1
|
Kamp D. A physical perspective on lithium therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:55-74. [PMID: 39547449 DOI: 10.1016/j.pbiomolbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Lithium salts have strong medical properties in neurological disorders such as bipolar disorder and lithium-responsive headaches. They have recently gathered attention due to their potential preventive effect in viral infections. Though the therapeutic effect of lithium was documented by Cade in the late 1940s, its underlying mechanism of action is still disputed. Acute lithium exposure has an activating effect on excitable organic tissue and organisms, and is highly toxic. Lithium exposure is associated with a strong metabolic response in the organism, with large changes in phospholipid and cholesterol expression. Opposite to acute exposure, this metabolic response alleviates excessive cellular activity. The presence of lithium ions strongly affects lipid conformation and membrane phase unlike other alkali ions, with consequences for membrane permeability, buffer property and excitability. This review investigates how lithium ions affect lipid membrane composition and function, and how lithium response might in fact be the body's attempt to counteract the physical presence of lithium ions at cell level. Ideas for further research in microbiology and drug development are discussed.
Collapse
Affiliation(s)
- Dana Kamp
- The Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
2
|
Benaglia S, Read H, Fumagalli L. Atomic-scale structure of interfacial water on gel and liquid phase lipid membranes. Faraday Discuss 2024; 249:453-468. [PMID: 37781876 PMCID: PMC10845012 DOI: 10.1039/d3fd00094j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 10/03/2023]
Abstract
Hydration of biological membranes is essential to a wide range of biological processes. In particular, it is intrinsically linked to lipid thermodynamic properties, which in turn influence key cell functions such as ion permeation and protein mobility. Experimental and theoretical studies of the surface of biomembranes have revealed the presence of an interfacial repulsive force, which has been linked to hydration or steric effects. Here, we directly characterise the atomic-scale structure of water near supported lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine in their gel and liquid phase through three-dimensional atomic force microscopy (3D AFM). First, we demonstrate the ability to probe the morphology of interfacial water of lipid bilayers in both phases with sub-molecular resolution by using ultrasharp tips. We then visualise the molecular arrangement of water at the lipid surface at different temperatures. Our experiments reveal that water is organised in multiple hydration layers on both the solid-ordered and liquid-disordered lipid phases. Furthermore, we observe a monotonic repulsive force, which becomes relevant only in the liquid phase. These results offer new insights into the water structuring near soft biological surfaces, and demonstrate the importance of investigating it with vertical and lateral sub-molecular resolution.
Collapse
Affiliation(s)
- Simone Benaglia
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, M13 9PL, UK
| | - Harriet Read
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, M13 9PL, UK
| | - Laura Fumagalli
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK.
- National Graphene Institute, University of Manchester, M13 9PL, UK
| |
Collapse
|
3
|
McCourt J, Kewalramani S, Gao C, Roth EW, Weigand SJ, Olvera de la Cruz M, Bedzyk MJ. Electrostatic Control of Shape Selection and Nanoscale Structure in Chiral Molecular Assemblies. ACS CENTRAL SCIENCE 2022; 8:1169-1181. [PMID: 36032772 PMCID: PMC9413830 DOI: 10.1021/acscentsci.2c00447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/01/2023]
Abstract
How molecular chirality manifests at the nano- to macroscale has been a scientific puzzle since Louis Pasteur discovered biochirality. Chiral molecules assemble into meso-shapes such as twisted and helical ribbons, helicoidal scrolls (cochleates), or möbius strips (closed twisted ribbons). Here we analyze self-assembly for a series of amphiphiles, C n -K, consisting of an ionizable amino acid [lysine (K)] coupled to alkyl tails with n = 12, 14, or 16 carbons. This simple system allows us to probe the effects of electrostatic and van der Waals interactions in chiral assemblies. Small/wide-angle X-ray scattering (SAXS/WAXS) reveals that at low pH, where the headgroups are ionized (+1), C16-K forms high aspect ratio, planar crystalline bilayers. Molecular dynamics (MD) simulations reveal that tilted tails of the bilayer leaflets are interdigitated. SAXS shows that, with increasing salt concentration, C16-K molecules assemble into cochleates, whereas at elevated pH (reduced degree of ionization), helices are observed for all C n -K assemblies. The shape selection between helices and scrolls is explained by a membrane energetics model. The nano- to meso-scale structure of the chiral assemblies can be continuously controlled by solution ionic conditions. Overall, our study represents a step toward an electrostatics-based approach for shape selection and nanoscale structure control in chiral assemblies.
Collapse
Affiliation(s)
- Joseph
M. McCourt
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Sumit Kewalramani
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Changrui Gao
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Eric W. Roth
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Steven J. Weigand
- DuPont-Northwestern-Dow
Collaborative Access Team, Northwestern
University Synchrotron Research Center, Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Monica Olvera de la Cruz
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael J. Bedzyk
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Viada BN, García MC, Yudi LM. Interfacial behaviour and quantitative analysis of hexadecyl phosphocholine drug at a polarized liquid/liquid interface. Analyst 2021; 147:109-119. [PMID: 34847570 DOI: 10.1039/d1an01641e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfacial behaviour of the amphiphilic drug hexadecyl phosphocholine (HePC, also called miltefosine) was analysed by cyclic voltammetry applied at the water/1,2-dichloroethane interface. HePC is the only oral drug currently approved for the treatment of visceral, mucosal and cutaneous leishmaniasis. Because of its amphiphilic character, it can interact with biological membranes, solubilizing their compounds and leading to cell disruption. These interactions are responsible for its side effects and toxicity; therefore, HePC quantification in biological fluids and pharmaceutical preparations is extremely important. However, the lack of a chromophore in its structure prevents its spectroscopic determination. For this reason, the main challenge of this work was to propose an electroanalytical method for the quantification of this drug, which constitutes a simpler alternative than liquid chromatography-tandem mass spectrometry already reported. With this aim, in the first part of this work, the mechanism of the electrochemical process occurring after polarizing the interface was studied. By varying the experimental conditions, it was possible to determine that in a first step, at open circuit or at low potential values, HePC spontaneously adsorbed to the interface. Later, as the potential increased, the transfer of the anions present in the organic phase towards the aqueous side of the interface, where the HePC polar head groups were present, occurred thus forming adsorbed "ion pairs" and producing an increase in positive current. Subsequently, in the negative sweep, the "ion pairs" dissociated and desorbed giving rise to a negative peak. In this way, both negative and positive currents were considered useful for quantitative purposes. In the second part of this work, an appropriate experimental procedure was designed and proposed as a quantitative methodology for the HePC determination, which consisted of cleaning the interface and controlling the time at open circuit, followed by the voltammetric analysis. A linear response of both, positive or negative, peak currents with drug concentration was obtained within an acceptable range, providing a simple solution for the HePC quantification problem. Future studies will be carried out to evaluate the quantification and selectivity in real matrices containing polymer micelles working as HePC nanocarriers with the aim of avoiding the adverse effects of HePC when it is orally or intravenously administered.
