1
|
Martínez-Rodríguez S, Cámara-Artigas A, Gavira JA. First 3-D structural evidence of a native-like intertwined dimer in the acylphosphatase family. Biochem Biophys Res Commun 2023; 682:85-90. [PMID: 37804591 DOI: 10.1016/j.bbrc.2023.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Acylphosphatase (AcP, EC 3.6.1.7) is a small model protein conformed by a ferredoxin-like fold, profoundly studied to get insights into protein folding and aggregation processes. Numerous studies focused on the aggregation and/or amyloidogenic properties of AcPs suggest the importance of edge-β-strands in the process. In this work, we present the first crystallographic structure of Escherichia coli AcP (EcoAcP), showing notable differences with the only available NMR structure for this enzyme. EcoAcP is crystalised as an intertwined dimer formed by replacing a single C-terminal β-strand between two protomers, suggesting a flexible character of the C-terminal edge of EcoAcP. Despite numerous works where AcP from different sources have been used as a model system for protein aggregation, our domain-swapped EcoAcP structure is the first 3-D structural evidence of native-like aggregated species for any AcP reported to date, providing clues on molecular determinants unleashing aggregation.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Avenida de La Investigación 11, Granada, 18071, Spain; Laboratorio de Estudios Cristalográficos, CSIC-UGR, Avda. de Las Palmeras 4, Armilla, Granada, 18100, Spain.
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAMBITAL), Carretera de Sacramento S/n, Almería, 04120, Spain
| | - Jose Antonio Gavira
- Laboratorio de Estudios Cristalográficos, CSIC-UGR, Avda. de Las Palmeras 4, Armilla, Granada, 18100, Spain
| |
Collapse
|
2
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Nag A, Dhull N, Gupta A. Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking. Mol Divers 2023; 27:487-509. [PMID: 35536529 PMCID: PMC9086669 DOI: 10.1007/s11030-022-10437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Tea (Camellia sinensis L.) is considered as to be one of the most consumed beverages globally and a reservoir of phytochemicals with immense health benefits. Despite numerous advantages, tea compounds lack a robust multi-disease target study. In this work, we presented a unique in silico approach consisting of molecular docking, multivariate statistics, pharmacophore analysis, and network pharmacology approaches. Eight tea phytochemicals were identified through literature mining, namely gallic acid, catechin, epigallocatechin gallate, epicatechin, epicatechin gallate (ECG), quercetin, kaempferol, and ellagic acid, based on their richness in tea leaves. Further, exploration of databases revealed 30 target proteins related to the pharmacological properties of tea compounds and multiple associated diseases. Molecular docking experiment with eight tea compounds and all 30 proteins revealed that except gallic acid all other seven phytochemicals had potential inhibitory activities against these targets. The docking experiment was validated by comparing the binding affinities (Kcal mol-1) of the compounds with known drug molecules for the respective proteins. Further, with the aid of the application of statistical tools (principal component analysis and clustering), we identified two major clusters of phytochemicals based on their chemical properties and docking scores (Kcal mol-1). Pharmacophore analysis of these clusters revealed the functional descriptors of phytochemicals, related to the ligand-protein docking interactions. Tripartite network was constructed based on the docking scores, and it consisted of seven tea phytochemicals (gallic acid was excluded) targeting five proteins and ten associated diseases. Epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex was found to be highest in docking performance (10 kcal mol-1). Finally, molecular dynamic simulation showed that ECG-1FYR could make a stable complex in the near-native physiological condition.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India.
| | - Nikhil Dhull
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| | - Ashmita Gupta
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| |
Collapse
|
4
|
Ochi S, Iiyama M, Oda M. Interdomain interactions in Grb2 revealed by the conformational stability and CD28 binding analysis. Biophys Chem 2022; 284:106792. [DOI: 10.1016/j.bpc.2022.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
|
5
|
de Paiva FCR, Chan K, Samborskyy M, Silber AM, Leadlay PF, Dias MVB. The crystal structure of AjiA1 reveals a novel structural motion mechanism in the adenylate-forming enzyme family. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:1201-1210. [DOI: 10.1107/s2059798320013431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
Adenylate-forming enzymes (AFEs) are a mechanistic superfamily of proteins that are involved in many cellular roles. In the biosynthesis of benzoxazole antibiotics, an AFE has been reported to play a key role in the condensation of cyclic molecules. In the biosynthetic gene cluster for the benzoxazole AJI9561, AjiA1 catalyzes the condensation of two 3-hydroxyanthranilic acid (3-HAA) molecules using ATP as a co-substrate. Here, the enzymatic activity of AjiA1 is reported together with a structural analysis of its apo form. The structure of AjiA1 was solved at 2.0 Å resolution and shows a conserved fold with other AFE family members. AjiA1 exhibits activity in the presence of 3-HAA (K
m = 77.86 ± 28.36, k
cat = 0.04 ± 0.004) and also with the alternative substrate 3-hydroxybenzoic acid (3-HBA; K
m = 22.12 ± 31.35, k
cat = 0.08 ± 0.005). The structure of AjiA1 in the apo form also reveals crucial conformational changes that occur during the catalytic cycle of this enzyme which have not been described for any other AFE member. Consequently, the results shown here provide insights into this protein family and a new subgroup is proposed for enzymes that are involved in benzoxazole-ring formation.
Collapse
|
6
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 PMCID: PMC6669380 DOI: 10.3389/fimmu.2019.01704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Hosoe Y, Numoto N, Inaba S, Ogawa S, Morii H, Abe R, Ito N, Oda M. Structural and functional properties of Grb2 SH2 dimer in CD28 binding. Biophys Physicobiol 2019; 16:80-88. [PMID: 30923665 PMCID: PMC6435016 DOI: 10.2142/biophysico.16.0_80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein that plays a critical role in cellular signal transduction. It contains a central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. Binding of Grb2 SH2 to the cytoplasmic region of CD28, phosphorylated Tyr (pY) containing the peptide motif pY-X-N-X, is required for costimulatory signaling in T cells. In this study, we purified the dimer and monomer forms of Grb2 SH2, respectively, and analyzed their structural and functional properties. Size exclusion chromatography analysis showed that both dimer and monomer exist as stable states. Thermal stability analysis using circular dichroism showed that the dimer mostly dissociates into the monomer around 50°C. CD28 binding experiments showed that the affinity of the dimer to the phosphopeptide was about three fold higher than that of the monomer, possibly due to the avidity effect. The present crystal structure analysis of Grb2 SH2 showed two forms; one is monomer at 1.15 Å resolution, which is currently the highest resolution analysis, and another is dimer at 2.00 Å resolution. In the dimer structure, the C-terminal region, comprising residues 123–152, was extended towards the adjacent molecule, in which Trp121 was the hinge residue. The stable dimer purified using size exclusion chromatography would be due to the C-terminal helix “swapping”. In cases where a mutation caused Trp121 to be replaced by Ser in Grb2 SH2, this protein still formed dimers, but lost the ability to bind CD28.
Collapse
Affiliation(s)
- Yuhi Hosoe
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satomi Inaba
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.,Research & Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Hisayuki Morii
- College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Ryo Abe
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan.,Present address: Strategic Innovation and Research Center, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
8
|
Enhancing Enzymatic Properties of Endoglucanase I Enzyme from Trichoderma Reesei via Swapping from Cellobiohydrolase I Enzyme. Catalysts 2019. [DOI: 10.3390/catal9020130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Utilizing plant-based materials as a biofuel source is an increasingly popular attempt to redesign the global energy cycle. This endeavour underlines the potential of cellulase enzymes for green energy production and requires the structural and functional engineering of natural enzymes to enhance their utilization. In this work, we aimed to engineer enzymatic and functional properties of Endoglucanase I (EGI) by swapping the Ala43-Gly83 region of Cellobiohydrolase I (CBHI) from Trichoderma reesei. Herein, we report the enhanced enzymatic activity and improved thermal stability of the engineered enzyme, called EGI_swapped, compared to EGI. The difference in the enzymatic activity profile of EGI_swapped and the EGI enzymes became more pronounced upon increasing metal-ion concentrations in the reaction media. Notably, the engineered enzyme retained a considerable level of enzymatic activity after thermal incubation for 90 min at 70 °C while EGI completely lost its enzymatic activity. Circular Dichroism spectroscopy studies revealed distinctive conformational and thermal susceptibility differences between EGI_swapped and EGI enzymes, confirming the improved structural integrity of the swapped enzyme. This study highlights the importance of swapping the metal-ion coordination region in the engineering of EGI enzyme for enhanced structural and thermal stability.
