
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Natalia S Nemeria
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Krishnamoorthy Chandrasekhar
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Sowmini Kumaran
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Palaniappa Arjunan
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Shelley Reynolds
- the Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Guillermo Calero
- the Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Roman Brukh
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - Lazaros Kakalis
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102
| | - William Furey
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, the Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240, and
| | - Frank Jordan
- From the Department of Chemistry, Rutgers University, Newark, New Jersey 07102,
| |
Collapse
|
24
|
Merrick BA, Dhungana S, Williams JG, Aloor JJ, Peddada S, Tomer KB, Fessler MB. Proteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3. Mol Cell Proteomics 2011; 10:M110.006007. [PMID: 21785166 DOI: 10.1074/mcp.m110.006007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Palmitoylation, the reversible post-translational acylation of specific cysteine residues with the fatty acid palmitate, promotes the membrane tethering and subcellular localization of proteins in several biological pathways. Although inhibiting palmitoylation holds promise as a means for manipulating protein targeting, advances in the field have been hampered by limited understanding of palmitoylation enzymology and consensus motifs. In order to define the complement of S-acylated proteins in the macrophage, we treated RAW 264.7 macrophage membranes with hydroxylamine to cleave acyl thioesters, followed by biotinylation of newly exposed sulfhydryls and streptavidin-agarose affinity chromatography. Among proteins identified by LC-MS/MS, S-acylation status was established by spectral counting to assess enrichment under hydroxylamine versus mock treatment conditions. Of 1183 proteins identified in four independent experiments, 80 proteins were significant for S-acylation at false discovery rate = 0.05, and 101 significant at false discovery rate = 0.10. Candidate S-acylproteins were identified from several functional categories, including membrane trafficking, signaling, transporters, and receptors. Among these were 29 proteins previously biochemically confirmed as palmitoylated, 45 previously reported as putative S-acylproteins in proteomic screens, 24 not previously associated with palmitoylation, and three presumed false-positives. Nearly half of the candidates were previously identified by us in macrophage detergent-resistant membranes, suggesting that palmitoylation promotes lipid raft-localization of proteins in the macrophage. Among the candidate novel S-acylproteins was phospholipid scramblase 3 (Plscr3), a protein that regulates apoptosis through remodeling the mitochondrial membrane. Palmitoylation of Plscr3 was confirmed through (3)H-palmitate labeling. Moreover, site-directed mutagenesis of a cluster of five cysteines (Cys159-161-163-164-166) abolished palmitoylation, caused Plscr3 mislocalization from mitochondrion to nucleus, and reduced macrophage apoptosis in response to etoposide, together suggesting a role for palmitoylation at this site for mitochondrial targeting and pro-apoptotic function of Plscr3. Taken together, we propose that manipulation of protein palmitoylation carries great potential for intervention in macrophage biology via reprogramming of protein localization.
Collapse
Affiliation(s)
- B Alex Merrick
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Craig JW, Brady SF. Discovery of a metagenome-derived enzyme that produces branched-chain acyl-(acyl-carrier-protein)s from branched-chain α-keto acids. Chembiochem 2011; 12:1849-53. [PMID: 21714057 DOI: 10.1002/cbic.201100215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Indexed: 01/08/2023]
Affiliation(s)
- Jeffrey W Craig
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- Mariya Morar
- M.G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada;
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada;
| |
Collapse
|
27
|
Zhang H, White-Phillip JA, Melançon CE, Kwon HJ, Yu WL, Liu HW. Elucidation of the kijanimicin gene cluster: insights into the biosynthesis of spirotetronate antibiotics and nitrosugars. J Am Chem Soc 2007; 129:14670-83. [PMID: 17985890 PMCID: PMC2515274 DOI: 10.1021/ja0744854] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antibiotic kijanimicin produced by the actinomycete Actinomadura kijaniata has a broad spectrum of bioactivities as well as a number of interesting biosynthetic features. To understand the molecular basis for its formation and to develop a combinatorial biosynthetic system for this class of compounds, a 107.6 kb segment of the A. kijaniata chromosome containing the kijanimicin biosynthetic locus was identified, cloned, and sequenced. The complete pathway for the formation of TDP-l-digitoxose, one of the two sugar donors used in construction of kijanimicin, was elucidated through biochemical analysis of four enzymes encoded in the gene cluster. Sequence analysis indicates that the aglycone kijanolide is formed by the combined action of a modular Type-I polyketide synthase, a conserved set of enzymes involved in formation, attachment, and intramolecular cyclization of a glycerate-derived three-carbon unit, which forms the core of the spirotetronate moiety. The genes involved in the biosynthesis of the unusual deoxysugar d-kijanose [2,3,4,6-tetradeoxy-4-(methylcarbamyl)-3-C-methyl-3-nitro-d-xylo-hexopyranose], including one encoding a flavoenzyme predicted to catalyze the formation of the nitro group, have also been identified. This work has implications for the biosynthesis of other spirotetronate antibiotics and nitrosugar-bearing natural products, as well as for future mechanistic and biosynthetic engineering efforts.
