1
|
Djerdjouri A, Abbad M, Boumrah Y, Malik S, Makhzoum A, Lakhdar K. Tapping the potential of Calotropis procera hairy roots for cardiac glycosides production and their identification using UHPLC/QTOF-MS. 3 Biotech 2024; 14:199. [PMID: 39144068 PMCID: PMC11319682 DOI: 10.1007/s13205-024-04035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/14/2024] [Indexed: 08/16/2024] Open
Abstract
The present work deals with the establishment of hairy root cultures from different explants of C. procera using Agrobacterium rhizogenes strain A4. A high transformation frequency (95%) was obtained from leaves followed by cotyledons (81.6%) and hypocotyls (38.3%). Genetic transformation of hairy roots was confirmed through PCR by amplifying a 400 bp fragment of the rolB gene. Hairy roots were highly branched, possessed plagiotropic and rapid growth on hormone-free ½ B5 medium. Ten cardiac glycosides, including calotropagenin, calotoxin, frugoside, coroglaucigenin, calotropin, calactin, uzarigenin, asclepin, uscharidin, and uscharin, based on their specific masses and fragmentation properties were identified in ethanolic extracts of hairy roots by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry UHPLC/QTOF-MS. This protocol could be used as a powerful tool for large-scale in vitro production of highly valued cardiac glycosides and for further transcriptomics or metabolomics studies.
Collapse
Affiliation(s)
- Amina Djerdjouri
- École Nationale Supérieure Agronomique (ES1603), Laboratoire des Ressources Génétiques et Biotechnologie, 16200 Alger, Algérie
| | - Mohamed Abbad
- Université de Blida1, Faculté des Sciences de la Nature et de la Vie, Département des Biotechnologies, Laboratoire de biotechnologie des productions végétales, Blida, BP 270, Route de Soumaâ, 09000 Algérie
| | - Yacine Boumrah
- Institut National de Criminalistique et de Criminologie, (INCC/GN), Bouchaoui, Alger, Algérie
| | - Sonia Malik
- Department of Biotechnology, Baba Farid College, Bathinda, India
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Khelifi Lakhdar
- École Nationale Supérieure Agronomique (ES1603), Laboratoire des Ressources Génétiques et Biotechnologie, 16200 Alger, Algérie
| |
Collapse
|
2
|
Takada Y, Kaneko K. Automated machine learning approach for developing a quantitative structure-activity relationship model for cardiac steroid inhibition of Na +/K +-ATPase. Pharmacol Rep 2023:10.1007/s43440-023-00508-x. [PMID: 37354314 DOI: 10.1007/s43440-023-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Quantitative structure-activity relationship (QSAR) modeling is a method of characterizing the relationship between chemical structures and biological activity. Automated machine learning enables computers to learn from large datasets and can be used for chemoinformatics. Cardiac steroids (CSs) inhibit the activity of Na+/K+-ATPase (NKA) in several species, including humans, since the binding pocket in which NKA binds to CSs is highly conserved. CSs are used to treat heart disease and have been developed into anticancer drugs for use in clinical trials. Novel CSs are, therefore, frequently synthesized and their activities evaluated. The purpose of this study is to develop a QSAR model via automated machine learning to predict the potential inhibitory activity of compounds without performing experiments. METHODS The chemical structures and inhibitory activities of 215 CS derivatives were obtained from the scientific literature. Predictive QSAR models were constructed using molecular descriptors, fingerprints, and biological activities. RESULTS The best predictive QSAR models were selected based on the LogLoss value. Using these models, the Matthews correlation coefficient, F1 score, and area under the curve of the test dataset were 0.6729, 0.8813, and 0.8812, respectively. Next, we showed automated construction of the predictive models for CS derivatives, which may be useful for identifying novel CSs suitable for candidate drug development. CONCLUSION The automated machine learning-based QSAR method developed here should be applicable for the time-efficient construction of predictive models using only a small number of compounds.
