1
|
Neira JL, López-Redondo ML, Cámara-Artigas A, Marina A, Contreras A. Structure and dynamics of the cyanobacterial regulator SipA. Arch Biochem Biophys 2024; 754:109943. [PMID: 38395125 DOI: 10.1016/j.abb.2024.109943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The small, 78-residue long, regulator SipA interacts with the non-bleaching sensor histidine kinase (NblS). We have solved the solution structure of SipA on the basis of 990 nuclear Overhauser effect- (NOE-) derived distance constraints. The average pairwise root-mean-square deviation (RMSD) for the twenty best structures for the backbone residues, obtained by CYANA, was 1.35 ± 0.21 Å, and 1.90 ± 0.16 Å when all heavy atoms were considered (the target function of CYANA was 0.540 ± 0.08). The structure is that of a β-II class protein, basically formed by a five-stranded β-sheet composed of antiparallel strands following the arrangement: Gly6-Leu11 (β-strand 1), which packs against Leu66-Val69 (β-strand 5) on one side, and against Gly36-Thr42 (β-strand 2) on the other side; Trp50-Phe54 (β-strand 3); and Gly57-Leu60 (β-strand 4). The protein is highly mobile, as shown by measurements of R1, R2, NOE and ηxy relaxation parameters, with an average order parameter () of 0.70; this mobility encompasses movements in different time scales. We hypothesize that this high flexibility allows the interaction with other proteins (among them NblS), and it explains the large conformational stability of SipA.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018, Zaragoza, Spain.
| | - María Luisa López-Redondo
- Unidad Regulación de La Síntesis de Proteínas, Instituto de Biomedicina de Valencia (CSIC), 46010, Valencia, Spain
| | - Ana Cámara-Artigas
- Departamento de Química y Física, Research Center CIAIMBITAL, Universidad de Almería- CeiA3, 04120, Almería, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (CSIC) and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 46010, Valencia, Spain
| | | |
Collapse
|
2
|
Soto P, Gloeb GM, Tsuchida KA, Charles AA, Greenwood NM, Hendrickson H. Insight into the conserved structural dynamics of the C-terminus of mammal PrPC identifies structural core and possible structural role of pharmacological chaperones. Prion 2023; 17:55-66. [PMID: 36892160 PMCID: PMC10012922 DOI: 10.1080/19336896.2023.2186674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Misfolding of the prion protein is central to prion disease aetiology. Although understanding the dynamics of the native fold helps to decipher the conformational conversion mechanism, a complete depiction of distal but coupled prion protein sites common across species is lacking. To fill this gap, we used normal mode analysis and network analysis to examine a collection of prion protein structures deposited on the protein data bank. Our study identified a core of conserved residues that sustains the connectivity across the C-terminus of the prion protein. We propose how a well-characterized pharmacological chaperone may stabilize the fold. Also, we provide insight into the effect on the native fold of initial misfolding pathways identified by others using kinetics studies.
Collapse
Affiliation(s)
- Patricia Soto
- Physics department, Creighton University, Omaha, NE, USA
| | | | | | | | | | | |
Collapse
|
3
|
Ilie IM, Caflisch A. Antibody binding increases the flexibility of the prion protein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140827. [PMID: 35931365 DOI: 10.1016/j.bbapap.2022.140827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrP) into a pathogenic conformer (PrPSc). A proposed therapeutic approach to avoid the pathogenic transformation is to develop antibodies that bind to PrP and stabilize its structure. POM1 and POM6 are two monoclonal antibodies that bind the globular domain of PrP and have different biological responses, i.e., trigger neurotoxicity mimicking prion infections (POM1) or prevent neurotoxicity (POM6). The crystal structures of PrP in complex with the two antibodies show similar epitopes which seems inconsistent with the opposite phenotypes. Here, we investigate the influence of the POM1 and POM6 antibodies on the flexibility of the mouse PrP by molecular dynamics simulations. The simulations reveal that the POM6/PrP interface is less stable than the POM1/PrP interface, ascribable to localized polar mismatches at the interface, despite the former complex having a larger epitope than the latter. In the presence of any of the two antibodies, the flexibility of the globular domain increases everywhere except for the β1-α1 loop in the POM1/PrP complex which suggests the involvement of this loop in the pathological conversion. The secondary structure of PrP is preserved whereas the polar interactions involving residues Glu146, Arg156 and Arg208 are modified upon antibody binding.
Collapse
Affiliation(s)
- Ioana M Ilie
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
4
|
Wu HH, Crames M, Wei Y, Liu D, Gueneva-Boucheva K, Son I, Frego L, Han F, Kroe-Barrett R, Nixon A, Michael M. Effect of the ADCC-modulating mutations and the selection of human IgG isotypes on physicochemical properties of Fc. J Pharm Sci 2022; 111:2411-2421. [PMID: 35760121 DOI: 10.1016/j.xphs.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Monoclonal antibodies, particularly IgGs and Ig-based molecules, are a well-established and growing class of biotherapeutic drugs. In order to improve efficacy, potency and pharmacokinetics of these therapeutic drugs, pharmaceutical industries have investigated significantly in engineering fragment crystallizable (Fc) domain of these drugs to optimize the interactions of these drugs and Fc gamma receptors (FcγRs) in recent ten years. The biological function of the therapeutics with the antibody-dependent cellular cytotoxicity (ADCC) enhanced double mutation (S239D/I332E) of isotype IgG1, the ADCC reduced double mutation (L234A/L235A) of isotype IgG1, and ADCC reduced isotype IgG4 has been well understood. However, limited information regarding the effect of these mutations or isotype difference on physicochemical properties (PCP), developability, and manufacturability of therapeutics bearing these different Fc regions is available. In this report, we systematically characterize the effects of the mutations and IgG4 isotype on conformation stability, colloidal stability, solubility, and storage stability at accelerated conditions in two buffer systems using six Fc variants. Our results provide a basis for selecting appropriate Fc region during development of IgG or Ig-based therapeutics and predicting effect of the mutations on CMC development process.
Collapse
Affiliation(s)
- Helen Haixia Wu
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA.
| | - Maureen Crames
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Yangjie Wei
- Amgen Inc., Drug Product Technologies, Thousand Oaks, California, USA
| | - Dongmei Liu
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Kristina Gueneva-Boucheva
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Ikbae Son
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Lee Frego
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Fei Han
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Andrew Nixon
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| | - Marlow Michael
- Boehringer Ingelheim Pharmaceuticals Inc., Innovation Unit, Biotherapeutics Discovery, Ridgefield, Connecticut, USA
| |
Collapse
|
5
|
Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation. J Mol Biol 2021; 434:167368. [PMID: 34808226 DOI: 10.1016/j.jmb.2021.167368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
Conformational conversion of the α-helix-rich cellular prion protein into the misfolded, β-rich, aggregated, scrapie form underlies the molecular basis of prion diseases that represent a class of invariably fatal, untreatable, and transmissible neurodegenerative diseases. However, despite the extensive and rigorous research, there is a significant gap in the understanding of molecular mechanisms that contribute to prion pathogenesis. In this review, we describe the historical perspective of the development of the prion concept and the current state of knowledge of prion biology including structural, molecular, and cellular aspects of the prion protein. We then summarize the putative functional role of the N-terminal intrinsically disordered segment of the prion protein. We next describe the ongoing efforts in elucidating the prion phase behavior and the emerging role of liquid-liquid phase separation that can have potential functional relevance and can offer an alternate non-canonical pathway involving conformational conversion into a disease-associated form. We also attempt to shed light on the evolutionary perspective of the prion protein highlighting the potential role of intrinsic disorder in prion protein biology and summarize a few important questions associated with the phase transitions of the prion protein. Delving deeper into these key aspects can pave the way for a detailed understanding of the critical molecular determinants of the prion phase transition and its relevance to physiology and neurodegenerative diseases.
