1
|
Li Q, Deng X, Xu YJ, Dong L. Development of Long-Acting Dipeptidyl Peptidase-4 Inhibitors: Structural Evolution and Long-Acting Determinants. J Med Chem 2023; 66:11593-11631. [PMID: 37647598 DOI: 10.1021/acs.jmedchem.3c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Considerable effort has been made to achieve less frequent dosing in the development of DPP-4 inhibitors. Enthusiasm for long-acting DPP-4 inhibitors is based on the promise that such agents with less frequent dosing regimens are associated with improved patient adherence, but the rational design of long-acting DPP-4 inhibitors remains a major challenge. In this Perspective, the development of long-acting DPP-4 inhibitors is comprehensively summarized to highlight the evolution of initial lead compounds on the path toward developing long-acting DPP-4 inhibitors over nearly three decades. The determinants for long duration of action are then examined, including the nature of the target, potency, binding kinetics, crystal structures, selectivity, and preclinical and clinical pharmacokinetic and pharmacodynamic profiles. More importantly, several possible approaches for the rational design of long-acting drugs are discussed. We hope that this information will facilitate the design and development of safer and more effective long-acting DPP-4 inhibitors and other oral drugs.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoyan Deng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan-Jun Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lin Dong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Nasr NE, Sadek KM. Role and mechanism(s) of incretin-dependent therapies for treating diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18408-18422. [PMID: 35031999 DOI: 10.1007/s11356-022-18534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Diabetes mellitus (DM) is a worldwide ailment which leads to chronic complications like cardiac disorders, renal perturbations, limb amputation and blindness. Type one diabetes (T1DM), Type two diabetes (T2DM), Another types of diabetes, such as genetic errors in function of β-cell and action of insulin, cystic fibrosis, chemical-instigated diabetes or following tissue transplantation), and pregnancy DM (GDM). In response to nutritional ingestion, the gut may release a pancreatic stimulant that affects carbohydrate metabolism. The duodenum produces a 'chemical excitant' that stimulates pancreatic output, and researchers have sought to cure diabetes using gut extract injections, coining the word 'incretin' to describe the phenomena. Incretins include GIP and GLP-1. The 'enteroinsular axis' is the link between pancreas and intestine. Nutrient, neuronal and hormonal impulses from intestine to cells secreting insulin were thought to be part of this axis. In addition, the hormonal component, incretin, must meet two requirements: (1) it secreted by foods, mainly carbohydrates, and (2) it must induce an insulinotropic effect which is glucose-dependent. In this review, we clarify the ability of using incretin-dependent treatments for treating DM.
Collapse
Affiliation(s)
- Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
3
|
Chalichem NSS, Jupudi S, Yasam VR, Basavan D. Dipeptidyl peptidase-IV inhibitory action of Calebin A: An in silico and in vitro analysis. J Ayurveda Integr Med 2021; 12:663-672. [PMID: 34756798 PMCID: PMC8642699 DOI: 10.1016/j.jaim.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase-IV (DPP-IV) inhibitors, the enhancers of incretin are used for the treatment of diabetes. The non-glycaemic actions of these drugs (under developmental stage) also proved that repurposing of these molecules may be advantageous for other few complicated disorders like cardiovascular diseases, Parkinson's disease, Alzheimer's disease, etc. OBJECTIVE: The present study was aimed to investigate the DPP-IV inhibitory potential of Calebin-A, one of the constituents of Curcuma longa. MATERIAL AND METHODS The phytoconstituent was subjected for various in silico studies (using Schrödinger Suite) like, Docking analysis, molecular mechanics combined with generalized Born model and solvent accessibility method (MMGBSA) and Induced fit docking (IFD) after validating the protein using Ramachandran plot. Further, the protein-ligand complex was subjected to molecular dynamic simulation studies for 50 nanoseconds. And finally, the results were confirmed through enzyme inhibition study. RESULTS Insilico results revealed possible inhibitory binding interactions in the catalytic pocket (importantly Glu205, Glu206 and Tyr 662 etc.) and binding affinity in terms of glide g-score and MMGBSA dG bind values were found to be -6.2 kcal/mol and -98.721 kcal/mol. Further, the inhibitory action towards the enzyme was confirmed by an enzyme inhibition assay, in which it showed dose-dependent inhibition, with maximum % inhibition of 55.9 at 26.3 μM. From molecular dynamic studies (50 nanoseconds), it was understood that Calebin A was found to be stable for about 30 nanoseconds in maintaining inhibitory interactions. CONCLUSION From the in silico and in vitro analysis, the current research emphasizes the consideration of Calebin A to be as a promising or lead compound for the treatment of several ailments where DPP-IV action is culprit.
Collapse
Affiliation(s)
- Nehru Sai Suresh Chalichem
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India.
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| | - Venkata Ramesh Yasam
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| |
Collapse
|
4
|
Zarnecka J, Lukac I, Messham SJ, Hussin A, Coppola F, Enoch SJ, Dossetter AG, Griffen EJ, Leach AG. Mapping Ligand-Shape Space for Protein-Ligand Systems: Distinguishing Key-in-Lock and Hand-in-Glove Proteins. J Chem Inf Model 2021; 61:1859-1874. [PMID: 33755448 DOI: 10.1021/acs.jcim.1c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many of the recently developed methods to study the shape of molecules permit one conformation of one molecule to be compared to another conformation of the same or a different molecule: a relative shape. Other methods provide an absolute description of the shape of a conformation that does not rely on comparisons or overlays. Any absolute description of shape can be used to generate a self-organizing map (shape map) that places all molecular shapes relative to one another; in the studies reported here, the shape fingerprint and ultrafast shape recognition methods are employed to create such maps. In the shape maps, molecules that are near one another have similar shapes, and the maps for the 102 targets in the DUD-E set have been generated. By examining the distribution of actives in comparison with their physical-property-matched decoys, we show that the proteins of key-in-lock type (relatively rigid receptor and ligand) can be distinguished from those that are more of a hand-in-glove type (more flexible receptor and ligand). These are linked to known differences in protein flexibility and binding-site size.
