1
|
Kovach IM. Proton Bridging in Catalysis by and Inhibition of Serine Proteases of the Blood Cascade System. Life (Basel) 2021; 11:396. [PMID: 33925363 PMCID: PMC8146069 DOI: 10.3390/life11050396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Inquiries into the participation of short hydrogen bonds in stabilizing transition states and intermediate states in the thrombin, factor Xa, plasmin and activated protein C-catalyzed reactions revealed that specific binding of effectors at Sn, n = 1-4 and S'n, n = 1-3 and at remote exosites elicit complex patterns of hydrogen bonding and involve water networks. The methods employed that yielded these discoveries include; (1) kinetics, especially partial or full kinetic deuterium solvent isotope effects with short cognate substrates and also with the natural substrates, (2) kinetic and structural probes, particularly low-field high-resolution nuclear magnetic resonance (1H NMR), of mechanism-based inhibitors and substrate-mimic peptide inhibitors. Short hydrogen bonds form at the transition states of the catalytic reactions at the active site of the enzymes as they do with mechanism-based covalent inhibitors of thrombin. The emergence of short hydrogen bonds at the binding interface of effectors and thrombin at remote exosites has recently gained recognition. Herein, I describe our contribution, a confirmation of this discovery, by low-field 1H NMR. The principal conclusion of this review is that proton sharing at distances below the sum of van der Waals radii of the hydrogen and both donor and acceptor atoms contribute to the remarkable catalytic prowess of serine proteases of the blood clotting system and other enzymes that employ acid-base catalysis. Proton bridges also play a role in tight binding in proteins and at exosites, i.e., allosteric sites, of enzymes.
Collapse
Affiliation(s)
- Ildiko M Kovach
- Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
2
|
Phosphatidylserine and phosphatidylethanolamine regulate the structure and function of FVIIa and its interaction with soluble tissue factor. Biosci Rep 2021; 41:227639. [PMID: 33479740 PMCID: PMC7859323 DOI: 10.1042/bsr20204077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/04/2022] Open
Abstract
Cell membranes have important functions in many steps of the blood coagulation cascade, including the activation of factor X (FX) by the factor VIIa (FVIIa)-tissue factor (TF) complex (extrinsic Xase). FVIIa shares structural similarity with factor IXa (FIXa) and FXa. FIXa and FXa are regulated by binding to phosphatidylserine (PS)-containing membranes via their γ-carboxyglutamic acid-rich domain (Gla) and epidermal growth-factor (EGF) domains. Although FVIIa also has a Gla-rich region, its affinity for PS-containing membranes is much lower compared with that of FIXa and FXa. Research suggests that a more common endothelial cell lipid, phosphatidylethanolamine (PE), might augment the contribution of PS in FVIIa membrane-binding and proteolytic activity. We used soluble forms of PS and PE (1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), 1,2-dicaproyl-sn-glycero-3-phospho-ethanolamine (C6PE)) to test the hypothesis that the two lipids bind to FVIIa jointly to promote FVIIa membrane binding and proteolytic activity. By equilibrium dialysis and tryptophan fluorescence, we found two sites on FVIIa that bound equally to C6PE and C6PS with Kd of ∼ 150–160 μM, however, deletion of Gla domain reduced the binding affinity. Binding of lipids occurred with greater affinity (Kd∼70–80 μM) when monitored by FVIIa proteolytic activity. Global fitting of all datasets indicated independent binding of two molecules of each lipid. The proteolytic activity of FVIIa increased by ∼50–100-fold in the presence of soluble TF (sTF) plus C6PS/C6PE. However, the proteolytic activity of Gla-deleted FVIIa in the presence of sTF was reduced drastically, suggesting the importance of Gla domain to maintain full proteolytic activity.
Collapse
|
3
|
Plautz WE, Sekhar Pilli VS, Cooley BC, Chattopadhyay R, Westmark PR, Getz T, Paul D, Bergmeier W, Sheehan JP, Majumder R. Anticoagulant Protein S Targets the Factor IXa Heparin-Binding Exosite to Prevent Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:816-828. [PMID: 29419409 DOI: 10.1161/atvbaha.117.310588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE PS (protein S) is a plasma protein that directly inhibits the coagulation FIXa (factor IXa) in vitro. Because elevated FIXa is associated with increased risk of venous thromboembolism, it is important to establish how PS inhibits FIXa function in vivo. The goal of this study is to confirm direct binding of PS with FIXa in vivo, identify FIXa amino acid residues required for binding PS in vivo, and use an enzymatically active FIXa mutant that is unable to bind PS to measure the significance of PS-FIXa interaction in hemostasis. APPROACH AND RESULTS We demonstrate that PS inhibits FIXa in vivo by associating with the FIXa heparin-binding exosite. We used fluorescence tagging, immunohistochemistry, and protein-protein crosslinking to show in vivo interaction between FIXa and PS. Importantly, platelet colocalization required a direct interaction between the 2 proteins. FIXa and PS also coimmunoprecipitated from plasma, substantiating their interaction in a physiological milieu. PS binding to FIXa and PS inhibition of the intrinsic Xase complex required residues K132, K126, and R170 in the FIXa heparin-binding exosite. A double mutant, K132A/R170A, retained full activity but could not bind to PS. Crucially, Hemophilia B mice infused with FIXa K132A/R170A displayed an accelerated rate of fibrin clot formation compared with wild-type FIXa. CONCLUSIONS Our findings establish PS as an important in vivo inhibitor of FIXa. Disruption of the interaction between PS and FIXa causes an increased rate of thrombus formation in mice. This newly discovered function of PS implies an unexploited target for antithrombotic therapeutics.