Collapse
|
9
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 DOI: 10.3389/fimmu.2019.01704/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 05/22/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Wang Z, Nie Y, Zhang K, Xu H, Ramelot TA, Kennedy MA, Liu M, Zhu J, Yang Y. Solution structure of SHIP2 SH2 domain and its interaction with a phosphotyrosine peptide from c-MET. Arch Biochem Biophys 2018; 656:31-37. [PMID: 30165040 DOI: 10.1016/j.abb.2018.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/10/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) binds with the Y1356-phosphorylated hepatocyte growth factor (HGF) receptor, c-MET, through its SH2 domain, which is essential for the role of SHIP2 in HGF-induced cell scattering and cell spreading. Previously, the experimental structure of the SH2 domain from SHIP2 (SHIP2-SH2) had not been reported, and its interaction with the Y1356-phosphorylated c-MET had not been investigated from a structural point of view. In this study, the solution structure of SHIP2-SH2 was determined by NMR spectroscopy, where it was found to adopt a typical SH2-domain fold that contains a positively-charged pocket for binding to phosphotyrosine (pY). The interaction between SHIP2-SH2 and a pY-containing peptide from c-MET (Y1356 phosphorylated) was investigated through NMR titrations. The results showed that the binding affinity of SHIP2-SH2 with the phosphopeptide is at low micromolar level, and the binding interface consists of the positively-charged pocket and its surrounding regions. Furthermore, R28, S49 and R70 were identified as key residues for the binding and may directly interact with the pY. Taken together, these findings provide structural insights into the binding of SHIP2-SH2 with the Y1356-phosphorylated c-MET, and lay a foundation for further studies of the interactions between SHIP2-SH2 and its various binding partners.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Nie
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunxiao Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Henghao Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, The Northeast Structural Genomics Consortium, Miami University, Oxford, OH, 45056, United States
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, The Northeast Structural Genomics Consortium, Miami University, Oxford, OH, 45056, United States
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
11
|
Rufer AC, Kusznir E, Burger D, Stihle M, Ruf A, Rudolph MG. Domain swap in the C-terminal ubiquitin-like domain of human doublecortin. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:450-462. [PMID: 29717716 DOI: 10.1107/s2059798318004813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 11/10/2022]
Abstract
Doublecortin, a microtubule-associated protein that is only produced during neurogenesis, cooperatively binds to microtubules and stimulates microtubule polymerization and cross-linking by unknown mechanisms. A domain swap is observed in the crystal structure of the C-terminal domain of doublecortin. As determined by analytical ultracentrifugation, an open conformation is also present in solution. At higher concentrations, higher-order oligomers of the domain are formed. The domain swap and additional interfaces observed in the crystal lattice can explain the formation of doublecortin tetramers or multimers, in line with the analytical ultracentrifugation data. Taken together, the domain swap offers a mechanism for the observed cooperative binding of doublecortin to microtubules. Doublecortin-induced cross-linking of microtubules can be explained by the same mechanism. The effect of several mutations leading to lissencephaly and double-cortex syndrome can be traced to the domain swap and the proposed self-association of doublecortin.
Collapse
Affiliation(s)
- Arne C Rufer
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Eric Kusznir
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Dominique Burger
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Martine Stihle
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Armin Ruf
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Markus G Rudolph
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| |
Collapse
|
12
|
Sukenik S, Frushicheva MP, Waknin-Lellouche C, Hallumi E, Ifrach T, Shalah R, Beach D, Avidan R, Oz I, Libman E, Aronheim A, Lewinson O, Yablonski D. Dimerization of the adaptor Gads facilitates antigen receptor signaling by promoting the cooperative binding of Gads to the adaptor LAT. Sci Signal 2017; 10:10/498/eaal1482. [PMID: 28951535 DOI: 10.1126/scisignal.aal1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accurate assembly of signalosomes centered on the adaptor protein LAT (linker of activated T cells) is required for antigen receptor signaling in T cells and mast cells. During signalosome assembly, members of the growth factor receptor-bound protein 2 (Grb2) family of cytosolic adaptor proteins bind cooperatively to LAT through interactions with its phosphorylated tyrosine (pTyr) residues. We demonstrated the Src homology 2 (SH2) domain-mediated dimerization of the Grb2 family member, Grb2-related adaptor downstream of Shc (Gads). Gads dimerization was mediated by an SH2 domain interface, which is distinct from the pTyr binding pocket and which promoted cooperative, preferential binding of paired Gads to LAT. This SH2 domain-intrinsic mechanism of cooperativity, which we quantified by mathematical modeling, enabled Gads to discriminate between dually and singly phosphorylated LAT molecules. Mutational inactivation of the dimerization interface reduced cooperativity and abrogated Gads signaling in T cells and mast cells. The dimerization-dependent, cooperative binding of Gads to LAT may increase antigen receptor sensitivity by reducing signalosome formation at incompletely phosphorylated LAT molecules, thereby prioritizing the formation of complete signalosomes.
Collapse
Affiliation(s)
- Sigalit Sukenik
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Maria P Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Cecilia Waknin-Lellouche
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Talia Ifrach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Reuven Avidan
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Evgeny Libman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ami Aronheim
- Department of Cell Biology and Cancer Science, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Oded Lewinson
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel.
| |
Collapse
|
13
|
Bonjack-Shterengartz M, Avnir D. The enigma of the near-symmetry of proteins: Domain swapping. PLoS One 2017; 12:e0180030. [PMID: 28708874 PMCID: PMC5510828 DOI: 10.1371/journal.pone.0180030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/08/2017] [Indexed: 01/25/2023] Open
Abstract
The majority of proteins form oligomers which have rotational symmetry. Literature has suggested many functional advantages that the symmetric packing offers. Yet, despite these advantages, the vast majority of protein oligomers are only nearly symmetric. A key question in the field of proteins structure is therefore, if symmetry is so advantageous, why do oligomers settle for aggregates that do not maximize that structural property? The answer to that question is apparently multi-parametric, and involves distortions at the interaction zones of the monomer units of the oligomer in order to minimize the free energy, the dynamics of the protein, the effects of surroundings parameters, and the mechanism of oligomerization. The study of this problem is in its infancy: Only the first parameter has been explored so far. Here we focus on the last parameter-the mechanism of formation. To test this effect we have selected to focus on the domain swapping mechanism of oligomerization, by which oligomers form in a mechanism that swaps identical portions of monomeric units, resulting in an interwoven oligomer. We are using continuous symmetry measures to analyze in detail the oligomer formed by this mechanism, and found, that without exception, in all analyzed cases, perfect symmetry is given away, and we are able to identify that the main burden of distortion lies in the hinge regions that connect the swapped portions. We show that the continuous symmetry analysis method clearly identifies the hinge region of swapped domain proteins-considered to be a non-trivial task. We corroborate our conclusion about the central role of the hinge region in affecting the symmetry of the oligomers, by a special probability analysis developed particularly for that purpose.
