1
|
Akbar Aly AB, Shanmugaraj B, Ramalingam S. Industrial applications of Phanerochaete chrysosporium lignin-degrading enzymes: current status, production challenges, and future directions. World J Microbiol Biotechnol 2025; 41:171. [PMID: 40341513 DOI: 10.1007/s11274-025-04388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
Phanerochaete chrysosporium (Pc) is a white-rot fungus recognized for its highly efficient lignin-degrading enzymes (LDEs), including lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase. These oxidative enzymes possess transformative capabilities across multiple industrial applications, such as biopulping, biofuel production, bioremediation and for the treatment of industrial wastewater. However, the commercial use of these enzymes is limited due to time-consuming scale-up procedures in native hosts, instability in industrial environments, and high production costs. The recent developments in recombinant expression systems, particularly those employing microbial and plant platforms provide promising opportunities to enhance enzyme yield, stability, and reduce the cost. Despite these advancements, significant challenges remain, which include the formation of inclusion bodies, the need for nutrient and co-factor supplementation, and the development of effective purification strategies. Modern advancements in protein engineering, such as site-directed mutation and in silico approaches, may hold significant promise in addressing the challenges posed by pH optimization, which is prominent in wild-type enzymes. This review examines the current industrial applications of P. chrysosporium ligninolytic enzymes, highlights production bottlenecks in several hosts, and discusses the strategies to enhance their commercial viability of these enzymes.
Collapse
Affiliation(s)
- Abdul Basith Akbar Aly
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Balamurugan Shanmugaraj
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
- Centre for Natural Products and Functional Foods, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
2
|
Nalladiyil A, Sughosh P, Babu GLS, Ramaswami S. Landfill leachate treatment using fungi and fungal enzymes: a review. Biodegradation 2024; 35:225-247. [PMID: 37688749 DOI: 10.1007/s10532-023-10052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Landfill leachate raises a huge risk to human health and the environment as it contains a high concentration of organic and inorganic contaminants, heavy metals, ammonia, and refractory substances. Among leachate treatment techniques, the biological methods are more environmentally benign and less expensive than the physical-chemical treatment methods. Over the last few years, fungal-based treatment processes have become popular due to their ability to produce powerful oxidative enzymes like peroxidases and laccases. Fungi have shown better removal efficiency in terms of color, ammonia, and COD. However, their use in the treatment of leachate is relatively recent and still needs to be investigated. This review article assesses the potential of fungi and fungal-derived enzymes in treating landfill leachate. The review also compares different enzymes involved in the fungal catabolism of organic pollutants and the enzyme degradation mechanisms. The effect of parameters like pH, temperature, contact time, dosage variation, heavy metals and ammonia are discussed. The paper also explores the reactor configuration used in the fungal treatment and the techniques used to improve leachate treatment efficacy, like pretreatment and fungi immobilisation. Finally, the review summarises the limitations and the future direction of work required to adapt the fungal application for leachate treatment on a large scale.
Collapse
Affiliation(s)
- Anusree Nalladiyil
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India.
| | - P Sughosh
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - G L Sivakumar Babu
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
- Department of Civil Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Sreenivasan Ramaswami
- Centre for Sustainable Technologies, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
Torres-Farradá G, Thijs S, Rineau F, Guerra G, Vangronsveld J. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review. J Fungi (Basel) 2024; 10:167. [PMID: 38535176 PMCID: PMC10971306 DOI: 10.3390/jof10030167] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 04/09/2025] Open
Abstract
Industrial development has enhanced the release into the environment of large quantities of chemical compounds with high toxicity and limited prospects of degradation. The pollution of soil and water with xenobiotic chemicals has become a major ecological issue; therefore, innovative treatment technologies need to be explored. Fungal bioremediation is a promising technology exploiting their metabolic potential to remove or lower the concentrations of xenobiotics. In particular, white rot fungi (WRF) are unique microorganisms that show high capacities to degrade a wide range of toxic xenobiotic compounds such as synthetic dyes, chlorophenols, polychlorinated biphenyls, organophosphate pesticides, explosives and polycyclic aromatic hydrocarbons (PAHs). In this review, we address the main classes of enzymes involved in the fungal degradation of organic pollutants, the main mechanisms used by fungi to degrade these chemicals and the suitability of fungal biomass or extracellular enzymes for bioremediation. We also exemplify the role of several fungi in degrading pollutants such as synthetic dyes, PAHs and emerging pollutants such as pharmaceuticals and perfluoroalkyl/polyfluoroalkyl substances (PFASs). Finally, we discuss the existing current limitations of using WRF for the bioremediation of polluted environments and future strategies to improve biodegradation processes.
Collapse
Affiliation(s)
- Giselle Torres-Farradá
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Calle 25 No. 455. Vedado, Habana 10400, Cuba;
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590 Hasselt, Belgium; (S.T.); (F.R.); (J.V.)
| | - Francois Rineau
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590 Hasselt, Belgium; (S.T.); (F.R.); (J.V.)
| | - Gilda Guerra
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Calle 25 No. 455. Vedado, Habana 10400, Cuba;
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, Diepenbeek, B-3590 Hasselt, Belgium; (S.T.); (F.R.); (J.V.)
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Marie Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
4
|
Spasojević D, Prodanović O, Mutavdžić D, Sekuljica N, Jovanović J, Maksimović V, Radotić K. Two-way reaction of versatile peroxidase with artificial lignin enhances low-molecular weight fractions. Biotechnol J 2023; 18:e2300312. [PMID: 37688491 DOI: 10.1002/biot.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
In recent years, versatile peroxidase (VP) has emerged as a promising enzyme for biotechnological applications, as it can oxidize lignin without the external mediators. To gain insights into the breakdown process of artificial lignin by VP, reaction between the two was studied. Degradation products were fractionated using ultrafiltration and analyzed by RP- high performance liquid chromatography with mass detection (HPLC-MS) chromatography. Four fractions were obtained based on their molecular sizes: >10, 3-10, 1-3, and <1 kDa. Interestingly, while VP did not significantly alter the yields of these fractions, the chromatograms revealed the presence of oligomers with different molecular weights (MWs) resulting from the enzymatic activity. The VP exhibits a dual role in its enzymatic activity: both degrading and synthesizing these oligomers. This was confirmed by principal component analysis (PCA). The positive correlations were found between certain oligomers (D1 and D2, D5 and D6, as well as between D7, D10, T2, and T4), suggesting their simultaneous degradation. On the other hand, a negative correlation was found between the monomer and some oligomers (D7, D10, T2, and T4), indicating the decomposition of these oligomers into monomers. These findings shed light on the intricate interplay between VP and artificial lignin, offering valuable insights for potential applications in lignin valorization.