Collapse
Affiliation(s)
- Joanna Zarnecka
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Iva Lukac
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Stephen J Messham
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Alhusein Hussin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | - Francesco Coppola
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K
| | | | - Edward J Griffen
- MedChemica Limited, Biohub, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, U.K.,MedChemica Limited, Biohub, Mereside, Alderley Park, Macclesfield SK10 4TG, U.K.,Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| |
Collapse
|
5
|
Singh AK, Patel PK, Choudhary K, Joshi J, Yadav D, Jin JO. Quercetin and Coumarin Inhibit Dipeptidyl Peptidase-IV and Exhibits Antioxidant Properties: In Silico, In Vitro, Ex Vivo. Biomolecules 2020; 10:biom10020207. [PMID: 32023875 PMCID: PMC7072504 DOI: 10.3390/biom10020207] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/02/2023] Open
Abstract
Quercetin and coumarin, two naturally occurring phytochemicals of plant origin, are known to regulate hyperglycemia and oxidative stress. The present study was designed to evaluate the inhibitory activity of quercetin and coumarin on dipeptidyl peptidase-IV (DPP-IV) and their antioxidant potential. DPP-IV inhibition assays were performed, and evaluated IC50 values of diprotin A, quercetin, coumarin, and sitagliptin were found to be 0.653, 4.02, 54.83, and 5.49 nmol/mL, respectively. Furthermore, in silico studies such as the drug-likeliness and docking efficiency of quercetin and coumarin to the DPP-IV protein were performed; the ex vivo antiperoxidative potential of quercetin and coumarin were also evaluated. The results of the present study showed that the DPP-IV inhibitory potential of quercetin was slightly higher than that of sitagliptin. Virtual docking revealed the tight binding of quercetin with DPP-IV protein. Quercetin and coumarin reduced oxidative stress in vitro and ex vivo systems. We report for the first time that both compounds inhibited the DPP-IV along with antioxidant activity and thus may be use as function food ingredients in the prevention of diabetes.
Collapse
Affiliation(s)
- Anand-Krishna Singh
- Institute of Life Science, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore 452111, India
- School of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh 452001, India; (P.K.P.); (K.C.)
- Correspondence: (A.-K.S.); (D.Y.); (J.-O.J.); Tel.: +91-9713850334 (A.-K.S.); +82-1022021191 (D.Y.); +82-53-810-3033 (J.-O.J.)
| | - Pankaj Kumar Patel
- School of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh 452001, India; (P.K.P.); (K.C.)
| | - Komal Choudhary
- School of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh 452001, India; (P.K.P.); (K.C.)
| | - Jaya Joshi
- Oral Pathology and Microbiology, Government Dental College, Indore, Madhya Pradesh 452001, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Correspondence: (A.-K.S.); (D.Y.); (J.-O.J.); Tel.: +91-9713850334 (A.-K.S.); +82-1022021191 (D.Y.); +82-53-810-3033 (J.-O.J.)
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Correspondence: (A.-K.S.); (D.Y.); (J.-O.J.); Tel.: +91-9713850334 (A.-K.S.); +82-1022021191 (D.Y.); +82-53-810-3033 (J.-O.J.)
| |
Collapse
|
6
|
A Novel Dipeptidyl Peptidase IV Inhibitory Tea Peptide Improves Pancreatic β-Cell Function and Reduces α-Cell Proliferation in Streptozotocin-Induced Diabetic Mice. Int J Mol Sci 2019; 20:ijms20020322. [PMID: 30646613 PMCID: PMC6359713 DOI: 10.3390/ijms20020322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors occupy a growing place in the drugs used for the management of type 2 diabetes. Recently, food components, including food-derived bioactive peptides, have been suggested as sources of DPP-IV inhibitors without side effects. Chinese black tea is a traditional health beverage, and it was used for finding DPP-IV inhibitory peptides in this study. The ultra-filtrated fractions isolated from the aqueous extracts of black tea revealed DPP-IV inhibitory activity in vitro. Four peptides under 1 kDa were identified by SDS-PAGE and LC-MS/MS (Liquid Chromatography-Mass Spectrometry-Mass Spectrometry) from the ultra-filtrate. The peptide II (sequence: AGFAGDDAPR), with a molecular mass of 976 Da, showed the greatest DPP-IV inhibitory activity (in vitro) among the four peptides. After administration of peptide II (400 mg/day) for 57 days to streptozotocin (STZ)-induced hyperglycemic mice, the concentration of glucagon-like peptide-1 (GLP-1) in the blood increased from 9.85 ± 1.96 pmol/L to 19.22 ± 6.79 pmol/L, and the insulin level was increased 4.3-fold compared to that in STZ control mice. Immunohistochemistry revealed the improved function of pancreatic beta-cells and suppressed proliferation of pancreatic alpha-cells. This study provides new insight into the use of black tea as a potential resource of food-derived DPP-IV inhibitory peptides for the management of type 2 diabetes.
Collapse
|
7
|
Ojeda-Montes MJ, Gimeno A, Tomas-Hernández S, Cereto-Massagué A, Beltrán-Debón R, Valls C, Mulero M, Pujadas G, Garcia-Vallvé S. Activity and selectivity cliffs for DPP-IV inhibitors: Lessons we can learn from SAR studies and their application to virtual screening. Med Res Rev 2018; 38:1874-1915. [PMID: 29660786 DOI: 10.1002/med.21499] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
The inhibition of dipeptidyl peptidase-IV (DPP-IV) has emerged over the last decade as one of the most effective treatments for type 2 diabetes mellitus, and consequently (a) 11 DPP-IV inhibitors have been on the market since 2006 (three in 2015), and (b) 74 noncovalent complexes involving human DPP-IV and drug-like inhibitors are available at the Protein Data Bank (PDB). The present review aims to (a) explain the most important activity cliffs for DPP-IV noncovalent inhibition according to the binding site structure of DPP-IV, (b) explain the most important selectivity cliffs for DPP-IV noncovalent inhibition in comparison with other related enzymes (i.e., DPP8 and DPP9), and (c) use the information deriving from this activity/selectivity cliff analysis to suggest how virtual screening protocols might be improved to favor the early identification of potent and selective DPP-IV inhibitors in molecular databases (because they have not succeeded in identifying selective DPP-IV inhibitors with IC50 ≤ 100 nM). All these goals are achieved with the help of available homology models for DPP8 and DPP9 and an analysis of the structure-activity studies used to develop the noncovalent inhibitors that form part of some of the complexes with human DPP-IV available at the PDB.