Collapse
Affiliation(s)
- Maayan Bonjack-Shterengartz
- Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Avnir
- Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
14
|
Tian P, Best RB. Structural Determinants of Misfolding in Multidomain Proteins. PLoS Comput Biol 2016; 12:e1004933. [PMID: 27163669 PMCID: PMC4862688 DOI: 10.1371/journal.pcbi.1004933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Recent single molecule experiments, using either atomic force microscopy (AFM) or Förster resonance energy transfer (FRET) have shown that multidomain proteins containing tandem repeats may form stable misfolded structures. Topology-based simulation models have been used successfully to generate models for these structures with domain-swapped features, fully consistent with the available data. However, it is also known that some multidomain protein folds exhibit no evidence for misfolding, even when adjacent domains have identical sequences. Here we pose the question: what factors influence the propensity of a given fold to undergo domain-swapped misfolding? Using a coarse-grained simulation model, we can reproduce the known propensities of multidomain proteins to form domain-swapped misfolds, where data is available. Contrary to what might be naively expected based on the previously described misfolding mechanism, we find that the extent of misfolding is not determined by the relative folding rates or barrier heights for forming the domains present in the initial intermediates leading to folded or misfolded structures. Instead, it appears that the propensity is more closely related to the relative stability of the domains present in folded and misfolded intermediates. We show that these findings can be rationalized if the folded and misfolded domains are part of the same folding funnel, with commitment to one structure or the other occurring only at a relatively late stage of folding. Nonetheless, the results are still fully consistent with the kinetic models previously proposed to explain misfolding, with a specific interpretation of the observed rate coefficients. Finally, we investigate the relation between interdomain linker length and misfolding, and propose a simple alchemical model to predict the propensity for domain-swapped misfolding of multidomain proteins.
Collapse
Affiliation(s)
- Pengfei Tian
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Papaioannou D, Geibel S, Kunze MBA, Kay CWM, Waksman G. Structural and biophysical investigation of the interaction of a mutant Grb2 SH2 domain (W121G) with its cognate phosphopeptide. Protein Sci 2015; 25:627-37. [PMID: 26645482 DOI: 10.1002/pro.2856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/27/2015] [Indexed: 11/11/2022]
Abstract
The adaptor protein Grb2 is a key element of mitogenetically important signaling pathways. With its SH2 domain it binds to upstream targets while its SH3 domains bind to downstream proteins thereby relaying signals from the cell membranes to the nucleus. The Grb2 SH2 domain binds to its targets by recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn at the +2 position C-terminal to the pY with the residue either side of this Asn being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with its cognate peptide has shown that the peptide adopts a unique β-turn conformation, unlike the extended conformation that phosphopeptides adopt when bound to other SH2 domains. TrpEF1 (W121) is believed to force the peptide into this unusual conformation conferring this unique specificity to the Grb2 SH2 domain. Using X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here a series of experiments that explore the role of TrpEF1 in determining the specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does not adopt a pre-organized structure before binding to the SH2 domain, rather it is the interaction between the two that imposes the hairpin loop to the peptide. Furthermore, we find that the peptide adopts a similar structure when bound to both the wild-type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that TrpEF1 is not the determining factor for the conformation of the phosphopeptide.
Collapse
Affiliation(s)
- Danai Papaioannou
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| | - Sebastian Geibel
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom.,Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2, Haus D15, Würzburg, 97080, Germany
| | - Micha B A Kunze
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| | - Christopher W M Kay
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom.,London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Gabriel Waksman
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
16
|
Huculeci R, Garcia-Pino A, Buts L, Lenaerts T, van Nuland N. Structural insights into the intertwined dimer of fyn SH2. Protein Sci 2015; 24:1964-78. [PMID: 26384592 DOI: 10.1002/pro.2806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn SH2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide-bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand.
Collapse
Affiliation(s)
- Radu Huculeci
- Structural Biology Brussels, Jean Jeener NMR Center, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Jean Jeener NMR Center, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| | - Lieven Buts
- Structural Biology Brussels, Jean Jeener NMR Center, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| | - Tom Lenaerts
- MLG, Département d'Informatique, Université Libre de Bruxelles, Brussels, Belgium.,AI-Lab,Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Institute of Bioinformatics Brussels (IB2), ULB-VUB, Brussels, Belgium
| | - Nico van Nuland
- Structural Biology Brussels, Jean Jeener NMR Center, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, VIB, Brussels, Belgium
| |
Collapse
|
17
|
Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, Kuriyan J. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. eLife 2015; 4:e06074. [PMID: 25699547 PMCID: PMC4384635 DOI: 10.7554/elife.06074] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/07/2023] Open
Abstract
Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk.
Collapse
Affiliation(s)
- Qi Wang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Erik M Vogan
- Beryllium Inc, Boston, United States,Laboratory of Molecular Medicine, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Laura M Nocka
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Connor E Rosen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Julie A Zorn
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States,For correspondence: (SCH)
| | - John Kuriyan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Department of Chemistry, University of California, Berkeley, Berkeley, United States,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States, (JK)
| |
Collapse
|
18
|
de Mol NJ, Kruijtzer JA, Moret EE, Broutin I, Liskamp RM. Unusual binding of Grb2 protein to a bivalent polyproline-ligand immobilized on a SPR sensor: Intermolecular bivalent binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:524-35. [DOI: 10.1016/j.bbapap.2012.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 10/22/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
|
19
|
Iwata T, Tanaka K, Tahara T, Nozaki S, Onoe H, Watanabe Y, Fukase K. A conformationally fixed analog of the peptide mimic Grb2–SH2 domain: synthesis and evaluation against the A431 cancer cell. MOLECULAR BIOSYSTEMS 2013; 9:1019-25. [DOI: 10.1039/c3mb25462c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Progress towards the development of SH2 domain inhibitors. Chem Soc Rev 2013; 42:3337-70. [DOI: 10.1039/c3cs35449k] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Peterson TA, Benallie RL, Bradford AM, Pias SC, Yazzie J, Lor SN, Haulsee ZM, Park CK, Johnson DL, Rohrschneider LR, Spuches A, Lyons BA. Dimerization in the Grb7 protein. J Mol Recognit 2012; 25:427-34. [PMID: 22811067 DOI: 10.1002/jmr.2205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous studies, we showed that the tyrosine phosphorylation state of growth factor receptor-bound protein 7 (Grb7) affects its ability to bind to the transcription regulator FHL2 and the cortactin-interacting protein, human HS-1-associated protein-1. Here, we present results describing the importance of dimerization in the Grb7-Src homology 2 (SH2) domain in terms of its structural integrity and the ability to bind phosphorylated tyrosine peptide ligands. A tyrosine phosphorylation-mimic mutant (Y80E-Grb7-SH2) is largely dimerization deficient and binds a tyrosine-phosphorylated peptide representative of the receptor tyrosine kinase (RTK) erbB2 with differing thermodynamic characteristics than the wild-type SH2 domain. Another dimerization-deficient mutant (F99R-Grb7-SH2) binds the phosphorylated erbB2 peptide with similarly changed thermodynamic characteristics. Both Y80E-Grb7-SH2 and F99R-Grb7-SH2 are structured by circular dichroism measurements but show reduced thermal stability relative to the wild type-Grb7-SH2 domain as measured by circular dichroism and nuclear magnetic resonance. It is well known that the dimerization state of RTKs (as binding partners to adaptor proteins such as Grb7) plays an important role in their regulation. Here, we propose the phosphorylation state of Grb7-SH2 domain tyrosine residues could control Grb7 dimerization, and dimerization may be an important regulatory step in Grb7 binding to RTKs such as erbB2. In this manner, additional dimerization-dependent regulation could occur downstream of the membrane-bound kinase in RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Tabitha A Peterson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Biophysical studies with AICD-47 reveal unique binding behavior characteristic of an unfolded domain. Biochem Biophys Res Commun 2012; 425:201-6. [DOI: 10.1016/j.bbrc.2012.07.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 11/21/2022]
|
23
|
