1
|
Zhao C, Jin H, Lei Y, Li Q, Zhang Y, Lu Q. The dual effects of Benzo(a)pyrene/Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide on DNA Methylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175042. [PMID: 39084379 DOI: 10.1016/j.scitotenv.2024.175042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Benzo(a)pyrene (BaP) is one of the most thoroughly studied polycyclic aromatic hydrocarbons(PAHs) and a widespread organic pollutant in various areas of human life. Its teratogenic, immunotoxic and carcinogenic effects on organisms are well documented and widely recognized by researchers. In the body, BaP is enzymatically converted to form a more active benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE). BaP/BPDE has the potential to trigger gene mutations, influence epigenetic modifications and cause damage to cellular structures, ultimately contributing to disease onset and progression. However, there are different points of view when studying epigenetics using BaP/BPDE. On the one hand, it is claimed in cancer research that BaP/BPDE contributes to gene hypermethylation and, in particular, induces the hypermethylation of tumor's suppressor gene promoters, leading to gene silencing and subsequent cancer development. Conversely, studies in human and animal populations suggest that exposure to BaP results in genome-wide DNA hypomethylation, potentially leading to adverse outcomes in inflammatory diseases. This apparent contradiction has not been summarized in research for almost four decades. This article presents a comprehensive review of the current literature on the influence of BaP/BPDE on DNA methylation regulation. It demonstrates that BaP/BPDE exerts a dual-phase regulatory effect on methylation, which is influenced by factors such as the concentration and duration of BaP/BPDE exposure, experimental models and detection methods used in various studies. Acute/high concentration exposure to BaP/BPDE often results in global demethylation of DNA, which is associated with inhibition of DNA methyltransferase 1 (DNMT1) after exposure. At certain specific gene loci (e.g., RAR-β), BPDE can form DNA adducts, recruiting DNMT3 and leading to hypermethylation at specific sites. By integrating these different mechanisms, our goal is to unravel the patterns and regulations of BaP/BPDE-induced DNA methylation changes and provide insights into future precision therapies targeting epigenetics.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Jin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Yu Lei
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qilin Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Central South University Hunan Key Laboratory of Medical Epigenomics Changsha, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
2
|
Liu Y, Ouyang L, Mao C, Chen Y, Liu N, Chen L, Shi Y, Xiao D, Liu S, Tao Y. Inhibition of RNF182 mediated by Bap promotes non-small cell lung cancer progression. Front Oncol 2023; 12:1009508. [PMID: 36686776 PMCID: PMC9853554 DOI: 10.3389/fonc.2022.1009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Ubiquitylation that mediated by ubiquitin ligases plays multiple roles not only in proteasome-mediated protein degradation but also in various cellular process including DNA repair, signal transduction and endocytosis. RING finger (RNF) proteins form the majority of these ubiquitin ligases. Recent studies have demonstrated the important roles of RNF finger proteins in tumorigenesis and tumor progression. Benzo[a]pyrene (BaP) is one of the most common environmental carcinogens causing lung cancer. The molecular mechanism of Bap carcinogenesis remains elusive. Considering the critical roles of RNF proteins in tumorigenesis and tumor progression, we speculate on whether Bap regulates RNF proteins resulting in carcinogenesis. Methods We used GEO analysis to identify the potential RING finger protein family member that contributes to Bap-induced NSCLC. We next used RT-qPCR, Western blot and ChIP assay to investigate the potential mechanism of Bap inhibits RNF182. BGS analyses were used to analyze the methylation level of RNF182. Results Here we reported that the carcinogen Bap suppresses the expression of ring finger protein 182 (RNF182) in non-small cell lung cancer (NSCLC) cells, which is mediated by abnormal hypermethylation in an AhR independent way and transcriptional regulation in an AhR dependent way. Furthermore, RNF182 exhibits low expression and hypermethylation in tumor tissues. RNF182 also significantly suppresses cell proliferation and induces cell cycle arrest in NSCLC cell lines. Conclusion These results demonstrated that Bap inhibits RNF182 expression to promote lung cancer tumorigenesis through activating AhR and promoting abnormal methylation.