Collapse
|
6
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
7
|
Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proc Natl Acad Sci U S A 2021; 118:2019631118. [PMID: 33731477 PMCID: PMC7999870 DOI: 10.1073/pnas.2019631118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The misfolding and aggregation of the human prion protein (PrP) is associated with transmissible spongiform encephalopathies (TSEs). Intermediate conformations forming during the conversion of the cellular form of PrP into its pathological scrapie conformation are key drivers of the misfolding process. Here, we analyzed the properties of the C-terminal domain of the human PrP (huPrP) and its T183A variant, which is associated with familial forms of TSEs. We show that the mutation significantly enhances the aggregation propensity of huPrP, such as to uniquely induce amyloid formation under physiological conditions by the sole C-terminal domain of the protein. Using NMR spectroscopy, biophysics, and metadynamics simulations, we identified the structural characteristics of the misfolded intermediate promoting the aggregation of T183A huPrP and the nature of the interactions that prevent this species to be populated in the wild-type protein. In support of these conclusions, POM antibodies targeting the regions that promote PrP misfolding were shown to potently suppress the aggregation of this amyloidogenic mutant.
Collapse
|
8
|
Yu KH, Huang MY, Lee YR, Lin YK, Chen HR, Lee CI. The Effect of Octapeptide Repeats on Prion Folding and Misfolding. Int J Mol Sci 2021; 22:ijms22041800. [PMID: 33670336 PMCID: PMC7918816 DOI: 10.3390/ijms22041800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Misfolding of prion protein (PrP) into amyloid aggregates is the central feature of prion diseases. PrP has an amyloidogenic C-terminal domain with three α-helices and a flexible tail in the N-terminal domain in which multiple octapeptide repeats are present in most mammals. The role of the octapeptides in prion diseases has previously been underestimated because the octapeptides are not located in the amyloidogenic domain. Correlation between the number of octapeptide repeats and age of onset suggests the critical role of octapeptide repeats in prion diseases. In this study, we have investigated four PrP variants without any octapeptides and with 1, 5 and 8 octapeptide repeats. From the comparison of the protein structure and the thermal stability of these proteins, as well as the characterization of amyloids converted from these PrP variants, we found that octapeptide repeats affect both folding and misfolding of PrP creating amyloid fibrils with distinct structures. Deletion of octapeptides forms fewer twisted fibrils and weakens the cytotoxicity. Insertion of octapeptides enhances the formation of typical silk-like fibrils but it does not increase the cytotoxicity. There might be some threshold effect and increasing the number of peptides beyond a certain limit has no further effect on the cell viability, though the reasons are unclear at this stage. Overall, the results of this study elucidate the molecular mechanism of octapeptides at the onset of prion diseases.
Collapse
|
9
|
Hosszu LLP, Conners R, Sangar D, Batchelor M, Sawyer EB, Fisher S, Cliff MJ, Hounslow AM, McAuley K, Leo Brady R, Jackson GS, Bieschke J, Waltho JP, Collinge J. Structural effects of the highly protective V127 polymorphism on human prion protein. Commun Biol 2020; 3:402. [PMID: 32728168 PMCID: PMC7391680 DOI: 10.1038/s42003-020-01126-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Prion diseases, a group of incurable, lethal neurodegenerative disorders of mammals including humans, are caused by prions, assemblies of misfolded host prion protein (PrP). A single point mutation (G127V) in human PrP prevents prion disease, however the structural basis for its protective effect remains unknown. Here we show that the mutation alters and constrains the PrP backbone conformation preceding the PrP β-sheet, stabilising PrP dimer interactions by increasing intermolecular hydrogen bonding. It also markedly changes the solution dynamics of the β2-α2 loop, a region of PrP structure implicated in prion transmission and cross-species susceptibility. Both of these structural changes may affect access to protein conformers susceptible to prion formation and explain its profound effect on prion disease.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Rebecca Conners
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Elizabeth B Sawyer
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stuart Fisher
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
- ESRF, 71, Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katherine McAuley
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - R Leo Brady
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
| | - Graham S Jackson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
10
|
Structural insight into conformational change in prion protein by breakage of electrostatic network around H187 due to its protonation. Sci Rep 2019; 9:19305. [PMID: 31848406 PMCID: PMC6917724 DOI: 10.1038/s41598-019-55808-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/04/2019] [Indexed: 11/10/2022] Open
Abstract
A conformational change from normal prion protein(PrPC) to abnormal prion protein(PrPSC) induces fatal neurodegenerative diseases. Acidic pH is well-known factors involved in the conformational change. Because the protonation of H187 is strongly linked to the change in PrP stability, we examined the charged residues R156, E196, and D202 around H187. Interestingly, there have been reports on pathological mutants, such as H187R, E196A, and D202N. In this study, we focused on how an acidic pH and pathological mutants disrupt this electrostatic network and how this broken network destabilizes PrP structure. To do so, we performed a temperature-based replica-exchange molecular dynamics (T-REMD) simulation using a cumulative 252 μs simulation time. We measured the distance between amino acids comprising four salt bridges (R156–E196/D202 and H187–E196/D202). Our results showed that the spatial configuration of the electrostatic network was significantly altered by an acidic pH and mutations. The structural alteration in the electrostatic network increased the RMSF value around the first helix (H1). Thus, the structural stability of H1, which is anchored to the H2–H3 bundle, was decreased. It induces separation of R156 from the electrostatic network. Analysis of the anchoring energy also shows that two salt-bridges (R156-E196/D202) are critical for PrP stability.
Collapse
|
11
|
Lee J, Chang I, Yu W. Atomic insights into the effects of pathological mutants through the disruption of hydrophobic core in the prion protein. Sci Rep 2019; 9:19144. [PMID: 31844149 PMCID: PMC6915724 DOI: 10.1038/s41598-019-55661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Destabilization of prion protein induces a conformational change from normal prion protein (PrPC) to abnormal prion protein (PrPSC). Hydrophobic interaction is the main driving force for protein folding, and critically affects the stability and solvability. To examine the importance of the hydrophobic core in the PrP, we chose six amino acids (V176, V180, T183, V210, I215, and Y218) that make up the hydrophobic core at the middle of the H2-H3 bundle. A few pathological mutants of these amino acids have been reported, such as V176G, V180I, T183A, V210I, I215V, and Y218N. We focused on how these pathologic mutations affect the hydrophobic core and thermostability of PrP. For this, we ran a temperature-based replica-exchange molecular dynamics (T-REMD) simulation, with a cumulative simulation time of 28 μs, for extensive ensemble sampling. From the T-REMD ensemble, we calculated the protein folding free energy difference between wild-type and mutant PrP using the thermodynamic integration (TI) method. Our results showed that pathological mutants V176G, T183A, I215V, and Y218N decrease the PrP stability. At the atomic level, we examined the change in pair-wise hydrophobic interactions from valine-valine to valine-isoleucine (and vice versa), which is induced by mutation V180I, V210I (I215V) at the 180th-210th (176th-215th) pair. Finally, we investigated the importance of the π-stacking between Y218 and F175.
Collapse
Affiliation(s)
- Juhwan Lee
- Center for Proteome Biophysics, DGIST, Daegu, 42988, Korea.
- Department of Emerging Material Sciences, DGIST, Daegu, 42988, Korea.
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
| | - Iksoo Chang
- Center for Proteome Biophysics, DGIST, Daegu, 42988, Korea
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Korea
| | - Wookyung Yu
- Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
- Supercomputing Bigdata Center, DGIST, Daegu, 42988, Korea.
