1
|
Patra M, Mitra M, Chakrabarti A, Mukhopadhyay C. Binding of polarity-sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies. J Biomol Struct Dyn 2013; 32:852-65. [PMID: 24404769 DOI: 10.1080/07391102.2013.793212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have used three polarity-sensitive fluorescence probes, 6-propionyl 2-(N,N-dimethyl-amino) naphthalene (Prodan), pyrene and 8-anilino 1-naphthalene sulphonic acid, to study their binding with erythroid and nonerythroid spectrin, using fluorescence spectroscopy. We have found that both bind to prodan and pyrene with high affinities with apparent dissociation constants (Kd) of .50 and .17 μM, for prodan, and .04 and .02 μM, for pyrene, respectively. The most striking aspect of these bindings have been that the binding stoichiometry have been equal to 1 in erythroid spectrin, both in dimeric and tetrameric form, and in tetrameric nonerythroid spectrin. From an estimate of apparent dielectric constants, the polarity of the binding site in both erythroid and nonerythroid forms have been found to be extremely hydrophobic. Thermodynamic parameters associated with such binding revealed that the binding is favored by positive change in entropy. Molecular docking studies alone indicate that both prodan and pyrene bind to the four major structural domains, following the order in the strength of binding to the Ankyrin binding domain > SH3 domain > Self-association domain > N-terminal domain of α-spectrin of both forms of spectrin. The binding experiments, particularly with the tetrameric nonerythroid spectrin, however, indicate more toward the self association domain in offering the unique binding site, since the binding stoichiometry have been 1 in all forms of dimeric and tetrameric spectrin, so far studied by us. Further studies are needed to characterize the hydrophobic binding sites in both forms of spectrin.
Collapse
Affiliation(s)
- Malay Patra
- a Chemistry Department , University of Calcutta , Kolkata , 700009 , India
| | | | | | | |
Collapse
|
2
|
Das L, Gupta S, Dasgupta D, Poddar A, Janik ME, Bhattacharyya B. Binding of Indanocine to the Colchicine Site on Tubulin Promotes Fluorescence, and Its Binding Parameters Resemble Those of the Colchicine Analogue AC. Biochemistry 2009; 48:1628-35. [DOI: 10.1021/bi801575e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lalita Das
- Department of Biochemistry, Bose Institute, Kolkata 700054, India, Biophysics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India, and Department of Chemistry, State University of New York, Fredonia, New York 14063
| | - Suvroma Gupta
- Department of Biochemistry, Bose Institute, Kolkata 700054, India, Biophysics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India, and Department of Chemistry, State University of New York, Fredonia, New York 14063
| | - Dipak Dasgupta
- Department of Biochemistry, Bose Institute, Kolkata 700054, India, Biophysics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India, and Department of Chemistry, State University of New York, Fredonia, New York 14063
| | - Asim Poddar
- Department of Biochemistry, Bose Institute, Kolkata 700054, India, Biophysics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India, and Department of Chemistry, State University of New York, Fredonia, New York 14063
| | - Mark E. Janik
- Department of Biochemistry, Bose Institute, Kolkata 700054, India, Biophysics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India, and Department of Chemistry, State University of New York, Fredonia, New York 14063
| | - Bhabatarak Bhattacharyya
- Department of Biochemistry, Bose Institute, Kolkata 700054, India, Biophysics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India, and Department of Chemistry, State University of New York, Fredonia, New York 14063
| |
Collapse
|
3
|
Ou Z, Bottoms CA, Henzl MT, Tanner JJ. Impact of DNA hairpin folding energetics on antibody-ssDNA association. J Mol Biol 2007; 374:1029-40. [PMID: 18028946 PMCID: PMC2516951 DOI: 10.1016/j.jmb.2007.09.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Deposition of anti-DNA antibodies in the kidney contributes to the pathogenesis of the autoimmune disease, systemic lupus erythematosus. Antibodies that bind to hairpin-forming DNA ligands may be particularly prone to deposition. Here we report the first structure of a Fab complexed with hairpin-forming DNA. The ligand used for co-crystallization is 5'-d [CTG(CCTT)CAG]-3', which has a predicted hairpin structure consisting of a four-nucleotide loop (CCTT) and a stem of three base-pairs. The 1.95 A resolution crystal structure of Fab DNA-1 complexed with this ligand shows that the conformation of the bound ligand differs radically from the predicted hairpin conformation. The three base-pairs in the stem are absent in the bound form. The protein binds to the last six nucleotides at the 3' end of the ligand. These nucleotides form a loop (TTCA) closed by a G:C base-pair in the bound state. Stacking of aromatic side-chains against DNA bases is the dominant interaction in the complex. Interactions with the DNA backbone are conspicuously absent. Thermodynamics of binding are examined using isothermal titration calorimetry. The apparent dissociation constant is 4 microM, and binding is enthalpically favorable and entropically unfavorable. Increasing the number of base-pairs in the DNA stem from three to six decreases binding affinity. These data suggest a conformational selection binding mechanism in which the Fab binds preferentially to the unstructured state of the ligand. In this interpretation, the ligand binding and ligand folding equilibria are coupled, with lower hairpin stability leading to greater effective binding affinity. Thus, pre-organization of the DNA loop into the preferred binding conformation does not play a major role in complexation. Rather, it is argued that the stem of the hairpin serves to reduce the degrees of freedom in the free DNA ligand, thereby limiting the entropic cost attendant to complexation with the Fab.