Collapse
Affiliation(s)
- Yating Liu
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Postdoctoral Research Station of Clinical Medicine & Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lianlian Ouyang
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chao Mao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yuanbing Chen
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Na Liu
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research, Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Shuang Liu, ; Yongguang Tao,
| | - Yongguang Tao
- Department of Pathology, Xiangya Hospital, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, Changsha, China,National Health Commission (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Shuang Liu, ; Yongguang Tao,
| |
Collapse
|
3
|
Sergeev AV, Tevyashova AN, Vorobyov AP, Gromova ES. The Effect of Antitumor Antibiotic Olivomycin A and Its New Semi-synthetic Derivative Olivamide on the Activity of Murine DNA Methyltransferase Dnmt3a. BIOCHEMISTRY (MOSCOW) 2019; 84:62-70. [PMID: 30927527 DOI: 10.1134/s0006297919010085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Olivomycin A is a highly active antitumor drug that belongs to the family of aureolic acid antibiotics. The antitumor effect of olivomycin A is related to its ability to bind to the DNA minor groove in GC-rich regions as Mg2+-coordinated complexes. Characterization of cellular targets of olivomycin A and its mechanism of action is crucial for the successful application of this antibiotic in clinical practice and development of semi-synthetic derivatives with improved pharmacological properties. Previously, we have shown that minor groove ligands are able to disrupt the key epigenetic process of DNA methylation. In this paper, we have studied the impact of olivomycin A and its improved semi-synthetic analogue N,N-dimethylaminoethylamide of 1'-des-(2,3-dihydroxy-n-butyroyl)-1'-carboxy-olivomycin A (olivamide) on the functioning of de novo DNA methyltransferase Dnmt3a (enzyme that carries out methylation of cytosine residues in the DNA CG-sites in eukaryotic cells) using an in vitro system consisting of the murine Dnmt3a catalytic domain and a 30-mer DNA duplex containing four consecutive GC pairs. We have shown that olivomycin A and olivamide inhibit Dnmt3a with IC50 of 6 ± 1 and 7.1 ± 0.7 μM, respectively. Neither olivomycin A nor olivamide interfered with the formation of the specific enzyme-substrate complex; however, olivomycin A prevented formation of the covalent DNA-Dnmt3a intermediate that is necessary for the methylation reaction to proceed. The inhibitory effects of olivomycin A and olivamide can be explained by the disruption of the enzyme catalytic loop movement through the DNA minor groove (the reaction stage that precedes the covalent bond formation between DNA and the enzyme). The results of this work indicate the epigenetic contribution to the antitumor effect of aureolic acid group antibiotics.
Collapse
Affiliation(s)
- A V Sergeev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| | - A N Tevyashova
- Gause Institute of New Antibiotics, Moscow, 119021, Russia.,D. Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - A P Vorobyov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - E S Gromova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| |
Collapse
|
4
|
Sergeev AV, Kirsanova OV, Loiko AG, Nomerotskaya EI, Gromova ES. Detection of DNA Methylation by Dnmt3a Methyltransferase using Methyl-Dependent Restriction Endonucleases. Mol Biol 2018. [DOI: 10.1134/s0026893318020139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kirsanova OV, Sergeev AV, Yasko IS, Gromova ES. The impact of 6-thioguanine incorporation into DNA on the function of DNA methyltransferase Dnmt3a. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:392-405. [PMID: 28498075 DOI: 10.1080/15257770.2017.1287921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The incorporation of chemotherapeutic agent 6-thioguanine (SG) into DNA is a prerequisite for its cytotoxic action. This modification of DNA impedes the activity of enzymes involved in DNA repair and replication. Here, using hemimethylated DNA substrates we demonstrated that DNA methylation by Dnmt3a-CD is reduced if DNA is damaged by the incorporation of SG into one or two CpG sites separated by nine base pairs. An increase in the number of SG substitutions did not enhance the effect. Dnmt3a-CD binding to either of SG-containing DNA substrates was not distorted. Our results suggest that SG incorporation into DNA may influence epigenetic regulation via DNA methylation.