Collapse
Affiliation(s)
- Hua Zhang
- Division of Medicinal Chemistry, College of Pharmacy; Institute of Cellular and Molecular Biology; and Department of Chemistry and Biochemistry; University of Texas at Austin, Austin, Texas 78712
| | - Jess A. White-Phillip
- Division of Medicinal Chemistry, College of Pharmacy; Institute of Cellular and Molecular Biology; and Department of Chemistry and Biochemistry; University of Texas at Austin, Austin, Texas 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy; Institute of Cellular and Molecular Biology; and Department of Chemistry and Biochemistry; University of Texas at Austin, Austin, Texas 78712
| | - Hyung-jin Kwon
- Division of Medicinal Chemistry, College of Pharmacy; Institute of Cellular and Molecular Biology; and Department of Chemistry and Biochemistry; University of Texas at Austin, Austin, Texas 78712
| | - Wei-luen Yu
- Division of Medicinal Chemistry, College of Pharmacy; Institute of Cellular and Molecular Biology; and Department of Chemistry and Biochemistry; University of Texas at Austin, Austin, Texas 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy; Institute of Cellular and Molecular Biology; and Department of Chemistry and Biochemistry; University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
28
|
Kato M, Wynn RM, Chuang JL, Brautigam CA, Custorio M, Chuang DT. A synchronized substrate-gating mechanism revealed by cubic-core structure of the bovine branched-chain alpha-ketoacid dehydrogenase complex. EMBO J 2006; 25:5983-94. [PMID: 17124494 PMCID: PMC1698891 DOI: 10.1038/sj.emboj.7601444] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 10/19/2006] [Indexed: 01/07/2023] Open
Abstract
The dihydrolipoamide acyltransferase (E2b) component of the branched-chain alpha-ketoacid dehydrogenase complex forms a cubic scaffold that catalyzes acyltransfer from S-acyldihydrolipoamide to CoA to produce acyl-CoA. We have determined the first crystal structures of a mammalian (bovine) E2b core domain with and without a bound CoA or acyl-CoA. These structures reveal both hydrophobic and the previously unreported ionic interactions between two-fold-related trimers that build up the cubic core. The entrance of the dihydrolipoamide-binding site in a 30-A long active-site channel is closed in the apo and acyl-CoA-bound structures. CoA binding to one entrance of the channel promotes a conformational change in the channel, resulting in the opening of the opposite dihydrolipoamide gate. Binding experiments show that the affinity of the E2b core for dihydrolipoamide is markedly increased in the presence of CoA. The result buttresses the model that CoA binding is responsible for the opening of the dihydrolipoamide gate. We suggest that this gating mechanism synchronizes the binding of the two substrates to the active-site channel, which serves as a feed-forward switch to coordinate the E2b-catalyzed acyltransfer reaction.
Collapse
Affiliation(s)
- Masato Kato
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Max Wynn
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacinta L Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chad A Brautigam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Myra Custorio
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA. Tel.: +1 214 648 2457; Fax: +1 214 648 8856; E-mail:
| |
Collapse
|
29
|
Bunik VI, Raddatz G, Wanders RJA, Reiser G. Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid. FEBS Lett 2006; 580:3551-7. [PMID: 16737698 DOI: 10.1016/j.febslet.2006.05.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 11/17/2022]
Abstract
Pyruvate and 2-oxoglutarate dehydrogenase complexes are strongly inhibited by phytanoyl-CoA (IC(50) approximately 10(-6)-10(-7) M). Palmitoyl-CoA is 10-fold less potent. Phytanic or palmitic acids have no inhibitory effect up to 0.3 mM. At the substrate saturation, the acyl-CoA's affect the first and second enzymatic components of the 2-oxoglutarate dehydrogenase complex, while the third component is inhibited only at a low saturation with its substrate dihydrolipoamide. Thus, key regulatory branch points of mitochondrial metabolism are targets of a cellular derivative of phytanic acid. Decreased activity of the complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease.