Collapse
Affiliation(s)
- William E Plautz
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Vijaya Satish Sekhar Pilli
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Brian C Cooley
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Rima Chattopadhyay
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Pamela R Westmark
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Todd Getz
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - David Paul
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Wolfgang Bergmeier
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - John P Sheehan
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Rinku Majumder
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.).
| |
Collapse
|
4
|
Lyso-Sulfatide Binds Factor Xa and Inhibits Thrombin Generation by the Prothrombinase Complex. PLoS One 2015; 10:e0135025. [PMID: 26263376 PMCID: PMC4532512 DOI: 10.1371/journal.pone.0135025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
Blood coagulation reactions are strongly influenced by phospholipids, but little is known about the influence of sphingolipids on coagulation mechanisms. Lysosulfatide (lyso-SF) (sulfogalactosyl sphingosine) prolonged factor Xa (fXa) 1-stage plasma clotting assays, showing it had robust anticoagulant activity. In studies using purified clotting factors, lyso-SF inhibited >90% of prothrombin (II) activation for reaction mixtures containing fXa/factor Va (fVa)/II, and also inhibited II activation generation by fXa/ phospholipids and by Gla-domainless-fXa/fVa/phospholipids. When lyso-SF analogs were tested, results showed that N-acetyl-sulfatide was not anticoagulant, implying that the free amine group was essential for the anticoagulant effects of lyso-SF. Lyso-SF did not inhibit fXa enzymatic hydrolysis of small peptide substrates, showing it did not directly inhibit the fXa activity. In surface plasmon resonance studies, lyso-SF bound to immobilized inactivated fXa as well as inactivated Gla-domainless-fXa. Confirming this lyso-SF:fXa interaction, fluorescence studies showed that fluorescently-labeled-fXa in solution bound to lyso-SF. Thus, lyso-SF is an anticoagulant lipid that inhibits fXa when this enzyme is bound to either phospholipids or to fVa. Mechanisms for inhibition of procoagulant activity are likely to involve lyso-SF binding to fXa domain(s) that are distinct from the fXa Gla domain. This suggests that certain sphingolipids, including lyso-SF and some of its analogs, may down-regulate fXa activity without inhibiting the enzyme's active site or binding to the fXa Gla domain.
Collapse
|
5
|
Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces. Biochem J 2015; 467:37-46. [PMID: 25572019 DOI: 10.1042/bj20141177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Exposure of phosphatidylserine (PS) molecules on activated platelet membrane surface is a crucial event in blood coagulation. Binding of PS to specific sites on factor Xa (fXa) and factor Va (fVa) promotes their assembly into a complex that enhances proteolysis of prothrombin by approximately 10⁵. Recent studies demonstrate that both soluble PS and PS-containing model membranes promote formation of inactive fXa dimers at 5 mM Ca²⁺. In the present study, we show how competition between fXa dimerization and prothrombinase formation depends on Ca²⁺ and lipid membrane concentrations. We used homo-FRET measurements between fluorescein-E-G-R-chloromethylketone (CK)-Xa [fXa irreversibly inactivated by alkylation of the active site histidine residue with FEGR (FEGR-fXa)] and prothrombinase activity measurements to reveal the balance between fXa dimer formation and fXa-fVa complex formation. Changes in FEGR-fXa dimer homo-FRET with addition of fVa to model-membrane-bound FEGR-fXa unambiguously demonstrated that formation of the FEGR-fXa-fVa complex dissociated the dimer. Quantitative global analysis according to a model for protein interaction equilibria on a surface provided an estimate of a surface constant for fXa dimer dissociation (K(fXa×fXa)(d, σ)) approximately 10-fold lower than K(fXa×fVa)(d,σ) for fXa-fVa complex. Experiments performed using activated platelet-derived microparticles (MPs) showed that competition between fXa dimerization and fXa-fVa complex formation was even more prominent on MPs. In summary, at Ca²⁺ concentrations found in the maturing platelet plug (2-5 mM), fVa can compete fXa off of inactive fXa dimers to significantly amplify thrombin production, both because it releases dimer inhibition and because of its well-known cofactor activity. This suggests a hitherto unanticipated mechanism by which PS-exposing platelet membranes can regulate amplification and propagation of blood coagulation.
Collapse
|
6
|
Ca2+ switches the effect of PS-containing membranes on Factor Xa from activating to inhibiting: implications for initiation of blood coagulation. Biochem J 2014; 462:591-601. [PMID: 24920080 DOI: 10.1042/bj20140130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calcium (Ca2+) plays a pivotal role in cellular and organismal physiology. The Ca2+ ion has an intermediate protein-binding affinity and thus it can serve as an on/off switch in the regulation of different biochemical processes. The serum level of ionized Ca2+ is regulated with normal ionized Ca2+ being in the range 1.10-1.3 mM. Hypocalcaemia (free Ca2+<1.1 mM) in critically ill patients is commonly accompanied by haemostatic abnormalities, ranging from isolated thrombocytopenia to complex defects such as disseminated intravascular coagulation, commonly thought to be due to insufficient functioning of anticoagulation pathways. A small amount of fXa (Factor Xa) produced by Factor VIIa and exposed tissue factor is key to initiating blood coagulation by producing enough thrombin to induce the later stages of coagulation. fXa must bind to PS (phosphatidylserine)-containing membranes to produce thrombin at a physiologically significant rate. In the present study, we show that overall fXa activity on PS-containing membranes is sharply regulated by a 'Ca2+ switch' centred at 1.16 mM, below which fXa is active and above which fXa forms inactive dimers on PS-exposing membranes. Our data lead to a mathematical model that predicts the variation of fXa activity as a function of both Ca2+ and membrane concentrations. Because the critical Ca2+ concentration is at the lower end of the normal plasma ionized Ca2+ concentration range, we propose a new regulatory mechanism by which local Ca2+ concentration switches fXa from an intrinsically active form to a form requiring its cofactor [fVa (Factor Va)] to achieve significant activity.