Collapse
Affiliation(s)
- Olga V Kirsanova
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Alexander V Sergeev
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Ivan S Yasko
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Elizaveta S Gromova
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
6
|
Starostenko LV, Maltseva EA, Lebedeva NA, Pestryakov PE, Lavrik OI, Rechkunova NI. Interaction of Nucleotide Excision Repair Protein XPC-RAD23B with DNA Containing Benzo[a]pyrene-Derived Adduct and Apurinic/Apyrimidinic Site within a Cluster. BIOCHEMISTRY (MOSCOW) 2017; 81:233-41. [PMID: 27262192 DOI: 10.1134/s0006297916030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The combined action of reactive metabolites of benzo[a]pyrene (B[a]P) and oxidative stress can lead to cluster-type DNA damage that includes both a bulky lesion and an apurinic/apyrimidinic (AP) site, which are repaired by the nucleotide and base excision repair mechanisms - NER and BER, respectively. Interaction of NER protein XPC-RAD23B providing primary damage recognition with DNA duplexes containing a B[a]P-derived residue linked to the exocyclic amino group of a guanine (BPDE-N(2)-dG) in the central position of one strand and AP site in different positions of the other strand was analyzed. It was found that XPC-RAD23B crosslinks to DNA containing (+)-trans-BPDE-N(2)-dG more effectively than to DNA containing cis-isomer, independently of the AP site position in the opposite strand; protein affinity to DNA containing one of the BPDE-N(2)-dG isomers depends on the AP site position in the opposite strand. The influence of XPC-RAD23B on hydrolysis of an AP site clustered with BPDE-N(2)-dG catalyzed by the apurinic/apyrimidinic endonuclease 1 (APE1) was examined. XPC-RAD23B was shown to stimulate the endonuclease and inhibit the 3'-5' exonuclease activity of APE1. These data demonstrate the possibility of cooperation of two proteins belonging to different DNA repair systems in the repair of cluster-type DNA damage.
Collapse
Affiliation(s)
- L V Starostenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
7
|
Xia B, Yang LQ, Huang HY, Pang L, Yang XF, Yi YJ, Ren XH, Li J, Zhuang ZX, Liu JJ. Repression of Biotin-Related Proteins by Benzo[a]Pyrene-Induced Epigenetic Modifications in Human Bronchial Epithelial Cells. Int J Toxicol 2016; 35:336-43. [PMID: 26960346 DOI: 10.1177/1091581816637071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) exposure has been associated with the alteration in epigenetic marks that are involved in cancer development. Biotinidase (BTD) and holocarboxylase synthetase (HCS) are 2 major enzymes involved in maintaining the homeostasis of biotinylation, and the deregulation of this pathway has been associated with a number of cancers. However, the link between B[a]P exposure and the dysregulation of BTD/HCS in B[a]P-associated tumorigenesis is unknown. Here we showed that the expression of both BTD and HCS was significantly decreased upon B[a]P treatment in human bronchial epithelial (16HBE) cells. Benzo[a]pyrene exposure led to the global loss of DNA methylation by immunofluorescence, which coincided with the reduction in acetylation levels on histones H3 and H4 in 16HBE cells. Consistent with decreased histone acetylation, histone deacetylases (HDACs) HDAC2 and HDAC3 were significantly upregulated in a dosage-dependent manner. When DNA methylation or HDAC activity was inhibited, we found that the reduction in BTD and HCS was separately regulated through distinct epigenetic mechanisms. Together, our results suggested the potential link between B[a]P toxicity and deregulation of biotin homeostasis pathway in B[a]P-associated cancer development.