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
12
|
Molecular recognition of ubiquitin and Lys63-linked diubiquitin by STAM2 UIM-SH3 dual domain: the effect of its linker length and flexibility. Sci Rep 2019; 9:14645. [PMID: 31601934 PMCID: PMC6787221 DOI: 10.1038/s41598-019-51182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/25/2019] [Indexed: 11/09/2022] Open
Abstract
Multidomain proteins represent a broad spectrum of the protein landscape and are involved in various interactions. They could be considered as modular building blocks assembled in distinct fashion and connected by linkers of varying lengths and sequences. Due to their intrinsic flexibility, these linkers provide proteins a subtle way to modulate interactions and explore a wide range of conformational space. In the present study, we are seeking to understand the effect of the flexibility and dynamics of the linker involved in the STAM2 UIM-SH3 dual domain protein with respect to molecular recognition. We have engineered several constructs of UIM-SH3 with different length linkers or domain deletion. By means of SAXS and NMR experiments, we have shown that the modification of the linker modifies the flexibility and the dynamics of UIM-SH3. Indeed, the global tumbling of both the UIM and SH3 domain is different but not independent from each other while the length of the linker has an impact on the ps-ns time scale dynamics of the respective domains. Finally, the modification of the flexibility and dynamics of the linker has a drastic effect on the interaction of UIM-SH3 with Lys63-linked diubiquitin with a roughly eight-time weaker dissociation constant.
Collapse
|
13
|
Nascent β Structure in the Elongated Hydrophobic Region of a Gerstmann-Sträussler-Scheinker PrP Allele. J Mol Biol 2019; 431:2599-2611. [PMID: 31034890 DOI: 10.1016/j.jmb.2019.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/23/2022]
Abstract
Prion diseases are neurodegenerative disorders caused by the misfolding of the cellular prion protein (PrPC). Gerstmann-Sträussler-Scheinker syndrome is an inherited prion disease with one early-onset allele (HRdup) containing an eight-amino-acid insertion; this LGGLGGYV insert is positioned after valine 129 (human PrPC sequence) in a hydrophobic tract in the natively disordered region. Here we have characterized the structure and explored the molecular motions and dynamics of HRdup PrP and a control allele. High-resolution NMR data suggest that the core of HRdup has a canonical PrPC structure, yet a nascent β-structure is observed in the flexible elongated hydrophobic region of HRdup. In addition, using mouse PrPC sequence, we observed that a methionine/valine polymorphism at codon 128 (equivalent of methionine/valine 129 in human sequence) and oligomerization caused by high protein concentration affects conformational exchange dynamics at residue G130. We hypothesize that with the β-structure at the N-terminus, the hydrophobic region of HRdup can adopt a fully extended configuration and fold back to form an extended β-sheet with the existing β-sheet. We propose that these structures are early chemical events in disease pathogenesis.
Collapse
|
14
|
Probing Conformational Diversity of Fc Domains in Aggregation-Prone Monoclonal Antibodies. Pharm Res 2018; 35:220. [PMID: 30255351 DOI: 10.1007/s11095-018-2500-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Fc domains are an integral component of monoclonal antibodies (mAbs) and Fc-based fusion proteins. Engineering mutations in the Fc domain is a common approach to achieve desired effector function and clinical efficacy of therapeutic mAbs. It remains debatable, however, whether molecular engineering either by changing glycosylation patterns or by amino acid mutation in Fc domain could impact the higher order structure of Fc domain potentially leading to increased aggregation propensities in mAbs. METHODS Here, we use NMR fingerprinting analysis of Fc domains, generated from selected Pfizer mAbs with similar glycosylation patterns, to address this question. Specifically, we use high resolution 2D [13C-1H] NMR spectra of Fc fragments, which fingerprints methyl sidechain bearing residues, to probe the correlation of higher order structure with the storage stability of mAbs. Thermal calorimetric studies were also performed to assess the stability of mAb fragments. RESULTS Unlike NMR fingerprinting, thermal melting temperature as obtained from calorimetric studies for the intact mAbs and fragments (Fc and Fab), did not reveal any correlation with the aggregation propensities of mAbs. Despite >97% sequence homology, NMR data suggests that higher order structure of Fc domains could be dynamic and may result in unique conformation(s) in solution. CONCLUSION The overall glycosylation pattern of these mAbs being similar, these conformation(s) could be linked to the inherent plasticity of the Fc domain, and may act as early transients to the overall aggregation of mAbs.
Collapse
|
15
|
Zheng Z, Zhang M, Wang Y, Ma R, Guo C, Feng L, Wu J, Yao H, Lin D. Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep 2018; 8:13211. [PMID: 30181558 PMCID: PMC6123418 DOI: 10.1038/s41598-018-31394-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are caused by the propagation of misfolded cellular prion proteins (PrPs). A completely prion disease-resistant genotype, V127M129, has been identified in Papua New Guinea and verified in transgenic mice. To disclose the structural basis of the disease-resistant effect of the G127V mutant, we determined and compared the structural and dynamic features of the G127V-mutated human PrP (residues 91-231) and the wild-type PrP in solution. HuPrP(G127V) contains α1, α2 and α3 helices and a stretch-strand (SS) pattern comprising residues Tyr128-Gly131 (SS1) and Val161-Arg164 (SS2), with extending atomic distances between the SS1 and SS2 strands, and a structural rearrangement of the Tyr128 side chain due to steric hindrance of the larger hydrophobic side chain of Val127. The extended α1 helix gets closer to the α2 and α3 helices. NMR dynamics analysis revealed that Tyr128, Gly131 and Tyr163 underwent significant conformational exchanges. Molecular dynamics simulations suggest that HuPrP(G127V) prevents the formation of stable β-sheets and dimers. Unique structural and dynamic features potentially inhibit the conformational conversion of the G127V mutant. This work is beneficial for understanding the molecular mechanisms underlying the complete resistance of the G127V mutant to prion disease and for developing new therapeutics for prion disease.
Collapse
Affiliation(s)
- Zhen Zheng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yongheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongsheng Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liubin Feng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jihui Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
16
|
Younan ND, Chen KF, Rose RS, Crowther DC, Viles JH. Prion protein stabilizes amyloid-β (Aβ) oligomers and enhances Aβ neurotoxicity in a Drosophila model of Alzheimer's disease. J Biol Chem 2018; 293:13090-13099. [PMID: 29887525 DOI: 10.1074/jbc.ra118.003319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/05/2018] [Indexed: 12/16/2022] Open
Abstract
The cellular prion protein (PrPC) can act as a cell-surface receptor for β-amyloid (Aβ) peptide; however, a role for PrPC in the pathogenesis of Alzheimer's disease (AD) is contested. Here, we expressed a range of Aβ isoforms and PrPC in the Drosophila brain. We found that co-expression of Aβ and PrPC significantly reduces the lifespan, disrupts circadian rhythms, and increases Aβ deposition in the fly brain. In contrast, under the same conditions, expression of Aβ or PrPC individually did not lead to these phenotypic changes. In vitro studies revealed that substoichiometric amounts of PrPC trap Aβ as oligomeric assemblies and fragment-preformed Aβ fibers. The ability of membrane-anchored PrPC to trap Aβ as cytotoxic oligomers at the membrane surface and fragment inert Aβ fibers suggests a mechanism by which PrPC exacerbates Aβ deposition and pathogenic phenotypes in the fly, supporting a role for PrPC in AD. This study provides a second animal model linking PrPC expression with Aβ toxicity and supports a role for PrPC in AD pathogenesis. Blocking the interaction of Aβ and PrPC represents a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nadine D Younan
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Ko-Fan Chen
- the Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Ruth-Sarah Rose
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Damian C Crowther
- the Neuroscience IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - John H Viles
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom,
| |
Collapse
|
17
|
Magrì A, Di Natale G, Rizzarelli E. Copper-assisted interaction between amyloid-β and prion: Ternary metal complexes with Aβ N-terminus and octarepeat. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Srb P, Nováček J, Kadeřávek P, Rabatinová A, Krásný L, Žídková J, Bobálová J, Sklenář V, Žídek L. Triple resonance ¹⁵Ν NMR relaxation experiments for studies of intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2017; 69:133-146. [PMID: 29071460 DOI: 10.1007/s10858-017-0138-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Description of protein dynamics is known to be essential in understanding their function. Studies based on a well established [Formula: see text] NMR relaxation methodology have been applied to a large number of systems. However, the low dispersion of [Formula: see text] chemical shifts very often observed within intrinsically disordered proteins complicates utilization of standard 2D HN correlated spectra because a limited number of amino acids can be characterized. Here we present a suite of triple resonance HNCO-type NMR experiments for measurements of five [Formula: see text] relaxation parameters ([Formula: see text], [Formula: see text], NOE, cross-correlated relaxation rates [Formula: see text] and [Formula: see text]) in doubly [Formula: see text],[Formula: see text]-labeled proteins. We show that the third spectral dimension combined with non-uniform sampling provides relaxation rates for almost all residues of a protein with extremely poor chemical shift dispersion, the C terminal domain of [Formula: see text]-subunit of RNA polymerase from Bacillus subtilis. Comparison with data obtained using a sample labeled by [Formula: see text] only showed that the presence of [Formula: see text] has a negligible effect on [Formula: see text], [Formula: see text], and on the cross-relaxation rate (calculated from NOE and [Formula: see text]), and that these relaxation rates can be used to calculate accurate spectral density values. Partially [Formula: see text]-labeled sample was used to test if the observed increase of [Formula: see text] [Formula: see text] in the presence of [Formula: see text] corresponds to the [Formula: see text] dipole-dipole interactions in the [Formula: see text],[Formula: see text]-labeled sample.