Collapse
Affiliation(s)
- María José Ojeda-Montes
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Aleix Gimeno
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Sarah Tomas-Hernández
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Adrià Cereto-Massagué
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Raúl Beltrán-Debón
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Cristina Valls
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Miquel Mulero
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain.,EURECAT, TECNIO, CEICS, Avinguda Universitat 1, Reus, Spain
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, Tarragona, Spain.,EURECAT, TECNIO, CEICS, Avinguda Universitat 1, Reus, Spain
| |
Collapse
|
8
|
Berger JP, SinhaRoy R, Pocai A, Kelly TM, Scapin G, Gao Y, Pryor KAD, Wu JK, Eiermann GJ, Xu SS, Zhang X, Tatosian DA, Weber AE, Thornberry NA, Carr RD. A comparative study of the binding properties, dipeptidyl peptidase-4 (DPP-4) inhibitory activity and glucose-lowering efficacy of the DPP-4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice. Endocrinol Diabetes Metab 2018; 1:e00002. [PMID: 30815539 PMCID: PMC6360916 DOI: 10.1002/edm2.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022] Open
Abstract
AIMS Since 2006, DPP-4 inhibitors have become established therapy for the treatment of type 2 diabetes. Despite sharing a common mechanism of action, considerable chemical diversity exists amongst members of the DPP-4 inhibitor class, raising the question as to whether structural differences may result in differentiated enzyme inhibition and antihyperglycaemic activity. METHODS We have compared the binding properties of the most commonly used inhibitors and have investigated the relationship between their inhibitory potency at the level of the enzyme and their acute glucose-lowering efficacy. RESULTS Firstly, using a combination of published crystal structures and in-house data, we demonstrated that the binding site utilized by all of the DPP-4 inhibitors assessed was the same as that used by neuropeptide Y, supporting the hypothesis that DPP-4 inhibitors are able to competitively inhibit endogenous substrates for the enzyme. Secondly, we ascertained that the enzymatic cleft of DPP-4 is a relatively large cavity which displays conformational flexibility to accommodate structurally diverse inhibitor molecules. Finally, we found that for all inhibitors, irrespective of their chemical structure, the inhibition of plasma DPP-4 enzyme activity correlates directly with acute plasma glucose lowering in mice. CONCLUSION The common binding site utilized by different DPP-4 inhibitors enables similar competitive inhibition of the cleavage of the endogenous DPP-4 substrates. Furthermore, despite chemical diversity and a range of binding potencies observed amongst the DPP-4 inhibitors, a direct relationship between enzyme inhibition in the plasma and glucose lowering is evident in mice for each member of the classes studied.
Collapse
Affiliation(s)
- Joel P. Berger
- Merck& Co., Inc.KenilworthNJUSA
- Present address:
Takeda Pharmaceuticals International, Inc.CambridgeMAUSA
| | - Ranabir SinhaRoy
- Merck& Co., Inc.KenilworthNJUSA
- Present address:
Janssen Pharmaceuticals, Inc.TitusvilleNJUSA
| | - Alessandro Pocai
- Merck& Co., Inc.KenilworthNJUSA
- Present address:
Janssen Pharmaceuticals, Inc.TitusvilleNJUSA
| | | | | | | | | | | | | | | | | | | | - Ann E. Weber
- Merck& Co., Inc.KenilworthNJUSA
- Present address:
Kallyope Inc.New YorkNYUSA
| | | | | |
Collapse
|
9
|
Abstract
AIM Extracts from Ephedra species have been reported to be effective as antidiabetics. A previous in silico study predicted that ephedrine and five ephedrine derivatives could contribute to the described antidiabetic effect of Ephedra extracts by inhibiting dipeptidyl peptidase IV (DPP-IV). Finding selective DPP-IV inhibitors is a current therapeutic strategy for Type 2 diabetes mellitus management. Therefore, the main aim of this work is to experimentally determine whether these alkaloids are DPP-IV inhibitors. Materials & methods: The DPP-IV inhibition of Ephedra's alkaloids was determined via a competitive-binding assay. Then, computational analyses were used in order to find out the protein-ligand interactions and to perform a lead optimization. RESULTS Our results show that all six molecules are DPP-IV inhibitors, with IC50 ranging from 124 μM for ephedrine to 28 mM for N-methylpseudoephedrine. CONCLUSION Further computational analysis shows how Ephedra's alkaloids could be used as promising lead molecules for designing more potent and selective DPP-IV inhibitors.
Collapse
|
10
|
Chalichem NSS, Gonugunta C, Krishnamurthy PT, Duraiswamy B. DPP4 Inhibitors Can Be a Drug of Choice for Type 3 Diabetes: A Mini Review. Am J Alzheimers Dis Other Demen 2017; 32:444-451. [PMID: 28747063 PMCID: PMC10852729 DOI: 10.1177/1533317517722005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As well known to the scientific community, Alzheimer's disease (AD) is an irreversible neurodegenerative disease that ends up with impairment of memory and cognition due to neuronal and synapse loss. Patient's quality of life can be enhanced by targeting neurogenesis as a therapeutic paradigm. Moreover, several research evidences support the concept that AD is a type of metabolic disorder mediated by impairment in brain insulin responsiveness and energy metabolism. Growing evidence suggests that endogenous peptides such as glucagon-like peptide-1 (GLP-1) and stromal-derived factor-1α (SDF-1α) provide neuroprotection across a range of experimental models of AD. So, preserving functional activity of SDF-1α and GLP-1 by dipeptidyl peptidase-4 inhibition will enhance the homing/recruitment of brain resident and nonresident circulating stem cells/progenitor cells, a noninvasive approach for promoting neurogenesis. So, herewith we provide this in support of dipeptidyl peptidase-4 inhibitors as a new target of attention for treating AD.