Collapse
Affiliation(s)
- Zhonghui Ou
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | - Michael T. Henzl
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Bobeck MJ, Cleary J, Beckingham JA, Ackroyd PC, Glick GD. Effect of somatic mutation on DNA binding properties of anti-DNA autoantibodies. Biopolymers 2007; 85:471-80. [PMID: 17252585 DOI: 10.1002/bip.20691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Autoantibodies that bind DNA are a hallmark of systemic lupus erythematosus. A subset of autoantibody*DNA complexes localize to kidney tissue and lead to damage and even death. 11F8, 9F11, and 15B10 are clonally related anti-DNA autoantibodies isolated from an autoimmune mouse. 11F8 binds ssDNA in a sequence-specific manner and causes tissue damage, while 9F11 and 15B10 bind ssDNA non-specifically and are benign. Among these antibodies, DNA binding properties are mediated by five amino acid differences in primary sequence. Thermodynamic and kinetic parameters associated with recognition of structurally different DNA sequences were determined for each antibody to provide insight toward recognition strategies, and to explore a link between binding properties and disease pathogenesis. A model of 11F8 bound to its high affinity consensus sequence provides a foundation for understanding the differences in thermodynamic and kinetic parameters between the three mAbs. Our data suggest that 11F8 utilizes the proposed ssDNA recognition motif including (Y32)V(L), a hydrogen bonding residue at (91)V(L), and an aromatic residue at the tip of the third heavy chain complementarity determining region. Interestingly, a somatic mutation to arginine at (31)V(H) in 11F8 may afford additional binding site contacts including (R31)V(H), (R96)V(H), and (R98)V(H) that could determine specificity.
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | |
Collapse
|
5
|
Bobeck MJ, Rueda D, Walter NG, Glick GD. Structural modeling of sequence specificity by an autoantibody against single-stranded DNA. Biochemistry 2007; 46:6753-65. [PMID: 17503778 DOI: 10.1021/bi700212s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
11F8 is a sequence-specific pathogenic anti-single-stranded (ss)DNA autoantibody isolated from a lupus prone mouse. Site-directed mutagenesis of 11F8 has shown that six binding site residues (R31VH, W33VH, L97VH, R98VH, Y100VH, and Y32VL) contribute 80% of the free energy for complex formation. Mutagenesis results along with intermolecular distances obtained from fluorescence resonance energy transfer were implemented here as restraints to model docking between 11F8 and the sequence-specific ssDNA. The model of the complex suggests that aromatic stacking and two sets of bidentate hydrogen bonds between binding site arginine residues (R31VH and R96VH) and loop nucleotides provide the molecular basis for high affinity and specificity. In part, 11F8 utilizes the same ssDNA binding motif of Y32VL, H91VL, and an aromatic residue in the third complementarity-determining region to recognize thymine-rich sequences as do two anti-ssDNA autoantibodies crystallized in complex with thymine. R31SVH is a dominant somatic mutation found in the J558 germline sequence that is implicated in 11F8 sequence specificity. A model of the mutant R31S11F8.ssDNA complex suggests that different interface contacts occur when serine replaces arginine 31 at the binding site. The modeled contacts between the R31S11F8 mutant and thymine are closely related to those observed in other anti-ssDNA binding antibodies, while we find additional contacts between 11F8 and ssDNA that involve amino acids not utilized by the other antibodies. These data-driven 11F8.ssDNA models provide testable hypotheses concerning interactions that mediate sequence specificity in 11F8 and the effects of somatic mutation on ssDNA recognition.