Collapse
Affiliation(s)
- Dragica Spasojević
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Olivera Prodanović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nataša Sekuljica
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Jelena Jovanović
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Ledray AP, Dwaraknath S, Chakarawet K, Sponholtz MR, Merchen C, Van Stappen C, Rao G, Britt RD, Lu Y. Tryptophan Can Promote Oxygen Reduction to Water in a Biosynthetic Model of Heme Copper Oxidases. Biochemistry 2023; 62:388-395. [PMID: 36215733 DOI: 10.1021/acs.biochem.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heme-copper oxidases (HCOs) utilize tyrosine (Tyr) to donate one of the four electrons required for the reduction of O2 to water in biological respiration, while tryptophan (Trp) is speculated to fulfill the same role in cyt bd oxidases. We previously engineered myoglobin into a biosynthetic model of HCOs and demonstrated the critical role that Tyr serves in the oxygen reduction reaction (ORR). To address the roles of Tyr and Trp in these oxidases, we herein report the preparation of the same biosynthetic model with the Tyr replaced by Trp and further demonstrate that Trp can also promote the ORR, albeit with lower activity. An X-ray crystal structure of the Trp variant shows a hydrogen-bonding network involving two water molecules that are organized by Trp, similar to that in the Tyr variant, which is absent in the crystal structure with the native Phe residue. Additional electron paramagnetic resonance measurements are consistent with the formation of a Trp radical species upon reacting with H2O2. We attribute the lower activity of the Trp variant to Trp's higher reduction potential relative to Tyr. Together, these findings demonstrate, for the first time, that Trp can indeed promote the ORR and provides a structural basis for the observation of varying activities. The results support a redox role for the conserved Trp in bd oxidase while suggesting that HCOs use Tyr instead of Trp to achieve higher reactivity.
Collapse
Affiliation(s)
- Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sudharsan Dwaraknath
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Madeline R Sponholtz
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Claire Merchen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Pastore AJ, Montoya A, Kamat M, Basso KB, Italia JS, Chatterjee A, Drosou M, Pantazis DA, Angerhofer A. Selective incorporation of 5-hydroxytryptophan blocks long range electron transfer in oxalate decarboxylase. Protein Sci 2023; 32:e4537. [PMID: 36482787 PMCID: PMC9801070 DOI: 10.1002/pro.4537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.
Collapse
Affiliation(s)
| | - Alvaro Montoya
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Manasi Kamat
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - Kari B. Basso
- Department of ChemistryUniversity of FloridaGainesvilleFloridaUSA
| | - James S. Italia
- Department of ChemistryBoston CollegeChestnut HillMassachusettsUSA
| | | | - Maria Drosou
- Max‐Planck‐Institut für KohlenforschungMülheim an der RuhrGermany
| | | | | |
Collapse
|
7
|
Valle-Altamirano RG, Baratto MC, Badillo-Ramírez I, Gasteazoro F, Pogni R, Saniger JM, Valderrama B. Identification of Fe( iii)–OH species as a catalytic intermediate in plant peroxidases at high H 2O 2 concentration. NEW J CHEM 2022. [DOI: 10.1039/d1nj04837f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The structure for compound III formed after exposure of plant heme peroxidases to excess H2O2 seems to be a hydroxylated form, providing new evidence for understanding the structural basis of the substrate-induced suicidal behavior of these enzymes.
Collapse
Affiliation(s)
- Rodolfo G. Valle-Altamirano
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 62210 Morelos, Mexico
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Francisco Gasteazoro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 62210 Morelos, Mexico
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 53100 Siena, Italy
| | - José M. Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Brenda Valderrama
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 62210 Morelos, Mexico
| |
Collapse
|
8
|
Removal of Aflatoxin B 1 by Edible Mushroom-Forming Fungi and Its Mechanism. Toxins (Basel) 2021; 13:toxins13090668. [PMID: 34564672 PMCID: PMC8473272 DOI: 10.3390/toxins13090668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Aflatoxins (AFs) are biologically active toxic metabolites, which are produced by certain toxigenic Aspergillus sp. on agricultural crops. In this study, five edible mushroom-forming fungi were analyzed using high-performance liquid chromatography fluorescence detector (HPLC-FLD) for their ability to remove aflatoxin B1 (AFB1), one of the most potent naturally occurring carcinogens known. Bjerkandera adusta and Auricularia auricular-judae showed the most significant AFB1 removal activities (96.3% and 100%, respectively) among five strains after 14-day incubation. The cell lysate from B. adusta exhibited higher AFB1 removal activity (35%) than the cell-free supernatant (13%) after 1-day incubation and the highest removal activity (80%) after 5-day incubation at 40 °C. In addition, AFB1 analyses using whole cells, cell lysates, and cell debris from B. adusta showed that cell debris had the highest AFB1 removal activity at 5th day (95%). Moreover, exopolysaccharides from B. adusta showed an increasing trend (24–48%) similar to whole cells and cell lysates after 5- day incubation. Our results strongly suggest that AFB1 removal activity by whole cells was mainly due to AFB1 binding onto cell debris during early incubation and partly due to binding onto cell lysates along with exopolysaccharides after saturation of AFB1 binding process onto cell wall components.