Tanaka K, Shirotsuki S, Iwata T, Kageyama C, Tahara T, Nozaki S, Siwu ERO, Tamura S, Douke S, Murakami N, Onoe H, Watanabe Y, Fukase K. Template-assisted and self-activating clicked peptide as a synthetic mimic of the SH2 domain. ACS Chem Biol 2012; 7:637-45. [PMID: 22239652 DOI: 10.1021/cb2003175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new synthetic strategy for obtaining artificial receptors that selectively regulate and/or control specific protein/protein interactions was developed based on the template-assisted and the self-activating click reaction applied to a combinatorial library. Synthetic mimics of the Grb2-SH2 domain, examined as a model case, selectively bound to a target signaling protein to induce cytotoxicity and inhibit tumor growth in vivo.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Sanae Shirotsuki
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Takayuki Iwata
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Chika Kageyama
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Satoshi Nozaki
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Eric R. O. Siwu
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | - Satoru Tamura
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka,
Suita-shi, Osaka 565-0871, Japan
| | - Shunsuke Douke
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka,
Suita-shi, Osaka 565-0871, Japan
| | - Nobutoshi Murakami
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka,
Suita-shi, Osaka 565-0871, Japan
| | - Hirotaka Onoe
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi,
Chuo-ku, Kobe-shi, Hyogo 650-0047, Japan
| | - Koichi Fukase
- Department
of Chemistry, Graduate
School of Science, Osaka University, 1-1
Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| |
Collapse
|
24
|
Joseph RE, Ginder ND, Hoy JA, Nix JC, Fulton DB, Honzatko RB, Andreotti AH. Structure of the interleukin-2 tyrosine kinase Src homology 2 domain; comparison between X-ray and NMR-derived structures. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:145-53. [PMID: 22297986 PMCID: PMC3274390 DOI: 10.1107/s1744309111049761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022]
Abstract
The crystal structure of the interleukin-2 tyrosine kinase Src homology domain (Itk SH2) is described and it is found that unlike in studies of this domain using NMR spectroscopy, cis-trans-prolyl isomerization is not readily detected in the crystal structure. Based on similarities between the Itk SH2 crystal form and the cis form of the Itk SH2 NMR structure, it is concluded that it is likely that the prolyl imide bond at least in part adopts the cis conformation in the crystal form. However, the lack of high-resolution data and the dynamic nature of the proline-containing loop mean that the precise imide-bond conformation cannot be determined and prolyl cis-trans isomerization in the crystal cannot be ruled out. Given the preponderance of structures that have been solved by X-ray crystallography in the Protein Data Bank, this result supports the notion that prolyl isomerization in folded proteins has been underestimated among known structures. Interestingly, while the precise status of the proline residue is ambiguous, Itk SH2 crystallizes as a domain-swapped dimer. The domain-swapped structure of Itk SH2 is similar to the domain-swapped SH2 domains of Grb2 and Nck, with domain swapping occurring at the β-meander region of all three SH2 domains. Thus, for Itk SH2 structural analysis by NMR spectroscopy and X-ray crystallography revealed very different structural features: proline isomerization versus domain-swapped dimerization, respectively.
Collapse
Affiliation(s)
- Raji E. Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Nathaniel D. Ginder
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Julie A. Hoy
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jay C. Nix
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D. Bruce Fulton
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Richard B. Honzatko
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
25
|
Rousseau F, Schymkowitz J, Itzhaki LS. Implications of 3D domain swapping for protein folding, misfolding and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:137-52. [PMID: 22949116 DOI: 10.1007/978-1-4614-3229-6_9] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional domain swapping is the process by which two identical protein chains exchange a part of their structure to form an intertwined dimer or higher-order oligomer. The phenomenon has been observed in the crystal structures of a range of different proteins. In this chapter we review the experiments that have been performed in order to understand the sequence and structural determinants of domain-swapping and these show how the general principles obtained can be used to engineer proteins to domain swap. We discuss the role of domain swapping in regulating protein function and as one possible mechanism of protein misfolding that can lead to aggregation and disease. We also review a number of interesting pathways of macromolecular assembly involving β-strand insertion or complementation that are related to the domain-swapping phenomenon.
Collapse
Affiliation(s)
- Frederic Rousseau
- VIB Switch Laboratory, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
26
|
Abstract
Among thousands of homo-oligomeric protein structures, there is a small but growing subset of ‘domain-swapped’ proteins. The term ‘domain swapping,’ originally coined by D. Eisenberg, describes a scenario in which two or more polypeptide chains exchange identical units for oligomerization. This type of assembly could play a role in disease-related aggregation and amyloid formation or as a specific mechanism for regulating function. This chapter introduces terms and features concerning domain swapping, summarizes ideas about its putative mechanisms, reports on domain-swapped structures collected from the literature, and describes a few notable examples in detail.
Collapse
|
27
|
Pias S, Peterson TA, Johnson DL, Lyons BA. The intertwining of structure and function: proposed helix-swapping of the SH2 domain of Grb7, a regulatory protein implicated in cancer progression and inflammation. Crit Rev Immunol 2010; 30:299-304. [PMID: 20370637 DOI: 10.1615/critrevimmunol.v30.i3.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Grb7 is a multidomain intracellular signaling protein that links activated tyrosine kinases with downstream signaling targets. Best known for its regulatory role in cell migration and tumor metastasis, Grb7 also regulates inflammation by coupling NF-kappaB-inducing kinase with erbB/EGFR family receptors. The "adaptor" role of Grb7 in these processes depends upon binding to membrane-associated tyrosine kinases through its C-terminal SH2 domain. The Grb7-SH2 domain shares structural and functional similarity with the SH2 domain of Grb2, a constituent of the MAP kinase pathway. Both domains show unusual affinity for cyclic (beta-turn) ligands. The Grb2-SH2 domain also shows distinctive self-association behavior, forming intertwined ("swapped") dimers. While Grb7 and its SH2 domain are each known to dimerize, the mechanisms and functional significance of this self-association are incompletely understood. Additional residues in the Grb7-SH2 domain effectively lengthen its "EF loop" and render the domain a good candidate for swapped dimerization, through exchange of a C-terminal helix. We propose the existence of a swapped dimeric form of the Grb7-SH2 domain and offer a structural model derived through novel application of nuclear magnetic resonance-derived restraints.
Collapse
Affiliation(s)
- Sally Pias
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003-8001, USA
| | | | | | | |
Collapse
|
28
|
Chu CH, Lo WC, Wang HW, Hsu YC, Hwang JK, Lyu PC, Pai TW, Tang CY. Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques. PLoS One 2010; 5:e13361. [PMID: 20976204 PMCID: PMC2955075 DOI: 10.1371/journal.pone.0013361] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022] Open
Abstract
This work presents a novel detection method for three-dimensional domain swapping (DS), a mechanism for forming protein quaternary structures that can be visualized as if monomers had “opened” their “closed” structures and exchanged the opened portion to form intertwined oligomers. Since the first report of DS in the mid 1990s, an increasing number of identified cases has led to the postulation that DS might occur in a protein with an unconstrained terminus under appropriate conditions. DS may play important roles in the molecular evolution and functional regulation of proteins and the formation of depositions in Alzheimer's and prion diseases. Moreover, it is promising for designing auto-assembling biomaterials. Despite the increasing interest in DS, related bioinformatics methods are rarely available. Owing to a dramatic conformational difference between the monomeric/closed and oligomeric/open forms, conventional structural comparison methods are inadequate for detecting DS. Hence, there is also a lack of comprehensive datasets for studying DS. Based on angle-distance (A-D) image transformations of secondary structural elements (SSEs), specific patterns within A-D images can be recognized and classified for structural similarities. In this work, a matching algorithm to extract corresponding SSE pairs from A-D images and a novel DS score have been designed and demonstrated to be applicable to the detection of DS relationships. The Matthews correlation coefficient (MCC) and sensitivity of the proposed DS-detecting method were higher than 0.81 even when the sequence identities of the proteins examined were lower than 10%. On average, the alignment percentage and root-mean-square distance (RMSD) computed by the proposed method were 90% and 1.8Å for a set of 1,211 DS-related pairs of proteins. The performances of structural alignments remain high and stable for DS-related homologs with less than 10% sequence identities. In addition, the quality of its hinge loop determination is comparable to that of manual inspection. This method has been implemented as a web-based tool, which requires two protein structures as the input and then the type and/or existence of DS relationships between the input structures are determined according to the A-D image-based structural alignments and the DS score. The proposed method is expected to trigger large-scale studies of this interesting structural phenomenon and facilitate related applications.