Collapse
Affiliation(s)
- Pavel Srb
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí, 542/2, 166 10, Praha 6, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Kadeřávek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Alžbeta Rabatinová
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Videňská 1083, 142 20, Prague, Czech Republic
| | - Libor Krásný
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Academy of Sciences of the Czech Republic v.v.i., Videňská 1083, 142 20, Prague, Czech Republic
| | - Jitka Žídková
- Institute of Analytical Chemistry of the Czech Academy of Sciences v.v.i., Veveří 97, 602 00, Brno, Czech Republic
| | - Janette Bobálová
- Institute of Analytical Chemistry of the Czech Academy of Sciences v.v.i., Veveří 97, 602 00, Brno, Czech Republic
| | - Vladimír Sklenář
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukáš Žídek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
19
|
Salvi N, Abyzov A, Blackledge M. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:43-60. [PMID: 29157493 DOI: 10.1016/j.pnmrs.2017.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental approaches for investigating the conformational behaviour of intrinsically disordered proteins (IDPs). IDPs represent a significant fraction of all proteomes, and, despite their importance for understanding fundamental biological processes, the molecular basis of their activity still remains largely unknown. The functional mechanisms exploited by IDPs in their interactions with other biomolecules are defined by their intrinsic dynamic modes and associated timescales, justifying the considerable interest over recent years in the development of technologies adapted to measure and describe this behaviour. NMR spin relaxation delivers information-rich, site-specific data reporting on conformational fluctuations occurring throughout the molecule. Here we review recent progress in the use of 15N relaxation to identify local backbone dynamics and long-range chain-like motions in unfolded proteins.
Collapse
Affiliation(s)
- Nicola Salvi
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Anton Abyzov
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), CEA, CNRS, University Grenoble Alpes, Grenoble 38044, France.
| |
Collapse
|
20
|
Sengupta I, Bhate SH, Das R, Udgaonkar JB. Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR. J Mol Biol 2017; 429:1852-1872. [DOI: 10.1016/j.jmb.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
|
21
|
Malevanets A, Chong PA, Hansen DF, Rizk P, Sun Y, Lin H, Muhandiram R, Chakrabartty A, Kay LE, Forman-Kay JD, Wodak SJ. Interplay of buried histidine protonation and protein stability in prion misfolding. Sci Rep 2017; 7:882. [PMID: 28408762 PMCID: PMC5429843 DOI: 10.1038/s41598-017-00954-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/20/2017] [Indexed: 12/03/2022] Open
Abstract
Misofolding of mammalian prion proteins (PrP) is believed to be the cause of a group of rare and fatal neurodegenerative diseases. Despite intense scrutiny however, the mechanism of the misfolding reaction remains unclear. We perform nuclear Magnetic Resonance and thermodynamic stability measurements on the C-terminal domains (residues 90–231) of two PrP variants exhibiting different pH-induced susceptibilities to aggregation: the susceptible hamster prion (GHaPrP) and its less susceptible rabbit homolog (RaPrP). The pKa of histidines in these domains are determined from titration experiments, and proton-exchange rates are measured at pH 5 and pH 7. A single buried highly conserved histidine, H187/H186 in GHaPrP/RaPrP, exhibited a markedly down shifted pKa ~5 for both proteins. However, noticeably larger pH-induced shifts in exchange rates occur for GHaPrP versus RaPrP. Analysis of the data indicates that protonation of the buried histidine destabilizes both PrP variants, but produces a more drastic effect in the less stable GHaPrP. This interpretation is supported by urea denaturation experiments performed on both PrP variants at neutral and low pH, and correlates with the difference in disease susceptibility of the two species, as expected from the documented linkage between destabilization of the folded state and formation of misfolded and aggregated species.
Collapse
Affiliation(s)
- Anatoly Malevanets
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada
| | - P Andrew Chong
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - D Flemming Hansen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,University College London, Division of Biosciences, London, WC1E 6BT, UK
| | - Paul Rizk
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yulong Sun
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Hong Lin
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada
| | - Ranjith Muhandiram
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Lewis E Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Julie D Forman-Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Shoshana J Wodak
- Program in Molecular Structure and Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1A8, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,VIB Structural Biology Research Center, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
22
|
Moulick R, Udgaonkar JB. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization. J Mol Biol 2017; 429:886-899. [DOI: 10.1016/j.jmb.2017.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
|
23
|
Menon S, Sengupta N. Perturbations in inter-domain associations may trigger the onset of pathogenic transformations in PrP(C): insights from atomistic simulations. MOLECULAR BIOSYSTEMS 2016; 11:1443-53. [PMID: 25855580 DOI: 10.1039/c4mb00689e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of the predominantly α-helical cellular prion protein (PrP(C)) to the misfolded β-sheet enriched Scrapie form (PrP(Sc)) is a critical event in prion pathogenesis. However, the conformational triggers that lead to the isoform conversion (PrP(C) to PrP(Sc)) remain obscure, and conjectures about the role of unusually hydrophilic, short helix H1 of the C-terminal globular domain in the transition are varied. Helix H1 is anchored to helix H3 via a few stabilizing polar interactions. We have employed fully atomistic molecular dynamics simulations to study the effects triggered by a minor perturbation in the network of these non-bonded interactions in PrP(C). The elimination of just one of the key H1-H3 hydrogen bonds led to a cascade of conformational changes that are consistent with those observed in partially unfolded intermediates of PrP(C), with pathogenic mutations and in low pH environments. Our analyses reveal that the perturbation results in the enhanced conformational flexibility of the protein. The resultant enhancement in the dynamics leads to overall increased solvent exposure of the hydrophobic core residues and concomitant disruption of the H1-H3 inter-domain salt bridge network. This study lends credence to the hypothesis that perturbing the cooperativity of the stabilizing interactions in the PrP(C) globular domain can critically affect its dynamics and may lead to structural transitions of pathological relevance.