Collapse
Affiliation(s)
- Victoria I Bunik
- School of Bioinformatics and Bioengineering and AN Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russian Federation.
| | | | | | | |
Collapse
|
30
|
Rajashankar KR, Bryk R, Kniewel R, Buglino JA, Nathan CF, Lima CD. Crystal Structure and Functional Analysis of Lipoamide Dehydrogenase from Mycobacterium tuberculosis. J Biol Chem 2005; 280:33977-83. [PMID: 16093239 DOI: 10.1074/jbc.m507466200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the 2.4 A crystal structure for lipoamide dehydrogenase encoded by lpdC from Mycobacterium tuberculosis. Based on the Lpd structure and sequence alignment between bacterial and eukaryotic Lpd sequences, we generated single point mutations in Lpd and assayed the resulting proteins for their ability to catalyze lipoamide reduction/oxidation alone and in complex with other proteins that participate in pyruvate dehydrogenase and peroxidase activities. The results suggest that amino acid residues conserved in mycobacterial species but not conserved in eukaryotic Lpd family members modulate either or both activities and include Arg-93, His-98, Lys-103, and His-386. In addition, Arg-93 and His-386 are involved in forming both "open" and "closed" active site conformations, suggesting that these residues play a role in dynamically regulating Lpd function. Taken together, these data suggest protein surfaces that should be considered while developing strategies for inhibiting this enzyme.
Collapse
|
31
|
Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, McFadden GI. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 2005; 55:39-53. [PMID: 15612915 DOI: 10.1111/j.1365-2958.2004.04407.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relict plastid (apicoplast) of apicomplexan parasites synthesizes fatty acids and is a promising drug target. In plant plastids, a pyruvate dehydrogenase complex (PDH) converts pyruvate into acetyl-CoA, the major fatty acid precursor, whereas a second, distinct PDH fuels the tricarboxylic acid cycle in the mitochondria. In contrast, the presence of genes encoding PDH and related enzyme complexes in the genomes of five Plasmodium species and of Toxoplasma gondii indicate that these parasites contain only one single PDH. PDH complexes are comprised of four subunits (E1alpha, E1beta, E2, E3), and we confirmed four genes encoding a complete PDH in Plasmodium falciparum through sequencing of cDNA clones. In apicomplexan parasites, many nuclear-encoded proteins are targeted to the apicoplast courtesy of two-part N-terminal leader sequences, and the presence of such N-terminal sequences on all four PDH subunits as well as phylogenetic analyses strongly suggest that the P. falciparum PDH is located in the apicoplast. Fusion of the two-part leader sequences from the E1alpha and E2 genes to green fluorescent protein experimentally confirmed apicoplast targeting. Western blot analysis provided evidence for the expression of the E1alpha and E1beta PDH subunits in blood-stage malaria parasites. The recombinantly expressed catalytic domain of the PDH subunit E2 showed high enzymatic activity in vitro indicating that pyruvate is converted to acetyl-CoA in the apicoplast, possibly for use in fatty acid biosynthesis.
Collapse
Affiliation(s)
- Bernardo J Foth
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Head RA, Brown RM, Zolkipli Z, Shahdadpuri R, King MD, Clayton PT, Brown GK. Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: Dihydrolipoamide acetyltransferase (E2) deficiency. Ann Neurol 2005; 58:234-41. [PMID: 16049940 DOI: 10.1002/ana.20550] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pyruvate dehydrogenase deficiency is a major cause of primary lactic acidosis and neurological dysfunction in infancy and early childhood. Most cases are caused by mutations in the X-linked gene for the E1alpha subunit of the complex. Mutations in DLAT, the gene encoding dihydrolipoamide acetyltransferase, the E2 core component of the complex, have not been described previously. We report two unrelated patients with pyruvate dehydrogenase deficiency caused by defects in the E2 subunit. Both patients are less severely affected than typical patients with E1alpha mutations and both have survived well into childhood. Episodic dystonia was the major neurological manifestation, with other more common features of pyruvate dehydrogenase deficiency, such as hypotonia and ataxia, being less prominent. The patients had neuroradiological evidence of discrete lesions restricted to the globus pallidus, and both are homozygous for different mutations in the DLAT gene. The clinical presentation and neuroradiological findings are not typical of pyruvate dehydrogenase deficiency and extend the clinical and mutational spectrum of this condition.