Collapse
Affiliation(s)
- Chia-Han Chu
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Wei-Cheng Lo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Hsin-Wei Wang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Yen-Chu Hsu
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Jenn-Kang Hwang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
- * E-mail: (T-WP); (CYT)
| | - Chuan Yi Tang
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan, Republic of China
- * E-mail: (T-WP); (CYT)
| |
Collapse
|
29
|
Abstract
Direct assay of small molecules by SPR in general is troublesome and at least tedious procedures have to be applied. Competition experiments offer an attractive alternative. A small ligand known to bind to the analyte is immobilized on an SPR sensor surface, and the binding of the larger analyte in the presence of compounds under investigation in a concentration range is assayed. The resulting inhibition curves of the equilibrium SPR signal as function of the compound concentration can be analyzed to yield thermodynamic binding constants for the interaction in solution between analyte and the compounds under investigation. An additional advantage of this method is that series of compounds can be analyzed using the same sensor surface, so there is no immobilization needed for each compound. An adaptation of the method to analyze interactions with bivalent analytes (e.g., antibodies) is also included. Some observed different affinities in solution compared to that on the SPR surface are discussed.
Collapse
|
30
|
Grb2 adaptor undergoes conformational change upon dimerization. Arch Biochem Biophys 2008; 475:25-35. [DOI: 10.1016/j.abb.2008.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 11/19/2022]
|
31
|
Kozlov G, Peschard P, Zimmerman B, Lin T, Moldoveanu T, Mansur-Azzam N, Gehring K, Park M. Structural Basis for UBA-mediated Dimerization of c-Cbl Ubiquitin Ligase. J Biol Chem 2007; 282:27547-27555. [PMID: 17635922 DOI: 10.1074/jbc.m703333200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand-induced down-regulation by the ubiquitin-protein ligases, c-Cbl and Cbl-b, controls signaling downstream from many receptor-tyrosine kinases (RTK). Cbl proteins bind to phosphotyrosine residues on activated RTKs to affect ligand-dependent ubiquitylation of these receptors targeting them for degradation in the lysosome. Both c-Cbl and Cbl-b contain a ubiquitin-associated (UBA) domain, which is important for Cbl dimerization and tyrosine phosphorylation; however, the mechanism of UBA-mediated dimerization and its requirement for Cbl biological activity is unclear. Here, we report the crystal structure of the UBA domain of c-Cbl refined to 2.1-A resolution. The structure reveals the protein is a symmetric dimer tightly packed along a large hydrophobic surface formed by helices 2 and 3. NMR chemical shift mapping reveals heterodimerization can occur with the related Cbl-b UBA domain via the same surface employed for homodimerization. Disruption of c-Cbl dimerization by site-directed mutagenesis impairs c-Cbl phosphorylation following activation of the Met/hepatocyte growth factor RTK and c-Cbl-dependent ubiquitination of Met. This provides direct evidence for a role of Cbl dimerization in terminating signaling following activation of RTKs.
Collapse
Affiliation(s)
| | - Pascal Peschard
- Department of Biochemistry, McGill University; Molecular Oncology Group, McGill University Health Center, Montréal, Québec H3G 1Y6, Canada
| | | | - Tong Lin
- Molecular Oncology Group, McGill University Health Center, Montréal, Québec H3G 1Y6, Canada; Department of Medicine, McGill University
| | | | | | - Kalle Gehring
- Department of Biochemistry, McGill University; Molecular Oncology Group, McGill University Health Center, Montréal, Québec H3G 1Y6, Canada.
| | - Morag Park
- Department of Biochemistry, McGill University; Molecular Oncology Group, McGill University Health Center, Montréal, Québec H3G 1Y6, Canada; Department of Medicine, McGill University; Department of Oncology, McGill University.
| |
Collapse
|
32
|
Peschard P, Kozlov G, Lin T, Mirza IA, Berghuis AM, Lipkowitz S, Park M, Gehring K. Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b. Mol Cell 2007; 27:474-85. [PMID: 17679095 DOI: 10.1016/j.molcel.2007.06.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 06/20/2007] [Indexed: 11/18/2022]
Abstract
Cbl proteins are E3 ubiquitin ligases that are negative regulators of many receptor tyrosine kinases. Cbl-b and c-Cbl contain a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin-mediated processes. Despite high sequence identity, Cbl UBA domains display remarkably different ubiquitin-binding properties. Here, we report the crystal structure of the UBA domain of Cbl-b in complex with ubiquitin at 1.9 A resolution. The structure reveals an atypical mechanism of ubiquitin recognition by the first helix of the UBA. Helices 2 and 3 of the UBA domain form a second binding surface, which mediates UBA dimerization in the crystal and in solution. Site-directed mutagenesis demonstrates that Cbl-b dimerization is regulated by ubiquitin binding and required for tyrosine phosphorylation of Cbl-b and ubiquitination of Cbl-b substrates. These studies demonstrate a role for ubiquitin in regulating biological activity by promoting protein dimerization.
Collapse
Affiliation(s)
- Pascal Peschard
- Department of Biochemistry, McGill University, Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Benfield AP, Whiddon BB, Clements JH, Martin SF. Structural and energetic aspects of Grb2-SH2 domain-swapping. Arch Biochem Biophys 2007; 462:47-53. [PMID: 17466257 PMCID: PMC1947945 DOI: 10.1016/j.abb.2007.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 12/31/2022]
Abstract
The SH2 domain of growth factor receptor-bound protein 2 (Grb2) has been the focus of numerous studies, primarily because of the important roles it plays in signal transduction. More recently, it has emerged as a useful protein to study the consequences of ligand preorganization upon energetics and structure in protein-ligand interactions. The Grb2-SH2 domain is known to form a domain-swapped dimer, and as part of our investigations toward correlating structure and energetics in biological systems, we examined the effects that domain-swapping dimerization of the Grb2-SH2 domain had upon ligand binding affinities. Isothermal titration calorimetry was performed using Grb2-SH2 in both its monomeric and domain-swapped dimeric forms and a phosphorylated tripeptide AcNH-pTyr-Val-Asn-NH(2) that is similar to the Shc sequence recognized by Grb2-SH2 in vivo. The two binding sites of domain-swapped dimer exhibited a 4- and a 13-fold reduction in ligand affinity compared to monomer. Crystal structures of peptide-bound and uncomplexed forms of Grb2-SH2 domain-swapped dimer were obtained and reveal that the orientation of residues V122, V123, and R142 may influence the conformation of W121, an amino acid that is believed to play an important role in Grb2-SH2 ligand sequence specificity. These findings suggest that domain-swapping of Grb2-SH2 not only results in a lower affinity for a Shc-derived ligand, but it may also affect ligand specificity.
Collapse
Affiliation(s)
- Aaron P Benfield
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
34
|
Development of Grb2 SH2 Domain Signaling Antagonists: A Potential New Class of Antiproliferative Agents. Int J Pept Res Ther 2006; 12:33-48. [PMID: 19444322 PMCID: PMC2678932 DOI: 10.1007/s10989-006-9014-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Indexed: 11/24/2022]
Abstract
Aberrant signaling through protein-tyrosine kinase (PTK)-dependent pathways is associated with several proliferative diseases. Accordingly, PTK inhibitors are being developed as new approaches for the treatment of certain cancers. Growth factor receptor bound protein 2 (Grb2) is an important downstream mediator of PTK signaling that serves obligatory roles in many pathogenic processes. One of the primary functions of Grb2 is to bind to specific phosphotyrosyl (pTyr)-containing sequences through its Src homology 2 (SH2) domain. Agents that bind to the Grb2 SH2 domain and prevent its normal function could disrupt associated PTK signaling and serve as alternatives to kinase-directed inhibitors. Starting from the X-ray crystal structure of a lead peptide bound to the Grb2 SH2 domain, this review will summarize important contributions to these efforts. The presentation will be thematically arranged according to the region of peptide modified, proceeding from the N-terminus to the C-terminus, with a special section devoted to aspects of conformational constraint.