Collapse
|
7
|
Abstract
Human coagulation FXa (Factor Xa) plays a key role in blood coagulation by activating prothrombin to thrombin on 'stimulated' platelet membranes in the presence of its cofactor FVa (Factor Va). PS (phosphatidylserine) exposure on activated platelet membranes promotes prothrombin activation by FXa by allosterically regulating FXa. To identify the structural basis of this allosteric regulation, we used FRET to monitor changes in FXa length in response to (i) soluble short-chain PS [C6PS (dicaproylphosphatidylserine)], (ii) PS membranes, and (iii) FVa in the presence of C6PS and membranes. We incorporated a FRET pair with donor (fluorescein) at the active site and acceptor (Alexa Fluor® 555) at the FXa N-terminus near the membrane. The results demonstrated that FXa structure changes upon binding of C6PS to two sites: a regulatory site at the N-terminus [identified previously as involving the Gla (γ-carboxyglutamic acid) and EGFN (N-terminus of epidermal growth factor) domains] and a presumptive protein-recognition site in the catalytic domain. Binding of C6PS to the regulatory site increased the interprobe distance by ~3 Å (1 Å=0.1 nm), whereas saturation of both sites increased the distance by a further ~6.4 Å. FXa binding to a membrane produced a smaller increase in length (~1.4 Å), indicating that FXa has a somewhat different structure on a membrane from when bound to C6PS in solution. However, when both FVa2 (a FVa glycoform) and either C6PS- or PS-containing membranes were bound to FXa, the overall change in length was comparable (~5.6-5.8 Å), indicating that C6PS- and PS-containing membranes in conjunction with FVa2 have comparable regulatory effects on FXa. We conclude that the similar functional regulation of FXa by C6PS or membranes in conjunction with FVa2 correlates with similar structural regulation. The results demonstrate the usefulness of FRET in analysing structure-function relationships in FXa and in the FXa·FVa2 complex.
Collapse
|
8
|
Majumder R, Koklic T, Rezaie AR, Lentz BR. Phosphatidylserine-induced factor Xa dimerization and binding to factor Va are competing processes in solution. Biochemistry 2013; 52:143-51. [PMID: 23214401 PMCID: PMC3544317 DOI: 10.1021/bi301239z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A soluble, short chain phosphatidylserine, 1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), binds to discrete sites on FXa, FVa, and prothrombin to alter their conformations, to promote FXa dimerization (K(d) ~ 14 nM), and to enhance both the catalytic activity of FXa and the cofactor activity of FVa. In the presence of calcium, C6PS binds to two sites on FXa, one in the epidermal growth factor-like (EGF) domain and one in the catalytic domain; the latter interaction is sensitive to Na(+) binding and probably represents a protein recognition site. Here we ask whether dimerization of FXa and its binding to FVa in the presence of C6PS are competitive processes. We monitored FXa activity at 5, 20, and 50 nM FXa while titrating with FVa in the presence of 400 μM C6PS and 3 or 5 mM Ca(2+) to show that the apparent K(d) of FVa-FXa interaction increased with an increase in FXa concentration at 5 mM Ca(2+), but the K(d) was only slightly affected at 3 mM Ca(2+). A mixture of 50 nM FXa and 50 nM FVa in the presence of 400 μM C6PS yielded both Xa homodimers and Xa·Va heterodimers, but no FXa dimers bound to FVa. A mutant FXa (R165A) that has reduced prothrombinase activity showed both weakened dimerization (K(d) ~ 147 nM) and weakened FVa binding (apparent K(d) values of 58, 92, and 128 nM for 5, 20, and 50 nM R165A FXa, respectively). Native gel electrophoresis showed that the GLA-EGF(NC) fragment of FXa (lacking the catalytic domain) neither dimerized nor formed a complex with FVa in the presence of 400 μM C6PS and 5 mM Ca(2+). Our results demonstrate that the dimerization site and FVa-binding site are both located in the catalytic domain of FXa and that these sites are linked thermodynamically.
Collapse
Affiliation(s)
- Rinku Majumder
- Department of Biochemistry and Biophysics and Program in Molecular & Cellular Biophysics, CB # 7260, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260
| | - Tilen Koklic
- Laboratory of Biophysics (EPR center), Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Alireza R. Rezaie
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO-63104
| | - Barry R. Lentz
- Department of Biochemistry and Biophysics and Program in Molecular & Cellular Biophysics, CB # 7260, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260
| |
Collapse
|
9
|
Brown MA, Stenberg LM, Stenflo J. Coagulation Factor Xa. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7149769 DOI: 10.1016/b978-0-12-382219-2.00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 800 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of Chapter 642 is Coagulation Factor Xa. Keywords Coagulation factor, prothrombin, thrombin, proconvertin, Stuart’s factor, Prower’s factor.