Collapse
Affiliation(s)
- Rosemary A Head
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Govindasamy L, Pedersen B, Lian W, Kukar T, Gu Y, Jin S, Agbandje-McKenna M, Wu D, McKenna R. Structural insights and functional implications of choline acetyltransferase. J Struct Biol 2005; 148:226-35. [PMID: 15477102 DOI: 10.1016/j.jsb.2004.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/01/2004] [Indexed: 11/21/2022]
Abstract
The biosynthetic enzyme for the neurotransmitter acetylcholine, choline acetyltransferase (ChAT) (E.C. 2.3.1.6), is essential for the development and neuronal activities of cholinergic systems involved in many fundamental brain functions. ChAT catalyzes the transfer of an acetyl group from acetyl-coenzyme A to choline to form the neurotransmitter acetylcholine. Since its discovery more than 60 years ago much research has been devoted to the kinetic studies of this enzyme. For the first time we report the crystal structure of rat ChAT (rChAT) to 1.55 A resolution. The structure of rChAT is a monomer and consists of two domains with an interfacial active site tunnel. This structure, with the modeled substrate binding, provides critical insights into the molecular basis for the production of acetylcholine and may further our understanding of disease causing mutations.
Collapse
Affiliation(s)
- Lakshmanan Govindasamy
- Department of Biochemistry and Molecular Biology, McKnight Brain Institute and University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Carnitine acyltransferases catalyze the exchange of acyl groups between carnitine and coenzyme A (CoA). These enzymes include carnitine acetyltransferase (CrAT), carnitine octanoyltransferase (CrOT), and carnitine palmitoyltransferases (CPTs). CPT-I and CPT-II are crucial for the beta-oxidation of long-chain fatty acids in the mitochondria by enabling their transport across the mitochondrial membrane. The activity of CPT-I is inhibited by malonyl-CoA, a crucial regulatory mechanism for fatty acid oxidation. Mutation or dysregulation of the CPT enzymes has been linked to many serious, even fatal human diseases, and these enzymes are promising targets for the development of therapeutic agents against type 2 diabetes and obesity. We have determined the crystal structures of murine CrAT, alone and in complex with its substrate carnitine or CoA. The structure contains two domains. Surprisingly, these two domains share the same backbone fold, which is also similar to that of chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. The active site is located at the interface between the two domains, in a tunnel that extends through the center of the enzyme. Carnitine and CoA are bound in this tunnel, on opposite sides of the catalytic His343 residue. The structural information provides a molecular basis for understanding the catalysis by carnitine acyltransferases and for designing their inhibitors. In addition, our structural information suggests that the substrate carnitine may assist the catalysis by stabilizing the oxyanion in the reaction intermediate.
Collapse
Affiliation(s)
- Gerwald Jogl
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
35
|
Hiromasa Y, Fujisawa T, Aso Y, Roche TE. Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind the E1 and E3 components. J Biol Chem 2003; 279:6921-33. [PMID: 14638692 DOI: 10.1074/jbc.m308172200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The subunits of the dihydrolipoyl acetyltransferase (E2) component of mammalian pyruvate dehydrogenase complex can form a 60-mer via association of the C-terminal I domain of E2 at the vertices of a dodecahedron. Exterior to this inner core structure, E2 has a pyruvate dehydrogenase component (E1)-binding domain followed by two lipoyl domains, all connected by mobile linker regions. The assembled core structure of mammalian pyruvate dehydrogenase complex also includes the dihydrolipoyl dehydrogenase (E3)-binding protein (E3BP) that binds the I domain of E2 by its C-terminal I' domain. E3BP similarly has linker regions connecting an E3-binding domain and a lipoyl domain. The composition of E2.E3BP was thought to be 60 E2 plus approximately 12 E3BP. We have prepared homogenous human components. E2 and E2.E3BP have s(20,w) values of 36 S and 31.8 S, respectively. Equilibrium sedimentation and small angle x-ray scattering studies indicate that E2.E3BP has lower total mass than E2, and small angle x-ray scattering showed that E3 binds to E2.E3BP outside the central dodecahedron. In the presence of saturating levels of E1, E2 bound approximately 60 E1 and maximally sedimented 64.4 +/- 1.5 S faster than E2, whereas E1-saturated E2.E3BP maximally sedimented 49.5 +/- 1.4 S faster than E2.E3BP. Based on the impact on sedimentation rates by bound E1, we estimate fewer E1 (approximately 12) were bound by E2.E3BP than by E2. The findings of a smaller E2.E3BP mass and a lower capacity to bind E1 support the smaller E3BP substituting for E2 subunits rather than adding to the 60-mer. We describe a substitution model in which 12 I' domains of E3BP replace 12 I domains of E2 by forming 6 dimer edges that are symmetrically located in the dodecahedron structure. Twelve E3 dimers were bound per E248.E3BP12 mass, which is consistent with this model.