Collapse
|
9
|
Trapping a cross-linked lysine-tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB. Proc Natl Acad Sci U S A 2021; 118:2101571118. [PMID: 34001621 DOI: 10.1073/pnas.2101571118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The radical S-adenosylmethionine (rSAM) enzyme SuiB catalyzes the formation of an unusual carbon-carbon bond between the sidechains of lysine (Lys) and tryptophan (Trp) in the biosynthesis of a ribosomal peptide natural product. Prior work on SuiB has suggested that the Lys-Trp cross-link is formed via radical electrophilic aromatic substitution (rEAS), in which an auxiliary [4Fe-4S] cluster (AuxI), bound in the SPASM domain of SuiB, carries out an essential oxidation reaction during turnover. Despite the prevalence of auxiliary clusters in over 165,000 rSAM enzymes, direct evidence for their catalytic role has not been reported. Here, we have used electron paramagnetic resonance (EPR) spectroscopy to dissect the SuiB mechanism. Our studies reveal substrate-dependent redox potential tuning of the AuxI cluster, constraining it to the oxidized [4Fe-4S]2+ state, which is active in catalysis. We further report the trapping and characterization of an unprecedented cross-linked Lys-Trp radical (Lys-Trp•) in addition to the organometallic Ω intermediate, providing compelling support for the proposed rEAS mechanism. Finally, we observe oxidation of the Lys-Trp• intermediate by the redox-tuned [4Fe-4S]2+ AuxI cluster by EPR spectroscopy. Our findings provide direct evidence for a role of a SPASM domain auxiliary cluster and consolidate rEAS as a mechanistic paradigm for rSAM enzyme-catalyzed carbon-carbon bond-forming reactions.
Collapse
|
10
|
A Versatile Peroxidase from the Fungus Bjerkandera adusta Confers Abiotic Stress Tolerance in Transgenic Tobacco Plants. PLANTS 2021; 10:plants10050859. [PMID: 33922867 PMCID: PMC8146367 DOI: 10.3390/plants10050859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
White-rot fungi are efficient lignin degraders due to the secretion of lignin peroxidase, manganese peroxidase, laccase, and versatile peroxidase (VP) on decayed wood. The VP is a high-redox-potential enzyme and could be used to detoxify reactive oxygen species (ROS), which accumulate in plants during biotic and abiotic stresses. We cloned the VP gene and expressed it via the Agrobacterium transformation procedure in transgenic tobacco plants to assay their tolerance to different abiotic stress conditions. Thirty independent T2 transgenic VP lines overexpressing the fungal Bjerkandera adustaVP gene were selected on kanamycin. The VP22, VP24, and VP27 lines showed significant manganese peroxidase (MnP) activity. The highest was VP22, which showed 10.87-fold more manganese peroxidase activity than the wild-type plants and led to a 34% increase in plant height and 28% more biomass. The VP22, VP24, and VP27 lines showed enhanced tolerance to drought, 200 mM NaCl, and 400 mM sorbitol. Also, these transgenics displayed significant tolerance to methyl viologen, an active oxygen-generating compound. The present data indicate that overproducing the VP gene in plants increases significantly their biomass and the abiotic stress tolerance. The VP enzyme is an effective biotechnological tool to protect organisms against ROS. In transgenic tobacco plants, it improves drought, salt, and oxidative stress tolerance. Thus, the VP gene represents a great potential for obtaining stress-tolerant crops.
Collapse
|
11
|
Huang L, Wang SL, Xu YL, Yu HF, Zhan ZJ, Shan WG, Wang JW, Ying YM. Induced Production of Tremulane Sesquiterpenoids in Bjerkandera adusta by Chemical Epigenetic Modification. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03140-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Pompe N, Chen J, Illarionov B, Panter S, Fischer M, Bacher A, Weber S. Methyl groups matter: Photo-CIDNP characterizations of the semiquinone radicals of FMN and demethylated FMN analogs. J Chem Phys 2019; 151:235103. [PMID: 31864274 DOI: 10.1063/1.5130557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this contribution, the relative hyperfine couplings are determined for the 1H nuclei of the flavin mononucleotide (FMN) radical in an aqueous environment. In addition, three structural analogs with different methylation patterns are characterized and the influence of the substituents at the isoalloxazine moiety on the electronic structure of the radicals is explored. By exploiting nuclear hyperpolarization generated via the photo-CIDNP (chemically induced dynamic nuclear polarization) effect, it is possible to study the short-lived radical species generated by in situ light excitation. Experimental data are extracted by least-squares fitting and supported by quantum chemical calculations and published values from electron paramagnetic resonance and electron-nuclear double resonance. Furthermore, mechanistic details of the photoreaction of the investigated flavin analogs with l-tryptophan are derived from the photo-CIDNP spectra recorded at different pH values. Thereby, the neutral and anionic radicals of FMN and three structural analogs are, for the first time, characterized in terms of their electronic structure in an aqueous environment.
Collapse
Affiliation(s)
- Nils Pompe
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Jing Chen
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Sabrina Panter
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Adelbert Bacher
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Sánchez-Alejandro F, Baratto MC, Basosi R, Graeve O, Vazquez-Duhalt R. Addition of new catalytic sites on the surface of versatile peroxidase for enhancement of LRET catalysis. Enzyme Microb Technol 2019; 131:109429. [PMID: 31615668 DOI: 10.1016/j.enzmictec.2019.109429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 09/10/2019] [Indexed: 11/19/2022]
Abstract
Versatile peroxidase (VP) from Bjerkandera adusta is an enzyme able to oxidize bulky and high-redox substrates trough a Long-Range Electron Transfer (LRET) pathway. In this study, the introduction of radical-forming aromatic amino acids by chemical modification of the protein surface was performed, and the catalytic implications of these additional surface active-sites on the oxidation of 2,6-dimethylphenol, Mn2+ and Remazol Brilliant Blue R (RBBR) were determined. These three different substrates are oxidized in different active-sites of enzyme molecule, of which the high redox RBBR the only one that is transformed by an external radical formed on the protein surface. Both catalytic constants kcat and KM were significantly affected by the chemical modifications. Tryptophan- and tyrosine-modified VP showed higher catalytic transformation than the unmodified enzyme for RBBR, while the Mn2+ oxidation was significantly reduced by all chemical modifications. Electron Paramagnetic Resonance studies demonstrated the formation of additional protein-based radicals after the chemical modification with radical-forming amino acids. In addition, the catalytic rate of the LRET-mediated transformation showed a good correlation with the ionization energy of the additional amino acid on the protein surface.