Collapse
Affiliation(s)
- Yohei Takada
- Corporate Planning Department, Otsuka Holdings Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-ku, Tokyo, 108-8241, Japan.
| | - Kazuhiro Kaneko
- Headquarters of Clinical Development, Otsuka Pharmaceutical Co., Ltd, Shinagawa Grand Central Tower 2-16-4 Konan, Minato-ku, Tokyo, 108-8241, Japan
| |
Collapse
|
3
|
Mirzaei M, Züst T, Younkin GC, Hastings AP, Alani ML, Agrawal AA, Jander G. Less Is More: a Mutation in the Chemical Defense Pathway of Erysimum cheiranthoides (Brassicaceae) Reduces Total Cardenolide Abundance but Increases Resistance to Insect Herbivores. J Chem Ecol 2020; 46:1131-1143. [PMID: 33180277 DOI: 10.1007/s10886-020-01225-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022]
Abstract
Erysimum cheiranthoides L (Brassicaceae; wormseed wallflower) accumulates not only glucosinolates, which are characteristic of the Brassicaceae, but also abundant and diverse cardenolides. These steroid toxins, primarily glycosylated forms of digitoxigenin, cannogenol, and strophanthidin, inhibit the function of essential Na+/K+-ATPases in animal cells. We screened a population of 659 ethylmethanesulfonate-mutagenized E. cheiranthoides plants to identify isolates with altered cardenolide profiles. One mutant line exhibited 66% lower cardenolide content, resulting from greatly decreased cannogenol and strophanthidin glycosides, partially compensated for by increases in digitoxigenin glycosides. This phenotype was likely caused by a single-locus recessive mutation, as evidenced by a wildtype phenotype of F1 plants from a backcross, a 3:1 wildtype:mutant segregation in the F2 generation, and genetic mapping of the altered cardenolide phenotype to one position in the genome. The mutation created a more even cardenolide distribution, decreased the average cardenolide polarity, but did not impact most glucosinolates. Growth of generalist herbivores from two feeding guilds, Myzus persicae Sulzer (Hemiptera: Aphididae; green peach aphid) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae; cabbage looper), was decreased on the mutant line compared to wildtype. Both herbivores accumulated cardenolides in proportion to the plant content, with T. ni accumulating higher total concentrations than M. persicae. Helveticoside, a relatively abundant cardenolide in E. cheiranthoides, was not detected in M. persicae feeding on these plants. Our results support the hypothesis that increased digitoxigenin glycosides provide improved protection against M. persicae and T. ni, despite an overall decrease in cardenolide content of the mutant line.
Collapse
Affiliation(s)
- Mahdieh Mirzaei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY, 14853, USA
| | - Tobias Züst
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013, Bern, Switzerland
| | | | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Martin L Alani
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY, 14853, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Skeletal Muscle Na,K-ATPase as a Target for Circulating Ouabain. Int J Mol Sci 2020; 21:ijms21082875. [PMID: 32326025 PMCID: PMC7215781 DOI: 10.3390/ijms21082875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023] Open
Abstract
While the role of circulating ouabain-like compounds in the cardiovascular and central nervous systems, kidney and other tissues in health and disease is well documented, little is known about its effects in skeletal muscle. In this study, rats were intraperitoneally injected with ouabain (0.1-10 µg/kg for 4 days) alone or with subsequent injections of lipopolysaccharide (1 mg/kg). Some rats were also subjected to disuse for 6 h by hindlimb suspension. In the diaphragm muscle, chronic ouabain (1 µg/kg) hyperpolarized resting potential of extrajunctional membrane due to specific increase in electrogenic transport activity of the 2 Na,K-ATPase isozyme and without changes in 1 and 2 Na,K-ATPase protein content. Ouabain (10-20 nM), acutely applied to isolated intact diaphragm muscle from not injected rats, hyperpolarized the membrane to a similar extent. Chronic ouabain administration prevented lipopolysaccharide-induced (diaphragm muscle) or disuse-induced (soleus muscle) depolarization of the extrajunctional membrane. No stimulation of the 1 Na,K-ATPase activity in human red blood cells, purified lamb kidney and Torpedo membrane preparations by low ouabain concentrations was observed. Our results suggest that skeletal muscle electrogenesis is subjected to regulation by circulating ouabain via the 2 Na,K-ATPase isozyme that could be important for adaptation of this tissue to functional impairment.