Collapse
Affiliation(s)
- Benjamín Nahuel Viada
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| | - Mónica Cristina García
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba, Argentina
| | - Lidia Mabel Yudi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC, Córdoba, Argentina
| |
Collapse
|
5
|
Lipid domain formation and non-lamellar structures associated with varied lysylphosphatidylglycerol analogue content in a model Staphylococcal plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183571. [PMID: 33561475 DOI: 10.1016/j.bbamem.2021.183571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 01/02/2023]
Abstract
Dipalmitoyl-3-aza-dehydroxy-lysylphosphatidylglycerol (DP3adLPG), is a chemically stable synthetic analogue of the bacterial lipid lysylphosphatidylglycerol (LPG), designed as a substitute for the notoriously labile native lipid in biophysical investigations. In Staphylococcus aureus, LPG is known to play a role in resistance to antibiotics by altering membrane charge properties in response to environmental stress, but little is known about how LPG influences other bilayer physicochemical properties or lateral organisation, through the formation of complexes with lipids such as phosphatidylglycerol (PG). In this study we have investigated the different phases formed by biomimetic mixtures of 3adLPG and PG in different thermotropic states, using neutron diffraction and electron microscopy. In a DPPG/DP3adLPG 70:30 mol% mixture, two distinct lamellar phases were observed below the lipid melting transition: Lβ' 1 and Lβ' 2 with respective periodicities of 82 and 62 Å. Increasing the proportion of DP3adLPG to mimic the effects of environmental stress led to the disappearance of the Lβ' 1 phase and the formation of an inverse hexagonal phase. The compositions of these different phases were identified by investigating the thermotropic properties of the two mixtures, and probing their interaction with the antimicrobial peptide magainin 2 F5W. We propose that the observed polymorphism results from the preferential formation of either triplet PG-3adLPG-PG, or paired PG-3adLPG complexes, dependent upon the mixing proportions of the two lipids. The relevance of these findings to the role native LPG in S. aureus, are discussed with respect to their influence on antibiotic resistance and lateral membrane organisation.
Collapse
|
6
|
Lin Y, Jing H, Liu Z, Chen J, Liang D. Dynamic Behavior of Complex Coacervates with Internal Lipid Vesicles under Nonequilibrium Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1709-1717. [PMID: 32004005 DOI: 10.1021/acs.langmuir.9b03561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During the evolution of life on earth, the emergence of lipid membrane-bounded compartments is one of the most enigmatic events. Endosymbiosis has been hypothesized as one of the solutions. In this work, using a coacervate droplet formed by single-stranded oligonucleotides (ss-oligo) and poly(l-lysine) (PLL) as the protocell model, we monitored the uptake of liposomes of different types and studied the dynamic behavior of the resulting composite droplet under the electric field. The coacervate droplet exhibits affinity for the liposomes of varying charges. However, the permeation of liposome is also controlled by electrostatic interactions. Dominated by electrostatic attraction, the positively charged liposome is retained inside the droplet as growing fibrous structures, while the negatively charged liposome is mainly coated on the droplet surface. Permeation and even distribution occur when the liposome and the droplet carry the same charges, or at least one of them is neutral. As an electric field is applied to trigger repetitive cycles of vacuolization in the ss-oligo/PLL droplet, the fibrous structure formed by the positively charged liposome is basically intact, while a new phase is generated together with uneven mass transport as the negatively charged liposome is internalized. Interestingly, the release of daughter droplets with similar components occurs on the droplet containing neutral liposomes. Our work not only provides a step toward creating protocells with hierarchical structures and biofunctions using a biogenetic material via simple mixing but also sheds light on the possible origin of the lipid structure inside a living organism.
Collapse
Affiliation(s)
- Ya'nan Lin
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Hairong Jing
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhijun Liu
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiaxin Chen
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
7
|
Watanabe N, Suga K, Slotte JP, Nyholm TKM, Umakoshi H. Lipid-Surrounding Water Molecules Probed by Time-Resolved Emission Spectra of Laurdan. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6762-6770. [PMID: 31021095 DOI: 10.1021/acs.langmuir.9b00303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The hydration states of the interfacial region of lipid bilayers were investigated on the basis of the time-resolved emission spectra (TRES) analysis of 6-lauroyl-2-dimethylamino naphthalene (Laurdan), a common fluorescence probe used to analyze membrane hydration. TRES derived from long and short lifetime components were extracted from samples of different lipid species: 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC), d- erythro- N-palmitoyl-sphingosylphosphorylcholine (PSM), and a DOPC/PSM binary bilayer system. Neither lifetime component (short or long) corresponded with the hydration properties; the short lifetime component of DOPC (1.97 ns) exhibited a peak at 440 nm, and the long lifetime components of DPPC and PSM (7.76 and 7.77 ns, respectively) exhibited peaks at the same wavelength. This similarity arose from the competition between the collisional quenching and the hydration effects of water molecules. Herein, this phenomenon was investigated using a plot of the lifetime τ and the peak position λ (τ vs λ plot), simultaneously visualizing both effects by deconvoluting the TRES. On the basis of collisional quenching theory, the distribution of the water population per lipid (water map) was generated. According to this theory, the τ vs λ plot was applied to the water map and the calculation of the number of water molecules per lipid, which is consistent with previous reports. This approach provides novel insights for the analysis of molecular hydration states using the fluorescence of Laurdan.
Collapse
Affiliation(s)
- Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama-cho , Toyonaka , Osaka 560-8531 , Japan
| | - Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama-cho , Toyonaka , Osaka 560-8531 , Japan
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Tykistökatu 6A , Turku FI-20520 , Finland
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Tykistökatu 6A , Turku FI-20520 , Finland
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science , Osaka University , 1-3 Machikaneyama-cho , Toyonaka , Osaka 560-8531 , Japan
| |
Collapse
|
8
|
Watanabe N, Goto Y, Suga K, Nyholm TKM, Slotte JP, Umakoshi H. Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer. Biophys J 2019; 116:874-883. [PMID: 30819567 DOI: 10.1016/j.bpj.2019.01.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 01/28/2023] Open
Abstract
The hydration properties of the interface between lipid bilayers and bulk water are important for determining membrane characteristics. Here, the emission properties of a solvent-sensitive fluorescence probe, 6-lauroyl-2-dimethylamino naphthalene (Laurdan), were evaluated in lipid bilayer systems composed of the sphingolipids D-erythro-N-palmitoyl-sphingosylphosphorylcholine (PSM) and D-erythro-N-palmitoyl-dihydrosphingomyelin (DHPSM). The glycerophospholipids 1-palmitoyl-2-palmitoyl-sn-glycero-3-phosphocholine and 1-oleoyl-2-oleoyl-sn-glycero-3-phosphocholine were used as controls. The fluorescence properties of Laurdan in sphingolipid bilayers indicated multiple excited states according to the results obtained from the emission spectra, fluorescence anisotropy, and the center-of-mass spectra during the decay time. Deconvolution of the Laurdan emission spectra into four components based on the solvent model enabled us to identify the varieties of hydration and the configurational states derived from intermolecular hydrogen bonding in sphingolipids. Sphingolipids showed specific, interfacial hydration properties stemming from their intra- and intermolecular hydrogen bonds. Particularly, the Laurdan in DHPSM revealed more hydrated properties compared to PSM, even though DHPSM has a higher Tm than PSM. Because DHPSM forms hydrogen bonds with water molecules (in 2NH configurational functional groups), the interfacial region of the DHPSM bilayer was expected to be in a highly polar environment. The careful analysis of Laurdan emission spectra through the four-component deconvolution in this study provides important insights for understanding the multiple polarity in the lipid membrane.