Collapse
|
35
|
Bolanos-Garcia VM. MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor. Mol Cell Biochem 2006; 276:149-57. [PMID: 16132696 DOI: 10.1007/s11010-005-3696-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/14/2005] [Indexed: 01/12/2023]
Abstract
The tyrosin kinase Met receptor regulates multiple cellular events, ranging from cell motility and angiogenesis to morphological differentiation and tissue regeneration. To conduce these activities, the cytoplasmic C-terminal region of this receptor acts as a docking site for multiple protein substrates, including Grb 2, Gab 1, STAT 3, Shc, SHIP-1 and Src. These substrates are characterised by the presence of multiple domains, including the PH, PTB, SH 2 and SH 3 domains, which directly interact with the multisubstrate C-terminal region of Met. How this receptor recognises and binds a specific substrate in a space-temporal mode is a central question in cell signalling. The recently solved crystal structure of the tyrosine kinase domain of the Met receptor and that of domains of diverse Met substrates provides the molecular framework to understand Met substrate specificity. This structural information also gives new insights on the plasticity of Met signalling and the implications of Met deregulation in tumorigenic processes. In the light of these advances, the present work discusses the molecular basis of Met-substrate recognition and its functional implications in signalling events mediated by this pleiotropic receptor.
Collapse
|
36
|
Phan J, Shi ZD, Burke TR, Waugh DS. Crystal Structures of a High-affinity Macrocyclic Peptide Mimetic in Complex with the Grb2 SH2 Domain. J Mol Biol 2005; 353:104-15. [PMID: 16165154 DOI: 10.1016/j.jmb.2005.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/15/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
The high-affinity binding of the growth factor receptor-bound protein 2 (Grb2) SH2 domain to tyrosine-phosphorylated cytosolic domains of receptor tyrosine kinases (RTKs) is an attractive target for therapeutic intervention in many types of cancer. We report here two crystal forms of a complex between the Grb2 SH2 domain and a potent non-phosphorus-containing macrocyclic peptide mimetic that exhibits significant anti-proliferative effects against erbB-2-dependent breast cancers. This agent represents a "second generation" inhibitor with greatly improved binding affinity and bio-availability compared to its open-chain counterpart. The structures were determined at 2.0A and 1.8A with one and two domain-swapped dimers per asymmetric unit, respectively. The mode of binding and specific interactions between the protein and the inhibitor provide insight into the high potency of this class of macrocylic compounds and may aid in further optimization as part of the iterative rational drug design process.
Collapse
Affiliation(s)
- Jason Phan
- Macromolecular Crystallography Laboratory Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
37
|
Bolanos-Garcia VM. MET meet adaptors: Functional and structural implications in downstream signalling mediated by the Met receptor. Mol Cell Biochem 2005. [DOI: 10.1007/pl00022009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Porter CJ, Wilce MCJ, Mackay JP, Leedman P, Wilce JA. Grb7-SH2 domain dimerisation is affected by a single point mutation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:454-60. [PMID: 15841400 DOI: 10.1007/s00249-005-0480-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/02/2005] [Accepted: 02/28/2005] [Indexed: 01/01/2023]
Abstract
Growth factor receptor bound protein 7 (Grb7) is an adaptor protein that is co-overexpressed and forms a tight complex with the ErbB2 receptor in a number of breast tumours and breast cancer cell lines. The interaction of Grb7 with the ErbB2 receptor is mediated via its Src homology 2 (SH2) domain. Whilst most SH2 domains exist as monomers, recently reported studies have suggested that the Grb7-SH2 domain exists as a homodimer. The self-association properties of the Grb7-SH2 domain were therefore studied using sedimentation equilibrium ultracentrifugation. Analysis of the data demonstrated that the Grb7-SH2 domain is dimeric with a dissociation constant of approximately 11 muM. We also demonstrate, using size-exclusion chromatography, that mutation of phenylalanine 511 to an arginine produces a monomeric form of the Grb7-SH2 domain. This mutation represents the first step in the engineering of a Grb7-SH2 domain with good solution properties for further biophysical and structural investigation.
Collapse
Affiliation(s)
- Corrine J Porter
- School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | | | | | | | | |
Collapse
|
39
|
Merlino A, Ceruso MA, Vitagliano L, Mazzarella L. Open interface and large quaternary structure movements in 3D domain swapped proteins: insights from molecular dynamics simulations of the C-terminal swapped dimer of ribonuclease A. Biophys J 2004; 88:2003-12. [PMID: 15596505 PMCID: PMC1305252 DOI: 10.1529/biophysj.104.048611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine pancreatic ribonuclease (RNase A) forms two three-dimensional (3D) domain swapped dimers. Crystallographic investigations have revealed that these dimers display completely different quaternary structures: one dimer (N-dimer), which presents the swapping of the N-terminal helix, is characterized by a compact structure, whereas the other (C-dimer), which is stabilized by the exchange of the C-terminal end, shows a rather loose assembly of the two subunits. The dynamic properties of monomeric RNase A and of the N-dimer have been extensively characterized. Here, we report a molecular dynamics investigation carried out on the C-dimer. This computational experiment indicates that the quaternary structure of the C-dimer undergoes large fluctuations. These motions do not perturb the proper folding of the two subunits, which retain the dynamic properties of RNase A and the N-dimer. Indeed, the individual subunits of the C-dimer display the breathing motion of the beta-sheet structure, which is important for the enzymatic activity of pancreatic-like ribonucleases. In contrast to what has been observed for the N-dimer, the breathing motion of the two subunits of the C-dimer is not coupled. This finding suggests that the intersubunit communications in a 3D domain swapped dimer strongly rely on the extent of the interchain interface. Furthermore, the observation that the C-dimer is endowed with a high intrinsic flexibility holds interesting implications for the specific properties of 3D domain swapped dimers. Indeed, a survey of the quaternary structures of the other 3D domain swapped dimers shows that large variations are often observed when the structural determinations are conducted in different experimental conditions. The 3D domain swapping phenomenon coupled with the high flexibility of the quaternary structure may be relevant for protein-protein recognition, and in particular for the pathological aggregations.