Collapse
|
5
|
Petschenka G, Fei CS, Araya JJ, Schröder S, Timmermann BN, Agrawal AA. Relative Selectivity of Plant Cardenolides for Na +/K +-ATPases From the Monarch Butterfly and Non-resistant Insects. FRONTIERS IN PLANT SCIENCE 2018; 9:1424. [PMID: 30323822 PMCID: PMC6172315 DOI: 10.3389/fpls.2018.01424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/07/2018] [Indexed: 05/31/2023]
Abstract
A major prediction of coevolutionary theory is that plants may target particular herbivores with secondary compounds that are selectively defensive. The highly specialized monarch butterfly (Danaus plexippus) copes well with cardiac glycosides (inhibitors of animal Na+/K+-ATPases) from its milkweed host plants, but selective inhibition of its Na+/K+-ATPase by different compounds has not been previously tested. We applied 17 cardiac glycosides to the D. plexippus-Na+/K+-ATPase and to the more susceptible Na+/K+-ATPases of two non-adapted insects (Euploea core and Schistocerca gregaria). Structural features (e.g., sugar residues) predicted in vitro inhibitory activity and comparison of insect Na+/K+-ATPases revealed that the monarch has evolved a highly resistant enzyme overall. Nonetheless, we found evidence for relative selectivity of individual cardiac glycosides reaching from 4- to 94-fold differences of inhibition between non-adapted Na+/K+-ATPase and D. plexippus-Na+/K+-ATPase. This toxin receptor specificity suggests a mechanism how plants could target herbivores selectively and thus provides a strong basis for pairwise coevolutionary interactions between plants and herbivorous insects.
Collapse
Affiliation(s)
- Georg Petschenka
- Institute for Insect Biotechnology, Justus-Liebig-Universität, Giessen, Germany
| | - Colleen S. Fei
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Juan J. Araya
- Centro de Investigaciones en Productos Naturales, Escuela de Química, Instituto de Investigaciones Farmacéuticas, Facultad de Farmacia, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Susanne Schröder
- Institut für Medizinische Biochemie und Molekularbiologie, Universität Rostock, Rostock, Germany
| | - Barbara N. Timmermann
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Khalid M, Suliman R, Ahmed R, Salim H, Clarke RJ. The High and Low Affinity Binding Sites of Digitalis Glycosides to Na,K-ATPase. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2013. [DOI: 10.1007/s13369-013-0828-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Lu L, Wu Y, Zuo L, Luo X, Large PJ. Intestinal microbiome and digoxin inactivation: meal plan for digoxin users? World J Microbiol Biotechnol 2013; 30:791-9. [PMID: 24105082 DOI: 10.1007/s11274-013-1507-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
There is an increasing interest in the role of intestinal microbiome in human diseases and therapeutic agents' bioavailability, activity and toxicity. Epidemiological data show that the bioavailability of digoxin, a widely used agent for heart disease, varies among individuals. The inactivation of digoxin was found when it was incubated with gut bacterium Eggerthella lenta in vitro decades ago. However, the underlying mechanisms of digoxin inactivation are still unclear. A recent study using animal models uncovered this mystery, which suggested that arginine supplements might be a potential intervention in increasing digoxin activity by inhibiting the expression of cardiac glycoside reductase gene operons that inactivated digoxin. This perspective summarizes the connections among the intestinal microbiome, the digoxin inactivation, the metabolism of arginine. We also discuss several issues yet to be addressed in the future, making better strategies in the application of dietary arginine supplements for digoxin users.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA,
| | | | | | | | | |
Collapse
|
8
|
Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013; 341:295-8. [PMID: 23869020 DOI: 10.1126/science.1235872] [Citation(s) in RCA: 490] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite numerous examples of the effects of the human gastrointestinal microbiome on drug efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. Here, we dissect the inactivation of the cardiac drug digoxin by the gut Actinobacterium Eggerthella lenta. Transcriptional profiling, comparative genomics, and culture-based assays revealed a cytochrome-encoding operon up-regulated by digoxin, inhibited by arginine, absent in nonmetabolizing E. lenta strains, and predictive of digoxin inactivation by the human gut microbiome. Pharmacokinetic studies using gnotobiotic mice revealed that dietary protein reduces the in vivo microbial metabolism of digoxin, with significant changes to drug concentration in the serum and urine. These results emphasize the importance of viewing pharmacology from the perspective of both our human and microbial genomes.