Collapse
Affiliation(s)
- Nozomi Watanabe
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yuka Goto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Keishi Suga
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Thomas K M Nyholm
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - J Peter Slotte
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Hiroshi Umakoshi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
9
|
Organization of lipid mixtures containing a pyrene amphiphile in liposomes and Langmuir monolayers: Evidence of superlattice arrangement. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Monti D, Tampucci S, Zucchetti E, Granchi C, Minutolo F, Piras AM. Effect of Tumor Relevant Acidic Environment in the Interaction of a N-hydroxyindole-2-Carboxylic Derivative with the Phospholipid Bilayer. Pharm Res 2018; 35:175. [PMID: 29987655 DOI: 10.1007/s11095-018-2449-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/15/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE The inhibitors of the human isoform 5 of lactate dehydrogenase (hLDH5) have attracted growing interest as efficient anti-cancer agents. In the present paper, the interactions between an efficient hLDH5 inhibitor (N-hydroxyindole-2-carboxylic derivative) and lipid bilayers based on dipalmitoylphosphatidylcholine (DPPC) were investigated. Additionally, since interstitial acidification plays a key role in tumor pathogenesis and tumor drug therapy, the effect of acidic pH was assessed and correlated to DPPC/drug interaction. METHODS Four different techniques were used: differential scanning calorimetry, dynamic light scattering, UV-VIS second derivative spectrometry and attenuated total reflection Fourier transformed infrared spectroscopy. RESULTS All techniques concur in highlighting a structural change of lipid assembly, susceptible both to pH change and to the presence of the antitumor compound. Lipid vesicles appeared more compact at the lower pH, since the thermal pre-transition from the lamellar gel phase to the ripple gel phase was absent at pH 7.4 and the infrared analysis revealed a stronger acyl chain packing as well as a different hydration degree. Drug interaction was mainly detected in the lipid region including the ester linkages and the first portion of the acyl chains. Furthermore, a lower drug partitioning was recorded at pH 6.6. CONCLUSIONS The investigated antitumor agent possesses a stable negative charge at the investigated pH values, thus the lower interaction at the acidic pH is mainly ascribable to an environmental effect on lipid assembly. Therefore, drug efficacy under tumor acid conditions may be hampered by the observed lipid membrane constraints, and suggest for the development of suitable prodrugs.
Collapse
Affiliation(s)
- Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Erica Zucchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| |
Collapse
|
11
|
Greimel P. Biophysical Properties of Phosphtidylglucoside and Phosphatidylinositol: Specific Differences in Head Group Interaction. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1704.1e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Deplazes E, Poger D, Cornell B, Cranfield CG. The effect of hydronium ions on the structure of phospholipid membranes. Phys Chem Chem Phys 2018; 20:357-366. [DOI: 10.1039/c7cp06776c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work studies the mechanisms by which hydronium ions modulate the structure of phospholipid bilayers.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Biomedical Sciences
- Curtin Health Innovation Research Institute and Curtin Institute for Computation
- Curtin University
- Perth
- Australia
| | - David Poger
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | | | | |
Collapse
|
13
|
Ohtani R, Tokita T, Takaya T, Iwata K, Kinoshita M, Matsumori N, Nakamura M, Lindoy LF, Hayami S. The impact of metal complex lipids on viscosity and curvature of hybrid liposomes. Chem Commun (Camb) 2017; 53:13249-13252. [PMID: 29184922 DOI: 10.1039/c7cc07944c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A morphology transformation of hybrid liposomes was shown to occur from spherical vesicles to tubular micelles when increasing the ratio of the metal complex lipid present. Phase transition temperatures increased while viscosities decreased, indicating that the hybrids exhibit stronger interaction between heads but weaker interaction between alkyl chains than occurs in pristine liposomes.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vogel R, Pal AK, Jambhrunkar S, Patel P, Thakur SS, Reátegui E, Parekh HS, Saá P, Stassinopoulos A, Broom MF. High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing. Sci Rep 2017; 7:17479. [PMID: 29234015 PMCID: PMC5727177 DOI: 10.1038/s41598-017-14981-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/17/2017] [Indexed: 12/25/2022] Open
Abstract
Physicochemical properties of nanoparticles, such as size, shape, surface charge, density, and porosity play a central role in biological interactions and hence accurate determination of these characteristics is of utmost importance. Here we propose tunable resistive pulse sensing for simultaneous size and surface charge measurements on a particle-by-particle basis, enabling the analysis of a wide spectrum of nanoparticles and their mixtures. Existing methodologies for measuring zeta potential of nanoparticles using resistive pulse sensing are significantly improved by including convection into the theoretical model. The efficacy of this methodology is demonstrated for a range of biological case studies, including measurements of mixed anionic, cationic liposomes, extracellular vesicles in plasma, and in situ time study of DNA immobilisation on the surface of magnetic nanoparticles. The high-resolution single particle size and zeta potential characterisation will provide a better understanding of nano-bio interactions, positively impacting nanomedicine development and their regulatory approval.
Collapse
Affiliation(s)
- Robert Vogel
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Anoop K Pal
- Izon Science US Limited, 85 Bolton Street, STE 108, Cambridge, MA, 02140, USA
| | - Siddharth Jambhrunkar
- Mucosal Diseases Group, Translational Research Institute, The University of Queensland, 37 Kent St., Woolloongabba, QLD 4102, Australia
| | - Pragnesh Patel
- Izon Science US Limited, 85 Bolton Street, STE 108, Cambridge, MA, 02140, USA
| | - Sachin S Thakur
- School of Pharmacy, The University of Queensland, 20 Cornwall St., Woolloongabba, QLD 4102, Australia
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, 20 Cornwall St., Woolloongabba, QLD 4102, Australia
| | - Paula Saá
- Scientific Affairs, American Red Cross, Rockville, MD, 20877, USA
| | | | - Murray F Broom
- Izon Science Limited, 8C Homersham Place, PO Box 39168, Burnside, Christchurch 8053, New Zealand
| |
Collapse
|
15
|
Alarcón LM, de Los Angeles Frías M, Morini MA, Belén Sierra M, Appignanesi GA, Anibal Disalvo E. Water populations in restricted environments of lipid membrane interphases. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:94. [PMID: 27761781 DOI: 10.1140/epje/i2016-16094-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
We employ molecular dynamics simulations to study the hydration properties of Dipalmitoylphosphatidylcholine (DPPC) bilayers, both in the gel and the liquid crystalline states. We show that while the tight hydration centers (PO and CO moieties) are significantly hydrated in both phases, the gel-fluid transition involves significant changes at the second hydration shell, particularly at the buried region between the hydrocarbon tails. Thus, while almost no buried water population exists in the gel state below the carbonyls, this hydrophobic region becomes partially water accesible in the liquid crystalline state. We shall also show that such water molecules present a lower H-bond coordination as compared to the molecules at the primary hydration shell. This means that, while the latter are arranged in relatively compact nanoclusters (as already proposed), the buried water molecules tend to organize themselves in less compact structures, typically strings or branched strings, with a scarce population of isolated molecules. This behavior is similar to that observed in other hydration contexts, like water penetrating carbon nanotubes or model hydrophobic channels or pores, and reflects the reluctance of water to sacrifice HB coordination.