Collapse
Affiliation(s)
- Bo Xia
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Lin-Qing Yang
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hai-Yan Huang
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Li Pang
- College of Horticulture and Gardening, Hunan Agricultural University, Changsha, Hunan, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - You-Jin Yi
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiao-Hu Ren
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jie Li
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhi-Xiong Zhuang
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jian-Jun Liu
- Key Laboratory of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
8
|
Biotin-mediated epigenetic modifications: Potential defense against the carcinogenicity of benzo[a]pyrene. Toxicol Lett 2016; 241:216-24. [DOI: 10.1016/j.toxlet.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022]
|
9
|
Tryba B, Homa P, Wróbel R, Morawski A. Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Influence of paint composition. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Minero AS, Lukashevich OV, Cherepanova NA, Kolbanovskiy A, Geacintov NE, Gromova ES. Probing murine methyltransfease Dnmt3a interactions with benzo[a]pyrene-modified DNA by fluorescence methods. FEBS J 2012; 279:3965-80. [PMID: 22913541 DOI: 10.1111/j.1742-4658.2012.08756.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022]
Abstract
The impact of bulky carcinogen-DNA adducts positioned at or near recognition sites (CpG) of eukaryotic DNA methyltransferases on their catalytic activities is poorly understood. In the present study, we employed site-specifically modified 30-mer oligodeoxyribonucleotides containing stereoisomeric benzo[a]pyrene diol epoxide (B[a]PDE)-derived guanine (B[a]PDE-N(2)-dG) or adenine (B[a]PDE-N(6)-dA) adducts of different conformations as substrates of the catalytic domain of murine Dnmt3a (Dnmt3a-CD). The fluorescence of these lesions was used to examine interactions between Dnmt3a-CD and DNA. In B[a]PDE-DNA•Dnmt3a-CD complexes, the intensity of fluorescence of the covalently bound B[a]PDE residues is enhanced relative to the protein-free value when the B[a]PDE is positioned in the minor groove [(+)- and (-)-trans-B[a]PDE-N(2)-dG adducts in the CpG site] and when it is intercalated on the 5'-side of the CpG site [(+)-trans-B[a]PDE-N(6)-dA adduct]. The fluorescence of B[a]PDE-modified DNA•Dnmt3a-CD complexes exhibits only small changes when the B[a]PDE is intercalated with base displacement in (+)- and (-)-cis-B[a]PDE-N(2)-dG adducts and without base displacement in the (-)-trans-B[a]PDE-N(6)-dA adduct. The initial rates of methylation were significantly reduced by the minor groove trans-B[a]PDE-N(2)-dG adducts, regardless of their position in the substrate and by the intercalated cis-B[a]PDE-N(2)-dG adducts within the CpG site. The observed changes in fluorescence and methylation rates are consistent with the flipping of the target cytosine and a catalytic loop motion within the DNA•Dnmt3a-CD complexes. In the presence of the regulatory factor Dnmt3L, an enhancement of both methylation rates and fluorescence was observed, which is consistent with a Dnmt3L-mediated displacement of the catalytic loop towards the CpG site.
Collapse
Affiliation(s)
- Antonio S Minero
- Department of Chemistry, Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Guza R, Kotandeniya D, Murphy K, Dissanayake T, Lin C, Giambasu GM, Lad RR, Wojciechowski F, Amin S, Sturla SJ, Hudson RH, York DM, Jankowiak R, Jones R, Tretyakova NY. Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA. Nucleic Acids Res 2011; 39:3988-4006. [PMID: 21245046 PMCID: PMC3089471 DOI: 10.1093/nar/gkq1341] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023] Open
Abstract
Endogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5'-CCCGGCACCC GC[(15)N(3),(13)C(1)-G]TCCGCG-3', + strand) were prepared containing [(15)N(3), (13)C(1)]-guanine opposite unsubstituted cytosine, (Me)C, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2'-deoxynucleosides, N(2)-BPDE-dG adducts formed at the [(15)N(3), (13)C(1)]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N(2)-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N(2) position of guanine.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analogs & derivatives
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- Base Pairing
- Chromatography, High Pressure Liquid
- Cytosine/analogs & derivatives
- DNA Adducts/chemistry
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Genes, p53
- Guanine/chemistry
- Isotope Labeling
- Models, Molecular
- Oligodeoxyribonucleotides/chemical synthesis
- Oligodeoxyribonucleotides/chemistry
- Spectrometry, Fluorescence
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Rebecca Guza