Collapse
Affiliation(s)
- Henry J Haiser
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
9
|
Cornelius F, Kanai R, Toyoshima C. A structural view on the functional importance of the sugar moiety and steroid hydroxyls of cardiotonic steroids in binding to Na,K-ATPase. J Biol Chem 2013; 288:6602-16. [PMID: 23341448 DOI: 10.1074/jbc.m112.442137] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na,K-ATPase is specifically inhibited by cardiotonic steroids (CTSs) like digoxin and is of significant therapeutic value in the treatment of congestive heart failure and arrhythmia. Recently, new interest has arisen in developing Na,K-ATPase inhibitors as anticancer agents. In the present study, we compare the potency and rate of inhibition as well as the reactivation of enzyme activity following inhibition by various cardiac glycosides and their aglycones at different pH values using shark Na,K-ATPase stabilized in the E2MgPi or in the E2BeFx conformations. The effects of the number and nature of various sugar residues as well as changes in the positions of hydroxyl groups on the β-side of the steroid core of cardiotonic steroids were investigated by comparing various cardiac glycoside compounds like ouabain, digoxin, digitoxin, and gitoxin with their aglycones. The results confirm our previous hypothesis that CTS binds primarily to the E2-P ground state through an extracellular access channel and that binding of extracellular Na(+) ions to K(+) binding sites relieved the CTS inhibition. This reactivation depended on the presence or absence of the sugar moiety on the CTS, and a single sugar is enough to impede reactivation. Finally, increasing the number of hydroxyl groups of the steroid was sterically unfavorable and was found to decrease the inhibitory potency and to confer high pH sensitivity, depending on their position on the steroid β-face. The results are discussed with reference to the recent crystal structures of Na,K-ATPase in the unbound and ouabain-bound states.
Collapse
Affiliation(s)
- Flemming Cornelius
- Department of Biomedicine, University of Aarhus, Ole Worms Allé 6, Building 1180, 8000 Aarhus C 8000, Denmark.
| | | | | |
Collapse
|
10
|
Kiani Z, Shafiei M, Rahimi-Moghaddam P, Karkhane AA, Ebrahimi SA. In vitro selection and characterization of deoxyribonucleic acid aptamers for digoxin. Anal Chim Acta 2012; 748:67-72. [PMID: 23021809 DOI: 10.1016/j.aca.2012.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/08/2012] [Accepted: 08/10/2012] [Indexed: 11/19/2022]
Abstract
The low therapeutic index of digoxin necessitates careful monitoring of its serum levels. Most of digoxin immunoassays suffer from interferences with digoxin-like immunoreactive substances. Since aptamers have been shown to be highly specific for their targets, the aim of this study was to develop DNA aptamers for this widely used cardiac glycoside. Digoxin was coated onto the surface of streptavidin magnetic beads. DNA aptamers against digoxin were designed using Systematic Evolution of Ligands by Exponential enrichment method (SELEX) by 11 iterative rounds of incubation of digoxin-coated streptavidin magnetic beads with synthetic DNA library, DNA elution, electrophoresis and PCR amplification. The PCR product was cloned and sequenced. Binding affinity was determined using digoxin-BSA conjugate, coated onto ELISA plate. Inhibitory effect of anti-digoxin aptamer was conducted using isolated guinea-pig atrium. Three aptamers (D1, D2 and D3) were identified. Binding studies of fluorescein-labeled truncated (without primer binding region) D1 and D2 and full length D1 anti-digoxin aptamers were performed and their corresponding dissociation constants values were 8.2×10(-9), 44.0×10(-9) and 17.8×10(-9) M, respectively. This is comparable to what other workers have obtained for interaction of monoclonal antibodies raised against digoxin. There was little difference in binding affinity between full length and truncated anti-digoxin D1 aptamer. D1 anti-digoxin aptamer also inhibited the effects of digoxin on the isolated guinea-pig atrium. D1 anti-digoxin aptamer distinguished between digoxin and ouabain in both tissue study and binding experiments. Our finding indicated that D1 anti-digoxin aptamer can selectively bind to digoxin. Further studies might show its suitability for use in digoxin assays and as a therapeutic agent in life-threatening digoxin toxicity.