Collapse
|
10
|
Majumder R, Liang X, Quinn-Allen MA, Kane WH, Lentz BR. Modulation of prothrombinase assembly and activity by phosphatidylethanolamine. J Biol Chem 2011; 286:35535-35542. [PMID: 21859710 DOI: 10.1074/jbc.m111.260141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constituents of platelet membranes regulate the activity of the prothrombinase complex. We demonstrate that membranes containing phosphatidylcholine and phosphatidylethanolamine (PE) bind factor Va with high affinity (K(d) = ∼10 nm) in the absence of phosphatidylserine (PS). These membranes support formation of a 60-70% functional prothrombinase complex at saturating factor Va concentrations. Although reduced interfacial packing does contribute to factor Va binding in the absence of PS, it does not correlate with the enhanced activity of the Xa-Va complex assembled on PE-containing membranes. Instead, specific protein-PE interactions appear to contribute to the effects of PE. In support of this, soluble C6PE binds to recombinant factor Va(2) (K(d) = ∼6.5 μm) and to factor Xa (K(d) = ∼91 μm). C6PE and C6PS binding sites of factor Xa are specific, distinct, and linked, because binding of one lipid enhances the binding and activity effects of the other. C6PE triggers assembly (K(d)(app) = ∼40 nm) of a partially active prothrombinase complex between factor Xa and factor Va(2), compared with K(d)(app) for C6PS ∼2 nm. These findings provide new insights into the possible synergistic roles of platelet PE and PS in regulating thrombin formation, particularly when exposed membrane PS may be limiting.
Collapse
Affiliation(s)
- Rinku Majumder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260.
| | - Xiaoe Liang
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27702-3656
| | - Mary Ann Quinn-Allen
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27702-3656
| | - William H Kane
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27702-3656.
| | - Barry R Lentz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260.
| |
Collapse
|
11
|
Koklic T, Majumder R, Weinreb GE, Lentz BR. Factor XA binding to phosphatidylserine-containing membranes produces an inactive membrane-bound dimer. Biophys J 2010; 97:2232-41. [PMID: 19843455 DOI: 10.1016/j.bpj.2009.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 06/11/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022] Open
Abstract
Factor Xa (FXa) has a prominent role in amplifying both inflammation and the coagulation cascade. In the coagulation cascade, its main role is catalyzing the proteolytic activation of prothrombin to thrombin. Efficient proteolysis is well known to require phosphatidylserine (PS)-containing membranes that are provided by platelets in vivo. However, soluble, short-chain PS also triggers efficient proteolytic activity and formation of an inactive FXa dimer in solution. In this work, we ask whether PS-containing membranes also trigger formation of an inactive FXa dimer. We determined the proteolytic activity of human FXa toward human Pre2 as a substrate both at fixed membrane concentration (increasing FXa concentration) and at fixed FXa concentration (increasing membrane concentration). Neither of these experiments showed the expected behavior of an increase in activity as FXa bound to membranes, but instead suggested the existence of a membrane-bound inactive form of FXa. We found also that the fluorescence of fluorescein attached to FXa's active site serine was depolarized in a FXa concentration-dependent fashion in the presence of membranes. The fluorescence lifetime of FXa labeled in its active sites with a dansyl fluorophore showed a similar concentration dependence. We explained all these observations in terms of a quantitative model that takes into account dimerization of FXa after binding to a membrane, which yielded estimates of the FXa dimerization constant on a membrane as well as the kinetic constants of the dimer, showing that the dimer is effectively inactive.
Collapse
Affiliation(s)
- Tilen Koklic
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
12
|
Qureshi SH, Yang L, Manithody C, Rezaie AR. Membrane-dependent interaction of factor Xa and prothrombin with factor Va in the prothrombinase complex. Biochemistry 2009; 48:5034-41. [PMID: 19378973 PMCID: PMC2693874 DOI: 10.1021/bi900240g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because all three protein components of prothrombinase, factors (f) Xa and Va and prothrombin, bind to negatively charged membrane phospholipids, the exact role of the membrane in the prothrombinase reaction has not been fully understood. In this study, we prepared deletion derivatives of fXa and prothrombin in which both the Gla and first EGF-like domains of the protease (E2-fXa) as well as the Gla and both kringle domains of the substrate (prethrombin-2) had been deleted. The fVa-mediated catalytic activity of E2-fXa toward prethrombin-2 was analyzed in both the absence and presence of phospholipids composed of 80% phosphatidylcholine (PC) and 20% phosphatidylserine (PS). PCPS markedly accelerated the initial rate of prethrombin-2 activation by E2-fXa, with the cofactor exhibiting saturation only in the presence of phospholipids (apparent K(d) of approximately 60 nM). Competitive kinetic studies in the presence of the two exosite-1-specific ligands Tyr(63)-sulfated hirudin(54-65) and TM456 suggested that while both peptides are highly effective inhibitors of the fVa-mediated activation of prethrombin-2 by E2-fXa in the absence of PCPS, they are ineffective competitors in the presence of phospholipids. Since neither E2-fXa nor prethrombin-2 can interact with membranes, these results suggest that interaction of fVa with PCPS improves the affinity of the activation complex for proexosite-1 of the substrate. Direct binding studies employing OG(488)-EGR-labeled fXa and E2-fXa revealed that the interaction of the Gla domain of fXa with PCPS also induces conformational changes in the protease to facilitate its high-affinity interaction with fVa.