Collapse
Affiliation(s)
- Flor Sánchez-Alejandro
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Riccardo Basosi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Olivia Graeve
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico.
| |
Collapse
|
14
|
Silva-Torres O, Bojorquez-Vazquez L, Simakov A, Vazquez-Duhalt R. Enhanced laccase activity of biocatalytic hybrid copper hydroxide nanocages. Enzyme Microb Technol 2019; 128:59-66. [DOI: 10.1016/j.enzmictec.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
15
|
Zhan ZJ, Tian T, Xu YL, Yu HF, Zhang CX, Zhang ZD, Tang QY, Shan WG, Ying YM. Biotransformation of Huperzine B by a Fungal Endophyte of Huperzia serrata. Chem Biodivers 2019; 16:e1900299. [PMID: 31287220 DOI: 10.1002/cbdv.201900299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 11/11/2022]
Abstract
The biotransformation of huperzine B (hupB), one of the characteristic bioactive constituents of the medicinal plant Huperzia serrata, by a fungal endophyte of the host plant was studied. One new compound, 8α,15α-epoxyhuperzine B (1), along with two known oxygenated hupB analogs, 16-hydroxyhuperzine B (2) and carinatumin B (3), was isolated and identified. The structures of all the isolates were deduced by spectroscopic methods including NMR, MS, IR, and UV spectra. The known compounds 2 and 3 were obtained from a microbial source for the first time. To the best of our knowledge, it is the first report on the microbial transformation of hupB and would facilitate further structural modification of hupB by chemo-enzymatic method. In the LPS-induced neuro-inflammation injury assay, 8α,15α-epoxyhuperzine B (1) exhibited moderate neuroprotective activity by increasing the viability of U251 cell lines with an EC50 of 40.1 nm.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ting Tian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yi-Lian Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hang-Fei Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Cai-Xue Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhi-Dong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, P. R. China
| | - Qi-Yong Tang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, P. R. China
| | - Wei-Guang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
16
|
Chaplin AK, Chicano TM, Hampshire BV, Wilson MT, Hough MA, Svistunenko DA, Worrall JAR. An Aromatic Dyad Motif in Dye Decolourising Peroxidases Has Implications for Free Radical Formation and Catalysis. Chemistry 2019; 25:6141-6153. [PMID: 30945782 DOI: 10.1002/chem.201806290] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 01/27/2023]
Abstract
Dye decolouring peroxidases (DyPs) are the most recent class of heme peroxidase to be discovered. On reacting with H2 O2 , DyPs form a high-valent iron(IV)-oxo species and a porphyrin radical (Compound I) followed by stepwise oxidation of an organic substrate. In the absence of substrate, the ferryl species decays to form transient protein-bound radicals on redox active amino acids. Identification of radical sites in DyPs has implications for their oxidative mechanism with substrate. Using a DyP from Streptomyces lividans, referred to as DtpA, which displays low reactivity towards synthetic dyes, activation with H2 O2 was explored. A Compound I EPR spectrum was detected, which in the absence of substrate decays to a protein-bound radical EPR signal. Using a newly developed version of the Tyrosyl Radical Spectra Simulation Algorithm, the radical EPR signal was shown to arise from a pristine tyrosyl radical and not a mixed Trp/Tyr radical that has been widely reported in DyP members exhibiting high activity with synthetic dyes. The radical site was identified as Tyr374, with kinetic studies inferring that although Tyr374 is not on the electron-transfer pathway from the dye RB19, its replacement with a Phe does severely compromise activity with other organic substrates. These findings hint at the possibility that alternative electron-transfer pathways for substrate oxidation are operative within the DyP family. In this context, a role for a highly conserved aromatic dyad motif is discussed.
Collapse
Affiliation(s)
- Amanda K Chaplin
- Present address: Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Tadeo Moreno Chicano
- Present address: Department of Molecular Mechanisms, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Bethany V Hampshire
- Present address: Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
17
|
Kopka B, Magerl K, Savitsky A, Davari MD, Röllen K, Bocola M, Dick B, Schwaneberg U, Jaeger KE, Krauss U. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep 2017; 7:13346. [PMID: 29042655 PMCID: PMC5645311 DOI: 10.1038/s41598-017-13420-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.
Collapse
Affiliation(s)
- Benita Kopka
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Kathrin Magerl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.,IBG-1: Biotechnologie, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.
| |
Collapse
|
18
|
Affiliation(s)
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain
| |
Collapse
|
19
|
Busse N, Kraume M, Czermak P. Modeling the design and operational mode of a continuous membrane reactor for enzymatic lignin modification. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Abstract
The global push toward an efficient and economical biobased economy has driven research to develop more cost-effective applications for the entirety of plant biomass, including lignocellulosic crops. As discussed elsewhere (Karlsson M, Atanasova L, Funck Jensen D, Zeilinger S, in Heitman J et al. [ed], Tuberculosis and the Tubercle Bacillus, 2nd ed, in press), significant progress has been made in the use of polysaccharide fractions from lignocellulose, cellulose, and various hemicellulose types. However, developing processes for use of the lignin fraction has been more challenging. In this chapter, we discuss characteristics of lignolytic enzymes and the fungi that produce them as well as potential and current uses of lignin-derived products.