Collapse
Affiliation(s)
- Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
36
|
Jogl G, Tong L. Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell 2003; 112:113-22. [PMID: 12526798 DOI: 10.1016/s0092-8674(02)01228-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carnitine acyltransferases have crucial roles in the transport of fatty acids for beta-oxidation. Dysregulation of these enzymes can lead to serious diseases in humans, and they are targets for therapeutic development against diabetes. We report the crystal structures of murine carnitine acetyltransferase (CRAT), alone and in complex with its substrate carnitine or CoA. The structure contains two domains. Surprisingly, these two domains share the same backbone fold, which is also similar to that of chloramphenicol acetyltransferase and dihydrolipoyl transacetylase. The active site is located at the interface between the two domains. Carnitine and CoA are bound in deep channels in the enzyme, on opposite sides of the catalytic His343 residue. The structural information provides a molecular basis for understanding the catalysis by carnitine acyltransferases and for designing their inhibitors. Specifically, our structural information suggests that the substrate carnitine may assist the catalysis by stabilizing the oxyanion in the reaction intermediate.
Collapse
Affiliation(s)
- Gerwald Jogl
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
37
|
Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A, Kasten SA. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:33-75. [PMID: 11642366 DOI: 10.1016/s0079-6603(01)70013-x] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian pyruvate dehydrogenase complex (PDC) plays central and strategic roles in the control of the use of glucose-linked substrates as sources of oxidative energy or as precursors in the biosynthesis of fatty acids. The activity of this mitochondrial complex is regulated by the continuous operation of competing pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP) reactions. The resulting interconversion cycle determines the fraction of active (nonphosphorylated) pyruvate dehydrogenase (E1) component. Tissue-specific and metabolic state-specific control is achieved by the selective expression and distinct regulatory properties of at least four PDK isozymes and two PDP isozymes. The PDK isoforms are members of a family of serine kinases that are not structurally related to cytoplasmic Ser/Thr/Tyr kinases. The catalytic subunits of the PDP isoforms are Mg2+-dependent members of the phosphatase 2C family that has binuclear metal-binding sites within the active site. The dihydrolipoyl acetyltransferase (E2) and the dihydrolipoyl dehydrogenase-binding protein (E3BP) are multidomain proteins that form the oligomeric core of the complex. One or more of their three lipoyl domains (two in E2) selectively bind each PDK and PDP1. These adaptive interactions predominantly influence the catalytic efficiencies and effector control of these regulatory enzymes. When fatty acids are the preferred source of acetyl-CoA and NADH, feedback inactivation of PDC is accomplished by the activity of certain kinase isoforms being stimulated upon preferentially binding a lipoyl domain containing a reductively acetylated lipoyl group. PDC activity is increased in Ca2+-sensitive tissues by elevating PDP1 activity via the Ca2+-dependent binding of PDP1 to a lipoyl domain of E2. During starvation, the irrecoverable loss of glucose carbons is restricted by minimizing PDC activity due to high kinase activity that results from the overexpression of specific kinase isoforms. Overexpression of the same PDK isoforms deleteriously hinders glucose consumption in unregulated diabetes.
Collapse
Affiliation(s)
- T E Roche
- Department of Biochemistry, Kansas State University, Manhattan 66506-3702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Perham RN. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 2001; 69:961-1004. [PMID: 10966480 DOI: 10.1146/annurev.biochem.69.1.961] [Citation(s) in RCA: 465] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Multistep chemical reactions are increasingly seen as important in a growing number of complex biotransformations. Covalently attached prosthetic groups or swinging arms, and their associated protein domains, are essential to the mechanisms of active-site coupling and substrate channeling in a number of the multifunctional enzyme systems responsible. The protein domains, for which the posttranslational machinery in the cell is highly specific, are crucially important, contributing to the processes of molecular recognition that define and protect the substrates and the catalytic intermediates. The domains have novel folds and move by virtue of conformationally flexible linker regions that tether them to other components of their respective multienzyme complexes. Structural and mechanistic imperatives are becoming apparent as the assembly pathways and the coupling of multistep reactions catalyzed by these dauntingly complex molecular machines are unraveled.