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Delshanee Kotandeniya
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Thakshila Dissanayake
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Chen Lin
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - George Madalin Giambasu
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Rahul R. Lad
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Filip Wojciechowski
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shantu Amin
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shana J. Sturla
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Robert H.E. Hudson
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ryszard Jankowiak
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Roger Jones
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Lukashevich OV, Baskunov VB, Darii MV, Kolbanovskiy A, Baykov AA, Gromova ES. Dnmt3a-CD is less susceptible to bulky benzo[a]pyrene diol epoxide-derived DNA lesions than prokaryotic DNA methyltransferases. Biochemistry 2011; 50:875-81. [PMID: 21174446 DOI: 10.1021/bi101717b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a well-characterized environmental polycyclic aromatic hydrocarbon pollutant. In living organisms, B[a]P is metabolized to the genotoxic anti-benzo[a]pyrene diol epoxide that reacts with cellular DNA to form stereoisomeric anti-B[a]PDE-N(2)-dG adducts. In this study, we explored the effects of adduct stereochemistry and position in double-stranded DNA substrates on the functional characteristics of the catalytic domain of murine de novo DNA methyltransferase Dnmt3a (Dnmt3a-CD). A number of 18-mer duplexes containing site-specifically incorporated (+)- and (-)-trans-anti-B[a]PDE-N(2)-dG lesions located 3'- and 5'-adjacent to and opposite the target cytosine residue were prepared. Dnmt3a-CD binds cooperatively to the DNA duplexes with an up to 5-fold greater affinity compared to that for the undamaged DNA duplexes. Methylation assays showed a 1.7-6.3-fold decrease in the methylation reaction rates for the damaged duplexes. B[a]PDE modifications stimulated a nonproductive binding and markedly favored substrate inhibition of Dnmt3a-CD in a manner independent of DNA methylation status. The latter effect was sensitive to the position and stereochemistry of the B[a]PDE-N(2)-dG adducts. The overall effect of trans-anti-B[a]PDE-N(2)-dG adducts on Dnmt3a-CD was less detrimental than in the case of the prokaryotic methyltransferases we previously investigated.
Collapse
|
13
|
Tommasi S, Kim SI, Zhong X, Wu X, Pfeifer GP, Besaratinia A. Investigating the epigenetic effects of a prototype smoke-derived carcinogen in human cells. PLoS One 2010; 5:e10594. [PMID: 20485678 PMCID: PMC2868871 DOI: 10.1371/journal.pone.0010594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/20/2010] [Indexed: 12/11/2022] Open
Abstract
Global loss of DNA methylation and locus/gene-specific gain of DNA methylation are two distinct hallmarks of carcinogenesis. Aberrant DNA methylation is implicated in smoking-related lung cancer. In this study, we have comprehensively investigated the modulation of DNA methylation consequent to chronic exposure to a prototype smoke-derived carcinogen, benzo[a]pyrene diol epoxide (B[a]PDE), in genomic regions of significance in lung cancer, in normal human cells. We have used a pulldown assay for enrichment of the CpG methylated fraction of cellular DNA combined with microarray platforms, followed by extensive validation through conventional bisulfite-based analysis. Here, we demonstrate strikingly similar patterns of DNA methylation in non-transformed B[a]PDE-treated cells vs control using high-throughput microarray-based DNA methylation profiling confirmed by conventional bisulfite-based DNA methylation analysis. The absence of aberrant DNA methylation in our model system within a timeframe that precedes cellular transformation suggests that following carcinogen exposure, other as yet unknown factors (secondary to carcinogen treatment) may help initiate global loss of DNA methylation and region-specific gain of DNA methylation, which can, in turn, contribute to lung cancer development. Unveiling the initiating events that cause aberrant DNA methylation in lung cancer has tremendous public health relevance, as it can help define future strategies for early detection and prevention of this highly lethal disease.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Cancer Biology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, United States of America
| | - Sang-in Kim
- Department of Cancer Biology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, United States of America
| | - Xueyan Zhong
- Department of Cancer Biology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, United States of America
| | - Xiwei Wu
- Division of Information Sciences, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, United States of America