Collapse
|
21
|
Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Abstract
An artificial peroxidase with thermal tolerance and high catalytic activity has been successfully prepared by mutagenesis of an electron transfer protein, cytochrome c552 from Thermus thermophilus. The mutant enzymes were rationally designed based on the general peroxidase mechanism and spectroscopic analyses of an active intermediate formed in the catalytic reaction. Stopped flow UV-vis spectroscopy and EPR spectroscopy with a rapid freezing sample technique revealed that the initial double mutant, V49D/M69A, which was designed to reproduce the peroxidase mechanism, formed an active oxo-ferryl heme intermediate with a protein radical predominantly localized on Tyr45 during the catalytic reaction. The magnetic power saturation measurement obtained from EPR studies showed little interaction between the oxo-ferryl heme and the tyrosyl radical. Kinetics studies indicated that the isolated oxo-ferryl heme component in the active intermediate was a possible cause of heme degradation during the reaction with H2O2. Strong interaction between the oxo-ferryl heme and the radical was achieved by replacing Tyr45 with tryptophan (resulting in the Y45W/V49D/M69A mutant), which was similar to a tryptophanyl radical found in active intermediates of some catalase-peroxidases. Compared to the protein radical intermediates of V49D/M69A mutant, those of the Y45W/V49D/M69A mutant showed higher reactivity to an organic substrate than to H2O2. The Y45W/V49D/M69A mutant exhibited improved peroxidase activity and thermal tolerance.
Collapse
Affiliation(s)
- Y Watanabe
- Research Center of Materials Science, Nagoya University, Nagoya, Japan
| | - H Nakajima
- Graduate School of Science, Osaka City University, Osaka, Japan.
| |
Collapse
|
23
|
Dongare P, Maji S, Hammarström L. Direct Evidence of a Tryptophan Analogue Radical Formed in a Concerted Electron−Proton Transfer Reaction in Water. J Am Chem Soc 2016; 138:2194-9. [DOI: 10.1021/jacs.5b08294] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prateek Dongare
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Somnath Maji
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Leif Hammarström
- Department of Chemistry,
Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| |
Collapse
|
24
|
Sánchez-Alejandro F, Juarez-Moreno K, Baratto MC, Basosi R, Vazquez-Duhalt R. Tryptophan-surface modification of versatile peroxidase from Bjerkandera adusta enhances its catalytic performance. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Baratto MC, Sinicropi A, Linde D, Sáez-Jiménez V, Sorace L, Ruiz-Duenas FJ, Martinez AT, Basosi R, Pogni R. Redox-Active Sites in Auricularia auricula-judae Dye-Decolorizing Peroxidase and Several Directed Variants: A Multifrequency EPR Study. J Phys Chem B 2015; 119:13583-92. [PMID: 26120933 DOI: 10.1021/acs.jpcb.5b02961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peroxide-activated Auricularia auricula-judae dye-decolorizing peroxidase (DyP) forms a mixed Trp377 and Tyr337 radical, the former being responsible for oxidation of the typical DyP substrates (Linde et al. Biochem. J., 2015, 466, 253-262); however, a pure tryptophanyl radical EPR signal is detected at pH 7 (where the enzyme is inactive), in contrast with the mixed signal observed at pH for optimum activity, pH 3. On the contrary, the presence of a second tyrosine radical (at Tyr147) is deduced by a multifrequency EPR study of a variety of simple and double-directed variants (including substitution of the above and other tryptophan and tyrosine residues) at different freezing times after their activation by H2O2 (at pH 3). This points out that subsidiary long-range electron-transfer pathways enter into operation when the main pathway(s) is removed by directed mutagenesis, with catalytic efficiencies progressively decreasing. Finally, self-reduction of the Trp377 neutral radical is observed when reaction time (before freezing) is increased in the absence of reducing substrates (from 10 to 60 s). Interestingly, the tryptophanyl radical is stable in the Y147S/Y337S variant, indicating that these two tyrosine residues are involved in the self-reduction reaction.
Collapse
Affiliation(s)
- Maria Camilla Baratto
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Adalgisa Sinicropi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Dolores Linde
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Verónica Sáez-Jiménez
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Lorenzo Sorace
- Department of Chemistry, "Ugo Schiff" and INSTM RU, University of Florence , 50019 Sesto Fiorentino, Florence, Italy
| | | | - Angel T Martinez
- Centro de Investigaciones Biológicas, CSIC , Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Riccardo Basosi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , I-53100 Siena, Italy
| |
Collapse
|
26
|
Pozdnyakova NN, Jarosz-Wilkolazka A, Polak J, Grąz M, Turkovskaya OV. Decolourisation of anthraquinone-and anthracene-type dyes by versatile peroxidases frombjerkandera fumosa and pleurotus ostreatusD1. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1060227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Baratto MC, Juarez-Moreno K, Pogni R, Basosi R, Vazquez-Duhalt R. EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8683-8692. [PMID: 25567062 DOI: 10.1007/s11356-014-4051-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The mechanisms of industrial dye transformation by versatile peroxidase were elucidated. Purified versatile peroxidase from Bjerkandera adusta was able to decolorize different classes of dyes including azo and phthalocyanines, but unable to transform any of the anthraquinones tested. Kinetic constants for selected dyes were determined and the transformation products were analyzed by EPR spectroscopy and mass spectrometry. The EPR and MS analyses of the enzymatic decolorization products showed the cleavage of the azo bond in azo dyes and the total disruption of the phthalocyaninic ring in phthalocyanine dyes. The EPR analysis on two copper-containing dyes, reactive violet 5 (azo) and reactive blue 72 (phthalocyanine), showed that the transformation can or not break the metal-ion coordination bond according the dye nature. The role of the catalytic Trp172 in the dye transformation by a long-range electron transfer pathway was confirmed and the oxidation mechanisms are proposed and discussed.