Collapse
Affiliation(s)
- Zahra Kiani
- Tehran University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| | | | | | | | | |
Collapse
|
11
|
Gupta SP. Quantitative structure-activity relationship studies on Na+,K(+)-ATPase inhibitors. Chem Rev 2012; 112:3171-92. [PMID: 22360614 DOI: 10.1021/cr200097p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Satya P Gupta
- Department of Applied Sciences, Meerut Institute of Engineering and Technology, Meerut-250 005, India.
| |
Collapse
|
12
|
Rossini GP, Bigiani A. Palytoxin action on the Na(+),K(+)-ATPase and the disruption of ion equilibria in biological systems. Toxicon 2010; 57:429-39. [PMID: 20932855 DOI: 10.1016/j.toxicon.2010.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/03/2010] [Accepted: 09/24/2010] [Indexed: 11/29/2022]
Abstract
Palytoxin-group toxins (PlTX) exert their potent biological activity by altering mechanisms of ion homeostasis in excitable and non-excitable tissues. This review will describe major aspects that led to the relatively early identification of the Na(+),K(+)-ATPase as the molecular target and receptor of the toxin in sensitive systems. The importance of this pump in the normal functioning of animal cells has driven extensive investigative efforts. The recognized molecular mechanism of action of PlTX involves its binding to the extracellular portion of alpha subunit of this plasma membrane protein, which converts an enzyme carrying ions against their concentration gradients at the expense of chemical energy (ATP) into a non-selective cation channel, allowing passive flow of ions following their concentration gradients. More recent findings have indicated that PlTX would interfere with the normal strict coupling between inner and outer gates of the pump controlling the ion access to the Na(+),K(+)-ATPase, allowing the gates to be simultaneously open. The ability of PlTX to make internal portions of the Na(+),K(+)-ATPase accessible to relatively large molecules has been exploited to characterize the structure-function relationship of the pump, leading to a better understanding of its ion translocation pathway. Thus, forty years from the isolation of this potent marine biotoxin, a considerable understanding of its mode of action and of its potential as a research tool have been achieved and are the basis for promising future advancement in the characterization of biological systems and their alteration by PlTX.
Collapse
Affiliation(s)
- Gian Paolo Rossini
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy.
| | | |
Collapse
|
13
|
Xu HW, Liu GZ, Zhu SL, Hong GF, Liu HM, Wu Q. Digoxin derivatives substituted by alkylidene at the butenolide part. Steroids 2010; 75:419-23. [PMID: 20171236 DOI: 10.1016/j.steroids.2010.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/03/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
Abstract
A series of digoxin derivatives containing the gamma-alkylidene butenolide moiety were synthesised by way of stereoselective vinylogous aldol reaction of the unactivated butenolide in simple conditions. The structures of compounds synthesised were characterised by infrared (IR), nuclear magnetic resonance (NMR) and HR-MS. Preliminary bioassay shows that some of them have cardiac functions, especially compound 2g that induced a marked increase in myocardial contractility at 10ngml(-1) and 20ngml(-1) concentrations without digitalis toxicity.