Collapse
Affiliation(s)
- Sneha Menon
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
24
|
Moulick R, Das R, Udgaonkar JB. Partially Unfolded Forms of the Prion Protein Populated under Misfolding-promoting Conditions: CHARACTERIZATION BY HYDROGEN EXCHANGE MASS SPECTROMETRY AND NMR. J Biol Chem 2015; 290:25227-40. [PMID: 26306043 DOI: 10.1074/jbc.m115.677575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 12/16/2022] Open
Abstract
The susceptibility of the cellular prion protein (PrP(C)) to convert to an alternative misfolded conformation (PrP(Sc)), which is the key event in the pathogenesis of prion diseases, is indicative of a conformationally flexible native (N) state. In the present study, hydrogen-deuterium exchange (HDX) in conjunction with mass spectrometry and nuclear magnetic resonance spectroscopy were used for the structural and energetic characterization of the N state of the full-length mouse prion protein, moPrP(23-231), under conditions that favor misfolding. The kinetics of HDX of 34 backbone amide hydrogens in the N state were determined at pH 4. In contrast to the results of previous HDX studies on the human and Syrian hamster prion proteins at a higher pH, various segments of moPrP were found to undergo different extents of subglobal unfolding events at pH 4, a pH at which the protein is known to be primed to misfold to a β-rich conformation. No residual structure around the disulfide bond was observed for the unfolded state at pH 4. The N state of the prion protein was observed to be at equilibrium with at least two partially unfolded forms (PUFs). These PUFs, which are accessed by stochastic fluctuations of the N state, have altered surface area exposure relative to the N state. One of these PUFs resembles a conformation previously implicated to be an initial intermediate in the conversion of monomeric protein into misfolded oligomer at pH 4.
Collapse
Affiliation(s)
- Roumita Moulick
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Ranabir Das
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
25
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
26
|
Kaczka P, Winiewska M, Zhukov I, Rempoła B, Bolewska K, Łoziński T, Ejchart A, Poznańska A, Wierzchowski KL, Poznański J. The TFE-induced transient native-like structure of the intrinsically disordered σ₄⁷⁰ domain of Escherichia coli RNA polymerase. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2014; 43:581-94. [PMID: 25261014 PMCID: PMC4236625 DOI: 10.1007/s00249-014-0987-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/31/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
Abstract
The transient folding of domain 4 of an E. coli RNA polymerase σ⁷⁰ subunit (rECσ₄⁷⁰) induced by an increasing concentration of 2,2,2-trifluoroethanol (TFE) in an aqueous solution was monitored by means of CD and heteronuclear NMR spectroscopy. NMR data, collected at a 30% TFE, allowed the estimation of the population of a locally folded rECσ₄⁷⁰ structure (CSI descriptors) and of local backbone dynamics ((15)N relaxation). The spontaneous organization of the helical regions of the initially unfolded protein into a TFE-induced 3D structure was revealed from structural constraints deduced from (15)N- to (13)C-edited NOESY spectra. In accordance with all the applied criteria, three highly populated α-helical regions, separated by much more flexible fragments, form a transient HLHTH motif resembling those found in PDB structures resolved for homologous proteins. All the data taken together demonstrate that TFE induces a transient native-like structure in the intrinsically disordered protein.
Collapse
Affiliation(s)
- Piotr Kaczka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Maria Winiewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Bożenna Rempoła
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Krystyna Bolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tomasz Łoziński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Poznańska
- Centre for Monitoring and Analyses of Population Health Status, National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Kazimierz L. Wierzchowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
27
|
Structural and dynamic properties of the human prion protein. Biophys J 2014; 106:1152-63. [PMID: 24606939 DOI: 10.1016/j.bpj.2013.12.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/11/2013] [Accepted: 12/26/2013] [Indexed: 11/23/2022] Open
Abstract
Prion diseases involve the conformational conversion of the cellular prion protein (PrP(C)) to its misfolded pathogenic form (PrP(Sc)). To better understand the structural mechanism of this conversion, we performed extensive all-atom, explicit-solvent molecular-dynamics simulations for three structures of the wild-type human PrP (huPrP) at different pH values and temperatures. Residue 129 is polymorphic, being either Met or Val. Two of the three structures have Met in position 129 and the other has Val. Lowering the pH or raising the temperature induced large conformational changes of the C-terminal globular domain and increased exposure of its hydrophobic core. In some simulations, HA and its preceding S1-HA loop underwent large displacements. The C-terminus of HB was unstable and sometimes partially unfolded. Two hydrophobic residues, Phe-198 and Met-134, frequently became exposed to solvent. These conformational changes became more dramatic at lower pH or higher temperature. Furthermore, Tyr-169 and the S2-HB loop, or the X-loop, were different in the starting structures but converged to common conformations in the simulations for the Met-129, but not the Val-129, protein. α-Strands and β-strands formed in the initially unstructured N-terminus. α-Strand propensity in the N-terminus was different between the Met-129 and Val129 proteins, but β-strand propensity was similar. This study reveals detailed structural and dynamic properties of huPrP, providing insight into the mechanism of the conversion of PrP(C) to PrP(Sc).
Collapse
|
28
|
Faraj SE, Roman EA, Aran M, Gallo M, Santos J. The alteration of the C-terminal region of human frataxin distorts its structural dynamics and function. FEBS J 2014; 281:3397-419. [PMID: 24920569 DOI: 10.1111/febs.12869] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/01/2014] [Accepted: 06/06/2014] [Indexed: 01/09/2023]
Abstract
Friedreich's ataxia (FRDA) is linked to a deficiency of frataxin (FXN), a mitochondrial protein involved in iron-sulfur cluster synthesis. FXN is a small protein with an α/β fold followed by the C-terminal region (CTR) with a nonperiodic structure that packs against the protein core. In the present study, we explored the impact of the alteration of the CTR on the stability and dynamics of FXN. We analyzed several pathological and rationally designed CTR mutants using complementary spectroscopic and biophysical approaches. The pathological mutation L198R yields a global destabilization of the structure correlating with a significant and highly localized alteration of dynamics, mainly involving residues that are in contact with L198 in wild-type FXN. Variant FXN 90-195, which is closely related to the FRDA-associated mutant FXN 81-193, conserves a globular shape with a native-like structure. However, the truncation of the CTR results in an extreme alteration of global stability and protein dynamics over a vast range of timescales and encompassing regions far from the CTR, as shown by proton-water exchange rates and (15) N-relaxation measurements. Increased sensitivity to proteolysis, observed in vitro for both mutants, suggests a faster degradation rate in vivo, whereas the enhanced tendency to aggregate exhibited by the truncated variant may account for the loss of functional FXN, with both phenomena providing an explanation as to why the alteration of the CTR causes FRDA. These results contribute to understanding how stability and activity are linked to protein motions and they might be useful for the design of target-specific ligands to control local protein motions for stability enhancement.
Collapse
Affiliation(s)
- Santiago E Faraj
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
29
|
Pagadala NS, Perez-Pineiro R, Wishart DS, Tuszynski JA. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrP(C) to PrP(Sc). Eur J Med Chem 2014; 91:118-31. [PMID: 25042003 DOI: 10.1016/j.ejmech.2014.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/28/2023]
Abstract
To understand the pharmacophore properties of 2-aminothiazoles and design novel inhibitors against the prion protein, a highly predictive 3D quantitative structure-activity relationship (QSAR) has been developed by performing comparative molecular field analysis (CoMFA) and comparative similarity analysis (CoMSIA). Both CoMFA and CoMSIA maps reveal the presence of the oxymethyl groups in meta and para positions on the phenyl ring of compound 17 (N-[4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-yl]quinolin-2-amine), is necessary for activity while electro-negative nitrogen of quinoline is highly favorable to enhance activity. The blind docking results for these compounds show that the compound with quinoline binds with higher affinity than isoquinoline and naphthalene groups. Out of 150 novel compounds retrieved using finger print analysis by pharmacophoric model predicted based on five test sets of compounds, five compounds with diverse scaffolds were selected for biological evaluation as possible PrP inhibitors. Molecular docking combined with fluorescence quenching studies show that these compounds bind to pocket-D of SHaPrP near Trp145. The new antiprion compounds 3 and 6, which bind with the interaction energies of -12.1 and -13.2 kcal/mol, respectively, show fluorescence quenching with binding constant (Kd) values of 15.5 and 44.14 μM, respectively. Further fluorescence binding assays with compound 5, which is similar to 2-aminothiazole as a positive control, also show that the molecule binds to the pocket-D with the binding constant (Kd) value of 84.7 μM. Finally, both molecular docking and a fluorescence binding assay of noscapine as a negative control reveals the same binding site on the surface of pocket-A near a rigid loop between β2 and α2 interacting with Arg164. This high level of correlation between molecular docking and fluorescence quenching studies confirm that these five compounds are likely to act as inhibitors for prion propagation while noscapine might act as a prion accelerator from PrP(C) to PrP(Sc).