| | - Gerd P. Pfeifer
- Department of Cancer Biology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, United States of America
| | - Ahmad Besaratinia
- Department of Cancer Biology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Maltseva DV, Gromova ES. Interaction of murine Dnmt3a with DNA containing O6-methylguanine. BIOCHEMISTRY (MOSCOW) 2010; 75:173-81. [DOI: 10.1134/s0006297910020070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Maltseva DV, Baykov AA, Jeltsch A, Gromova ES. Impact of 7,8-dihydro-8-oxoguanine on methylation of the CpG site by Dnmt3a. Biochemistry 2009; 48:1361-8. [PMID: 19161295 DOI: 10.1021/bi801947f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
7,8-Dihydro-8-oxoguanine (8-oxoG) is a ubiquitous oxidative DNA lesion resulting from injury to DNA via reactive oxygen species. 8-oxoG lesions may play a role in the formation of aberrant DNA methylation patterns during carcinogenesis. In this study, we assessed the effects of 8-oxoG on methylation and complex formation of nine 30-mer oligodeoxynucleotide duplexes by the catalytic domain of murine Dnmt3a DNA methyltransferase (Dnmt3a-CD). The effects of 8-oxoG on the methylation rate of hemimethylated duplexes varied from a 25-fold decrease to a 1.8-fold increase, depending on the position of the lesion relative to the Dnmt3a-CD recognition site (CpG) and target cytosine (C). The most significant effect was observed when 8-oxoG replaced guanine within the recognition site immediately downstream of the target cytosine. Fluorescence polarization experiments with fluorescein-labeled duplexes revealed that two molecules of Dnmt3a-CD bind per duplex, generating sigmoid binding curves. Duplexes exhibiting the highest apparent binding cooperativity formed the least stable 1:2 complexes with Dnmt3a-CD and were methylated at the lowest rate. Kinetic analyses disclosed the formation of very stable nonproductive enzyme-substrate complexes with hemimethylated duplexes that act as suicide substrates of Dnmt3a-CD. The presence of 8-oxoG within the CpG site downstream of the target cytosine markedly diminished productive versus nonproductive binding. We propose that 8-oxoG located adjacent to the target cytosine interferes with methylation by weakening the affinity of DNA for Dnmt3a-CD, thereby favoring a nonproductive binding mode.
Collapse
Affiliation(s)
- Diana V Maltseva
- Chemistry Department and A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia
| | | | | | | |
Collapse
|
16
|
Subach FV, Liquier J, Gromova ES. Investigation of restriction endonuclease EcoRII complex with DNA in solution by FTIR spectroscopy. RUSS J GEN CHEM+ 2008. [DOI: 10.1134/s1070363208050435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Sadikovic B, Andrews J, Carter D, Robinson J, Rodenhiser DI. Genome-wide H3K9 histone acetylation profiles are altered in benzopyrene-treated MCF7 breast cancer cells. J Biol Chem 2007; 283:4051-60. [PMID: 18065415 DOI: 10.1074/jbc.m707506200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current toxicogenomic approaches generate transcriptional profiles that can identify functional gene expression signatures of environmental toxicants. However, the intricate processes governing transcription are overlaid with a complex set of molecular instructions involving epigenetic modifications. These commands regulate both gene expression and chromatin organization through coordinated sets of histone modifications and heritable DNA methylation patterns. Although the effects of specific environmental toxicants on gene expression are the subject of much study, the epigenetic effects of such compounds are poorly understood. Here we have used human promoter tiling arrays along with chromatin immunoprecipitation to identify changes in histone acetylation profiles because of chemical exposure. Chromatin from cells exposed to the polyaromatic hydrocarbon benzo(a)pyrene was immunoprecipitated with antibodies against acetylated histones. Affymetrix promoter tiling microarrays were probed to generate epigenomic profiles of hypo- and hyperacetylated chromatin localized to gene promoter regions. Statistical analyses, data mining, and expression studies revealed that treated cells possessed differentially acetylated gene promoter regions and gene-specific expression changes. This chromatin immunoprecipitation-on-chip approach permits genome-wide profiling of histone acetylation patterns that can identify chromatin-related signatures of environmental toxicants and potentially determine the molecular pathways these changes target. This approach also has potential applications for profiling histone modifications and DNA methylation changes during embryonic development, in cancer biology, and in the development and assessment of cancer therapeutics.