Collapse
Affiliation(s)
- Antonello Merlino
- Centro Interdipartimentale Ricerca e Management, Complesso Ristrutturato S. Andrea delle Dame, 80138, Naples, Italy
| | | | | | | |
Collapse
|
40
|
Yuan X, Bystroff C. Non-sequential structure-based alignments reveal topology-independent core packing arrangements in proteins. Bioinformatics 2004; 21:1010-9. [PMID: 15531601 DOI: 10.1093/bioinformatics/bti128] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Proteins of the same class often share a secondary structure packing arrangement but differ in how the secondary structure units are ordered in the sequence. We find that proteins that share a common core also share local sequence-structure similarities, and these can be exploited to align structures with different topologies. In this study, segments from a library of local sequence-structure alignments were assembled hierarchically, enforcing the compactness and conserved inter-residue contacts but not sequential ordering. Previous structure-based alignment methods often ignore sequence similarity, local structural equivalence and compactness. RESULTS The new program, SCALI (Structural Core ALIgnment), can efficiently find conserved packing arrangements, even if they are non-sequentially ordered in space. SCALI alignments conserve remote sequence similarity and contain fewer alignment errors. Clustering of our pairwise non-sequential alignments shows that recurrent packing arrangements exist in topologically different structures. For example, the three-layer sandwich domain architecture may be divided into four structural subclasses based on internal packing arrangements. These subclasses represent an intermediate level of structure classification, more general than topology, but more specific than architecture as defined in CATH. A strategy is presented for developing a set of predictive hidden Markov models based on multiple SCALI alignments.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Biology, Rensselaer Polytechnic Institute Troy, NY 12180, USA
| | | |
Collapse
|
41
|
de Mol NJ, Catalina MI, Fischer MJE, Broutin I, Maier CS, Heck AJR. Changes in structural dynamics of the Grb2 adaptor protein upon binding of phosphotyrosine ligand to its SH2 domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:53-64. [PMID: 15210125 DOI: 10.1016/j.bbapap.2004.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 03/03/2004] [Accepted: 03/24/2004] [Indexed: 11/16/2022]
Abstract
Growth factor receptor-bound protein 2 (Grb2) is an extensively studied adaptor protein involved in cell signaling. Grb2 is a highly flexible protein composed of a single SH2 domain flanked by two SH3 domains. Here we report on the structural dynamic effects upon interaction of a phosphopeptide ligand derived from the recognition sequence of the Shc adaptor protein with (i) the isolated SH2 domain of Grb2 (Grb2 SH2) and (ii) the full-length Grb2 protein. From kinetic studies using surface plasmon resonance, it was deduced that a conformation change occurred in the SH2 protein as well as the full-length Grb2 after binding. Measurements of hydrogen/deuterium exchange (HDX) in the isolated SH2 domain and full-length Grb2 protein as monitored by electrospray mass spectrometry, showed that binding reduces the overall flexibility of the proteins, possibly via slightly different mechanisms for the single SH2 domain and the full-length Grb2 protein.
Collapse
Affiliation(s)
- Nico J de Mol
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Sorbonnelaan 16, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, Perego R, Rusconi L, Cristiani C. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Proc Natl Acad Sci U S A 2003; 100:12654-9. [PMID: 14559966 PMCID: PMC240673 DOI: 10.1073/pnas.1734128100] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Indexed: 11/18/2022] Open
Abstract
The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique C-terminal tail of c-Met (supersite). There is a strong link between aberrant c-Met activity and oncogenesis, which makes this kinase an important cancer drug target. The furanosylated indolocarbazole K-252a belongs to a family of microbial alkaloids that also includes staurosporine. It was recently shown to be a potent inhibitor of c-Met. Here we report the crystal structures of an unphosphorylated c-Met kinase domain harboring a human cancer mutation and its complex with K-252a at 1.8-A resolution. The structure follows the well established architecture of protein kinases. It adopts a unique, inhibitory conformation of the activation loop, a catalytically noncompetent orientation of helix alphaC, and reveals the complete C-terminal docking site. The first SH2-binding motif (1349YVHV) adopts an extended conformation, whereas the second motif (1356YVNV), a binding site for Grb2-SH2, folds as a type II Beta-turn. The intermediate portion of the supersite (1353NATY) assumes a type I Beta-turn conformation as in an Shc-phosphotyrosine binding domain peptide complex. K-252a is bound in the adenosine pocket with an analogous binding mode to those observed in previously reported structures of protein kinases in complex with staurosporine.
Collapse
Affiliation(s)
- Nikolaus Schiering
- Departments of Chemistry and Biology, Pharmacia S.p.A., Discovery Research, Viale Pasteur 10, 20014 Nerviano (MI), Italy; and Sugen, Inc., 230 East Grand Avenue, South San Francisco, CA 94080
| | - Stefan Knapp
- Departments of Chemistry and Biology, Pharmacia S.p.A., Discovery Research, Viale Pasteur 10, 20014 Nerviano (MI), Italy; and Sugen, Inc., 230 East Grand Avenue, South San Francisco, CA 94080
| | - Marina Marconi
- Departments of Chemistry and Biology, Pharmacia S.p.A., Discovery Research, Viale Pasteur 10, 20014 Nerviano (MI), Italy; and Sugen, Inc., 230 East Grand Avenue, South San Francisco, CA 94080
| | - Maria M. Flocco
- Departments of Chemistry and Biology, Pharmacia S.p.A., Discovery Research, Viale Pasteur 10, 20014 Nerviano (MI), Italy; and Sugen, Inc., 230 East Grand Avenue, South San Francisco, CA 94080
| | - Jean Cui
- Departments of Chemistry and Biology, Pharmacia S.p.A., Discovery Research, Viale Pasteur 10, 20014 Nerviano (MI), Italy; and Sugen, Inc., 230 East Grand Avenue, South San Francisco, CA 94080
| | - Rita Perego
- Departments of Chemistry and Biology, Pharmacia S.p.A., Discovery Research, Viale Pasteur 10, 20014 Nerviano (MI), Italy; and Sugen, Inc., 230 East Grand Avenue, South San Francisco, CA 94080
| | - Luisa Rusconi
- Departments of Chemistry and Biology, Pharmacia S.p.A., Discovery Research, Viale Pasteur 10, 20014 Nerviano (MI), Italy; and Sugen, Inc., 230 East Grand Avenue, South San Francisco, CA 94080
| | - Cinzia Cristiani
- Departments of Chemistry and Biology, Pharmacia S.p.A., Discovery Research, Viale Pasteur 10, 20014 Nerviano (MI), Italy; and Sugen, Inc., 230 East Grand Avenue, South San Francisco, CA 94080
| |
Collapse
|
43
|
Nakano SI, Sugimoto N. An oligopeptide containing the C-terminal sequence of RNase a has a potent RNase a binding property. J Am Chem Soc 2003; 125:8728-9. [PMID: 12862459 DOI: 10.1021/ja034659r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that an oligopeptide containing the C-terminal sequence of RNase A binds to RNase A in a stoichiometric and site-specific manner. Our observations are consistent with the interaction found in the major domain-swapped RNase A dimer, so that the peptide binding may be promoted through the swapping with the C-terminal beta-sheet of RNase A. Because the design of a protein-binding peptide is much simpler than other methods such as the combinatorial method, we propose that investigation using an oligopeptide may be of general application to domain swapping in proteins as well as for the development of an oligopeptide tool that specifically binds to a target protein.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Department of Chemistry, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | |
Collapse
|
44
|
Stein EG, Ghirlando R, Hubbard SR. Structural basis for dimerization of the Grb10 Src homology 2 domain. Implications for ligand specificity. J Biol Chem 2003; 278:13257-64. [PMID: 12551896 DOI: 10.1074/jbc.m212026200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grb7, Grb10, and Grb14 are members of a distinct family of adapter proteins that interact with various receptor tyrosine kinases upon receptor activation. Proteins in this family contain several modular signaling domains including a pleckstrin homology (PH) domain, a BPS (between PH and SH2) domain, and a C-terminal Src homology 2 (SH2) domain. Although SH2 domains are typically monomeric, we show that the Grb10 SH2 domain and also full-length Grb10 gamma are dimeric in solution under physiologic conditions. The crystal structure of the Grb10 SH2 domain at 1.65-A resolution reveals a non-covalent dimer whose interface comprises residues within and flanking the C-terminal alpha helix, which are conserved in the Grb7/Grb10/Grb14 family but not in other SH2 domains. Val-522 in the BG loop (BG3) and Asp-500 in the EF loop (EF1) are positioned to interfere with the binding of the P+3 residue of a phosphopeptide ligand. These structural features of the Grb10 SH2 domain will favor binding of dimeric, turn-containing phosphotyrosine sequences, such as the phosphorylated activation loops in the two beta subunits of the insulin and insulin-like growth factor-1 receptors. Moreover, the structure suggests the mechanism by which the Grb7 SH2 domain binds selectively to pTyr-1139 (pYVNQ) in Her2, which along with Grb7 is co-amplified in human breast cancers.