Collapse
Affiliation(s)
- Nataraj S Pagadala
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Rolando Perez-Pineiro
- Departments of Biological Sciences, and Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - David S Wishart
- Departments of Biological Sciences, and Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada.
| |
Collapse
|
30
|
Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp. Nat Struct Mol Biol 2013; 20:1265-72. [DOI: 10.1038/nsmb.2677] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/15/2013] [Indexed: 01/01/2023]
|
31
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
32
|
De Simone A, Stanzione F, Marasco D, Vitagliano L, Esposito L. The intrinsic stability of the human prion β-sheet region investigated by molecular dynamics. J Biomol Struct Dyn 2013; 31:441-52. [DOI: 10.1080/07391102.2012.703070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
34
|
Younan ND, Sarell CJ, Davies P, Brown DR, Viles JH. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers. FASEB J 2013; 27:1847-58. [PMID: 23335053 DOI: 10.1096/fj.12-222588] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is now strong evidence to show that the presence of the cellular prion protein (PrP(C)) mediates amyloid-β (Aβ) neurotoxicity in Alzheimer's disease (AD). Here, we probe the molecular details of the interaction between PrP(C) and Aβ and discover that substoichiometric amounts of PrP(C), as little as 1/20, relative to Aβ will strongly inhibit amyloid fibril formation. This effect is specific to the unstructured N-terminal domain of PrP(C). Electron microscopy indicates PrP(C) is able to trap Aβ in an oligomeric form. Unlike fibers, this oligomeric Aβ contains antiparallel β sheet and binds to a oligomer specific conformational antibody. Our NMR studies show that a specific region of PrP(C), notably residues 95-113, binds to Aβ oligomers, but only once Aβ misfolds. The ability of PrP(C) to trap and concentrate Aβ in an oligomeric form and disassemble mature fibers suggests a mechanism by which PrP(C) might confer Aβ toxicity in AD, as oligomers are thought to be the toxic form of Aβ. Identification of a specific recognition site on PrP(C) that traps Aβ in an oligomeric form is potentially a therapeutic target for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Nadine D Younan
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
| | | | | | | | | |
Collapse
|
35
|
Hagiwara K, Hara H, Hanada K. Species-barrier phenomenon in prion transmissibility from a viewpoint of protein science. J Biochem 2013; 153:139-45. [PMID: 23284000 DOI: 10.1093/jb/mvs148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are fatal infectious neurodegenerative disorders. Their causative agents are prions, which are composed of disease-associated forms of prion protein (PrP(Sc)). Naturally occurring cases of TSEs are found in several mammalian species including humans, sheep, goats, minks, cattle and deer. Prions are also experimentally transmissible to other mammals such as mice, hamsters and monkeys, but interspecies transmission is often inefficient due to the 'species-barrier'. Studies have suggested that the barrier is not only simply determined by differences in amino acid sequences of cellular PrP (PrP(C)) among animal species, but also by prion strains which are closely associated with conformational properties of PrP(Sc) aggregates. Although the conformational properties of PrP(Sc) remain largely unknown, recent investigation of local structures of PrP(C) and, in particular, structural modelling of PrP(Sc) aggregates have provided molecular insight into this field. In this review, we discuss the species-barrier phenomenon in terms of the protein science.
Collapse
Affiliation(s)
- Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | |
Collapse
|
36
|
Twomey EC, Cordasco DF, Wei Y. Profound conformational changes of PED/PEA-15 in ERK2 complex revealed by NMR backbone dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1382-93. [PMID: 22820249 DOI: 10.1016/j.bbapap.2012.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/30/2012] [Accepted: 07/05/2012] [Indexed: 01/09/2023]
Abstract
PED/PEA-15 is a small, non-catalytic, DED containing protein that is widely expressed in different tissues and highly conserved among mammals. PED/PEA-15 has been found to interact with several protein targets in various pathways, including FADD and procaspase-8 (apoptosis), ERK1/2 (cell cycle entry), and PLD1/2 (diabetes). In this research, we have studied the PED/PEA-15 in a complex with ERK2, a MAP kinase, using NMR spectroscopic techniques. MAP Kinase signaling pathways are involved in the regulation of many cellular functions, including cell proliferation, differentiation, apoptosis and survival. ERK1/2 are activated by a variety of external stimuli, including growth factors, hormones and neurotransmitters. Inactivated ERK2 is primarily found in the cytosol. Once the ERK/MAPK cascade is initiated, ERK2 is phosphorylated and stimulated, allowing it to redistribute in the cell nucleus and act as a transcription factor. Previous studies have shown that PED/PEA-15 complexes with ERK2 in the cytoplasm and prevents redistribution into the nucleus. Although the NMR structure and dynamics of PED/PEA-15 in the free form have been documented recently, no detailed structural and dynamic information for the ERK2-bound form is available. Here we report NMR chemical shift perturbation and backbone dynamic studies at the fast ps-ns timescale of PED/PEA-15, in its free form and in the complex with ERK2. These analyses characterize motions and conformational changes involved in ERK2 recognition and binding that orchestrate the reorganization of the DED and immobilization of the C-terminal tail. A new induced fit binding model for PED/PEA-15 is proposed.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | | | | |
Collapse
|
37
|
Younan ND, Nadal RC, Davies P, Brown DR, Viles JH. Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway. J Biol Chem 2012; 287:28263-75. [PMID: 22654104 PMCID: PMC3436581 DOI: 10.1074/jbc.m112.354779] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress and misfolding of the prion protein (PrPC) are fundamental to prion diseases. We have therefore probed the effect of oxidation on the structure and stability of PrPC. Urea unfolding studies indicate that H2O2 oxidation reduces the thermodynamic stability of PrPC by as much as 9 kJ/mol. 1H-15N NMR studies indicate methionine oxidation perturbs key hydrophobic residues on one face of helix-C as follows: Met-205, Val-209, and Met-212 together with residues Val-160 and Tyr-156. These hydrophobic residues pack together and form the structured core of the protein, stabilizing its ternary structure. Copper-catalyzed oxidation of PrPC causes a more significant alteration of the structure, generating a monomeric molten globule species that retains its native helical content. Further copper-catalyzed oxidation promotes extended β-strand structures that lack a cooperative fold. This transition from the helical molten globule to β-conformation has striking similarities to a misfolding intermediate generated at low pH. PrP may therefore share a generic misfolding pathway to amyloid fibers, irrespective of the conditions promoting misfolding. Our observations support the hypothesis that oxidation of PrP destabilizes the native fold of PrPC, facilitating the transition to PrPSc. This study gives a structural and thermodynamic explanation for the high levels of oxidized methionine in scrapie isolates.