Collapse
Affiliation(s)
- Bekim Sadikovic
- London Regional Cancer Program, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
Koudan EV, Brevnov MG, Subach OM, Rechkoblit OA, Bujnicki JM, Gromova ES. Probing of contacts between EcoRII DNA methyltransferase and DNA with the use of substrate analogs and molecular modeling. Mol Biol 2007. [DOI: 10.1134/s0026893307050147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Matter B, Guza R, Zhao J, Li ZZ, Jones R, Tretyakova N. Sequence Distribution of Acetaldehyde-Derived N2-Ethyl-dG Adducts along Duplex DNA. Chem Res Toxicol 2007; 20:1379-87. [PMID: 17867647 DOI: 10.1021/tx7001146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Acetaldehyde (AA) is the major metabolite of ethanol and may be responsible for an increased gastrointestinal cancer risk associated with alcohol beverage consumption. Furthermore, AA is one of the most abundant carcinogens in tobacco smoke and induces tumors of the respiratory tract in laboratory animals. AA binding to DNA induces Schiff base adducts at the exocyclic amino group of dG, N2-ethylidene-dG, which are reversible on the nucleoside level but can be stabilized by reduction to N2-ethyl-dG. Mutagenesis studies in the HPRT reporter gene and in the p53 tumor suppressor gene have revealed the ability of AA to induce G-->A transitions and A-->T transversions, as well as frameshift and splice mutations. AA-induced point mutations are most prominent at 5'-AGG-3' trinucleotides, possibly a result of sequence specific adduct formation, mispairing, and/or repair. However, DNA sequence preferences for the formation of acetaldehyde adducts have not been previously examined. In the present work, we employed a stable isotope labeling-HPLC-ESI+-MS/MS approach developed in our laboratory to analyze the distribution of acetaldehyde-derived N2-ethyl-dG adducts along double-stranded oligodeoxynucleotides representing two prominent lung cancer mutational "hotspots" and their surrounding DNA sequences. 1,7,NH 2-(15)N-2-(13)C-dG was placed at defined positions within DNA duplexes derived from the K-ras protooncogene and the p53 tumor suppressor gene, followed by AA treatment and NaBH 3CN reduction to convert N2-ethylidene-dG to N2-ethyl-dG. Capillary HPLC-ESI+-MS/MS was used to quantify N2-ethyl-dG adducts originating from the isotopically labeled and unlabeled guanine nucleobases and to map adduct formation along DNA duplexes. We found that the formation of N2-ethyl-dG adducts was only weakly affected by the local sequence context and was slightly increased in the presence of 5-methylcytosine within CG dinucleotides. These results are in contrast with sequence-selective formation of other tobacco carcinogen-DNA adducts along K-ras- and p53-derived duplexes and the preferential modification of endogenously methylated CG dinucleotides by benzo[a]pyrene diol epoxide and acrolein.
Collapse
Affiliation(s)
- Brock Matter
- University of Minnesota Cancer Center and Department of Medicinal Chemistry, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
20
|
Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily. BMC STRUCTURAL BIOLOGY 2007; 7:48. [PMID: 17626614 PMCID: PMC1952068 DOI: 10.1186/1472-6807-7-48] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/12/2007] [Indexed: 01/21/2023]
Abstract
Background The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases) exhibit a common PD-(D/E)XK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI), and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally. Results Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L) and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme. Conclusion Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our prediction that R.Eco29kI belongs to the GIY-YIG superfamily of nucleases. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD-(D/E)XK or HNH superfamilies of nucleases, and is instead a member of the unrelated GIY-YIG superfamily.