Collapse
Affiliation(s)
- Laureano M Alarcón
- Sección Fisicoquímica, INQUISUR-UNS-CONICET, Universidad Nacional del Sur, Av. Alem 1253, 8000-Bahía, Blanca, Argentina
| | - M de Los Angeles Frías
- Laboratorio de Biointerfases y Sistemas Biomiméticos, Laboratorios Centrales, CITSE-UNSE, Santiago del Estero, Argentina
| | - Marcela A Morini
- Sección Fisicoquímica, INQUISUR-UNS-CONICET, Universidad Nacional del Sur, Av. Alem 1253, 8000-Bahía, Blanca, Argentina
| | - M Belén Sierra
- Sección Fisicoquímica, INQUISUR-UNS-CONICET, Universidad Nacional del Sur, Av. Alem 1253, 8000-Bahía, Blanca, Argentina
| | - Gustavo A Appignanesi
- Sección Fisicoquímica, INQUISUR-UNS-CONICET, Universidad Nacional del Sur, Av. Alem 1253, 8000-Bahía, Blanca, Argentina.
| | - E Anibal Disalvo
- Laboratorio de Biointerfases y Sistemas Biomiméticos, Laboratorios Centrales, CITSE-UNSE, Santiago del Estero, Argentina
| |
Collapse
|
16
|
Petaccia M, Gentili P, Bešker N, D'Abramo M, Giansanti L, Leonelli F, La Bella A, Gradella Villalva D, Mancini G. Kinetics and mechanistic study of competitive inhibition of thymidine phosphorylase by 5-fluoruracil derivatives. Colloids Surf B Biointerfaces 2016; 140:121-127. [PMID: 26752208 DOI: 10.1016/j.colsurfb.2015.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/01/2015] [Accepted: 12/13/2015] [Indexed: 11/28/2022]
Abstract
In a previous investigation, cationic liposomes formulated with new 5-FU derivatives, differing for the length of the polyoxyethylenic spacer that links the N(3) position of 5-FU to an alkyl chain of 12 carbon atoms, showed a higher cytotoxicity compared to free 5-FU, the cytotoxic effect being directly related to the length of the spacer. To better understand the correlation of the spacer length with toxicity, we carried out initial rate studies to determine inhibition, equilibrium and kinetic constants (KI, KM, kcat), and get inside inhibition activity of the 5-FU derivatives and their mechanism of action, a crucial information to design structural variations for improving the anticancer activity. The experimental investigation was supported by docking simulations based on the X-ray structure of thymidine phosphorylase (TP) from Escherichia coli complexed with 3'-azido-2'-fluoro-dideoxyuridin. Theoretical and experimental results showed that all the derivatives exert the same inhibition activity of 5-FU either as monomer and when embedded in lipid bilayer.
Collapse
Affiliation(s)
- Manuela Petaccia
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito (Aq), Italy
| | - Patrizia Gentili
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le Aldo Moro 5, 00185 Roma, Italy
| | - Neva Bešker
- CINECA, SCAI-Super Computing Applications and Innovation Department, Via dei Tizii, 6, 00185 Rome, Italy
| | - Marco D'Abramo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le Aldo Moro 5, 00185 Roma, Italy
| | - Luisa Giansanti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito (Aq), Italy.
| | - Francesca Leonelli
- Dipartimento di Biologia Ambientale, Università degli Studi di Roma "La Sapienza", P.le Aldo Moro 5, 00185 Roma, Italy
| | - Angela La Bella
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le Aldo Moro 5, 00185 Roma, Italy
| | - Denise Gradella Villalva
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le Aldo Moro 5, 00185 Roma, Italy
| | - Giovanna Mancini
- CNR-Istituto di Metodologie Chimiche, Via Salaria km 29.300, Monterotondo Scalo, 00016 Rome, Italy
| |
Collapse
|
17
|
Gradella Villalva D, Diociaiuti M, Giansanti L, Petaccia M, Bešker N, Mancini G. Molecular Packing in Langmuir Monolayers Composed of a Phosphatidylcholine and a Pyrene Lipid. J Phys Chem B 2016; 120:1126-33. [DOI: 10.1021/acs.jpcb.5b11836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Denise Gradella Villalva
- Dipartimento
di Chimica, Università degli Studi di Roma “Sapienza”, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Marco Diociaiuti
- Dipartimento
di Tecnologia e Salute, Istituto Superiore di Sanità, Viale
Regina Elena 299, 00161 Roma, Italy
| | - Luisa Giansanti
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Manuela Petaccia
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Neva Bešker
- CINECA,
SCAI—Super
Computing Applications and Innovation Department, Via dei Tizii, 6, 00185, Rome, Italy
| | - Giovanna Mancini
- CNR—Istituto di
Metodologie Chimiche, Via Salaria km
29.300, 00016 Monterotondo
Scalo, Roma, Italy
| |
Collapse
|
18
|
Mauceri A, Fracassi A, D'Abramo M, Borocci S, Giansanti L, Piozzi A, Galantini L, Martino A, D'Aiuto V, Mancini G. Role of the hydrophilic spacer of glucosylated amphiphiles included in liposome formulations in the recognition of Concanavalin A. Colloids Surf B Biointerfaces 2015; 136:232-9. [DOI: 10.1016/j.colsurfb.2015.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
|
19
|
|
20
|
Vadakkan KI. A pressure-reversible cellular mechanism of general anesthetics capable of altering a possible mechanism for consciousness. SPRINGERPLUS 2015; 4:485. [PMID: 26380161 PMCID: PMC4561946 DOI: 10.1186/s40064-015-1283-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
Different anesthetics are known to modulate different types of membrane-bound receptors. Their common mechanism of action is expected to alter the mechanism for consciousness. Consciousness is hypothesized as the integral of all the units of internal sensations induced by reactivation of inter-postsynaptic membrane functional LINKs during mechanisms that lead to oscillating potentials. The thermodynamics of the spontaneous lateral curvature of lipid membranes induced by lipophilic anesthetics can lead to the formation of non-specific inter-postsynaptic membrane functional LINKs by different mechanisms. These include direct membrane contact by excluding the inter-membrane hydrophilic region and readily reversible partial membrane hemifusion. The constant reorganization of the lipid membranes at the lateral edges of the postsynaptic terminals (dendritic spines) resulting from AMPA receptor-subunit vesicle exocytosis and endocytosis can favor the effect of anesthetic molecules on lipid membranes at this location. Induction of a large number of non-specific LINKs can alter the conformation of the integral of the units of internal sensations that maintain consciousness. Anesthetic requirement is reduced in the presence of dopamine that causes enlargement of dendritic spines. Externally applied pressure can transduce from the middle ear through the perilymph, cerebrospinal fluid, and the recently discovered glymphatic pathway to the extracellular matrix space, and finally to the paravenular space. The pressure gradient reduce solubility and displace anesthetic molecules from the membranes into the paravenular space, explaining the pressure reversal of anesthesia. Changes in membrane composition and the conversion of membrane hemifusion to fusion due to defects in the checkpoint mechanisms can lead to cytoplasmic content mixing between neurons and cause neurodegenerative changes. The common mechanism of anesthetics presented here can operate along with the known specific actions of different anesthetics.