Collapse
Affiliation(s)
- Shabir H Qureshi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
13
|
Chattopadhyay R, Iacob R, Sen S, Majumder R, Tomer KB, Lentz BR. Functional and structural characterization of factor Xa dimer in solution. Biophys J 2009; 96:974-86. [PMID: 19186135 DOI: 10.1016/j.bpj.2008.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022] Open
Abstract
Previous studies showed that binding of water-soluble phosphatidylserine (C6PS) to bovine factor Xa (FXa) leads to Ca2+-dependent dimerization in solution. We report the effects of Ca2+, C6PS, and dimerization on the activity and structure of human and bovine FXa. Both human and bovine dimers are 10(6)- to 10(7)-fold less active toward prothrombin than the monomer, with the decrease being attributed mainly to a substantial decrease in k(cat). Dimerization appears not to block the active site, since amidolytic activity toward a synthetic substrate is largely unaffected. Circular dichroism reveals a substantial change in tertiary or quaternary structure with a concomitant decrease in alpha-helix upon dimerization. Mass spectrometry identifies a lysine (K(270)) in the catalytic domain that appears to be buried at the dimer interface and is part of a synthetic peptide sequence reported to interfere with factor Va (FVa) binding. C6PS binding exposes K(351) (part of a reported FVa binding region), K(242) (adjacent to the catalytic triad), and K(420) (part of a substrate exosite). We interpret our results to mean that C6PS-induced dimerization produces substantial conformational changes or domain rearrangements such that structural data on PS-activated FXa is required to understand the structure of the FXa dimer or the FXa-FVa complex.
Collapse
Affiliation(s)
- Rima Chattopadhyay
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
14
|
A phosphatidylserine binding site in factor Va C1 domain regulates both assembly and activity of the prothrombinase complex. Blood 2008; 112:2795-802. [PMID: 18587009 DOI: 10.1182/blood-2008-02-138941] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tightly associated factor V(a) (FVa) and factor X(a) (FXa) serve as the essential prothrombin-activating complex that assembles on phosphatidylserine (PS)-containing platelet membranes during blood coagulation. We have previously shown that (1) a soluble form of PS (C6PS) triggers assembly of a fully active FVa-FXa complex in solution and (2) that 2 molecules of C6PS bind to FVa light chain with one occupying a site in the C2 domain. We expressed human factor V(a) (rFVa) with mutations in either the C1 domain (Y1956,L1957)A, the C2 domain (W2063,W2064)A, or both C domains (Y1956,L1957,W2063,W2064)A. Mutations in the C1 and C1-C2 domains of rFVa reduced the rate of activation of prothrombin to thrombin by FXa in the presence of 400 muM C6PS by 14 000- to 15 000-fold relative to either wild-type or C2 mutant factor rFVa. The K(d')s of FXa binding with rFVa (wild-type, C2 mutant, C1 mutant, and C1-C2 mutant) were 3, 4, 564, and 624 nM, respectively. Equilibrium dialysis experiments detected binding of 4, 3, and 2 molecules of C6PS to wild-type rFVa, C1-mutated, and C1,C2-mutated rFVa, respectively. Because FVa heavy chain binds 2 molecules of C6PS, we conclude that both C2 and C1 domains bind one C6PS, with binding to the C1 domain regulating prothrombinase complex assembly.
Collapse
|
15
|
Zhang D, Kovach IM. Deuterium solvent isotope effect and proton-inventory studies of factor Xa-catalyzed reactions. Biochemistry 2006; 45:14175-82. [PMID: 17115712 PMCID: PMC2535812 DOI: 10.1021/bi061218m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetic solvent isotope effects (KSIEs) for the factor Xa (FXa)-catalyzed activation of prothrombin in the presence and absence of factor Va (FVa) and 5.0 x 10(-5) M phospholipid vesicles are slightly inverse, 0.82-0.93, when substrate concentrations are at 0.2 Km. This is consistent with the rate-determining association of the enzyme-prothrombin assembly, rather than the rate-limiting chemical transformation. FVa is known to effect a major conformational change to expose the first scissile bond in prothrombin, which is the likely event triggering a major solvent rearrangement. At prothrombin concentrations > 5 Km, the KSIE is 1.6 +/- 0.3, when FXa is in a 1:1 ratio with FVa but becomes increasingly inverse, 0.30 +/- 0.05 and 0.19 +/- 0.04, when FXa/FVa is 1:4, with an increasing FXa and substrate concentration. The rate-determining step changes with the conditions, but the chemical step is not limiting under any circumstance. This corroborates the proposed predominance of the meizothrombin pathway when FXa is well-saturated with the prothrombin complex. In contrast, the FXa-catalyzed hydrolysis of N-alpha-Z-D-Arg-Gly-Arg-pNA.2HCl (S-2765) and H-D-Ile-L-Pro-L-Arg-pNA.HCl (S-2288) is most consistent with two-proton bridges forming at the transition state between Ser195 OgammaH and His57 N(epsilon)2 and His57 Ndelta1 and Asp102 COObeta- at the active site, with transition-state fractionation factors of phi1 = phi2 = 0.57 +/- 0.07 and phiS = 0.78 +/- 0.16 for solvent rearrangement for S-2765 and phi1 = phi2 = 0.674 +/- 0.001 for S-2288 under enzyme saturation with the substrate at pH 8.40 and 25.0 +/- 0.1 degrees C. The rate-determining step(s) in these reactions is most likely the cleavage of the C-N bond and departure of the leaving group.