Collapse
Affiliation(s)
- Nadine D Younan
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Mangels C, Frank AO, Ziegler J, Klingenstein R, Schweimer K, Willbold D, Korth C, Rösch P, Schwarzinger S. Binding of TCA to the Prion Protein: Mechanism, Implication for Therapy, and Application as Probe for Complex Formation of Bio-macromolecules. J Biomol Struct Dyn 2012; 27:163-70. [DOI: 10.1080/07391102.2009.10507306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Christian Mangels
- a Department of Biopolymers , University of Bayreuth Universitätsstrasse 30 , 95440 , Bayreuth , Germany
| | - Andreas O. Frank
- a Department of Biopolymers , University of Bayreuth Universitätsstrasse 30 , 95440 , Bayreuth , Germany
| | - Jan Ziegler
- a Department of Biopolymers , University of Bayreuth Universitätsstrasse 30 , 95440 , Bayreuth , Germany
| | - Ralph Klingenstein
- b Institute of Neuropathology, Heinrich-Heine-University , Moorenstr. 5, 40225 , Düsseldorf , Germany
| | - Kristian Schweimer
- a Department of Biopolymers , University of Bayreuth Universitätsstrasse 30 , 95440 , Bayreuth , Germany
| | - Dieter Willbold
- c Institute for Physical Biology Heinrich-Heine-University Düsseldorf and Institute of Neuroscience and Biophysics 2 at the Research Centre, Jülich , 52425 , Jülich , Germany
| | - Carsten Korth
- b Institute of Neuropathology, Heinrich-Heine-University , Moorenstr. 5, 40225 , Düsseldorf , Germany
| | - Paul Rösch
- a Department of Biopolymers , University of Bayreuth Universitätsstrasse 30 , 95440 , Bayreuth , Germany
| | - Stephan Schwarzinger
- a Department of Biopolymers , University of Bayreuth Universitätsstrasse 30 , 95440 , Bayreuth , Germany
| |
Collapse
|
39
|
Issack BB, Berjanskii M, Wishart DS, Stepanova M. Exploring the essential collective dynamics of interacting proteins: application to prion protein dimers. Proteins 2012; 80:1847-65. [PMID: 22488640 DOI: 10.1002/prot.24082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/07/2012] [Accepted: 03/18/2012] [Indexed: 11/11/2022]
Abstract
Essential collective dynamics is a promising and robust approach for analysing the slow motions of macromolecules from short molecular dynamics trajectories. In this study, an extension of the method to treat a collection of interacting protein molecules is presented. The extension is applied to investigate the effects of dimerization on the collective dynamics of ovine prion protein molecules in two different arrangements. Examination of the structural plasticity shows that aggregation has a restricting effect on the local mobility of the prion protein molecules in the interfacial regions. Domain motions of the two dimeric ovine prion protein conformations are distinctly different and can be related to interatomic correlations at the interface. Correlated motions are among the slow collective modes extensively analysed by considering both main-chain and side-chain atoms. Correlation maps reveal the existence of a vast network of dynamically correlated side groups, which extends beyond individual subunits via interfacial interconnections. The network is formed by a core of hydrophobic side chains surrounded by hydrophilic groups at the periphery. The relevance of these findings are discussed in the context of mutations associated with prion diseases. The binding free energy of the dimeric conformations is evaluated to probe their thermodynamic stability. The descriptions afforded by the analysis of the essential collective dynamics of the prion dimers are consistent with their binding free energies. The agreement validates the extension of the methodology and provides a means of interpreting the collective dynamics in terms of the thermodynamic stability of ovine prion proteins.
Collapse
Affiliation(s)
- Bilkiss B Issack
- National Institute for Nanotechnology, National research Council, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
40
|
Rinaldi J, Gallo M, Klinke S, Paris G, Bonomi HR, Bogomolni RA, Cicero DO, Goldbaum FA. The β-scaffold of the LOV domain of the Brucella light-activated histidine kinase is a key element for signal transduction. J Mol Biol 2012; 420:112-27. [PMID: 22504229 DOI: 10.1016/j.jmb.2012.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 01/31/2023]
Abstract
Light-oxygen-voltage (LOV) domains are blue-light-activated signaling modules present in a wide range of sensory proteins. Among them, the histidine kinases are the largest group in prokaryotes (LOV-HK). Light modulates the virulence of the pathogenic bacteria Brucella abortus through LOV-HK. One of the striking characteristic of Brucella LOV-HK is the fact that the protein remains activated upon light sensing, without recovering the basal state in the darkness. In contrast, the light state of the isolated LOV domain slowly returns to the dark state. To gain insight into the light activation mechanism, we have characterized by X-ray crystallography and solution NMR spectroscopy the structure of the LOV domain of LOV-HK in the dark state and explored its light-induced conformational changes. The LOV domain adopts the α/β PAS (PER-ARNT-SIM) domain fold and binds the FMN cofactor within a conserved pocket. The domain dimerizes through the hydrophobic β-scaffold in an antiparallel way. Our results point to the β-scaffold as a key element in the light activation, validating a conserved structural basis for light-to-signal propagation in LOV proteins.
Collapse
Affiliation(s)
- Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Camilloni C, Schaal D, Schweimer K, Schwarzinger S, De Simone A. Energy landscape of the prion protein helix 1 probed by metadynamics and NMR. Biophys J 2012; 102:158-67. [PMID: 22225810 DOI: 10.1016/j.bpj.2011.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
The characterization of the structural dynamics of proteins, including those that present a substantial degree of disorder, is currently a major scientific challenge. These dynamics are biologically relevant and govern the majority of functional and pathological processes. We exploited a combination of enhanced molecular simulations of metadynamics and NMR measurements to study heterogeneous states of proteins and peptides. In this way, we determined the structural ensemble and free-energy landscape of the highly dynamic helix 1 of the prion protein (PrP-H1), whose misfolding and aggregation are intimately connected to a group of neurodegenerative disorders known as transmissible spongiform encephalopathies. Our combined approach allowed us to dissect the factors that govern the conformational states of PrP-H1 in solution, and the implications of these factors for prion protein misfolding and aggregation. The results underline the importance of adopting novel integrated approaches that take advantage of experiments and theory to achieve a comprehensive characterization of the structure and dynamics of biological macromolecules.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.07.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Sharma AK, Ye L, Alper SL, Rigby AC. Guanine nucleotides differentially modulate backbone dynamics of the STAS domain of the SulP/SLC26 transport protein Rv1739c of Mycobacterium tuberculosis. FEBS J 2011; 279:420-36. [PMID: 22118659 DOI: 10.1111/j.1742-4658.2011.08435.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymatic catalysis and protein signaling are dynamic processes that involve local and/or global conformational changes occurring across a broad range of time scales. (1) H-(15) N relaxation NMR provides a comprehensive understanding of protein backbone dynamics both in the apo (unliganded) and ligand-bound conformations, enabling both fast and slow internal motions of individual amino acid residues to be observed. We recently reported the structure and nucleotide binding properties of the sulfate transporter and anti-sigma factor antagonist (STAS) domain of Rv1739c, a SulP anion transporter protein of Mycobacterium tuberculosis. In the present study, we report (1) H-(15) N NMR backbone dynamics measurements [longitudinal (T(1) ), transverse (T(2) ) and steady-state ({(1) H}-(15) N) heteronuclear NOE] of the Rv1739c STAS domain, in the absence and presence of saturating concentrations of GTP and GDP. Analysis of measured relaxation data and estimated dynamic parameters indicated distinct features differentiating the binding of GTP and GDP to Rv1739c STAS. The 9.55 ns overall rotational correlation time of Rv1739c STAS increased to 10.48 ns in the presence of GTP, and to 13.25 ns in the presence of GDP, indicating significant nucleotide-induced conformational changes. These conformational changes were accompanied by slow time scale (μs to ms) motions in discrete regions of the protein, as reflected by guanine nucleotide-induced changes in relaxation parameters. The observed nucleotide-specific alterations in the relaxation properties of individual STAS residues reflect an increased molecular anisotropy and/or the emergence of conformational equilibria governing functional properties of the STAS domain.