Collapse
Affiliation(s)
- Hai-Wei Xu
- School of Pharmaceutical Science, Zhengzhou University, Ke Xue Da Dao 100, Zhengzhou 450001, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Fedorova LV, Raju V, El-Okdi N, Shidyak A, Kennedy DJ, Vetteth S, Giovannucci DR, Bagrov AY, Fedorova OV, Shapiro JI, Malhotra D. The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition. Am J Physiol Renal Physiol 2009; 296:F922-34. [PMID: 19176701 DOI: 10.1152/ajprenal.90605.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We recently demonstrated that the cardiotonic steroid marinobufagenin (MBG) induced fibrosis in rat hearts through direct stimulation of collagen I secretion by cardiac fibroblasts. This stimulation was also responsible for the cardiac fibrosis seen in experimental renal failure. In this study, the effect of MBG on the development of renal fibrosis in rats was investigated. Four weeks of MBG infusion triggered mild periglomerular and peritubular fibrosis in the cortex and the appearance of fibrotic scars in the corticomedullary junction of the kidney. MBG also significantly increased the protein levels and nuclear localization of the transcription factor Snail in the tubular epithelia. It is known that activation of Snail is associated with epithelial-to-mesenchymal transition (EMT) during renal fibrosis. To examine whether MBG alone can trigger EMT, we used the porcine proximal tubular cell line LLC-PK1. MBG (100 nM) caused LLC-PK1 cells grown to confluence to acquire a fibroblast-like shape and have an invasive motility. The expressions of the mesenchymal proteins collagen I, fibronectin, and vimentin were increased twofold. However, the total level of E-cadherin remained unchanged. These alterations in LLC-PK1 cells in the presence of MBG were accompanied by elevated expression and nuclear translocation of Snail. During the time course of EMT, MBG did not have measurable inhibitory effects on the ion pumping activity of its natural ligand, Na(+)-K(+)-ATPase. Our data suggest that the MBG may be an important factor in inducing EMT and, through this mechanism, elevated levels of MBG in chronic renal failure may play a role in the progressive fibrosis.
Collapse
Affiliation(s)
- Larisa V Fedorova
- Division of Nephrology, Dept. of Medicine, Univ. of Toledo College of Medicine, 3000 Arlington Ave., Toledo Ohio, 43614-2598, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stanton DT, Ankenbauer J, Rothgeb D, Draper M, Paula S. Identification and characterization of novel sodium/potassium-ATPase inhibitors by virtual screening of a compound database. Bioorg Med Chem 2007; 15:6062-70. [PMID: 17618121 DOI: 10.1016/j.bmc.2007.06.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 11/24/2022]
Abstract
The medicinal value of cardiac glycoside inhibitors for the treatment of congestive heart failure symptoms stems from their ability to specifically inhibit the ion transport activity of the transmembrane enzyme sodium/potassium-ATPase (Na/K-ATPase) in myocardial cells. In this study, we used the inhibitory potencies of 39 cardiac glycoside analogues for the development of a quantitative structure-activity relationship (QSAR) model for Na/K-ATPase inhibition. In conjunction with a substructure and similarity search, the QSAR model was used to select ten potential inhibitors from a commercial compound database. The inhibitory potencies of these compounds were measured and four were found to be more active than the commonly used inhibitor ouabain. The results of the bioassays were incorporated into a second QSAR model, whose physical interpretation suggested that the nature of substituents in positions 10, 12, and 17 at the cyclopentanoperhydrophenanthrene core of the inhibitors was critical for enzyme inhibition. All descriptors of the QSAR models were conformation-independent, making the search protocol a suitable tool for the rapid virtual screening of large compound databases for novel inhibitors.
Collapse
Affiliation(s)
- David T Stanton
- Miami Valley Innovation Center, Procter & Gamble, Cincinnati, OH 45252, USA
| | | | | | | | | |
Collapse
|
16
|
Krivoi II, Drabkina TM, Kravtsova VV, Vasiliev AN, Eaton MJ, Skatchkov SN, Mandel F. On the functional interaction between nicotinic acetylcholine receptor and Na+,K+-ATPase. Pflugers Arch 2006; 452:756-65. [PMID: 16636868 DOI: 10.1007/s00424-006-0081-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 02/24/2006] [Accepted: 03/23/2006] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that nanomolar acetylcholine (ACh) produces a 2 to 4-mV hyperpolarization of skeletal muscle fibers putatively due to Na(+),K(+)-ATPase activation. The present study elucidates the involvement of the nicotinic ACh receptor (nAChR) and of Na(+),K(+)-ATPase isoform(s) in ACh-induced hyperpolarization of rat diaphragm muscle fibers. A variety of ligands of specific binding sites of nAChR and Na(+),K(+)-ATPase were used. Dose-response curves for ouabain, a specific Na(+),K(+)-ATPase inhibitor, were obtained to ascertain which Na(+),K(+)-ATPase isoform(s) is involved. The ACh dose-response relationship for the hyperpolarization was also determined. The functional relationship between these two proteins was also studied in a less complex system, a membrane preparation from Torpedo electric organ. The possibility of a direct ACh effect on Na(+),K(+)-ATPase was studied in purified lamb kidney Na(+),K(+)-ATPase and in rat red blood cells, systems where no nAChR is present. The results indicate that binding of nAChR agonists to their specific sites results in modulation of ouabain-sensitive (most probably alpha2) isoform of Na(+),K(+)-ATPase, leading to muscle membrane hyperpolarization. In the Torpedo preparation, ouabain modulates dansyl-C6-choline binding to nAChR, and vice versa. These results provide the first evidence of a functional interaction between nAChR and Na(+),K(+)-ATPase. Possible interaction mechanisms are discussed.