Collapse
Affiliation(s)
- Nehru Sai Suresh Chalichem
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, (Constituent College of Jagadguru Sri Shivarathreeswara University, Mysuru), Ooty, India
| | - Chaitanya Gonugunta
- Department of Pharmacology, Guntur Medical College, Guntur, Andhra Pradesh, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, (Constituent College of Jagadguru Sri Shivarathreeswara University, Mysuru), Ooty, India
| | - Basavan Duraiswamy
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, (Constituent College of Jagadguru Sri Shivarathreeswara University, Mysuru), Ooty, India
| |
Collapse
|
11
|
Singh AK, Jatwa R, Purohit A, Ram H. Synthetic and phytocompounds based dipeptidyl peptidase-IV (DPP-IV) inhibitors for therapeutics of diabetes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1036-1045. [PMID: 28351157 DOI: 10.1080/10286020.2017.1307183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Currently antidiabetic therapeutic strategies are mainly based on synthetic hypoglycemic agent. Antidiabetic drugs are associated with significant adverse effects of hypoglycemia, dysfunction of insulin and weight gain. Nowadays, the novel Dipeptidyl peptidase-IV (DPP-IV) inhibitors unique approach for the management of diabetes has been considered to be safe, as DPP-IV inhibitors reduce blood glucose level by monitoring hyperglycemia including positive effects on body weight as it remains neutral, improves glycated hemoglobin levels and do not induce hypoglycemia. Inhibitors help to protect degradation of Glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (GIP), gut hormones which helps to suppresses postprandial glucagon release, delay gastric emptying and regulate satiety. Therefore, the innovation of DPP-IV inhibitor based drugs regulates activity of incretin hormones such as GLP-1 and GIP. Commercially available DPP-IV inhibitors are chemically synthesized with good therapeutic value. However, the durability and long-term safety of DPP-IV inhibitors remains to be established. On the other hand, phytocompounds-based DPP-IV inhibitors are alternative and safe to use as compared to synthetic. Numerous novel antidiabetic compounds and group of compounds emerging in clinical development are through DPP-IV inhibition. This review summarized recent progress made on DPP-IV inhibitors from both synthetic as well as from natural sources.
Collapse
Affiliation(s)
- Anand-Krishna Singh
- a Animal Physiology Lab, Department of Zoology , Jai Narain Vyas University , Jodhpur 342001 , India
| | - Rameshwar Jatwa
- b Molecular Medicine and Toxicology Lab, School of Life Sciences , Devi Ahilya University , Indore 452001 , India
| | - Ashok Purohit
- a Animal Physiology Lab, Department of Zoology , Jai Narain Vyas University , Jodhpur 342001 , India
| | - Heera Ram
- a Animal Physiology Lab, Department of Zoology , Jai Narain Vyas University , Jodhpur 342001 , India
| |
Collapse
|
12
|
Wang F, Yu G, Zhang Y, Zhang B, Fan J. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9543-9. [PMID: 26468909 DOI: 10.1021/acs.jafc.5b04016] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Peptides released from oat, buckwheat, and highland barley proteins were examined for their in vitro inhibitory effects on dipeptidyl peptidase IV (DPP4), an enzyme that deactivates incretin hormones involved in insulin secretion. All of the hydrolysates exhibited DPP4 inhibitory activities, with IC50 values ranging from 0.13 mg/mL (oat glutelin alcalase digestion) to 8.15 mg/mL (highland barley albumin tryptic digestion). The lowest IC50 values in gastrointestinal, alcalase, and tryptic digestions were 0.99 mg/mL (oat flour), 0.13 mg/mL (oat glutelin), and 1.83 mg/mL (highland barley glutelin). In all, 35 peptides of more than seven residues were identified in the tryptic hydrolysates of oat globulin using liquid chromatography-mass spectroscopy. Peptides LQAFEPLR and EFLLAGNNK were synthesized and their DPP4 inhibitory activities determined. LQAFEPLR showed high in vitro DPP4 inhibitory activity with an IC50 value of 103.5 μM.
Collapse
Affiliation(s)
- Feng Wang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University , Beijing 100083, China
| | - Guoyong Yu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University , Beijing 100083, China
| | - Yanyan Zhang
- Food Science and Engineering College, Beijing University of Agriculture , Beijing 102206, China
| | - Bolin Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University , Beijing 100083, China
| | - Junfeng Fan
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University , Beijing 100083, China
| |
Collapse
|
13
|
Abstract
Dipeptidyl-peptidase 4 (DPP4) is a glycoprotein of 110 kDa, which is ubiquitously expressed on the surface of a variety of cells. This exopeptidase selectively cleaves N-terminal dipeptides from a variety of substrates, including cytokines, growth factors, neuropeptides, and the incretin hormones. Expression of DPP4 is substantially dysregulated in a variety of disease states including inflammation, cancer, obesity, and diabetes. Since the incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide (GIP), are major regulators of post-prandial insulin secretion, inhibition of DPP4 by the gliptin family of drugs has gained considerable interest for the therapy of type 2 diabetic patients. In this review, we summarize the current knowledge on the DPP4–incretin axis and evaluate most recent findings on DPP4 inhibitors. Furthermore, DPP4 as a type II transmembrane protein is also known to be cleaved from the cell membrane involving different metalloproteases in a cell-type-specific manner. Circulating, soluble DPP4 has been identified as a new adipokine, which exerts both para- and endocrine effects. Recently, a novel receptor for soluble DPP4 has been identified, and data are accumulating that the adipokine-related effects of DPP4 may play an important role in the pathogenesis of cardiovascular disease. Importantly, circulating DPP4 is augmented in obese and type 2 diabetic subjects, and it may represent a molecular link between obesity and vascular dysfunction. A critical evaluation of the impact of circulating DPP4 is presented, and the potential role of DPP4 inhibition at this level is also discussed.
Collapse
Affiliation(s)
- Diana Röhrborn
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| | - Nina Wronkowitz
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| | - Juergen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| |
Collapse
|
14
|
Gomha SM, Eldebss TMA, Badrey MG, Abdulla MM, Mayhoub AS. Novel 4-heteroaryl-antipyrines as DPP-IV inhibitors. Chem Biol Drug Des 2015; 86:1292-303. [PMID: 26032047 DOI: 10.1111/cbdd.12593] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/06/2015] [Accepted: 05/22/2015] [Indexed: 01/24/2023]
Abstract
Type 2 diabetes mellitus is a vast growing progressive disease that almost affects one person among every twelve globally. Regardless the availability of wide variety of oral hypoglycemics, only one-third of patients achieves proper glycemic control. With the advantage of the low risk of hypoglycemia, DPP-IV attracted the attention of medicinal chemists as a new target for oral hypoglycemics. In this report, a lead compound 1, with antipyrine scaffold, was obtained, and its binding mode was calculated. Several derivatives with bridged nitrogenous heterocycles have been synthesized via multicomponent reaction under controlled microwave heating conditions. The antidiabetic activity versus DPP-IV protein was evaluated and compared with sitagliptin. Compounds with smaller- or medium-sized nitrogenous bridges were comparable with sitagliptin in terms of DPP-IV inhibitory activity, potentially via targeting Glu203 and Glu204. The oral hypoglycemic activities of compounds with submicromolar IC50 values were further evaluated using diabetic mouse model.