Collapse
Affiliation(s)
- R N Perham
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
39
|
Coenzymes of Oxidation—Reduction Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Gong X, Peng T, Yakhnin A, Zolkiewski M, Quinn J, Yeaman SJ, Roche TE. Specificity determinants for the pyruvate dehydrogenase component reaction mapped with mutated and prosthetic group modified lipoyl domains. J Biol Chem 2000; 275:13645-53. [PMID: 10788482 DOI: 10.1074/jbc.275.18.13645] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient catalysis in the second step of the pyruvate dehydrogenase (E1) component reaction requires a lipoyl group to be attached to a lipoyl domain that displays appropriately positioned specificity residues. As substrates, the human dihydrolipoyl acetyltransferase provides an N-terminal (L1) and an inner (L2) lipoyl domain. We evaluated the specificity requirements for the E1 reaction with 27 mutant L2 (including four substitutions for the lipoylated lysine, Lys(173)), with three analogs substituted for the lipoyl group on Lys(173), and with selected L1 mutants. Besides Lys(173) mutants, only E170Q mutation prevented lipoylation. Based on analysis of the structural stability of mutants by differential scanning calorimetry, alanine substitutions of residues with aromatic side chains in terminal regions outside the folded portion of the L2 domain significantly decreased the stability of mutant L2, suggesting specific interactions of these terminal regions with the folded domain. E1 reaction rates were markedly reduced by the following substitutions in the L2 domain (equivalent site-L1): L140A, S141A (S14A-L1), T143A, E162A, D172N, and E179A (E52A-L1). These mutants gave diverse changes in kinetic parameters. These residues are spread over >24 A on one side of the L2 structure, supporting extensive contact between E1 and L2 domain. Alignment of over 40 lipoyl domain sequences supports Ser(141), Thr(143), and Glu(179) serving as specificity residues for use by E1 from eukaryotic sources. Extensive interactions of the lipoyl-lysine prosthetic group within the active site are supported by the limited inhibition of E1 acetylation of native L2 by L2 domains altered either by mutation of Lys(173) or enzymatic addition of lipoate analogs to Lys(173). Thus, efficient use by mammalian E1 of cognate lipoyl domains derives from unique surface residues with critical interactions contributed by the universal lipoyl-lysine prosthetic group, key specificity residues, and some conserved residues, particularly Asp(172) adjacent to Lys(173).
Collapse
Affiliation(s)
- X Gong
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
AEvarsson A, Chuang JL, Wynn RM, Turley S, Chuang DT, Hol WG. Crystal structure of human branched-chain alpha-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure 2000; 8:277-91. [PMID: 10745006 DOI: 10.1016/s0969-2126(00)00105-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mutations in components of the extraordinarily large alpha-ketoacid dehydrogenase multienzyme complexes can lead to serious and often fatal disorders in humans, including maple syrup urine disease (MSUD). In order to obtain insight into the effect of mutations observed in MSUD patients, we determined the crystal structure of branched-chain alpha-ketoacid dehydrogenase (E1), the 170 kDa alpha(2)beta(2) heterotetrameric E1b component of the branched-chain alpha-ketoacid dehydrogenase multienzyme complex. RESULTS The 2.7 A resolution crystal structure of human E1b revealed essentially the full alpha and beta polypeptide chains of the tightly packed heterotetramer. The position of two important potassium (K(+)) ions was determined. One of these ions assists a loop that is close to the cofactor to adopt the proper conformation. The second is located in the beta subunit near the interface with the small C-terminal domain of the alpha subunit. The known MSUD mutations affect the functioning of E1b by interfering with the cofactor and K(+) sites, the packing of hydrophobic cores, and the precise arrangement of residues at or near several subunit interfaces. The Tyr-->Asn mutation at position 393-alpha occurs very frequently in the US population of Mennonites and is located in a unique extension of the human E1b alpha subunit, contacting the beta' subunit. CONCLUSIONS Essentially all MSUD mutations in human E1b can be explained on the basis of the structure, with the severity of the mutations for the stability and function of the protein correlating well with the severity of the disease for the patients. The suggestion is made that small molecules with high affinity for human E1b might alleviate effects of some of the milder forms of MSUD.