Collapse
Affiliation(s)
- Alok K Sharma
- Division of Molecular and Vascular Medicine, Renal Division, and Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
44
|
Thakur AK, Srivastava AK, Srinivas V, Chary KVR, Rao CM. Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions. J Biol Chem 2011; 286:38533-38545. [PMID: 21900252 DOI: 10.1074/jbc.m111.265645] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper is reported to promote and prevent aggregation of prion protein. Conformational and functional consequences of Cu(2+)-binding to prion protein (PrP) are not well understood largely because most of the Cu(2+)-binding studies have been performed on fragments and truncated variants of the prion protein. In this context, we set out to investigate the conformational consequences of Cu(2+)-binding to full-length prion protein (PrP) by isothermal calorimetry, NMR, and small angle x-ray scattering. In this study, we report altered aggregation behavior of full-length PrP upon binding to Cu(2+). At physiological temperature, Cu(2+) did not promote aggregation suggesting that Cu(2+) may not play a role in the aggregation of PrP at physiological temperature (37 °C). However, Cu(2+)-bound PrP aggregated at lower temperatures. This temperature-dependent process is reversible. Our results show two novel intra-protein interactions upon Cu(2+)-binding. The N-terminal region (residues 90-120 that contain the site His-96/His-111) becomes proximal to helix-1 (residues 144-147) and its nearby loop region (residues 139-143), which may be important in preventing amyloid fibril formation in the presence of Cu(2+). In addition, we observed another novel interaction between the N-terminal region comprising the octapeptide repeats (residues 60-91) and helix-2 (residues 174-185) of PrP. Small angle x-ray scattering studies of full-length PrP show significant compactness upon Cu(2+)-binding. Our results demonstrate novel long range inter-domain interactions of the N- and C-terminal regions of PrP upon Cu(2+)-binding, which might have physiological significance.
Collapse
Affiliation(s)
- Abhay Kumar Thakur
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | - Atul Kumar Srivastava
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Volety Srinivas
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | - Kandala Venkata Ramana Chary
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Chintalagiri Mohan Rao
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
45
|
Huang YW, Chiang YW. Spin-label ESR with nanochannels to improve the study of backbone dynamics and structural conformations of polypeptides. Phys Chem Chem Phys 2011; 13:17521-31. [PMID: 21892486 DOI: 10.1039/c1cp20986h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanochannels of mesoporous silica materials were previously found useful for reducing the tumbling motion of encapsulated biomolecules while leaving the biomolecular structure undisturbed. Here we show that experiments of cw-ESR distance measurement in nano-confinement can benefit immediately from the above mentioned features of sufficiently slow molecular tumbling, enabling more accurate determination of interspin distances throughout the temperature range, from 200 to 300 K. A 26-residue prion protein peptide, which can fold into either a helical or hairpin structure, as well as its variants, are studied by using ESR. By comparing the spectra obtained in vitrified bulk solutions vs. mesopores, the spectra from the latter display typical slow-motional lineshapes, thereby enabling dipolar anisotropy to be unambiguously revealed throughout the temperature range, whereas the spectra from the former are dominated by the disordering of the side chain and the rotational tumbling of the peptide. The spectral changes regarding the two secondary structures in nano-confinement are found to show a strong correlation with the dynamic properties of the backbones. The effect of viscosity agent perturbation on the motion of an R1 nitroxide side chain, a commonly employed probe, could be substantial in a bulk solution condition, though it is absolutely absent in nanochannels. Under nano-confinement, the probe is proven sufficiently sensitive to the backbone motions. Overall, the distance distributions determined from the mesopore studies not only describe the conformational structures (by average distances), but also the backbone dynamics (by distribution widths) of the spin-labeled peptides.
Collapse
Affiliation(s)
- Ya-Wen Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | |
Collapse
|
46
|
Martin DP, Anantharam V, Jin H, Witte T, Houk R, Kanthasamy A, Kanthasamy AG. Infectious prion protein alters manganese transport and neurotoxicity in a cell culture model of prion disease. Neurotoxicology 2011; 32:554-62. [PMID: 21871919 DOI: 10.1016/j.neuro.2011.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/26/2023]
Abstract
Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrP(C)). Although the exact function of PrP(C) has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrP(C) protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC(50)=428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dustin P Martin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicity, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Proteins provide much of the scaffolding for life, as well as undertaking a variety of essential catalytic reactions. These characteristic functions have led us to presuppose that proteins are in general functional only when well structured and correctly folded. As we begin to explore the repertoire of possible protein sequences inherent in the human and other genomes, two stark facts that belie this supposition become clear: firstly, the number of apparent open reading frames in the human genome is significantly smaller than appears to be necessary to code for all of the diverse proteins in higher organisms, and secondly that a significant proportion of the protein sequences that would be coded by the genome would not be expected to form stable three-dimensional (3D) structures. Clearly the genome must include coding for a multitude of alternative forms of proteins, some of which may be partly or fully disordered or incompletely structured in their functional states. At the same time as this likelihood was recognized, experimental studies also began to uncover examples of important protein molecules and domains that were incompletely structured or completely disordered in solution, yet remained perfectly functional. In the ensuing years, we have seen an explosion of experimental and genome-annotation studies that have mapped the extent of the intrinsic disorder phenomenon and explored the possible biological rationales for its widespread occurrence. Answers to the question 'why would a particular domain need to be unstructured?' are as varied as the systems where such domains are found. This review provides a survey of recent new directions in this field, and includes an evaluation of the role not only of intrinsically disordered proteins but also of partially structured and highly dynamic members of the disorder-order continuum.
Collapse
|
48
|
Yao S, Young IG, Norton RS, Murphy JM. Murine Interleukin-3: Structure, Dynamics, and Conformational Heterogeneity in Solution. Biochemistry 2011; 50:2464-77. [DOI: 10.1021/bi101810f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Shenggen Yao
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ian G. Young
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Raymond S. Norton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
49
|
van der Kamp MW, Daggett V. Influence of pH on the human prion protein: insights into the early steps of misfolding. Biophys J 2011; 99:2289-98. [PMID: 20923664 DOI: 10.1016/j.bpj.2010.07.063] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 01/02/2023] Open
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are caused by misfolding and aggregation of the prion protein PrP. Conversion from the normal cellular form (PrP(C)) or recombinant PrP (recPrP) to a misfolded form is pH-sensitive, in that misfolding and aggregation occur more readily at lower pH. To gain more insight into the influence of pH on the dynamics of PrP and its potential to misfold, we performed extensive molecular-dynamics simulations of the recombinant PrP protein (residues 90-230) in water at three different pH regimes: neutral (or cytoplasmic) pH (∼7.4), middle (or endosomal) pH (∼5), and low pH (<4). We present five different simulations of 50 ns each for each pH regime, amounting to a total of 750 ns of simulation time. A detailed analysis and comparison with experiment validate the simulations and lead to new insights into the mechanism of pH-induced misfolding. The mobility of the globular domain increases with decreasing pH, through displacement of the first helix and instability of the hydrophobic core. At middle pH, conversion to a misfolded (PrP(Sc)-like) conformation is observed. The observed changes in conformation and stability are consistent with experimental data and thus provide a molecular basis for the initial steps in the misfolding process.
Collapse
|
50
|
Wong M, Toth J, Haney S, Krewski D, Leighton FA, Ricketts M, Westaway D, Cashman N. PrioNet Canada: a network of centres of excellence for research on prion diseases--ongoing and future research directions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:73-87. [PMID: 21218336 DOI: 10.1080/15287394.2011.529056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is PrioNet's vision to build a network that shapes and sustains prion research in Canada, translating basic science into accessible socioeconomic benefits for global betterment. PrioNet's research is developing surveillance measures, diagnostic tools, vaccines, and potential therapies and determining the various impacts of prion diseases on people. PrioNet seeks to integrate scientifically informed risk management strategies and to use this knowledge to address ongoing problems posed by bovine spongiform encephalopathy (BSE), the gathering crisis of chronic wasting disease (CWD), emerging issues of human prion disease, and basic scientific understanding of the nature of prions. PrioNet is strategically responding to prion threats by focusing its network of highly accomplished researchers and trainees to implement integrated risk management strategies that could not be supported by other mechanisms.
Collapse
Affiliation(s)
- Michelle Wong
- PrioNet Canada, 200-2386 East Mall, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|