Collapse
Affiliation(s)
- Igor I Krivoi
- Department of General Physiology, St. Petersburg State University, 7/9 University emb., St. Petersburg 199034, Russia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Keenan SM, DeLisle RK, Welsh WJ, Paula S, Ball WJ. Elucidation of the Na+, K+-ATPase digitalis binding site. J Mol Graph Model 2005; 23:465-75. [PMID: 15886034 DOI: 10.1016/j.jmgm.2005.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Despite controversy over their use and the potential for toxic side effects, cardiac glycosides have remained an important clinical component for the treatment for congestive heart failure (CHF) and supraventricular arrhythmias since the effects of Digitalis purpurea were first described in 1785. While there is a wealth of information available with regard to the effects of these drugs on their pharmacological receptor, the Na(+), K(+)-ATPase, the exact molecular mechanism of digitalis binding and inhibition of the enzyme has remained elusive. In particular, the absence of structural knowledge about Na(+), K(+)-ATPase has thwarted the development of improved therapeutic agents with larger therapeutic indices via rational drug design approaches. Here, we propose a binding mode for digoxin and several analogues to the Na(+), K(+)-ATPase. A 3D-structural model of the extracellular loop regions of the catalytic alpha1-subunit of the digitalis-sensitive sheep Na(+), K(+)-ATPase was constructed from the crystal structure of an E(1)Ca(2+) conformation of the SERCA1a and a consensus orientation for digitalis binding was inferred from the in silico docking of a series of steroid-based cardiotonic compounds. Analyses of species-specific enzyme affinities for ouabain were also used to validate the model and, for the first time, propose a detailed model of the digitalis binding site.
Collapse
Affiliation(s)
- Susan M Keenan
- Department of Pharmacology, University of Medicine and Dentistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
18
|
Pullen MA, Brooks DP, Edwards RM. Characterization of the neutralizing activity of digoxin-specific Fab toward ouabain-like steroids. J Pharmacol Exp Ther 2004; 310:319-25. [PMID: 14982968 DOI: 10.1124/jpet.104.065250] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Digoxin-specific Fab (Digibind) is a mixture of antidigoxin Fab fragments prepared from sheep sera and is used as a treatment for digoxin poisoning. Digoxin-specific Fab has been shown to neutralize an endogenous Na+/K+ ATPase inhibitor (endogenous digoxin-like Na+/K+ ATPase regulatory factor; EDLF) in rats and humans and to lower blood pressure. Although the exact structure of EDLF is unknown, compounds identical to or structurally related to ouabain, bufalin, and marinobufagenin have been detected in mammalian plasma. In this study, some structural characteristics of EDLF were inferred from the ability of digoxin-specific Fab to neutralize the Na+/K+ ATPase inhibitory activity of several known cardenolides and bufodienolides. Additional structural information was obtained from [3H]ouabain binding and enzyme-linked immunosorbent assay experiments. Digoxin-specific Fab had the ability to interact to some extent with all of the cardenolides and bufodienolides tested. However, digoxin-specific Fab was more than 20-fold more potent in neutralizing ouabain and bufalin than marinobufagenin. The antihypertensive effect of digoxin-specific Fab seen in preeclampsia and animal models of hypertension may therefore be due to a molecule identical to or structurally similar to ouabain or bufalin.