Collapse
Affiliation(s)
- Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Taha M A Eldebss
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed G Badrey
- Chemistry Department, Faculty of Science, Fayoum University, El-Fayoum, 63514, Egypt
| | | | - Abdelrahman S Mayhoub
- Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt.,Al-Andalous for Pharmaceutical Industries, 6th of October City, Egypt
| |
Collapse
|
15
|
Structural Chemistry and Molecular Modeling in the Design of DPP4 Inhibitors. MULTIFACETED ROLES OF CRYSTALLOGRAPHY IN MODERN DRUG DISCOVERY 2015. [DOI: 10.1007/978-94-017-9719-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Ji X, Su M, Wang J, Deng G, Deng S, Li Z, Tang C, Li J, Li J, Zhao L, Jiang H, Liu H. Design, synthesis and biological evaluation of hetero-aromatic moieties substituted pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors. Eur J Med Chem 2014; 75:111-22. [PMID: 24531224 DOI: 10.1016/j.ejmech.2014.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 01/30/2023]
Abstract
A series of novel hetero-aromatic moieties substituted α-amino pyrrole-2-carbonitrile derivatives was designed and synthesized based on structure-activity relationships (SARs) of pyrrole-2-carbonitrile inhibitors. All compounds demonstrated good dipeptidyl peptidase IV (DPP4) inhibitory activities (IC50 = 0.004-113.6 μM). Moreover, compounds 6h (IC50 = 0.004 μM) and 6n (IC50 = 0.01 μM) showed excellent inhibitory activities against DPP4, good selectivity (compound 6h, selective ratio: DPP8/DPP4 = 450.0; DPP9/DPP4 = 375.0; compound 6n, selective ratio: DPP8/DPP4 = 470.0; DPP9/DPP4 = 750.0) and good efficacy in an oral glucose tolerance test in ICR mice. Furthermore, compounds 6h and 6n demonstrated moderate PK properties (compound 6h, F% = 37.8%, t1/2 = 1.45 h; compound 6n, F% = 16.8%, t1/2 = 3.64 h).
Collapse
Affiliation(s)
- Xun Ji
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wen Hua Road, Shenyang, Liaoning 110016, PR China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Mingbo Su
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; East China of Normal University, 3663 Zhongshan Road, Shanghai 200062, PR China
| | - Jiang Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Guanghui Deng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Sisi Deng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Zeng Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Chunlan Tang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jingya Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jia Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| | - Linxiang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wen Hua Road, Shenyang, Liaoning 110016, PR China
| | - Hualiang Jiang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wen Hua Road, Shenyang, Liaoning 110016, PR China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| |
Collapse
|
17
|
Gómez H, Chappé M, Valiente PA, Pons T, de Los Angeles Chávez M, Charli JL, Pascual I. Effect of zinc and calcium ions on the rat kidney membrane-bound form of dipeptidyl peptidase IV. J Biosci 2013; 38:461-9. [DOI: 10.1007/s12038-013-9333-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Baraldi PG, Fruttarolo F, Tabrizi MA, Romagnoli R, Preti D. Novel 8-heterocyclyl xanthine derivatives in drug development - an update. Expert Opin Drug Discov 2013; 2:1161-83. [PMID: 23496127 DOI: 10.1517/17460441.2.9.1161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Naturally occurring methyl xanthines, especially caffeine and theophylline, have been widely investigated for their pharmacological properties as cognition enhancers, bronchodilator agents and mild diuretics. The xanthine core (3,7-dihydro-1H-purine-2,6-dione) has been largely manipulated in the search for selective ligands for different pharmacological targets, proving to be a versatile scaffold for the development of lead compounds in multiple therapeutic areas. The introduction of a heterocycle at the 8-position of some xanthine derivatives demonstrated to be a successful strategy for the identification of potent and selective A1 or A2B adenosine receptors antagonists as potential agents for the treatment of Alzheimer's disease and asthma, respectively. Interesting examples of 8-heterocyclyl-xanthines as dipeptidyl peptidase IV inhibitors and liver X receptor agonists have been claimed for their possible therapeutic use in the treatment of Type 2 diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Pier G Baraldi
- Università di Ferrara, Dipartimento di Scienze Farmaceutiche, 44100 Ferrara, Italy +39 0532 455921 ; +39 0532 455953 ;
| | | | | | | | | |
Collapse
|
19
|
Nabeno M, Akahoshi F, Kishida H, Miyaguchi I, Tanaka Y, Ishii S, Kadowaki T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 2013; 434:191-6. [PMID: 23501107 DOI: 10.1016/j.bbrc.2013.03.010] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/07/2013] [Indexed: 12/21/2022]
Abstract
In recent years, various dipeptidyl peptidase IV (DPP-4) inhibitors have been released as therapeutic drugs for type 2 diabetes in many countries. In spite of their diverse chemical structures, no comparative studies of their binding modes in the active site of DPP-4 have been disclosed. We determined the co-crystal structure of vildagliptin with DPP-4 by X-ray crystallography and compared the binding modes of six launched inhibitors in DPP-4. The inhibitors were categorized into three classes on the basis of their binding subsites: (i) vildagliptin and saxagliptin (Class 1) form interactions with the core S1 and S2 subsites and a covalent bond with Ser630 in the catalytic triad; (ii) alogliptin and linagliptin (Class 2) form interactions with the S1' and/or S2' subsites in addition to the S1 and S2 subsites; and (iii) sitagliptin and teneligliptin (Class 3) form interactions with the S1, S2 and S2 extensive subsites. The present study revealed that the additional interactions with the S1', S2' or S2 extensive subsite may increase DPP-4 inhibition beyond the level afforded by the fundamental interactions with the S1 and S2 subsites and are more effective than forming a covalent bond with Ser630.