Collapse
Affiliation(s)
- A AEvarsson
- Department of Biological Structure, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
42
|
Knapp JE, Carroll D, Lawson JE, Ernst SR, Reed LJ, Hackert ML. Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. Protein Sci 2000; 9:37-48. [PMID: 10739245 PMCID: PMC2144448 DOI: 10.1110/ps.9.1.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The dihydrolipoamide succinyltransferase (E2o) component of the alpha-ketoglutarate dehydrogenase complex catalyzes the transfer of a succinyl group from the S-succinyldihydrolipoyl moiety to coenzyme A. E2o is normally a 24-mer, but is found as a trimer when E2o is expressed with a C-terminal [His]6 tag. The crystal structure of the trimeric form of the catalytic domain (CD) of the Escherichia coli E2o has been solved to 3.0 A resolution using the Molecular Replacement method. The refined model contains an intact trimer in the asymmetric unit and has an R-factor of 0.257 (Rfree = 0.286) for 18,699 reflections between 10.0 and 3.0 A resolution. The core of tE2oCD (residues 187-396) superimposes onto that of the cubic E2oCD with an RMS difference of 0.4 A for all main-chain atoms. The C-terminal end of tE2oCD (residues 397-404) rotates by an average of 37 degrees compared to cubic E2oCD, disrupting the normal twofold interface. Despite the alteration of quaternary structure, the active site of tE2oCD shows no significant differences from that of the cubic E2oCD, although several side chains in the active site are more ordered in the trimeric form of E2oCD. Analysis of the available sequence data suggests that the majority of E2 components have active sites that resemble that of E. coli E2oCD. The remaining E2 components can be divided into three groups based on active-site sequence similarity. Analysis of the surface properties of both crystal forms of E. coli E2oCD suggests key residues that may be involved in the protein-protein contacts that occur between the catalytic and lipoyl domains of E2o.
Collapse
Affiliation(s)
- J E Knapp
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 78712, USA
| | | | | | | | | | | |
Collapse
|
43
|
Izard T, Aevarsson A, Allen MD, Westphal AH, Perham RN, de Kok A, Hol WG. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc Natl Acad Sci U S A 1999; 96:1240-5. [PMID: 9990008 PMCID: PMC15447 DOI: 10.1073/pnas.96.4.1240] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 11/09/1998] [Indexed: 11/18/2022] Open
Abstract
The pyruvate dehydrogenase multienzyme complex (Mr of 5-10 million) is assembled around a structural core formed of multiple copies of dihydrolipoyl acetyltransferase (E2p), which exhibits the shape of either a cube or a dodecahedron, depending on the source. The crystal structures of the 60-meric dihydrolipoyl acyltransferase cores of Bacillus stearothermophilus and Enterococcus faecalis pyruvate dehydrogenase complexes were determined and revealed a remarkably hollow dodecahedron with an outer diameter of approximately 237 A, 12 large openings of approximately 52 A diameter across the fivefold axes, and an inner cavity with a diameter of approximately 118 A. Comparison of cubic and dodecahedral E2p assemblies shows that combining the principles of quasi-equivalence formulated by Caspar and Klug [Caspar, D. L. & Klug, A. (1962) Cold Spring Harbor Symp. Quant. Biol. 27, 1-4] with strict Euclidean geometric considerations results in predictions of the major features of the E2p dodecahedron matching the observed features almost exactly.
Collapse
Affiliation(s)
- T Izard
- Departments of Biological Structure and Biochemistry, Biomolecular Structure Center, and Howard Hughes Medical Institute, University of Washington, Box 357742, Seattle, WA 98195-7742, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
von Döllen A, Strasdeit H. Models for the Inhibition of Dithiol‐Containing Enzymes by Organoarsenic Compounds: Synthetic Routes and the Structure of [PhAs(HlipS
2
)] (HlipS
2
2−
= Reduced Lipoic Acid). Eur J Inorg Chem 1998. [DOI: 10.1002/(sici)1099-0682(199801)1998:1<61::aid-ejic61>3.0.co;2-#] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Angelika von Döllen
- Fachbereich Chemie, Universität Oldenburg, P.O. Box 2503, D‐26111 Oldenburg, Fax: (internat.) +49(0)441/798‐3329
| | | |
Collapse
|
45
|
|
46
|
Knapp JE, Mitchell DT, Yazdi MA, Ernst SR, Reed LJ, Hackert ML. Crystal structure of the truncated cubic core component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex. J Mol Biol 1998; 280:655-68. [PMID: 9677295 DOI: 10.1006/jmbi.1998.1924] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dihydrolipoamide succinyltransferase (E2o) component of the 2-oxoglutarate dehydrogenase multienzyme complex is composed of 24 subunits arranged with 432 point group symmetry. The catalytic domain (CD) of the E2o component catalyzes the transfer of a succinyl group from the S-succinyldihydrolipoyl moiety to coenzyme A. The crystal structure of the Escherichia coli E2oCD has been solved to 3.0 A resolution using molecular replacement phases derived from the structure of the catalytic domain from the Azotobacter vinelandii dihydrolipoamide acetyltransferase (E2pCD). The refined model of the E. coli E2oCD consists of residues 172 to 404 and has an R-factor of 0.205 (Rfree=0.249) for 9696 reflections between 20.0 and 3.0 A resolution. Although both E2oCD and E2pCD form 24mers, subtle changes in the orientations of two helices in E2oCD increase the stability of the E2oCD 24mer in comparison to the less stable A. vinelandii E2pCD 24mer. Like E2pCD and chloramphenicol acetyltransferase (CAT), the active site of E2oCD is located in the middle of a channel formed at the interface between two 3-fold related subunits. Two of the active-site residues (His375 and Thr323) have a similar orientation to their counterparts in E2pCD and CAT. A third catalytic residue (Asp379) assumes a conformation similar to the corresponding residue in E2pCD (Asn614), but different from its counterpart in CAT (Asp199). Binding of the substrates to E2oCD is proposed to induce a change in the conformation of Asp379, allowing this residue to form a salt bridge with Arg184 that is analogous to that formed between Asp199 and Arg18 in CAT. Computer models of the active site of E2o complexed with dihydrolipoamide and with coenzyme A led to the identification of the probable succinyl-binding pocket. The residues which form this pocket (Ser330, Ser333, and His348) are probably responsible for E2o's substrate specificity.