Collapse
Affiliation(s)
- Maria Camilla Baratto
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
28
|
Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study. Biochem J 2015; 466:253-62. [PMID: 25495127 PMCID: PMC4357238 DOI: 10.1042/bj20141211] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H₂O₂-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (k(cat) > 200 s⁻¹) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 k(cat) ~20 s⁻¹) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
Collapse
|
29
|
Yu W, Liu W, Huang H, Zheng F, Wang X, Wu Y, Li K, Xie X, Jin Y. Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. PLoS One 2014; 9:e110319. [PMID: 25333297 PMCID: PMC4204856 DOI: 10.1371/journal.pone.0110319] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
Saccharomonospora viridis is a thermophilic actinomycete that may have biotechnological applications because of its dye decolorizing activity, though the enzymatic oxidative system responsible for this activity remains elusive. Bioinformatic analysis revealed a DyP-type peroxidase gene in the genome of S. viridis DSM 43017 with sequence similarity to peroxidase from dye-decolorizing microbes. This gene, svidyp, consists of 1,215 bp encoding a polypeptide of 404 amino acids. The gene encoding SviDyP was cloned, heterologously expressed in Escherichia coli, and then purified. The recombinant protein could efficiently decolorize several triarylmethane dyes, anthraquinonic and azo dyes under neutral to alkaline conditions. The optimum pH and temperature for SviDyP was pH 7.0 and 70°C, respectively. Compared with other DyP-type peroxidases, SviDyP was more active at high temperatures, retaining>63% of its maximum activity at 50-80°C. It also showed broad pH adaptability (>35% activity at pH 4.0-9.0) and alkali-tolerance (>80% activity after incubation at pH 5-10 for 1 h at 37°C), and was highly thermostable (>60% activity after incubation at 70°C for 2 h at pH 7.0). SviDyP had an accelerated action during the biobleaching of eucalyptus kraft pulp, resulting in a 21.8% reduction in kappa number and an increase of 2.98% (ISO) in brightness. These favorable properties make SviDyP peroxidase a promising enzyme for use in the pulp and paper industries.
Collapse
Affiliation(s)
- Wangning Yu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Weina Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Huoqing Huang
- Feed Research Institute Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Fei Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Xiaoyu Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yuying Wu
- College of Materials Science and Technology, Beijing Forestry University, Beijing, PR China
| | - Kangjia Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Xiangming Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| | - Yi Jin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
30
|
Thanh Mai Pham L, Eom MH, Kim YH. Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium. Enzyme Microb Technol 2014; 61-62:48-54. [DOI: 10.1016/j.enzmictec.2014.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 11/24/2022]
|
31
|
Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: a novel peroxidase activation mechanism. Biochem J 2013; 452:575-84. [DOI: 10.1042/bj20130251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine–VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine–VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.
Collapse
|
32
|
Bernini C, Andruniów T, Olivucci M, Pogni R, Basosi R, Sinicropi A. Effects of the Protein Environment on the Spectral Properties of Tryptophan Radicals in Pseudomonas aeruginosa Azurin. J Am Chem Soc 2013; 135:4822-33. [DOI: 10.1021/ja400464n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Caterina Bernini
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Tadeusz Andruniów
- Quantum Chemistry and Molecular
Modelling Lab, Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Massimo Olivucci
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling Green, Ohio
43403, United States
| | - Rebecca Pogni
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Riccardo Basosi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Adalgisa Sinicropi
- Dipartimento di Biotecnologie,
Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
33
|
Pozdnyakova N, Makarov O, Chernyshova M, Turkovskaya O, Jarosz-Wilkolazka A. Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity. Enzyme Microb Technol 2012. [PMID: 23199738 DOI: 10.1016/j.enzmictec.2012.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inhibitor and substrate specificities of versatile peroxidase from Bjerkandera fumosa (VPBF) were studied. Two different effects were found: NaN(3), Tween-80, anthracene, and fluorene decreased the activity of VPBF, but p-aminobenzoic acid increased it. A mixed mechanism of effector influence on the activity of this enzyme was shown. The catalytic properties of VPBF in the oxidation of mono- and polycyclic aromatic compounds were studied also. 2,7-Diaminofluorene, ABTS, veratryl alcohol, and syringaldazine can be oxidized by VPBF in two ways: either directly by the enzyme or by diffusible chelated Mn(3+) as an oxidizing agent. During VPBF oxidation of 2,7-diaminofluorene, both with and without Mn(2+), biphasic kinetics with apparent saturation in both micromolar and millimolar ranges were obtained. In the case of ABTS, inhibition of VPBF activity by an excess of substrate was observed. Direct oxidation of p-aminobenzoic acid by versatile peroxidase was found for the first time. The oxidation of three- and four-ring PAHs by VPBF was investigated, and the oxidation of anthracene, phenanthrene, fluorene, pyrene, chrysene, and fluoranthene was shown. The products of PAH oxidation (9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone) catalyzed by VPBF were identified.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia.
| | | | | | | | | |
Collapse
|
34
|
1H CIDNP study of the kinetics and mechanism of the reversible photoinduced oxidation of tryptophyl-tryptophan dipeptide in aqueous solutions. Russ Chem Bull 2012. [DOI: 10.1007/s11172-011-0396-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Kinetic and thermodynamic characterization of the functional properties of a hybrid versatile peroxidase using isothermal titration calorimetry: Insight into manganese peroxidase activation and lignin peroxidase inhibition. Biochimie 2012; 94:1221-31. [PMID: 22586704 DOI: 10.1016/j.biochi.2012.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Isothermal titration calorimetry (ITC) was developed for measuring lignin peroxidase (LiP) and manganese peroxidase (MnP) activities of versatile peroxidase (VP) from Bjerkandera adusta. Developing an ITC approach provided an alternative to colorimetric methods that enabled reaction kinetics to be accurately determined. Although VP from Bjerkandera adjusta is a hybrid enzyme, specific conditions of [Mn+2] and pH were defined that limited activity to either LiP or MnP activities, or enabled both to be active simultaneously. MnP activity was found to be more efficient than LiP activity, with activity increasing with increasing concentrations of Mn+2. These properties of MnP were explained by a second metal binding site involved in homotropic substrate (Mn+2) activation. The activation of MnP was also accompanied by a decrease in both activation energy and substrate (Mn) affinity, reflecting a flexible enzyme structure. In contrast to MnP activity, LiP activity was inhibited by high dye (substrate) concentrations arising from uncompetitive substrate inhibition caused by substrate binding to a site distinct from the catalytic site. Our study provides a new level of understanding about the mechanism of substrate regulation of catalysis in VP from B. adjusta, providing insight into a class of enzyme, hybrid class II peroxidases, for which little experimental data is available.