Collapse
Affiliation(s)
- Mika Nabeno
- Medicinal Chemistry Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Tang J, Majeti J, Sudom A, Xiong Y, Lu M, Liu Q, Higbee J, Zhang Y, Wang Y, Wang W, Cao P, Xia Z, Johnstone S, Min X, Yang X, Shao H, Yu T, Sharkov N, Walker N, Tu H, Shen W, Wang Z. An inhibitory antibody against dipeptidyl peptidase IV improves glucose tolerance in vivo. J Biol Chem 2012. [PMID: 23184939 DOI: 10.1074/jbc.m112.396317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) degrades the incretin hormone glucagon-like peptide 1 (GLP-1). Small molecule DPP-IV inhibitors have been used as treatments for type 2 diabetes to improve glucose tolerance. However, each of the marketed small molecule drugs has its own limitation in terms of efficacy and side effects. To search for an alternative strategy of inhibiting DPP-IV activity, we generated a panel of tight binding inhibitory mouse monoclonal antibodies (mAbs) against rat DPP-IV. When tested in vitro, these mAbs partially inhibited the GLP-1 cleavage activity of purified enzyme and rat plasma. To understand the partial inhibition, we solved the co-crystal structure of one of the mAb Fabs (Ab1) in complex with rat DPP-IV. Although Ab1 does not bind at the active site, it partially blocks the side opening, which prevents the large substrates such as GLP-1 from accessing the active site, but not small molecules such as sitagliptin. When Ab1 was tested in vivo, it reduced plasma glucose and increased plasma GLP-1 concentration during an oral glucose tolerance test in rats. Together, we demonstrated the feasibility of using mAbs to inhibit DPP-IV activity and to improve glucose tolerance in a diabetic rat model.
Collapse
Affiliation(s)
- Jie Tang
- Department of Biologics, Amgen Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tarantola E, Bertone V, Milanesi G, Capelli E, Ferrigno A, Neri D, Vairetti M, Barni S, Freitas I. Dipeptidylpeptidase--IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats. Eur J Histochem 2012; 56:e41. [PMID: 23361237 PMCID: PMC3567760 DOI: 10.4081/ejh.2012.e41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/02/2012] [Accepted: 07/26/2012] [Indexed: 01/19/2023] Open
Abstract
Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille's heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.
Collapse
Affiliation(s)
- E Tarantola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lone AM, Bachovchin DA, Westwood D, Speers AE, Spicer TP, Fernandez-Vega V, Chase P, Hodder PS, Rosen H, Cravatt BF, Saghatelian A. A substrate-free activity-based protein profiling screen for the discovery of selective PREPL inhibitors. J Am Chem Soc 2011; 133:11665-74. [PMID: 21692504 PMCID: PMC3145007 DOI: 10.1021/ja2036095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidases play vital roles in physiology through the biosynthesis, degradation, and regulation of peptides. Prolyl endopeptidase-like (PREPL) is a newly described member of the prolyl peptidase family, with significant homology to mammalian prolyl endopeptidase and the bacterial peptidase oligopeptidase B. The biochemistry and biology of PREPL are of fundamental interest due to this enzyme's homology to the biomedically important prolyl peptidases and its localization in the central nervous system. Furthermore, genetic studies of patients suffering from hypotonia-cystinuria syndrome (HCS) have revealed a deletion of a portion of the genome that includes the PREPL gene. HCS symptoms thought to be caused by lack of PREPL include neuromuscular and mild cognitive deficits. A number of complementary approaches, ranging from biochemistry to genetics, will be required to understand the biochemical, cellular, physiological, and pathological mechanisms regulated by PREPL. We are particularly interested in investigating physiological substrates and pathways controlled by PREPL. Here, we use a fluorescence polarization activity-based protein profiling (fluopol-ABPP) assay to discover selective small-molecule inhibitors of PREPL. Fluopol-ABPP is a substrate-free approach that is ideally suited for studying serine hydrolases for which no substrates are known, such as PREPL. After screening over 300,000 compounds using fluopol-ABPP, we employed a number of secondary assays to confirm assay hits and characterize a group of 3-oxo-1-phenyl-2,3,5,6,7,8-hexahydroisoquinoline-4-carbonitrile and 1-alkyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile PREPL inhibitors that are able to block PREPL activity in cells. Moreover, when administered to mice, 1-isobutyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile distributes to the brain, indicating that it may be useful for in vivo studies. The application of fluopol-ABPP has led to the first reported PREPL inhibitors, and these inhibitors will be of great value in studying the biochemistry of PREPL and in eventually understanding the link between PREPL and HCS.
Collapse
Affiliation(s)
- Anna Mari Lone
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Daniel A. Bachovchin
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - David Westwood
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Anna E. Speers
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Timothy P. Spicer
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Virneliz Fernandez-Vega
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Peter Chase
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Peter S. Hodder
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| | - Hugh Rosen
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- The Scripps Research Institute Molecular Screening Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Alan Saghatelian
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
23
|
Wagner L, Wermann M, Rosche F, Rahfeld JU, Hoffmann T, Demuth HU. Isolation of dipeptidyl peptidase IV (DP 4) isoforms from porcine kidney by preparative isoelectric focusing to improve crystallization. Biol Chem 2011; 392:665-77. [DOI: 10.1515/bc.2011.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractIn the present studies we resolved the post-translational microheterogeneity of purified porcine dipeptidyl peptidase IV (DP 4) from kidney cortex. Applying SDS-homogeneous DP 4 onto an analytical agarose isoelectric focusing (IEF) gel, pH 4–6, activity staining resulted in at least 17 isoforms between pH 4.8–6.0. These could be separated into fractions with only two to six isoforms by means of preparative liquid-phase IEF, using a Rotofor cell. Starting off with three parallel Rotofor runs under the same conditions at pH 5–6, the fractions were pooled according to the specific activity of DP 4, pH and analytical IEF profile, and further refractionated without any additional ampholytes. Since excessive dilution of ampholytes and proteins was kept to the minimum, a second refractionation step could be introduced, resulting in pH gradients between 0.022 and 0.028 pH increments per fraction. By performing two consecutive refractionation steps, the high resolution necessary for the separation of DP 4 isoforms could be achieved. This represents an alternative method if isolation of isoforms with similar pI's results in precipitation and denaturation in presence of a narrow pH range. Furthermore, it demonstrates that preparative IEF is a powerful tool to resolve post-translational microheterogeneity of a purified protein required for crystallization processing.