Collapse
Affiliation(s)
- J E Knapp
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
47
|
de Kok A, Hengeveld AF, Martin A, Westphal AH. The pyruvate dehydrogenase multi-enzyme complex from Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:353-66. [PMID: 9655933 DOI: 10.1016/s0167-4838(98)00079-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyruvate dehydrogenase multi-enzyme complexes from Gram-negative bacteria consists of three enzymes, pyruvate dehydrogenase/decarboxylase (E1p), dihydrolipoyl acetyltransferase (E2p) and dihydrolipoyl dehydrogenase (E3). The acetyltransferase harbors all properties required for multi-enzyme catalysis: it forms a large core of 24 subunits, it contains multiple binding sites for the E1p and E3 components, the acetyltransferase catalytic site and mobile substrate carrying lipoyl domains that visit the active sites. Today, the Azotobacter vinelandii complex is the best understood oxo acid dehydrogenase complex with respect to structural details. A description of multi-enzyme catalysis starts with the structural and catalytic properties of the individual components of the complex. Integration of the individual properties is obtained by a description of how the many copies of the individual enzymes are arranged in the complex and how the lipoyl domains couple the activities of the respective active sites by way of flexible linkers. These latter aspects are the most difficult to study and future research need to be aimed at these properties.
Collapse
Affiliation(s)
- A de Kok
- Department of Biomolecular Sciences, Laboratory of Biochemistry, Wageningen Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, Netherlands.
| | | | | | | |
Collapse
|
48
|
Murray IA, Shaw WV. O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother 1997; 41:1-6. [PMID: 8980745 PMCID: PMC163650 DOI: 10.1128/aac.41.1.1] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- I A Murray
- Department of Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | | |
Collapse
|
49
|
Abstract
Coenzyme A is involved in a number of important metabolic pathways. Recently the structures of several coenzyme A binding proteins have been determined. We compare in some detail the structures of seven different coenzyme A protein complexes. These seven proteins all have distinctly different folds.
Collapse
Affiliation(s)
- C Engel
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
50
|
Dunn SM, Moody PC, Downie JA, Shaw WV. Crystallization and preliminary diffraction studies of NodL, a rhizobial O-acetyl-transferase involved in the host-specific nodulation of legume roots. Protein Sci 1996; 5:538-41. [PMID: 8868492 PMCID: PMC2143368 DOI: 10.1002/pro.5560050318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The NodL specified O-acetyltransferase from the microbial symbiont Rhizobium leguminosarum has been over-expressed in Escherichia coli and purified using affinity-elution dye chromatography as the key step. The protein has been crystallized at 20 degrees C in 18% PEG 600, 0.1 M Tris/HCl buffer, pH 8.5, containing 1% dioxane, 0.25% octyl-beta-glucoside, and 5 mM coenzyme A using the hanging drop vapor diffusion method. Ambient temperature X-ray diffraction studies reveal the space group to be hexagonal (P6(3)22) with lattice constants a = b = 77.08 A, c = 160.6 A, and alpha = beta = 90 degrees, gamma = 120 degrees. Crystals that are flash-frozen to 120 K diffract beyond 2.7 A.
Collapse
Affiliation(s)
- S M Dunn
- Department of Biochemistry, University of Leicester, UK
| | | | | | | |
Collapse
|