Collapse
Affiliation(s)
| | - Ildiko M. Kovach
- The Catholic University of America, Chemistry Department, Washington DC 20064
| |
Collapse
|
16
|
Kretz CA, Stafford AR, Fredenburgh JC, Weitz JI. HD1, a thrombin-directed aptamer, binds exosite 1 on prothrombin with high affinity and inhibits its activation by prothrombinase. J Biol Chem 2006; 281:37477-85. [PMID: 17046833 DOI: 10.1074/jbc.m607359200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Incorporation of prothrombin into the prothrombinase complex is essential for rapid thrombin generation at sites of vascular injury. Prothrombin binds directly to anionic phospholipid membrane surfaces where it interacts with the enzyme, factor Xa, and its cofactor, factor Va. We demonstrate that HD1, a thrombin-directed aptamer, binds prothrombin and thrombin with similar affinities (K(d) values of 86 and 34 nm, respectively) and attenuates prothrombin activation by prothrombinase by over 90% without altering the activation pathway. HD1-mediated inhibition of prothrombin activation by prothrombinase is factor Va-dependent because (a) the inhibitory activity of HD1 is lost if factor Va is omitted from the prothrombinase complex and (b) prothrombin binding to immobilized HD1 is reduced by factor Va. These data suggest that HD1 competes with factor Va for prothrombin binding. Kinetic analyses reveal that HD1 produces a 2-fold reduction in the k(cat) for prothrombin activation by prothrombinase and a 6-fold increase in the K(m), highlighting the contribution of the factor Va-prothrombin interaction to prothrombin activation. As a high affinity, prothrombin exosite 1-directed ligand, HD1 inhibits prothrombin activation more efficiently than Hir(54-65)(SO(3)(-)). These findings suggest that exosite 1 on prothrombin exists as a proexosite only for ligands whose primary target is thrombin rather than prothrombin.
Collapse
Affiliation(s)
- Colin A Kretz
- Department of Medicine, McMaster University, and Henderson Research Centre, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | |
Collapse
|
17
|
Kaibara M, Iwata H, Ujiie H, Himeno R, Kaibara M. Rheological analyses of coagulation of blood from different individuals with special reference to procoagulant activity of erythrocytes. Blood Coagul Fibrinolysis 2005; 16:355-63. [PMID: 15970720 DOI: 10.1097/01.mbc.0000172832.65615.57] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In our previous papers, we reported that factor IX (FIX), when activated by erythrocyte membranes, causes coagulation. We have identified and characterized the FIX-activating enzyme located in normal human erythrocyte membranes. In this paper, to examine physiological and pathological significances of procoagulant activity of erythrocytes, coagulation of blood obtained from different individuals was analyzed by means of a rheological technique. In more than 65% of subjects including normals and patients, the initiation of coagulation seemed to be governed by erythrocytes. Coagulation of whole blood and platelet-free plasma supplemented with erythrocytes had a tendency to occur rapidly in the elderly. It was suggested that the concentration of FIX-activating enzyme on erythrocyte membranes for aged donors was somewhat higher than that for young ages. Propagation reactions on erythrocyte membranes (i.e. factor X activation leading to thrombin generation after FIX activation) was slower than that on platelet membranes. Moreover, the propagation reaction on erythrocyte membranes was greatly dependent on individuals, whereas that on platelet membranes was not so much. Our study demonstrates that the activation of FIX by erythrocytes and subsequent propagation reaction on platelet membranes may be important for initiating and controlling blood coagulation reactions.
Collapse
Affiliation(s)
- Makoto Kaibara
- Computational Biomechanics Unit, RIKEN Wako Institute, Saitama, Japan.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Macromolecular substrate recognition and serine proteinase specificity lie at the heart of the tightly regulated hemostatic response. Mechanisms established for the less specific serine proteinases of digestion have played a dominant role in guiding investigations of the basis for the narrow specificities exhibited by the coagulation enzymes. These concepts have also dominated the development of specific inhibitors of coagulation for therapeutic purposes. Studies of the enzymology and physical biochemistry of prothrombinase challenge these prevailing ideas by establishing a principal role for exosites within the enzyme in determining substrate recognition and directing the action of the enzyme on its biological substrate. Mechanisms by which narrow protein substrate specificity is achieved by prothrombinase also apply to several other reactions of coagulation. These strategies are increasingly evident in the action of other families of enzymes that act with high specificity on protein substrates. Exosite-driven enzymic function probably represents a widely employed biological strategy for the achievement of high macromolecular substrate specificity.