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
6
|
Bobeck MJ, Glick GD. Role of conformational dynamics in sequence-specific autoantibody•ssDNA recognition. Biopolymers 2007; 85:481-9. [PMID: 17252586 DOI: 10.1002/bip.20692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
11F8 is a sequence-specific monoclonal anti-ssDNA autoantibody isolated from a lupus prone mouse that forms pathogenic complexes with ssDNA, resulting in kidney damage. Prior studies show that specificity is mediated by a somatic mutation from serine at (31)V(H) to arginine. Reversion back to serine in 11F8 resulted in >30-fold decrease in affinity and altered thermodynamic and kinetic parameters for sequence-specific recognition of its cognate ssDNA ligand. Mutagenesis and structural studies suggest that (R31)V(H) contacts ssDNA via a salt bridge and a bidentate hydrogen bond and may further contribute to specificity by altering binding-site conformation. Fluorescence resonance energy transfer experiments were conducted to assess the kinetics of conformational change during 11F8*ssDNA association. The extent of rearrangement between the six complementary determining regions in the 11F8*ssDNA complex with germline serine or somatically mutated arginine at residue 31 of the heavy chain was examined. Our studies show that greater conformational change occurs in five of six complementarity determining regions after the heavy chain germline J558 sequence undergoes mutation to arginine at (31)V(H).
Collapse
Affiliation(s)
- Melissa J Bobeck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
7
|
Kim YR, Kim JS, Lee SH, Lee WR, Sohn JN, Chung YC, Shim HK, Lee SC, Kwon MH, Kim YS. Heavy and Light Chain Variable Single Domains of an Anti-DNA Binding Antibody Hydrolyze Both Double- and Single-stranded DNAs without Sequence Specificity. J Biol Chem 2006; 281:15287-95. [PMID: 16551636 DOI: 10.1074/jbc.m600937200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anti-DNA antibodies (Abs) are of biomedical interest because they are associated with autoimmune diseases in human and mice. Previously we isolated an anti-DNA monoclonal Ab 3D8 from an autoimmune-prone MRL-lpr/lpr mouse. Here we have characterized DNA binding kinetics and hydrolyzing activities of the recombinant single chain variable fragment (scFv) and the single variable domains of heavy chain (VH) and light chain (VL) using various single-stranded (ss) and double-stranded (ds) DNA substrates. All the Abs bound to both ds- and ssDNAs without significant preferential sequence specificity showing scFv higher affinities (KD = approximately 17-74 nm) than VH (KD = approximately 2.4-8.4 microm) and VL (KD = approximately 3.2-72 microm), and efficiently hydrolyzed both ds- and ssDNAs without sequence specificity in a Mg2+-dependent manner, except for the poor activity of 3D8 scFv for ss-(dT)40. Elucidated crystal structure-based His to Ala mutations on the complementarity determining regions of VH (His-H35 --> Ala) and/or VL (His-L94 --> Ala) of 3D8 scFv significantly inhibited the catalytic activities, indicating that the His residues are involved in the catalytic mechanism of 3D8 scFv. However, the DNA hydrolyzing activities of single domain VH and VL were not affected by the mutations, indicative of their different catalytic mechanisms from that of 3D8 scFv. Our results demonstrate single domain Abs with DNase activities for the first time, which might provide new insights into substrate recognition and catalytic mechanisms of anti-DNA Abs.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Antinuclear/chemistry
- Antibodies, Antinuclear/genetics
- Antibodies, Antinuclear/metabolism
- Base Sequence
- Crystallography, X-Ray
- DNA/genetics
- DNA/metabolism
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Humans
- Hydrolysis
- Immunoglobulin Fragments/chemistry
- Immunoglobulin Fragments/genetics
- Immunoglobulin Fragments/metabolism
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Light Chains/chemistry
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/metabolism
- In Vitro Techniques
- Kinetics
- Mice
- Mice, Inbred MRL lpr
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Young-Rim Kim
- Department of Microbiology, Ajou University School of Medicine, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Schuermann JP, Prewitt SP, Davies C, Deutscher SL, Tanner JJ. Evidence for Structural Plasticity of Heavy Chain Complementarity-determining Region 3 in Antibody–ssDNA Recognition. J Mol Biol 2005; 347:965-78. [PMID: 15784256 DOI: 10.1016/j.jmb.2005.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/28/2004] [Accepted: 02/01/2005] [Indexed: 11/19/2022]
Abstract
Anti-DNA antibodies play important roles in the pathogenesis of autoimmune diseases. They also represent a unique and relatively unexplored class of DNA-binding protein. Here, we present a study of conformational changes induced by DNA binding to an anti-ssDNA Fab known as DNA-1. Three crystal structures are reported: a complex of DNA-1 bound to dT3, and two structures of the ligand-free Fab. One of the ligand-free structures was determined from crystals exhibiting perfect hemihedral twinning, and the details of structure determination are provided. Unexpectedly, five residues (H97-H100A) in the apex of heavy chain complementarity-determining region 3 (HCDR3) are disordered in both ligand-free structures. Ligand binding also caused a 2-4A shift of the backbone of Tyr L92 and ordering of the L92 side-chain. In contrast, these residues are highly ordered in the Fab/dT3 complex, where Tyr H100 and Tyr H100A form intimate stacking interactions with DNA bases, and L92 forms the 5' end of the binding site. The structures suggest that HCDR3 is very flexible and adopts multiple conformations in the ligand-free state. These results are discussed in terms of induced fit and pre-existing equilibrium theories of ligand binding. Our results allow new interpretations of existing thermodynamic and mutagenesis data in terms of conformational entropy and the volume of conformational space accessible to HCDR3 in the ligand-free state. In the context of autoimmune disease, plasticity of the ligand-free antibody could provide a mechanism by which anti-DNA antibodies bind diverse host ligands, and thereby contribute to pathogenicity.