Collapse
Affiliation(s)
- Mark A Pullen
- Department of Renal Biology, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, USA.
| | | | | |
Collapse
|
19
|
Crambert G, Schaer D, Roy S, Geering K. New molecular determinants controlling the accessibility of ouabain to its binding site in human Na,K-ATPase alpha isoforms. Mol Pharmacol 2004; 65:335-41. [PMID: 14742675 DOI: 10.1124/mol.65.2.335] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition of Na,K-ATPase alpha2 isoforms in the human heart is supposed to be involved in the inotropic effect of cardiac glycosides, whereas inhibition of alpha1 isoforms may be responsible for their toxic effects. Human Na,K-ATPase alpha1 and alpha2 isoforms exhibit a high ouabain affinity but significantly differ in the ouabain association and dissociation rates. To identify the structural determinants that are involved in these differences, we have prepared chimeras between human alpha1 and alpha2 isoforms and alpha2 mutants in which nonconserved amino acids were exchanged with those of the alpha1 isoform, expressed these constructs in Xenopus laevis oocytes, and measured their ouabain binding kinetics. Our results show that replacement of Met119 and Ser124 in the M1-M2 extracellular loop of the alpha2 isoform by the corresponding Thr119 and Gln124 of the alpha1 isoform shifts both the fast ouabain association and dissociation rates of the alpha2 isoform to the slow ouabain binding kinetics of the alpha1 isoform. The amino acids at position 119 and 124 cooperate with the M7-M8 hairpin and are also responsible for the small differences in the ouabain affinity of the ouabain-sensitive alpha1 and alpha2 isoforms. Thus, we have identified new structural determinants in the Na,K-ATPase alpha-subunit that are involved in ouabain binding and probably control, in an alpha isoform-specific way, the access and release of ouabain to and from its binding site.
Collapse
Affiliation(s)
- Gilles Crambert
- Institute of Pharmacology and Toxicology of the University, Lausanne, Switzerland
| | | | | | | |
Collapse
|
20
|
Kuzmic P, Hill C, Kirtley MP, Janc JW. Kinetic determination of tight-binding impurities in enzyme inhibitors. Anal Biochem 2003; 319:272-9. [PMID: 12871722 DOI: 10.1016/s0003-2697(03)00248-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel rate equation to characterize the dose-response behavior of a moderately potent ("classical") enzyme inhibitor contaminated with a very potent ("tight-binding") impurity is derived. Mathematical properties of the new rate equation show that, for such contaminated materials, experimentally observed I(50) values are ambiguous. The four-parameter logistic equation, conventionally used to determine I(50) values, cannot be used to detect the presence of tight-binding impurities in inhibitor samples. In contrast, fitting the newly derived rate equation to inhibitor dose- response curves can, in favorable cases, reveal whether the unknown material is chemically homogeneous or whether it is contaminated with a tight-binding impurity. The limitations of our method with respect to the detectable range of inhibition constants (both classical and tight-binding) were examined by using Monte-Carlo simulations. To test the new analytical procedure experimentally, we added a small amount (0.02 mole%) of a tight-binding impurity (K(i)=0.065 nM) to an otherwise weak inhibitor of human mast-cell tryptase (K(i)=50.4 microM). The resulting material was treated as "unknown." Our kinetic equation predicts that such adulterated material should show I(50)=0.40 microM, which was identical to the experimentally observed value. The best-fit value of the apparent inhibition constants for the tight-binding inhibitor was K(i)=(0.107+/-0.035)nM, close to the true value of 0.065 nM.
Collapse
|
21
|
Ball WJ, Farr CD, Paula S, Keenan SM, Delisle RK, Welsh WJ. Three-dimensional structure-activity relationship modeling of digoxin inhibition and docking to Na+,K+-ATPase. Ann N Y Acad Sci 2003; 986:296-7. [PMID: 12763827 DOI: 10.1111/j.1749-6632.2003.tb07191.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- W James Ball
- University of Cincinnati College of Medicine, Ohio 45267, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Paula S, Tabet MR, Keenan SM, Welsh WJ, Ball WJ. Three-dimensional structure-activity relationship modeling of cocaine binding to two monoclonal antibodies by comparative molecular field analysis. J Mol Biol 2003; 325:515-30. [PMID: 12498800 DOI: 10.1016/s0022-2836(02)01235-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy.
Collapse
Affiliation(s)
- Stefan Paula
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|