Collapse
|
36
|
Chen X, Dai H, Li J, Huang X, Wei Z. The Effects of Biological Environments on the Electron-Relay Functionality of Tryptophan Residues in Proteins. Chemphyschem 2011; 13:183-92. [DOI: 10.1002/cphc.201100713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Indexed: 11/06/2022]
|
37
|
Stoll S, Shafaat HS, Krzystek J, Ozarowski A, Tauber MJ, Kim JE, Britt RD. Hydrogen bonding of tryptophan radicals revealed by EPR at 700 GHz. J Am Chem Soc 2011; 133:18098-101. [PMID: 22007694 PMCID: PMC3251908 DOI: 10.1021/ja208462t] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Redox-active tryptophans are important in biological electron transfer and redox biochemistry. Proteins can tune the electron transfer kinetics and redox potentials of tryptophan via control of the protonation state and the hydrogen-bond strength. We examine the local environment of two neutral tryptophan radicals (Trp108 on the solvent-exposed surface and Trp48 buried in the hydrophobic core) in two azurin variants. Ultrahigh-field EPR spectroscopy at 700 GHz and 25 T allowed complete resolution of all of the principal components of the g tensors of the two radicals and revealed significant differences in the g tensor anisotropies. The spectra together with (2)H ENDOR spectra and supporting DFT calculations show that the g tensor anisotropy is directly diagnostic of the presence or absence as well as the strength of a hydrogen bond to the indole nitrogen. The approach is a powerful one for identifying and characterizing hydrogen bonds that are critical in the regulation of tryptophan-assisted electron transfer and tryptophan-mediated redox chemistry in proteins.
Collapse
Affiliation(s)
- Stefan Stoll
- Department of Chemistry, University of California Davis, Davis California 95616, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - J. Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee Florida 32310, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee Florida 32310, United States
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093, United States
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis California 95616, United States
| |
Collapse
|
38
|
Bernini C, Pogni R, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Sinicropi A. EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level. Phys Chem Chem Phys 2011; 13:5078-98. [DOI: 10.1039/c0cp02151b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
CHEN M, YAO S, ZHANG H, LIANG X. Purification and Characterization of a Versatile Peroxidase from Edible Mushroom Pleurotus eryngii. Chin J Chem Eng 2010. [DOI: 10.1016/s1004-9541(09)60134-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Ayala M, Batista CV, Vazquez-Duhalt R. Heme destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago. J Biol Inorg Chem 2010; 16:63-8. [DOI: 10.1007/s00775-010-0702-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/27/2010] [Indexed: 11/30/2022]
|
41
|
Shafaat HS, Leigh BS, Tauber MJ, Kim JE. Spectroscopic Comparison of Photogenerated Tryptophan Radicals in Azurin: Effects of Local Environment and Structure. J Am Chem Soc 2010; 132:9030-9. [DOI: 10.1021/ja101322g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hannah S. Shafaat
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Brian S. Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| | - Judy E. Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
42
|
Davis MF, Bobay BG, Franzen S. Determination of separate inhibitor and substrate binding sites in the dehaloperoxidase-hemoglobin from Amphitrite ornata. Biochemistry 2010; 49:1199-206. [PMID: 20067301 DOI: 10.1021/bi9018576] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dehaloperoxidase-hemoglobin (DHP A) is a dual function protein found in the terrebellid polychaete Amphitrite ornata. A. ornata is an annelid, which inhabits estuary mudflats with other polychaetes that secrete a range of toxic brominated phenols. DHP A is capable of binding and oxidatively dehalogenating some of these compounds. DHP A possesses the ability to bind halophenols in a distinct, internal distal binding pocket. Since its discovery, the distal binding pocket has been reported as the sole binding location for halophenols; however, data herein suggest a distinction between inhibitor (monohalogenated phenol) and substrate (trihalogenated phenol) binding locations. Backbone (13)Calpha, (13)Cbeta, carbonyl (13)C, amide (1)H, and amide (15)N resonance assignments have been made, and various halophenols were titrated into the protein. (1)H-(15)N HSQC experiments were collected at stoichiometric intervals during each titration, and binding locations specific for mono- and trihalogenated phenols have been identified. Titration of monohalogenated phenol induced primary changes around the distal binding pocket, while introduction of trihalogenated phenols created alterations of the distal histidine and the local area surrounding W120, a structural region that corresponds to a possible dimer interface region recently observed in X-ray crystal structures of DHP A.
Collapse
Affiliation(s)
- Michael F Davis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | |
Collapse
|
43
|
Yu MA, Egawa T, Yeh SR, Rousseau DL, Gerfen GJ. EPR characterization of ascorbyl and sulfur dioxide anion radicals trapped during the reaction of bovine Cytochrome c Oxidase with molecular oxygen. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 203:213-219. [PMID: 20056464 PMCID: PMC6446898 DOI: 10.1016/j.jmr.2009.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
The reaction intermediates of reduced bovine Cytochrome c Oxidase (CcO) were trapped following its reaction with oxygen at 50 micros-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical (SO2(-.)), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2(-.) radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of g(x)=2.0068, g(y)=2.0066, and g(z)=2.0023. The SO2(-.) radical has rhombic symmetry with g-values of g(x)=2.0089, g(y)=2.0052, and g(z)=2.0017. When the contributions from the ascorbyl and SO2(-.) radicals were removed, no protein-based radical on CcO could be identified in the EPR spectra.