Collapse
|
24
|
Cho TP, Gang LZ, Long YF, Yang W, Qian W, Lei Z, Jing LJ, Ying F, Ke YP, Ying L, Jun F. Synthesis and biological evaluation of bicyclo[3.3.0] octane derivatives as dipeptidyl peptidase 4 inhibitors for the treatment of type 2 diabetes. Bioorg Med Chem Lett 2010; 20:3521-5. [DOI: 10.1016/j.bmcl.2010.04.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/30/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
|
25
|
Fuchs H, Tillement JP, Urien S, Greischel A, Roth W. Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable binding to its target in plasma of mice, rats and humans. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.01.0008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The purpose of this study was to characterise the plasma protein binding of BI 1356.
Methods
BI 1356 (proposed trade name ONDERO) is a novel dipeptidyl peptidase 4 (DPP-4) inhibitor, which is under clinical development for the treatment of type 2 diabetes. DPP-4 is expressed in various tissues but soluble DPP-4 is also present in plasma. Therefore, binding to soluble DPP-4 may influence the pharmacokinetics of BI 1356. Plasma protein binding of BI 1356 was determined in vitro for wild type mice and rats and the results compared with those for DPP-4 knockout mice and DPP-4 deficient Fischer rats. In addition, protein binding of BI 1356 was examined in plasma from healthy human volunteers and renal excretion of the compound in the DPP-4 knockout mice was compared with that occurring in wild type mice.
Key findings
The results showed that BI 1356 exhibited a prominent concentration-dependent plasma protein binding due to a saturable high affinity binding to the DPP-4 target in plasma. Differences in renal excretion of BI 1356 between DPP-4 knockout mice and wild type mice suggested that saturable binding of BI 1356 to DPP-4 in the body also influenced elimination.
Conclusions
High affinity, but readily saturable binding of BI 1356 to its target DPP-4 accounted primarily for the concentration-dependent plasma protein binding at therapeutic plasma concentrations of BI 1356.
Collapse
Affiliation(s)
- Holger Fuchs
- Department of Pharmacokinetics and Drug Metabolism, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | | | - Saik Urien
- Unité de Recherche Clinique (URC), Hopital Tarnier, Paris, France
| | - Andreas Greischel
- Department of Pharmacokinetics and Drug Metabolism, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Willy Roth
- Department of Pharmacokinetics and Drug Metabolism, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| |
Collapse
|
26
|
Hung TT, Wu JY, Liu JF, Cheng HC. Epitope analysis of the rat dipeptidyl peptidase IV monoclonal antibody 6A3 that blocks pericellular fibronectin-mediated cancer cell adhesion. FEBS J 2009; 276:6548-59. [DOI: 10.1111/j.1742-4658.2009.07352.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Dipeptidyl aminopeptidase IV from Stenotrophomonas maltophilia exhibits activity against a substrate containing a 4-hydroxyproline residue. J Bacteriol 2008; 190:7819-29. [PMID: 18820015 DOI: 10.1128/jb.02010-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The crystal structure of dipeptidyl aminopeptidase IV from Stenotrophomonas maltophilia was determined at 2.8-A resolution by the multiple isomorphous replacement method, using platinum and selenomethionine derivatives. The crystals belong to space group P4(3)2(1)2, with unit cell parameters a = b = 105.9 A and c = 161.9 A. Dipeptidyl aminopeptidase IV is a homodimer, and the subunit structure is composed of two domains, namely, N-terminal beta-propeller and C-terminal catalytic domains. At the active site, a hydrophobic pocket to accommodate a proline residue of the substrate is conserved as well as those of mammalian enzymes. Stenotrophomonas dipeptidyl aminopeptidase IV exhibited activity toward a substrate containing a 4-hydroxyproline residue at the second position from the N terminus. In the Stenotrophomonas enzyme, one of the residues composing the hydrophobic pocket at the active site is changed to Asn611 from the corresponding residue of Tyr631 in the porcine enzyme, which showed very low activity against the substrate containing 4-hydroxyproline. The N611Y mutant enzyme was generated by site-directed mutagenesis. The activity of this mutant enzyme toward a substrate containing 4-hydroxyproline decreased to 30.6% of that of the wild-type enzyme. Accordingly, it was considered that Asn611 would be one of the major factors involved in the recognition of substrates containing 4-hydroxyproline.
Collapse
|
28
|
Edmondson SD, Kim D. Selective Dipeptidyl Peptidase IV Inhibitors for the Treatment of Type 2 Diabetes: The Discovery of JANUVIA
(™)
(Sitagliptin). ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527621460.ch17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Kiss AL, Palló A, Náray-Szabó G, Harmat V, Polgár L. Structural and kinetic contributions of the oxyanion binding site to the catalytic activity of acylaminoacyl peptidase. J Struct Biol 2008; 162:312-23. [PMID: 18325786 DOI: 10.1016/j.jsb.2008.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/16/2008] [Accepted: 01/23/2008] [Indexed: 11/28/2022]
Abstract
It is widely accepted that the catalytic activity of serine proteases depends primarily on the Asp-His-Ser catalytic triad and other residues within the vicinity of this motif. Some of these residues form the oxyanion binding site that stabilizes the tetrahedral intermediate by hydrogen bonding to the negatively charged oxyanion. In acylaminoacyl peptidase from the thermophile Aeropyrum pernix, the main chain NH group of Gly369 is one of the hydrogen bond donors forming the oxyanion binding site. The side chain of His367, a conserved residue in acylaminoacyl peptidases across all species, fastens the loop holding Gly369. Determination of the crystal structure of the H367A mutant revealed that this loop, including Gly369, moves away considerably, accounting for the observed three orders of magnitude decrease in the specificity rate constant. For the wild-type enzyme ln(k(cat)/K(m)) vs. 1/T deviates from linearity indicating greater rate enhancement with increasing temperature for the dissociation of the enzyme-substrate complex compared with its decomposition to product. In contrast, the H367A variant provided a linear Arrhenius plot, and its reaction was associated with unfavourable entropy of activation. These results show that a residue relatively distant from the active site can significantly affect the catalytic activity of acylaminoacyl peptidase without changing the overall structure of the enzyme.