Collapse
Affiliation(s)
- S Krishnaswamy
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia & Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Chong ZZ, Kang JQ, Maiese K. AKT1 drives endothelial cell membrane asymmetry and microglial activation through Bcl-xL and caspase 1, 3, and 9. Exp Cell Res 2004; 296:196-207. [PMID: 15149850 DOI: 10.1016/j.yexcr.2004.01.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 12/22/2003] [Indexed: 11/30/2022]
Abstract
Protein kinase B (Akt1) holds a central role for cellular growth, development, and survival, but the cellular pathways of Akt1 that prevent inflammatory demise in the vascular system remain undefined. Employing a constitutively active form of Akt1 (myristoylated Akt1) in endothelial cells (ECs), we demonstrate that Akt1 not only modulates intrinsic pathways of EC injury that involve genomic DNA destruction, but also uniquely regulates extrinsic mechanisms of cellular inflammation mediated by phosphatidylserine exposure (PS) and microglial activation. Activation of Akt1 is necessary and sufficient to prevent apoptotic EC destruction, since inhibition of the phosphatidylinositide-3-kinase pathway as well as transfection of ECs with a dominant-negative Akt1 mutant abrogates vascular protection. Furthermore, we illustrate that control of microglial activation by Akt1 is directly dependent on the modulation of EC membrane PS exposure. Akt1 provides a novel capacity to foster EC survival through the prevention of cysteine protease degradation of Bcl-x(L) that is intimately linked to the specific inhibition of caspase 1-, 3-, and 9-like activities and the modulation of mitochondrial membrane potential and cytochrome c release. Our work elucidates the critical role of Akt1 during cellular inflammation and identifies new downstream targets of Akt1 that may offer therapeutic potential against vascular disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
20
|
Birner R, Daum G. Biogenesis and cellular dynamics of aminoglycerophospholipids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:273-323. [PMID: 12696595 DOI: 10.1016/s0074-7696(05)25007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoglycerophospholipids phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) comprise about 80% of total cellular phospholipids in most cell types. While the major function of PtdCho in eukaryotes and PtdEtn in prokaryotes is that of bulk membrane lipids, PtdSer is a minor component and appears to play a more specialized role in the plasma membrane of eukaryotes, e.g., in cell recognition processes. All three aminoglycerophospholipid classes are essential in mammals, whereas prokaryotes and lower eukaryotes such as yeast appear to be more flexible regarding their aminoglycerophospholipid requirement. Since different subcellular compartments of eukaryotes, namely the endoplasmic reticulum and mitochondria, contribute to the biosynthetic sequence of aminoglycerophospholipid formation, intracellular transport, sorting, and specific function of these lipids in different organelles are of special interest.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
21
|
Abstract
This article addresses the role of platelet membrane phosphatidylserine (PS) in regulating the production of thrombin, the central regulatory molecule of blood coagulation. PS is normally located on the cytoplasmic face of the resting platelet membrane but appears on the plasma-oriented surface of discrete membrane vesicles that derive from activated platelets. Thrombin, the central molecule of coagulation, is produced from prothrombin by a complex ("prothrombinase") between factor Xa and its protein cofactor (factor V(a)) that forms on platelet-derived membranes. This complex enhances the rate of activation of prothrombin to thrombin by roughly 150,000 fold relative to factor X(a) in solution. It is widely accepted that the negatively charged surface of PS-containing platelet-derived membranes is at least partly responsible for this rate enhancement, although there is not universal agreement on mechanism by which this occurs. Our efforts have led to an alternative view, namely that PS molecules bind to discrete regulatory sites on both factors X(a) and V(a) and allosterically alter their proteolytic and cofactor activities. In this view, exposure of PS on the surface of activated platelet vesicles is a key regulatory event in blood coagulation, and PS serves as a second messenger in this regulatory process. This article reviews our knowledge of the prothrombinase reaction and summarizes recent evidence leading to this alternative viewpoint. This viewpoint suggests a key role for PS both in normal hemostasis and in thrombotic disease.
Collapse
Affiliation(s)
- Barry R Lentz
- Department of Biochemistry & Biophysics, CB7260, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
22
|
Weinreb GE, Mukhopadhyay K, Majumder R, Lentz BR. Cooperative roles of factor V(a) and phosphatidylserine-containing membranes as cofactors in prothrombin activation. J Biol Chem 2003; 278:5679-84. [PMID: 12438309 DOI: 10.1074/jbc.m208423200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of prothrombin, as catalyzed by the prothrombinase complex (factor X(a), enzyme; factor V(a) and phosphatidylserine (PS)-containing membranes, cofactors), involves production and subsequent proteolysis of two possible intermediates, meizothrombin (MzII(a)) and prethrombin 2 plus fragment 1.2 (Pre2 & F1.2). V(max), K(m), or V(max)/K(m) for all four proteolytic steps was determined as a function of membrane-phospholipid concentration. Proteolysis was monitored using a fluorescent thrombin inhibitor, a chromogenic substrate, and SDS-PAGE. The kinetic constants for the conversion of MzII(a) and Pre2 & F1.2 to thrombin were determined directly. Pre2 & F1.2 conversion was linear in substrate concentration up to 4 microm, whereas MzII(a) proteolysis was saturable. First order rate constants for formation of MzII(a) and Pre2 & F1.2 could not be determined directly and were determined from global fitting of the data to a parallel, sequential model, each step of which was treated by the Michaelis-Menten formalism. The rate of direct conversion to thrombin without release of intermediates from the membrane-V(a)-X(a) complex (i.e. "channeling") also was adjusted because both the membranes and factor V(a) have been shown to cause channeling. k(cat), K(m), or k(cat)/K(m) values were reported for one lipid concentration, for which all X(a) was likely incorporated into a X(a)-V(a) complex on a PS membrane. Comparing previous results, which were obtained either with factor V(a) (Boskovic, D. S., Bajzar, L. S., and Nesheim, M. E. (2001) J. Biol. Chem. 276, 28686-28693) or with membranes individually (Wu, J. R., Zhou, C., Majumder, R., Powers, D. D., Weinreb, G., and Lentz, B. R. (2002) Biochemistry 41, 935-949), with results presented here we conclude that both factor V(a) and PS-containing membranes induce similar rate increases and pathway changes. Moreover, we have determined: 1) factor V(a) has the greatest effect in enhancing rates of individual proteolytic events; 2) PS-containing membranes have the greatest role in increasing the preference for the MzII(a) versus Pre2 pathway; and 3) PS membranes cause approximately 50% of the substrate to be activated via channeling at 50 microm membrane concentration, but factor V(a) extends the range of efficient channeling to much lower or higher membrane concentrations.