Collapse
Affiliation(s)
- Evan G Stein
- Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
45
|
Abstract
Three-dimensional domain swapping is the event by which a monomer exchanges part of its structure with identical monomers to form an oligomer where each subunit has a similar structure to the monomer. The accumulating number of observations of this phenomenon in crystal structures has prompted speculation as to its biological relevance. Domain swapping was originally proposed to be a mechanism for the emergence of oligomeric proteins and as a means for functional regulation, but also to be a potentially harmful process leading to misfolding and aggregation. We highlight experimental studies carried out within the last few years that have led to a much greater understanding of the mechanism of domain swapping and of the residue- and structure-specific features that facilitate the process. We discuss the potential biological implications of domain swapping in light of these findings.
Collapse
Affiliation(s)
- Frederic Rousseau
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | | | |
Collapse
|
46
|
Linhananta A, Zhou H, Zhou Y. The dual role of a loop with low loop contact distance in folding and domain swapping. Protein Sci 2002; 11:1695-701. [PMID: 12070322 PMCID: PMC2373648 DOI: 10.1110/ps.0205002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Alpha helices, beta strands, and loops are the basic building blocks of protein structure. The folding kinetics of alpha helices and beta strands have been investigated extensively. However, little is known about the formation of loops. Experimental studies show that for some proteins, the formation of a single loop is the rate-determining step for folding, whereas for others, a loop (or turn) can misfold to serve as the hinge loop region for domain-swapped species. Computer simulations of an all-atom model of fragment B of Staphylococcal protein A found that the formation of a single loop initiates the dominant folding pathway. On the other hand, the stability analysis of intermediates suggests that the same loop is a likely candidate to serve as a hinge loop for domain swapping. To interpret the simulation result, we developed a simple structural parameter: the loop contact distance (LCD), or the sequence distance of contacting residues between a loop and the rest of the protein. The parameter is applied to a number of other proteins, including SH3 domains and prion protein. The results suggest that a locally interacting loop (low LCD) can either promote folding or serve as the hinge region for domain swapping. Thus, there is an intimate connection between folding and domain swapping, a possible cause of misfolding and aggregation.
Collapse
Affiliation(s)
- Apichart Linhananta
- Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
47
|
Abstract
Three-dimensional (3D) domain swapping creates a bond between two or more protein molecules as they exchange their identical domains. Since the term '3D domain swapping' was first used to describe the dimeric structure of diphtheria toxin, the database of domain-swapped proteins has greatly expanded. Analyses of the now about 40 structurally characterized cases of domain-swapped proteins reveal that most swapped domains are at either the N or C terminus and that the swapped domains are diverse in their primary and secondary structures. In addition to tabulating domain-swapped proteins, we describe in detail several examples of 3D domain swapping which show the swapping of more than one domain in a protein, the structural evidence for 3D domain swapping in amyloid proteins, and the flexibility of hinge loops. We also discuss the physiological relevance of 3D domain swapping and a possible mechanism for 3D domain swapping. The present state of knowledge leads us to suggest that 3D domain swapping can occur under appropriate conditions in any protein with an unconstrained terminus. As domains continue to swap, this review attempts not only a summary of the known domain-swapped proteins, but also a framework for understanding future findings of 3D domain swapping.
Collapse
Affiliation(s)
- Yanshun Liu
- Howard Hughes Medical Institute, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, Department of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
48
|
Nioche P, Liu WQ, Broutin I, Charbonnier F, Latreille MT, Vidal M, Roques B, Garbay C, Ducruix A. Crystal structures of the SH2 domain of Grb2: highlight on the binding of a new high-affinity inhibitor. J Mol Biol 2002; 315:1167-77. [PMID: 11827484 DOI: 10.1006/jmbi.2001.5299] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of growth factor receptors induces phosphorylation of tyrosine residues in its C-terminal part, creating binding sites for SH2 domain-containing proteins. Grb2 is a protein that recruits Sos, the exchange factor for Ras. Recruitment of Sos allows for Ras activation and subsequent signal transmission. This promotes translocation of MAP kinases into the nucleus and activation of early transcription factors. Grb2, a 25 kDa protein, is composed of one SH2 domain surrounded by two SH3 domains. The SH2 domain of Grb2 binds to class II phosphotyrosyl peptides with the consensus sequence pYXNX. Thus, Grb2 is a good example of a bifunctional adaptor protein that brings proteins into close proximity, allowing signal transduction through proteins located in different compartments. To explore the interactions between Grb2 and phosphorylated ligands, we have solved the crystal structure of complexes between the Grb2-SH2 domain and peptides corresponding to Shc-derived sequences. Two structures are described: the Grb2-SH2 domain in complex with PSpYVNVQN at 1.5 A; and the Grb2-SH2 domain in complex with mAZ*-pY-(alphaMe)pY-N-NH2 pseudo-peptide, at 2 A. Both are compared to an unliganded SH2 structure determined at 2.7 A which, interestingly enough, forms a dimer through two swapping subdomains from two symmetry-related molecules. The nanomolar affinity of the mAZ-pY-(alphaMe)pY-N-NH2 pseudo-peptide for Grb2-SH2 is related to new interactions with non- conserved residues. The design of Grb2-SH2 domain inhibitors that prevent interaction with tyrosine kinase proteins or other adaptors like Shc or IRS1 should provide a means to interrupt the Ras signaling pathway. Newly synthesized pseudo-peptides exhibit nanomolar affinities for the Grb2-SH2 domain. It will then be possible to design new inhibitors with similar affinity and simpler chemical structures.
Collapse
Affiliation(s)
- Pierre Nioche
- Laboratoire de Cristallographie et RMN biologiques; UMR 8015 CNRS, Faculté de Pharmacie, Université René Descartes, 4, Avenue de l'Observatorie, 75270 Paris cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Many proteins function as multimeric assemblies into which the folded individual promoters organize as higher order structures. An oligomerization mechanism that appears to impose the coordination of events during folding and oligomer assembly is three-dimensional domain swapping. Recent studies have focused on revealing the structural basis of domain swapping and a possible role for domain swapping in the regulation of protein aggregation and activity.
Collapse
Affiliation(s)
- Marcia E Newcomer
- Departments of Biological Sciences and Chemistry, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
50
|
Bolton D, Evans PA, Stott K, Broadhurst RW. Structure and properties of a dimeric N-terminal fragment of human ubiquitin. J Mol Biol 2001; 314:773-87. [PMID: 11733996 DOI: 10.1006/jmbi.2001.5181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous peptide dissection and kinetic experiments have indicated that in vitro folding of ubiquitin may proceed via transient species in which native-like structure has been acquired in the first 45 residues. A peptide fragment, UQ(1-51), encompassing residues 1 to 51 of ubiquitin was produced in order to test whether this portion has propensity for independent self-assembly. Surprisingly, the construct formed a folded symmetrical dimer that was stabilised by 0.8 M sodium sulphate at 298 K (the S state). The solution structure of the UQ(1-51) dimer was determined by multinuclear NMR spectroscopy. Each subunit of UQ(1-51) consists of an N-terminal beta-hairpin followed by an alpha-helix and a final beta-strand, with orientations similar to intact ubiquitin. The dimer is formed by the third beta-strand of one subunit interleaving between the hairpin and third strand of the other to give a six-stranded beta-sheet, with the two alpha-helices sitting on top. The helix-helix and strand portions of the dimer interface also mimic related features in the structure of ubiquitin. The structural specificity of the UQ(1-51) peptide is tuneable: as the concentration of sodium sulphate is decreased, near-native alternative conformations are populated in slow chemical exchange. Magnetization transfer experiments were performed to characterize the various species present in 0.35 M sodium sulphate, namely the S state and two minor forms. Chemical shift differences suggest that one minor form is very similar to the S state, while the other experiences a significant conformational change in the third strand. A segmental rearrangement of the third strand in one subunit of the S state would render the dimer asymmetric, accounting for most of our results. Similar small-scale transitions in proteins are often invoked to explain solvent exchange at backbone amide proton sites that have an intermediate level of protection.
Collapse
Affiliation(s)
- D Bolton
- Cambridge Centre for Molecular Recognition Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | | | | | | |
Collapse
|