Collapse
Affiliation(s)
- Kunjumon I Vadakkan
- Division of Neurology, Department of Medicine, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room A4-08, Toronto, ON M4N 3M5 Canada
| |
Collapse
|
21
|
Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 2015; 5:231-42. [PMID: 25787731 DOI: 10.1007/s13346-015-0220-8] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol plays a strategic role in liposome composition; however, the quantity used to achieve an appropriate formulation has not been yet clarified. Therefore, by screening arrangement of lipids and cholesterol ratio, the main aim of this study is to investigate the most suitable amount of cholesterol in lipids in order to prepare stable and controlled drug release vehicles. For the preparation of liposomes, DMPC, DPPC and DSPC phospholipids were used and combined with different molar ratios of cholesterol (e.g. 100, 80-20, 70-30, 60-40 and 50-50%). Stability studies were conducted by storing the formulations at 37 and 50 °C for 30 days and by analysing them by AFM, DLS and FT-IR. By detecting the two most stable formulations from the stability results, drug encapsulation and in vitro release studies in PBS were performed by encapsulating atenolol and quinine. The release results were validated using a simulation model to ensure the reliability and suitable interpretation of the data. The generated model showed a good correlation between the prediction and the in vitro obtained results. By using 70:30% ratio (known in literature as 2:1), it is possible to reach the most stable formulation to guarantee a controlled and reproducible release for drugs with different physicochemical characteristics and pharmaceutical applications.
Collapse
Affiliation(s)
- Maria-Lucia Briuglia
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | | | | | | |
Collapse
|
22
|
Uddin YM, Schmidt-Krey I. Inducing two-dimensional crystallization of membrane proteins by dialysis for electron crystallography. Methods Enzymol 2015; 557:351-62. [PMID: 25950973 DOI: 10.1016/bs.mie.2014.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron crystallography is an electron cryo-microscopy (cryo-EM) method that is particularly suitable for structure-function studies of small membrane proteins, which are crystallized in two-dimensional (2D) arrays for subsequent cryo-EM data collection and image processing. This approach allows for structural analysis of membrane proteins in a close-to-native, phospholipid bilayer environment. The process of growing 2D crystals from purified membrane proteins by dialysis detergent removal is described in this chapter. A short section covers screening for and identifying 2D crystals by transmission electron microscopy, and in the last section, optimization of the purification to obtain crystals of higher quality is discussed.
Collapse
Affiliation(s)
- Yusuf M Uddin
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ingeborg Schmidt-Krey
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
23
|
Abstract
The comprehension of the structure and behavior of water at interfaces and under nanoconfinement represents an issue of major concern in several central research areas like hydration, reaction dynamics and biology. From one side, water is known to play a dominant role in the structuring, the dynamics and the functionality of biological molecules, governing main processes like protein folding, protein binding and biological function. In turn, the same principles that rule biological organization at the molecular level are also operative for materials science processes that take place within a water environment, being responsible for the self-assembly of molecular structures to create synthetic supramolecular nanometrically-sized materials. Thus, the understanding of the principles of water hydration, including the development of a theory of hydrophobicity at the nanoscale, is imperative both from a fundamental and an applied standpoint. In this work we present some molecular dynamics studies of the structure and dynamics of water at different interfaces or confinement conditions, ranging from simple model hydrophobic interfaces with different geometrical constraints (in order to single out curvature effects), to self-assembled monolayers, proteins and phospholipid membranes. The tendency of the water molecules to sacrifice the lowest hydrogen bond (HB) coordination as possible at extended interfaces is revealed. This fact makes the first hydration layers to be highly oriented, in some situations even resembling the structure of hexagonal ice. A similar trend to maximize the number of HBs is shown to hold in cavity filling, with small subnanometric hydrophobic cavities remaining empty while larger cavities display an alternation of filled and dry states with a significant inner HB network. We also study interfaces with complex chemical and geometrical nature in order to determine how different conditions affect the local hydration properties. Thus, we show some results for protein hydration and, particularly, some preliminary studies on membrane hydration. Finally, calculations of a local hydrophobicity measure of relevance for binding and self-assembly are also presented. We then conclude with a few words of further emphasis on the relevance of this kind of knowledge to biology and to the design of new materials by highlighting the context-dependent and non-additive nature of different non-covalent interactions in an aqueous nanoenvironment, an issue that is usually greatly overlooked.
Collapse
|
24
|
Pinto OA, Bouchet AM, Frías MA, Disalvo EA. Microthermodynamic Interpretation of Fluid States from FTIR Measurements in Lipid Membranes: A Monte Carlo Study. J Phys Chem B 2014; 118:10436-43. [DOI: 10.1021/jp5044078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- O. A. Pinto
- Centro de Investigaciones y Transferencia
de Santiago del Estero
(CITSE) and ‡Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro
de Investigación y Transferencia de Santiago del Estero (CITSE), Universidad Nacional de Santiago de Estero, CONICET RN 9 Km 1125 Villa el Zanjón, Santiago del Estero, CP 4206 Argentina
| | - A. M. Bouchet
- Centro de Investigaciones y Transferencia
de Santiago del Estero
(CITSE) and ‡Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro
de Investigación y Transferencia de Santiago del Estero (CITSE), Universidad Nacional de Santiago de Estero, CONICET RN 9 Km 1125 Villa el Zanjón, Santiago del Estero, CP 4206 Argentina
| | - M. A. Frías
- Centro de Investigaciones y Transferencia
de Santiago del Estero
(CITSE) and ‡Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro
de Investigación y Transferencia de Santiago del Estero (CITSE), Universidad Nacional de Santiago de Estero, CONICET RN 9 Km 1125 Villa el Zanjón, Santiago del Estero, CP 4206 Argentina
| | - E. A. Disalvo
- Centro de Investigaciones y Transferencia
de Santiago del Estero
(CITSE) and ‡Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro
de Investigación y Transferencia de Santiago del Estero (CITSE), Universidad Nacional de Santiago de Estero, CONICET RN 9 Km 1125 Villa el Zanjón, Santiago del Estero, CP 4206 Argentina
| |
Collapse
|
25
|
Nojima Y, Iwata K. Viscosity heterogeneity inside lipid bilayers of single-component phosphatidylcholine liposomes observed with picosecond time-resolved fluorescence spectroscopy. J Phys Chem B 2014; 118:8631-41. [PMID: 24967901 DOI: 10.1021/jp503921e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A number of biochemical reactions proceed inside biomembranes. Because the rate of a chemical reaction is influenced by chemical properties of the reaction field, it is important to examine the chemical properties inside the biomembranes, or lipid bilayer membranes, for understanding biochemical reactions. In this study, we estimate viscosity inside the lipid bilayers of liposomes with picosecond time-resolved fluorescence spectroscopy. trans-Stilbene is solubilized in the lipid bilayers formed by phosphatidylcholines, DSPC, DOPC, DPPC, DMPC, and DLPC, with 18, 18, 16, 14, and 12 carbon atoms in their alkyl chains, respectively, and egg-PC. Viscosity inside the lipid bilayer is estimated from the photoisomerization rate constant and from the rotational relaxation time of the first excited singlet state of trans-stilbene. The effect of the hydrocarbon chain length and temperature on viscosity is examined. The presence of two solvation environments within the lipid bilayer is indicated from the two independent estimations. One environment is 30 to 290 times more viscous than the other. Even single-component lipid bilayers are likely to have heterogeneous structures.