Collapse
|
21
|
Subach OM, Maltseva DV, Shastry A, Kolbanovskiy A, Klimasauskas S, Geacintov NE, Gromova ES. The stereochemistry of benzo[a]pyrene-2'-deoxyguanosine adducts affects DNA methylation by SssI and HhaI DNA methyltransferases. FEBS J 2007; 274:2121-34. [PMID: 17388812 DOI: 10.1111/j.1742-4658.2007.05754.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The biologically most significant genotoxic metabolite of the environmental pollutant benzo[a]pyrene (B[a]P), (+)-7R,8S-diol 9S,10R-epoxide, reacts chemically with guanine in DNA, resulting in the predominant formation of (+)-trans-B[a]P-N(2)-dG and, to a lesser extent, (+)-cis-B[a]P-N(2)-dG adducts. Here, we compare the effects of the adduct stereochemistry and conformation on the methylation of cytosine catalyzed by two purified prokaryotic DNA methyltransferases (MTases), SssI and HhaI, with the lesions positioned within or adjacent to their CG and GCGC recognition sites, respectively. The fluorescence properties of the pyrenyl residues of the (+)-cis-B[a]P-N(2)-dG and (+)-trans-B[a]P-N(2)-dG adducts in complexes with MTases are enhanced, but to different extents, indicating that aromatic B[a]P residues are positioned in different microenvironments in the DNA-protein complexes. We have previously shown that the (+)-trans-isomeric adduct inhibits both the binding and methylating efficiencies (k(cat)) of both MTases [Subach OM, Baskunov VB, Darii MV, Maltseva DV, Alexandrov DA, Kirsanova OV, Kolbanovskiy A, Kolbanovskiy M, Johnson F, Bonala R, et al. (2006) Biochemistry45, 6142-6159]. Here we show that the stereoisomeric (+)-cis-B[a]P-N(2)-dG lesion has only a minimal effect on the binding of these MTases and on k(cat). The minor-groove (+)-trans adduct interferes with the formation of the normal DNA minor-groove contacts with the catalytic loop of the MTases. However, the intercalated base-displaced (+)-cis adduct does not interfere with the minor-groove DNA-catalytic loop contacts, allowing near-normal binding of the MTases and undiminished k(cat) values.
Collapse
|
22
|
Darii MV, Kirsanova OV, Drutsa VL, Kochetkov SN, Gromova ES. Isolation and site-directed mutagenesis of DNA methyltransferase SssI. Mol Biol 2007. [DOI: 10.1134/s0026893307010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Lakshman MK, Keeler JC, Ngassa FN, Hilmer JH, Pradhan P, Zajc B, Thomasson KA. Highly diastereoselective synthesis of nucleoside adducts from the carcinogenic benzo[a]pyrene diol epoxide and a computational analysis. J Am Chem Soc 2007; 129:68-76. [PMID: 17199284 PMCID: PMC2659345 DOI: 10.1021/ja063902u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diastereoselective synthesis of the nucleoside adducts corresponding to a cis ring-opening of the carcinogen (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP DE-2) by 2'-deoxyadenosine and 2'-deoxyguanosine is described. The key intermediate (+/-)-10alpha-amino-7beta,8alpha,9alpha-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene was synthesized by a highly diastereoselective dihydroxylation wherein phenylboronic acid was a water surrogate. The resulting boronate ester was converted to a tetraol derivative in which two of the four hydroxyl groups (trans 7, 8) were protected as benzoate esters while the remaining two (cis 9, 10) were free. The cis glycol entity was then subjected to a reaction with 1-chlorocarbonyl-1-methylethylacetate to yield an intermediate chloro monoacetoxy dibenzoate. Displacement of the halide with azide, complete cleavage of the esters, and catalytic reduction of the azide yielded the requisite amino triol. Fluoride displacement from appropriately protected nucleoside derivatives, 6-fluoropurine 2'-deoxyribonucleoside and 2-fluoro-2'-deoxyinosine, by the amino triol then yielded diastereomeric pairs of diol epoxide-adducted 2'-deoxyadenosine (dA) and 2'-deoxyguanosine (dG) nucleosides. Small aliquots of these adducts were separated for characterization purposes. The present approach provides the first diastereoselective synthesis of the cis adducts of BaP DE-2 with 2'-deoxyguanosine as well as the first synthesis of both dA and dG adducts from a common intermediate. An informative analysis of the 1H NMR spectra of the cis adducts synthesized and comparisons to the trans adducts are reported. To gain insight into the diastereoselectivity in the key dihydroxylation step, a computational analysis, including molecular mechanics (MMFF94) and semiempirical AM1 geometry optimizations, yielded results that are in fairly good agreement with the experimental observations.
Collapse
|