Collapse
Affiliation(s)
- Gabriel E Weinreb
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
23
|
Majumder R, Wang J, Lentz BR. Effects of water soluble phosphotidylserine on bovine factor Xa: functional and structural changes plus dimerization. Biophys J 2003; 84:1238-51. [PMID: 12547804 PMCID: PMC1302700 DOI: 10.1016/s0006-3495(03)74939-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous work has shown that two molecules of a soluble form of phosphatidylserine, C6PS, bind to human and bovine factor X(a). Activity measurements along with the fluorescence of active-site-labeled human factor X(a) showed that two linked sites specifically regulate the active site conformation and proteolytic activity of the human enzyme. These results imply, but cannot demonstrate, a C6PS-induced factor X(a) conformational change. The purpose of this paper is to extend these observations to bovine factor X(a) and to demonstrate that they do reflect conformational changes. We report that the fluorescence of active-site-labeled bovine factor X(a) also varied with C6PS concentration in a sigmoidal manner, whereas amidolytic activity of unlabeled enzyme varied in a simple hyperbolic fashion, also as seen for human factor X(a). C6PS induced a 70-fold increase in bovine factor X(a)'s autolytic activity, consistent with the 60-fold increase in proteolytic activity reported for human factor X(a). In addition, circular dichroism spectroscopy clearly demonstrated that C6PS binding to bovine factor X(a) induces secondary structural changes. In addition, C6PS binding to the tighter of the two sites triggered structural changes that lead to Ca(2+)-dependent dimer formation, as demonstrated by changes in intrinsic fluorescence and quantitative native gel electrophoresis. Dimerization produced further change in secondary structure, either inter- or intramolecularly. These results, along with results presented previously, support a model in which C6PS binds in a roughly sequential fashion to two linked sites whose occupancy in both human and bovine factor X(a) elicits different structural and functional responses.
Collapse
Affiliation(s)
- Rinku Majumder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | | | | |
Collapse
|
24
|
Abstract
This review examines the evidence that platelets play a major role in localizing and controlling the burst of thrombin generation leading to fibrin clot formation. From the first functional description of platelets, it has been recognized that platelets supply factors that support the activation of prothrombin. Studies have demonstrated that on activation, the amount of one specific lipid, phosphatidylserine, is significantly increased on the outer leaflet of platelet membranes. When it was found that phosphatidylserine containing lipid extracts could be substituted for platelets in clotting assays, this suggested the possibility that changes in platelet lipid composition were necessary and sufficient to account for platelet surface thrombin generation. Because a growing body of data suggest that platelet-binding proteins provide much of the specificity for platelet thrombin generation, we review in this report data suggesting that changes in lipid composition are necessary but not sufficient to account for platelet surface regulation of thrombin generation. Also, we review data suggesting that platelets from different individuals differ in their capacity to generate thrombin, whereas platelets from a single subject support thrombin generation in a reproducible manner. Individual differences in platelet thrombin generation might be accounted for by differences in platelet-binding proteins.
Collapse
Affiliation(s)
- Dougald M Monroe
- Center for Thrombosis and Hemostasis, University of North Carolina, Chapel Hill 27599-7035, USA.
| | | | | |
Collapse
|
25
|
Majumder R, Weinreb G, Zhai X, Lentz BR. Soluble phosphatidylserine triggers assembly in solution of a prothrombin-activating complex in the absence of a membrane surface. J Biol Chem 2002; 277:29765-73. [PMID: 12045194 DOI: 10.1074/jbc.m200893200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor X(a) (FX(a)) binding to factor V(a) (FV(a)) on platelet-derived membranes containing surface-exposed phosphatidylserine (PS) forms the "prothrombinase complex" that is essential for efficient thrombin generation during blood coagulation. There are two naturally occurring isoforms of FV(a), FV(a1) and FV(a2). These two isoforms differ by a 3-kDa polysaccharide chain (at Asn(2181) in human FV(a1) (Kim, S. W., Ortel, T. L., Quinn-Allen, M. A., Yoo, L., Worfolk, L., Zhai, X., Lentz, B. R., and Kane, W. H. (1999) Biochemistry 38, 11448-11454)) and have different coagulant activities. We examined the interaction of the two bovine isoforms with active site-labeled FX(a), finding no significant difference. A soluble form of PS (C6PS) bound to FV(a1) and FV(a2) with comparable affinities (K(d) = 11-12 microm) and changes in FV(a) intrinsic fluorescence. At concentrations well below its critical micelle concentration, C6PS binding to bovine FV(a2) enhanced its affinity for FX(a) in solution by nearly 3 orders of magnitude (K(d)(eff) = 40-2 nm over a C6PS range of 30-400 microm) but had no effect on the affinity of FV(a1) for FX(a) (K(d) = 1 microm). This results in a soluble complex between FX(a) and FV(a2), whose expected molecular weight was confirmed by calibrated native gel electrophoresis. This complex behaved as a normal Michaelis-Menten enzyme in its ability to produce thrombin from meizothrombin (apparent k(cat)/K(m) congruent with 10(9) m(-1) s(-1)). The ability of soluble PS to trigger formation of a soluble prothrombinase complex suggests that exposure of PS molecules during platelet activation is likely the key event responsible for the assembly of an active membrane-bound complex.
Collapse
Affiliation(s)
- Rinku Majumder
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|