Collapse
|
44
|
Grocholski T, Koskiniemi H, Lindqvist Y, Mäntsälä P, Niemi J, Schneider G. Crystal structure of the cofactor-independent monooxygenase SnoaB from Streptomyces nogalater: implications for the reaction mechanism. Biochemistry 2010; 49:934-44. [PMID: 20052967 DOI: 10.1021/bi901985b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SnoaB is a cofactor-independent monooxygenase that catalyzes the conversion of 12-deoxynogalonic acid to nogalonic acid in the biosynthesis of the aromatic polyketide nogalamycin in Streptomyces nogalater. In vitro (18)O(2) experiments establish that the oxygen atom incorporated into the substrate is derived from molecular oxygen. The crystal structure of the enzyme was determined in two different space groups to 1.7 and 1.9 A resolution, respectively. The enzyme displays the ferredoxin fold, with the characteristic beta-strand exchange at the dimer interface. The crystal structures reveal a putative catalytic triad involving two asparagine residues, Asn18 and Asn63, and a water molecule, which may play important roles in the enzymatic reaction. Site-directed mutagenesis experiments, replacing the two asparagines individually by alanine, led to a 100-fold drop in enzymatic activity. Replacement of an invariant tryptophan residue in the active site of the enzyme by phenylalanine also resulted in an enzyme variant with about 1% residual activity. Taken together, our findings are most consistent with a carbanion mechanism where the deprotonated substrate reacts with molecular oxygen via one electron transfer and formation of a caged radical.
Collapse
Affiliation(s)
- Thadee Grocholski
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Nakajima H, Ramanathan K, Kawaba N, Watanabe Y. Rational engineering of Thermus thermophilus cytochrome c552 to a thermally tolerant artificial peroxidase. Dalton Trans 2010; 39:3105-14. [DOI: 10.1039/b924365h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase. Proc Natl Acad Sci U S A 2009; 106:16084-9. [PMID: 19805263 DOI: 10.1073/pnas.0904535106] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.
Collapse
|
47
|
Ayala M, Verdin J, Vazquez-Duhalt R. The prospects for peroxidase-based biorefining of petroleum fuels. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701379015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Ruiz-Dueñas FJ, Pogni R, Morales M, Giansanti S, Mate MJ, Romero A, Martínez MJ, Basosi R, Martínez AT. Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H, and W164S variants. J Biol Chem 2009; 284:7986-94. [PMID: 19158088 PMCID: PMC2658092 DOI: 10.1074/jbc.m808069200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/15/2008] [Indexed: 11/06/2022] Open
Abstract
Lignin-degrading peroxidases, a group of biotechnologically interesting enzymes, oxidize high redox potential aromatics via an exposed protein radical. Low temperature EPR of Pleurotus eryngii versatile peroxidase (VP) revealed, for the first time in a fungal peroxidase, the presence of a tryptophanyl radical in both the two-electron (VPI) and the one-electron (VPII) activated forms of the enzyme. Site-directed mutagenesis was used to substitute this tryptophan (Trp-164) by tyrosine and histidine residues. No changes in the crystal structure were observed, indicating that the modified behavior was due exclusively to the mutations introduced. EPR revealed the formation of tyrosyl radicals in both VPI and VPII of the W164Y variant. However, no protein radical was detected in the W164H variant, whose VPI spectrum indicated a porphyrin radical identical to that of the inactive W164S variant. Stopped-flow spectrophotometry showed that the W164Y mutation reduced 10-fold the apparent second-order rate constant for VPI reduction (k(2app)) by veratryl alcohol (VA), when compared with over 50-fold reduction in W164S, revealing some catalytic activity of the tyrosine radical. Its first-order rate constant (k(2)) was more affected than the dissociation constant (K(D)(2)). Moreover, VPII reduction by VA was impaired by the above mutations, revealing that the Trp-164 radical was involved in catalysis by both VPI and VPII. The low first-order rate constant (k(3)) values were similar for the W164Y, W164H, and W164S variants, indicating that the tyrosyl radical in VPII was not able to oxidize VA (in contrast with that observed for VPI). VPII self-reduction was also suppressed, revealing that Trp-164 is involved in this autocatalytic process.
Collapse
Affiliation(s)
- Francisco J Ruiz-Dueñas
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Suarez J, Ranguelova K, Jarzecki AA, Manzerova J, Krymov V, Zhao X, Yu S, Metlitsky L, Gerfen GJ, Magliozzo RS. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG). J Biol Chem 2009; 284:7017-29. [PMID: 19139099 DOI: 10.1074/jbc.m808106200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.
Collapse
Affiliation(s)
- Javier Suarez
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:441-52. [PMID: 18987391 DOI: 10.1093/jxb/ern261] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Versatile peroxidase (VP) is defined by its capabilities to oxidize the typical substrates of other basidiomycete peroxidases: (i) Mn(2+), the manganese peroxidase (MnP) substrate (Mn(3+) being able to oxidize phenols and initiate lipid peroxidation reactions); (ii) veratryl alcohol (VA), the typical lignin peroxidase (LiP) substrate; and (iii) simple phenols, which are the substrates of Coprinopsis cinerea peroxidase (CIP). Crystallographic, spectroscopic, directed mutagenesis, and kinetic studies showed that these 'hybrid' properties are due to the coexistence in a single protein of different catalytic sites reminiscent of those present in the other basidiomycete peroxidase families. Crystal structures of wild and recombinant VP, and kinetics of mutated variants, revealed certain differences in its Mn-oxidation site compared with MnP. These result in efficient Mn(2+) oxidation in the presence of only two of the three acidic residues forming its binding site. On the other hand, a solvent-exposed tryptophan is the catalytically-active residue in VA oxidation, initiating an electron transfer pathway to haem (two other putative pathways were discarded by mutagenesis). Formation of a tryptophanyl radical after VP activation by peroxide was detected using electron paramagnetic resonance. This was the first time that a protein radical was directly demonstrated in a ligninolytic peroxidase. In contrast with LiP, the VP catalytic tryptophan is not beta-hydroxylated under hydrogen peroxide excess. It was also shown that the tryptophan environment affected catalysis, its modification introducing some LiP properties in VP. Moreover, some phenols and dyes are oxidized by VP at the edge of the main haem access channel, as found in CIP. Finally, the biotechnological interest of VP is discussed.
Collapse
|