Collapse
Affiliation(s)
- Yuki Nojima
- Department of Chemistry, Faculty of Science, Gakushuin University , 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | | |
Collapse
|
26
|
Fernández MS. Relationship Between Phase Transition Temperature and Protonation Degree of Dipalmitoylphosphatidylcholine in Liposomes. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/bbpc.199500010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Cevc G. Effect of Lipid Headgroups and (Nonelectrolyte) Solution on the Structural and Phase Properties of Bilayer Membranes. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/bbpc.198800240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Wölk C, Drescher S, Meister A, Blume A, Langner A, Dobner B. General Synthesis and Physicochemical Characterisation of a Series of Peptide-Mimic Lysine-Based Amino-Functionalised Lipids. Chemistry 2013; 19:12824-38. [DOI: 10.1002/chem.201204529] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/25/2012] [Indexed: 12/14/2022]
|
29
|
Disalvo EA, Bouchet AM, Frias MA. Connected and isolated CH2 populations in acyl chains and its relation to pockets of confined water in lipid membranes as observed by FTIR spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1683-9. [PMID: 23500348 DOI: 10.1016/j.bbamem.2013.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/15/2013] [Accepted: 02/13/2013] [Indexed: 11/18/2022]
Abstract
Analysis of the band corresponding to the frequency of vibrational symmetric stretching mode of methylene groups in the lipid acyl chains and the bands of water below and above the phase transition of different lipids by Fourier transform infrared spectroscopy gives strong support to the formation of confined water pockets in between the lipid acyl chains. Our measures and analysis consolidate the mechanism early proposed by Traüble, in the sense that water is present in kinks formed by trans-gauche isomers along the hydrocarbon tails. The formation of these regions depends on the acyl lipid composition, which determines the presence of different populations of water species, characterized by its degree of H bond coordination in fluid saturated or unsaturated lipids. The free energy excess due to the reinforcement of the water structure along few water molecules in the adjacencies of exposed membrane residues near the phase transition is a reasonable base to explain the insertion and translocation of polar peptides and amino acid residues through the biomembrane on thermodynamic and structural grounds.
Collapse
Affiliation(s)
- E A Disalvo
- Universidad Nacional de Santiago del Estero, Santiago del Estero, Argentina.
| | | | | |
Collapse
|
30
|
Johnson MC, Dreaden TM, Kim LY, Rudolph F, Barry BA, Schmidt-Krey I. Two-dimensional crystallization of membrane proteins by reconstitution through dialysis. Methods Mol Biol 2013; 955:31-58. [PMID: 23132054 DOI: 10.1007/978-1-62703-176-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Studies of membrane proteins by two-dimensional (2D) crystallization and electron crystallography have provided crucial information on the structure and function of a rapidly growing number of these intricate proteins within a close-to-native lipid bilayer. Here we provide protocols for planning and executing 2D crystallization trials by detergent removal through dialysis, including the preparation of phospholipids and the dialysis setup. General factors to be considered, such as the protein preparation, solubilizing detergent, lipid for reconstitution, and buffer conditions are discussed. Several 2D crystallization conditions are highlighted that have shown great promise to grow 2D crystals within a surprisingly short amount of time. Finally, conditions for optimizing order and size of 2D crystals are outlined.
Collapse
Affiliation(s)
- Matthew C Johnson
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Methylation of ethanolamine groups in phosphoethanolamines is relevant for L-arginine insertion in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1395-401. [DOI: 10.1016/j.bbamem.2012.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 11/21/2022]
|
32
|
Nojima Y, Iwata K. Lipid Bilayer Membrane of Egg-PC Liposome Evaluated as Chemical Reaction Field with Picosecond Time-Resolved Fluorescence Spectroscopy. Chem Asian J 2011; 6:1817-24. [DOI: 10.1002/asia.201100143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Indexed: 11/12/2022]
|
33
|
Mondal Roy S, Sarkar M. Membrane fusion induced by small molecules and ions. J Lipids 2011; 2011:528784. [PMID: 21660306 PMCID: PMC3108104 DOI: 10.1155/2011/528784] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/28/2011] [Accepted: 02/25/2011] [Indexed: 01/11/2023] Open
Abstract
Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes.
Collapse
Affiliation(s)
- Sutapa Mondal Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India
| |
Collapse
|
34
|
|
35
|
Spinozzi F, Mariani P, Paccamiccio L, Amaral LQ. New lamellar phase with pores in the chain-melting regime of an anionic phospholipid dispersion. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/247/1/012019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Yi Z, Nagao M, Bossev DP. Bending elasticity of saturated and monounsaturated phospholipid membranes studied by the neutron spin echo technique. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:155104. [PMID: 21825357 DOI: 10.1088/0953-8984/21/15/155104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have used neutron spin echo (NSE) spectroscopy to study the effect of bilayer thickness and monounsaturation (existence of a single double bond on one of the aliphatic chains) on the physical properties of unilamellar vesicles. The bending elasticity of saturated and monounsaturated phospholipid bilayers made of phospholipids with alkyl chain length ranging from 14 to 20 carbons was investigated. The bending elasticity κ(c) of phosphatidylcholines (PCs) in the liquid crystalline (L(α)) phase ranges from 0.38 × 10(-19) J for 1,2-dimyristoyl-sn-glycero-3-phosphocholine to 0.64 × 10(-19) J for 1,2-dieicosenoyl-sn-glycero-3-phosphocholine. It was confirmed that, contrary to the strong effect on the main transition temperature, the monounsaturation has a limited influence on the bending elasticity of lipid bilayers. In addition, when the area modulus K(A) varies little with chain unsaturation or length, the elastic ratios (κ(c)/K(A))(1/2) of saturated and monounsaturated phospholipid bilayers varies linearly with lipid hydrophobic thickness d which agrees well with the theory of ideal fluid membranes.
Collapse
Affiliation(s)
- Zheng Yi
- Physics Department, Indiana University, Bloomington, IN 47405, USA. Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | |
Collapse
|
37
|
Björkbom A, Yamamoto T, Kaji S, Harada S, Katsumura S, Slotte JP. Importance of the phosphocholine linkage on sphingomyelin molecular properties and interactions with cholesterol; a study with phosphate oxygen modified sphingomyelin-analogues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1501-7. [DOI: 10.1016/j.bbamem.2008.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 12/16/2022]
|
38
|
Chatake T, Shibayama N, Park SY, Kurihara K, Tamada T, Tanaka I, Niimura N, Kuroki R, Morimoto Y. Protonation States of Buried Histidine Residues in Human Deoxyhemoglobin Revealed by Neutron Crystallography. J Am Chem Soc 2007; 129:14840-1. [DOI: 10.1021/ja0749441] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiyuki Chatake
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Naoya Shibayama
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Sam-Yong Park
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Kazuo Kurihara
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Taro Tamada
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Ichiro Tanaka
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Nobuo Niimura
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Ryota Kuroki
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| | - Yukio Morimoto
- Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494, Japan, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan, Protein Design Laboratory, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan, and Department of Technology, Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
| |
Collapse
|
39
|
Qiang W, Yang J, Weliky DP. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide to lipid distances reveal the intimate contact of beta strand peptide with membranes and the proximity of the Ala-14-Gly-16 region with lipid headgroups. Biochemistry 2007; 46:4997-5008. [PMID: 17417873 PMCID: PMC2631438 DOI: 10.1021/bi6024808] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) infection begins with fusion between viral and host cell membranes and is catalyzed by the HIV gp41 fusion protein. The approximately 20 N-terminal apolar residues of gp41 are called the HIV fusion peptide (HFP), interact with the host cell membrane, and play a key role in fusion. In this study, the membrane location of peptides which contained the HFP sequence (AVGIGALFLGFLGAAGSTMGARS) was probed in samples containing either only phospholipids or phospholipids and cholesterol. Four HFPs were examined which each contained 13CO labeling at three sequential residues between G5 and G16. The 13CO chemical shifts indicated that HFP had predominant beta strand conformation over the labeled residues in the samples. The internuclear distances between the HFP 13CO groups and the lipid 31P atoms were measured using solid-state nuclear magnetic resonance rotational-echo double-resonance experiments. The shortest 13CO-31P distances of 5-6 A were observed for HFP labeled between A14 and G16 and correlated with intimate association of beta strand HFP and membranes. These results were confirmed with measurements using HFPs singly labeled with 13CO at A6 or A14. To our knowledge, these data are the first measurements of distances between HIV fusion peptide nuclei and lipid P, and qualitative models of the membrane location of oligomeric beta strand HFP which are consistent with the experimental data are presented. Observation of intimate contact between beta strand HFP and membranes provides a rationale for further investigation of the relationship between structure and fusion activity for this conformation.