Collapse
Affiliation(s)
- András L Kiss
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1518 Budapest 112, P.O. Box 7, Hungary
| | | | | | | | | |
Collapse
|
30
|
Eckhardt M, Langkopf E, Mark M, Tadayyon M, Thomas L, Nar H, Pfrengle W, Guth B, Lotz R, Sieger P, Fuchs H, Himmelsbach F. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem 2007; 50:6450-3. [PMID: 18052023 DOI: 10.1021/jm701280z] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new chemical class of potent DPP-4 inhibitors structurally derived from the xanthine scaffold for the treatment of type 2 diabetes has been discovered and evaluated. Systematic structural variations have led to 1 (BI 1356), a highly potent, selective, long-acting, and orally active DPP-4 inhibitor that shows considerable blood glucose lowering in different animal species. 1 is currently undergoing clinical phase IIb trials and holds the potential for once-daily treatment of type 2 diabetics.
Collapse
|
31
|
A three-dimensional pharmacophore model for dipeptidyl peptidase IV inhibitors. Eur J Med Chem 2007; 43:1603-11. [PMID: 18207285 DOI: 10.1016/j.ejmech.2007.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 10/29/2007] [Accepted: 11/12/2007] [Indexed: 11/22/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a valid drug target for type-2 diabetes and DPP-IV inhibitors have been proven to efficiently improve glucose tolerance. In our study, 3D pharmacophore models were generated using a training set of 22 DPP-IV inhibitors. The best model consisted of important chemical features and mapped well into the active site of DPP-IV. The model gave high correlation coefficients of 0.97 and 0.84 for the training set and the test set, respectively, showing its good predictive ability for biological activity. Furthermore, the pharmacophore model demonstrated the capability to retrieve inhibitors from database with a high enrichment factor of 42.58. All results suggest that the model provides a useful tool for designing novel DPP-IV inhibitors.
Collapse
|
32
|
Sheehan SM, Mest HJ, Watson BM, Klimkowski VJ, Timm DE, Cauvin A, Parsons SH, Shi Q, Canada EJ, Wiley MR, Ruehter G, Evers B, Petersen S, Blaszczak LC, Pulley SR, Margolis BJ, Wishart GN, Renson B, Hankotius D, Mohr M, Zechel JC, Michael Kalbfleisch J, Dingess-Hammond EA, Boelke A, Weichert AG. Discovery of non-covalent dipeptidyl peptidase IV inhibitors which induce a conformational change in the active site. Bioorg Med Chem Lett 2007; 17:1765-8. [PMID: 17239592 DOI: 10.1016/j.bmcl.2006.12.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/13/2006] [Accepted: 12/15/2006] [Indexed: 11/17/2022]
Abstract
A series of non-covalent inhibitors of the serine protease dipeptidyl peptidase IV (DPP-IV) were found to adopt a U-shaped binding conformation in X-ray co-crystallization studies. Remarkably, Tyr547 undergoes a 70 degrees side-chain rotation to accommodate the inhibitor and allows access to a previously unexposed area of the protein backbone for hydrogen bonding.
Collapse
Affiliation(s)
- Scott M Sheehan
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wiedeman PE. DPPIV inhibition: promising therapy for the treatment of type 2 diabetes. PROGRESS IN MEDICINAL CHEMISTRY 2007; 45:63-109. [PMID: 17280902 DOI: 10.1016/s0079-6468(06)45502-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Paul E Wiedeman
- Abbott Laboratories, Department R4CP, Building AP9B, 100 Abbott Park Road, Abbott Park, IL 60064-6113, USA
| |
Collapse
|
34
|
Kurukulasuriya R, Rohde JJ, Szczepankiewicz BG, Basha F, Lai C, Jae HS, Winn M, Stewart KD, Longenecker KL, Lubben TW, Ballaron SJ, Sham HL, von Geldern TW. Xanthine mimetics as potent dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2006; 16:6226-30. [PMID: 17010607 DOI: 10.1016/j.bmcl.2006.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/16/2022]
Abstract
A series of xanthine mimetics containing 5,5 and 5,6 heterocycle fused imidazoles were synthesized as dipeptidyl peptidase IV inhibitors. Compound 7 is potent (h-DPPIV K(i)=2nM) and exhibits excellent selectivity and no species specificity against rat and human enzymes. The X-ray structure confirms that the binding mode of 7 to rat DPPIV is similar to the parent xanthines.
Collapse
Affiliation(s)
- Ravi Kurukulasuriya
- Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Madar DJ, Kopecka H, Pireh D, Yong H, Pei Z, Li X, Wiedeman PE, Djuric SW, Von Geldern TW, Fickes MG, Bhagavatula L, McDermott T, Wittenberger S, Richards SJ, Longenecker KL, Stewart KD, Lubben TH, Ballaron SJ, Stashko MA, Long MA, Wells H, Zinker BA, Mika AK, Beno DWA, Kempf-Grote AJ, Polakowski J, Segreti J, Reinhart GA, Fryer RM, Sham HL, Trevillyan JM. Discovery of 2-[4-{{2-(2S,5R)-2-Cyano-5-ethynyl-1-pyrrolidinyl]-2-oxoethyl]amino]- 4-methyl-1-piperidinyl]-4-pyridinecarboxylic Acid (ABT-279): A Very Potent, Selective, Effective, and Well-Tolerated Inhibitor of Dipeptidyl Peptidase-IV, Useful for the Treatment of Diabetes. J Med Chem 2006; 49:6416-20. [PMID: 17034148 DOI: 10.1021/jm060777o] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dipeptidyl peptidase-IV (DPP-IV) inhibitors are poised to be the next major drug class for the treatment of type 2 diabetes. Structure-activity studies of substitutions at the C5 position of the 2-cyanopyrrolidide warhead led to the discovery of potent inhibitors of DPP-IV that lack activity against DPP8 and DPP9. Further modification led to an extremely potent (Ki(DPP)(-)(IV) = 1.0 nM) and selective (Ki(DPP8) > 30 microM; Ki(DPP9) > 30 microM) clinical candidate, ABT-279, that is orally available, efficacious, and remarkably safe in preclinical safety studies.
Collapse
Affiliation(s)
- David J Madar
- Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064-6001, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|