Collapse
|
9
|
Schuermann JP, Henzl MT, Deutscher SL, Tanner JJ. Structure of an anti-DNA fab complexed with a non-DNA ligand provides insights into cross-reactivity and molecular mimicry. Proteins 2004; 57:269-78. [PMID: 15340914 DOI: 10.1002/prot.20200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibodies that recognize DNA (anti-DNA) are part of the autoimmune response underlying systemic lupus erythematosus. To better understand molecular recognition by anti-DNA antibodies, crystallographic studies have been performed using an anti-ssDNA antigen-binding fragment (Fab) known as DNA-1. The previously determined structure of a DNA-1/dT5 complex revealed that thymine bases insert into a narrow groove, and that ligand recognition primarily involves the bases of DNA. We now report the 1.75-A resolution structure of DNA-1 complexed with the biological buffer HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid). All three light chain complementarity-determining regions (CDRs) and HCDR3 contribute to binding. The HEPES sulfonate hydrogen bonds to His L91, Asn L50, and to the backbone of Tyr H100 and Tyr H100A. The Tyr side-chains of L32, L92, H100, and H100A form nonpolar contacts with the HEPES ethylene and piperazine groups. Comparison to the DNA-1/dT5 structure reveals that the dual recognition of dT5 and HEPES requires a 13-A movement of HCDR3. This dramatic structural change converts the combining site from a narrow groove, appropriate for the edge-on insertion of thymine bases, to one sufficiently wide to accommodate the HEPES sulfonate and piperazine. Isothermal titration calorimetry verified the association of HEPES with DNA-1 under conditions similar those used for crystallization (2 M ammonium sulfate). Interestingly, the presence of 2 M ammonium sulfate increases the affinities of DNA-1 for both HEPES and dT5, suggesting that non-polar Fab-ligand interactions are important for molecular recognition in highly ionic solvent conditions. The structural and thermodynamic data suggest a molecular mimicry mechanism based on structural plasticity and hydrophobic interactions.
Collapse
Affiliation(s)
- Jonathan P Schuermann
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
10
|
Beckingham JA, Cleary J, Bobeck M, Glick GD. Kinetic analysis of sequence-specific recognition of ssDNA by an autoantibody. Biochemistry 2003; 42:4118-26. [PMID: 12680766 DOI: 10.1021/bi020658k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
11F8 is a pathogenic monoclonal anti-ssDNA autoantibody isolated from a lupus prone mouse. Previous studies established that 11F8 is sequence-specific and identified the thermodynamic and kinetic basis for the specific recognition of ssDNA, and binding site mutations of a single-chain construct reveal that (Y32)LCDR1, (R31)HCDR1, (W33)HCDR1, (R98)HCDR3, (L97)HCDR3, and (Y100)HCDR3 are responsible for approximately 80% of the binding free energy. Here we evaluate the role of these residues along with a group of basic residues (K62, K64, R24, K52) within the context of the binding mechanism. Binding of 11F8 takes place in two steps. In the first step, the overall positive charge of the antigen binding site attracts the negatively charged DNA to form an encounter complex that is stabilized by two salt bridges and a hydrogen bond. The second step is a slow process in which minor conformational changes occur. During this step, aromatic side chains become desolvated, presumably through stacking interactions involving two thymine bases within the DNA recognition epitope. Although the stability of the complex arises primarily from interactions formed in the second step, sequence specificity results from interactions with residues involved in both steps. These studies also show that the way in which 11F8 achieves high affinity sequence-specific binding is more closely related to RNA binding proteins than those that bind DNA and point to strategies for disrupting DNA binding that could prove to be therapeutically useful.
Collapse
Affiliation(s)
- Jennifer A Beckingham
- Department of Chemistry and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|