Collapse
Affiliation(s)
- Wei Qiang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Jun Yang
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - David P. Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
40
|
Lewis RNAH, Zweytick D, Pabst G, Lohner K, McElhaney RN. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes. Biophys J 2007; 92:3166-77. [PMID: 17293402 PMCID: PMC1852355 DOI: 10.1529/biophysj.106.094003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thermotropic phase behavior and organization of aqueous dispersions of the quadruple-chained, anionic phospholipid tetramyristoyl diphosphatidylglycerol or tetramyristoyl cardiolipin (TMCL) was studied by differential scanning calorimetry, x-ray diffraction, (31)P NMR, and Fourier-transform infrared (FTIR) spectroscopy. At physiological pH and ionic strength, our calorimetric studies indicate that fully equilibrated aqueous dispersions of TMCL exhibit two thermotropic phase transitions upon heating. The lower temperature transition is much less cooperative but of relatively high enthalpy and exhibits marked cooling hysteresis, whereas the higher temperature transition is much more cooperative and also exhibits a relatively high enthalpy but with no appreciable cooling hysteresis. Also, the properties of these two-phase transitions are sensitive to the ionic strength of the dispersing buffer. Our spectroscopic and x-ray diffraction data indicate that the lower temperature transition corresponds to a lamellar subgel (L(c)') to gel (L(beta)) phase transition and the higher temperature endotherm to a L(beta) to lamellar liquid-crystalline (L(alpha)) phase transition. At the L(c)'/L(beta) phase transition, there is a fivefold increase of the thickness of the interlamellar aqueous space from approximately 11 A to approximately 50 A, and this value decreases slightly at the L(beta)/L(alpha) phase transition. The bilayer thickness (i.e., the mean phosphate-phosphate distance across the bilayer) increases from 42.8 A to 43.5 A at the L(c)'/L(beta) phase transition, consistent with the loss of the hydrocarbon chain tilt of approximately 12 degrees , and decreases to 37.8 A at the L(beta)/L(alpha) phase transition. The calculated cross-sectional areas of the TMCL molecules are approximately 79 A(2) and approximately 83 A(2) in the L(c)' and L(beta) phases, respectively, and we estimate a value of approximately 100 A(2) in the L(alpha) phase. The combination of x-ray and FTIR spectroscopic data indicate that in the L(c)' phase, TMCL molecules possess tilted all-trans hydrocarbon chains packed into an orthorhombic subcell in which the zig-zag planes of the chains are parallel, while in the L(beta) phase the untilted, all-trans hydrocarbon chains possess rotational mobility and are packed into a hexagonal subcell, as are the conformationally disordered hydrocarbon chains in the L(alpha) phase. Our FTIR spectroscopic results demonstrate that the four carbonyl groups of the TMCL molecule become progressively more hydrated as one proceeds from the L(c)' to the L(beta) and then to the L(alpha) phase, while the two phosphate moieties of the polar headgroup are comparably well hydrated in all three phases. Our (31)P-NMR results indicate that although the polar headgroup retains some mobility in the L(c)' phase, its motion is much more restricted in the L(beta) and especially in the L(alpha) phase than that of other phospholipids. We can explain most of our experimental results on the basis of the relatively small size of the polar headgroup of TMCL relative to other phospholipids and the covalent attachment of the two phosphate moieties to a single glycerol moiety, which results in a partially immobilized polar headgroup that is more exposed to the solvent than in other glycerophospholipids. Finally, we discuss the biological relevance of the unique properties of TMCL to the structure and function of cardiolipin-containing biological membranes.
Collapse
Affiliation(s)
- Ruthven N A H Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
41
|
Notter RH, Wang Z, Wang Z, Davy JA, Schwan AL. Synthesis and surface activity of diether-linked phosphoglycerols: Potential applications for exogenous lung surfactants. Bioorg Med Chem Lett 2007; 17:113-7. [PMID: 17055273 DOI: 10.1016/j.bmcl.2006.09.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/24/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
The synthesis of three phosphoglycerols is described, one of which contains the previously unknown phosphonoglycerol headgroup. The surface tension-lowering capabilities of synthetic lung surfactant mixtures containing the PG analogs were measured on the pulsating bubble surfactometer and compared to known controls. The PG-containing mixtures exhibited superior surface tension-lowering properties indicating the significant potential of these analogs as components in synthetic exogenous lung surfactants.
Collapse
Affiliation(s)
- Robert H Notter
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
42
|
Ces O, Mulet X. Physical coupling between lipids and proteins: a paradigm for cellular control. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Inada H, Nagao M, Fujikawa S, Arakawa K. Influence of simulated acid snow stress on leaf tissue of wintering herbaceous plants. PLANT & CELL PHYSIOLOGY 2006; 47:504-12. [PMID: 16481360 DOI: 10.1093/pcp/pcj019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Acid snow might be an environmental stress factor for wintering plants since acid precipitates are locally concentrated in snow and the period in which ice crystals are in contact with shoots might be longer than that of acid precipitates in rain. In this study, 'equilibrium' and 'prolonged' freezing tests with sulfuric acid, which simulate situations of temperature depression and chronic freezing at a subzero temperature with acid precipitate as acid snow stress, respectively, were carried out using leaf segments of cold-acclimated winter wheat. When leaf segments were frozen in the presence of sulfuric acid solution (pH 4.0, 3.0 or 2.0) by equilibrium freezing with ice seeding, the survival rate of leaf samples treated with sulfuric acid solution of pH 2.0 decreased markedly. Leaf samples after supercooling to -4 and -8 degrees C in the presence of sulfuric acid solution (pH 2.0) without ice seeding were less damaged. When leaf samples were subjected to prolonged freezing at -4 and -8 degrees C for 7 d with sulfuric acid (pH 2.0), the survival rates of leaf samples exposed to sulfuric acid decreased more than those of leaf samples treated with water. On the other hand, leaf samples were less damaged by prolonged supercooling at -4 and -8 degrees C for 7 d with sulfuric acid (pH 2.0). The results suggest that an acid condition (pH 2.0) in the process of extracellular freezing and/or thawing promotes freezing injury of wheat leaves.
Collapse
Affiliation(s)
- Hidetoshi Inada
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | | | | | | |
Collapse
|
44
|
Georgiev GA, Georgiev GD, Lalchev Z. Thin liquid films and monolayers of DMPC mixed with PEG and phospholipid linked PEG. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:352-62. [PMID: 16447038 DOI: 10.1007/s00249-006-0043-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/30/2005] [Accepted: 01/06/2006] [Indexed: 11/26/2022]
Abstract
In this work thin liquid films (TLFs) and monolayers at the air/water interface formed by dimyristoylphosphatidylcholine (DMPC) and by DMPC mixed with poly ethylene glycols (PEGs) and dimyristoylphosphatidylethanolamine (DMPE) linked PEGs were studied. Film forming dispersions were composed of two types of particles: liposomes and micelles. TLFs stability, threshold concentration C(t) (i.e., the minimum one for stable film formation), and hydrodynamic behavior were measured. At equivalent conditions, DMPC films were Newton black films (real bilayers), while DMPE-PEGs films were much thicker with free water between the monolayers. DMPE-PEG addition to DMPC films caused both C(t) decrease (depending on PEG moiety length and Mw) and change of TLF formation mechanism. TLFs' hydrodynamic behavior also strongly depended on DMPE-PEG content and Mw. It was observed that thinning of the DMPC and DMPE-PEGs films continued to different film types and thickness, being much thicker for the latter films. Addition of free PEGs (PEG-200/6000) did not alter TLF type or stability, but changed TLF thinning time, confirming that free PEGs with Mw<8000 could not penetrate in the membrane and alter "near-membrane" water layer viscosity. Monolayer studies showed improved formation kinetics of both adsorbed and spread films, decrease of surface tension (equilibrium and dynamic), and of film compression/decompression histeresis area in DMPE-PEGs monolayers compared with DMPC pure films. Our study shows that combining the models of phospholipid TLFs and monolayers provide the opportunity to investigate the properties of membrane surface and to clarify some mechanisms of its interactions with membrane-active agents.
Collapse
Affiliation(s)
- Georgi As Georgiev
- Faculty of Biology, Department of Biochemistry, University of Sofia "St. Kliment Ohridski", 8 Dragan Tsankov Street, 1164 Sofia, Bulgaria
| | | | | |
Collapse
|
45
|
Chapter 11 Elasticity and Electrostatics of Amphiphilic Layers: Current State of the Theory and the Experiment. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)05011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
46
|
Chapter 2: Surface Properties of Liposomes Depending on Their Composition. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)04002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Subuddhi U, Mishra AK. Prototropism of 1-hydroxypyrene in liposome suspensions: implications towards fluorescence probing of lipid bilayers in alkaline medium. Photochem Photobiol Sci 2006; 5:283-90. [PMID: 16520863 DOI: 10.1039/b513200b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The partitioning efficiency of neutral and anionic prototropic forms of 1-hydroxypyrene in liposome suspensions has been studied. The high partition coefficient value of 1-hydroxypyrene indicates an easy incorporation of the molecule into the lipid bilayer. Detailed pH studies indicate that only the neutral form of 1-hydroxypyrene partitions into the membrane and appreciable spectral changes are observed in the pH range of 9.0-11.5 in Tris-NaOH buffer. However, at pH 11 the spectral changes are maximum. The possibility of using 1-hydroxypyrene as a fluorescent molecular probe for lipid bilayer membranes in alkaline media has been examined, by employing fluorescence intensity and fluorescence anisotropy as probe parameters. The neutral form fluorescence intensity as well as fluorescence anisotropy is sensitive to the changes in the membrane properties and is capable of sensing the phase-transition. This is also capable of monitoring the changes in the membrane due to incorporation of cholesterol and the ethanol-induced interdigitation. The time resolved fluorescence data and the quenching experiments show that 1-hydroxypyrene occupies the water inaccessible interior of the liposome. The high anisotropy value of 1-hydroxypyrene in liposome suggests that it resides in a considerably rigid environment and is very sensitive to the temperature-induced changes in the liposome.
Collapse
Affiliation(s)
- Usharani Subuddhi
- Department of Chemistry, Indian Institute of Technology-Madras, Chennai, 36, India
| | | |
Collapse
|
48
|
Kusube M, Matsuki H, Kaneshina S. Thermotropic and barotropic phase transitions of N-methylated dipalmitoylphosphatidylethanolamine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1668:25-32. [PMID: 15670728 DOI: 10.1016/j.bbamem.2004.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/04/2004] [Accepted: 11/09/2004] [Indexed: 11/30/2022]
Abstract
In order to understand the effect of polar head group modification on the thermotropic and barotropic phase behavior of phospholipid bilayer membranes, the phase transitions of dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidyl-N-methylethanolamine (DPMePE), dipalmitoylphosphatidyl-N,N-dimethylethanolamine (DPMe2PE) and dipalmitoylphosphatidylcholine (DPPC) bilayer membranes were observed by differential scanning calorimetry and high-pressure optical methods. The temperatures of the so-called main transition from the gel (L(beta)) or ripple gel (P(beta)') phase to the liquid crystalline (L(alpha)) phase were almost linearly elevated by applying pressure. The slope of the temperature-pressure boundary, dT/dp, was in the range of 0.220-0.264 K MPa(-1) depending on the number of methyl groups in the head group of lipids. The main-transition temperatures of N-methylated DPPEs decreased with increasing size of head group by stepwise N-methylation. On the other hand, there was no significant difference in thermodynamic quantities of the main transition between the phospholipids. With respect to the transition from the subgel (L(c)) phase to the lamellar gel (L(beta) or L(beta)') phase, the transition temperatures were also elevated by applying pressure. In the case of DPPE bilayer the L(c)/L(beta) transition appeared at a pressure higher than 21.8 MPa. At a pressure below 21.8 MPa the L(c)/L(alpha) transition was observed at a temperature higher than the main-transition temperature. The main (L(beta)/L(alpha)) transition can be recognized as the transformation between metastable phases in the range from ambient pressure to 21.8 MPa. Polymorphism in the gel phase is characteristic of DPPC bilayer membrane unlike other lipid bilayers used in this study: the L(beta)', P(beta)' and pressure-induced interdigitated gel (L(beta)I) phases were observed only in the DPPC bilayer. Regarding the bilayers of DPPE, DPMePE and DPMe2PE, the interdigitation of acyl chain did not appear even at pressures as high as 200 MPa.
Collapse
Affiliation(s)
- Masataka Kusube
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | |
Collapse
|
49
|
Raffournier C, Saulnier P, Boury F, Proust J, Lepault J, Erk I, Ollivon M, Couvreur P, Dubernet C. Oil/water “hand-bag like structures”: how interfacial rheology can help to understand their formation? J Drug Deliv Sci Technol 2005. [DOI: 10.1016/s1773-2247(05)50001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Vautrin C, Zemb T, Schneider M, Tanaka M. Balance of pH and Ionic Strength Influences on Chain Melting Transition in Catanionic Vesicles. J Phys Chem B 2004. [DOI: 10.1021/jp037787a] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claire Vautrin
- Service de Chimie Moléculaire, CEA Saclay, 91191 Gif-sur-Yvette, France, and Lehrstuhl für Biophysik E22, Technische Universität München, D-85748 Garching, Germany
| | - Thomas Zemb
- Service de Chimie Moléculaire, CEA Saclay, 91191 Gif-sur-Yvette, France, and Lehrstuhl für Biophysik E22, Technische Universität München, D-85748 Garching, Germany
| | - Matthias Schneider
- Service de Chimie Moléculaire, CEA Saclay, 91191 Gif-sur-Yvette, France, and Lehrstuhl für Biophysik E22, Technische Universität München, D-85748 Garching, Germany
| | - Motomu Tanaka
- Service de Chimie Moléculaire, CEA Saclay, 91191 Gif-sur-Yvette, France, and Lehrstuhl für Biophysik E22, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|