1
|
Ren J, Oh SH, Na D. Untranslated region engineering strategies for gene overexpression, fine-tuning, and dynamic regulation. J Microbiol 2025; 63:e2501033. [PMID: 40195839 DOI: 10.71150/jm.2501033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Precise and tunable gene expression is crucial for various biotechnological applications, including protein overexpression, fine-tuned metabolic pathway engineering, and dynamic gene regulation. Untranslated regions (UTRs) of mRNAs have emerged as key regulatory elements that modulate transcription and translation. In this review, we explore recent advances in UTR engineering strategies for bacterial gene expression optimization. We discuss approaches for enhancing protein expression through AU-rich elements, RG4 structures, and synthetic dual UTRs, as well as ProQC systems that improve translation fidelity. Additionally, we examine strategies for fine-tuning gene expression using UTR libraries and synthetic terminators that balance metabolic flux. Finally, we highlight riboswitches and toehold switches, which enable dynamic gene regulation in response to environmental or metabolic cues. The integration of these UTR-based regulatory tools provides a versatile and modular framework for optimizing bacterial gene expression, enhancing metabolic engineering, and advancing synthetic biology applications.
Collapse
Affiliation(s)
- Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Hee Oh
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Zhang TM, Zhu XN, Qin SW, Guo XF, Xing XK, Zhao LF, Tan SK. Potential and application of abortive transcripts as a novel molecular marker of cancers. World J Exp Med 2024; 14:92343. [PMID: 38948416 PMCID: PMC11212745 DOI: 10.5493/wjem.v14.i2.92343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 06/19/2024] Open
Abstract
Abortive transcript (AT) is a 2-19 nt long non-coding RNA that is produced in the abortive initiation stage. Abortive initiation was found to be closely related to RNA polymerase through in vitro experiments. Therefore, the distribution of AT length and the scale of abortive initiation are correlated to the promoter, discriminator, and transcription initiation sequence, and can be affected by transcription elongation factors. AT plays an important role in the occurrence and development of various diseases. Here we summarize the discovery of AT, the factors responsible for AT formation, the detection methods and biological functions of AT, to provide new clues for finding potential targets in the early diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Tian-Miao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Nian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Shao-Wei Qin
- School of Leisure and Health, Guilin Tourism University, Guilin 541006, Guangxi Zhuang Autonomous Region, China
| | - Xue-Feng Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Xue-Kun Xing
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Li-Feng Zhao
- School of Leisure and Health, Guilin Tourism University, Guilin 541006, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Kui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Zhan Y, Grabbe F, Oberbeckmann E, Dienemann C, Cramer P. Three-step mechanism of promoter escape by RNA polymerase II. Mol Cell 2024; 84:1699-1710.e6. [PMID: 38604172 DOI: 10.1016/j.molcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.
Collapse
Affiliation(s)
- Yumeng Zhan
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frauke Grabbe
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Deal C, De Wannemaeker L, De Mey M. Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes. FEMS Microbiol Rev 2024; 48:fuae004. [PMID: 38383636 PMCID: PMC10911233 DOI: 10.1093/femsre/fuae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.
Collapse
Affiliation(s)
- Cara Deal
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Lien De Wannemaeker
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| |
Collapse
|
5
|
Jensen D, Ruiz Manzano A, Rector M, Tomko E, Record M, Galburt E. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Res 2023; 51:e99. [PMID: 37739412 PMCID: PMC10602862 DOI: 10.1093/nar/gkad761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α-32P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - M Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| |
Collapse
|
6
|
Jensen D, Manzano AR, Rector M, Tomko EJ, Record MT, Galburt EA. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532464. [PMID: 36993414 PMCID: PMC10054983 DOI: 10.1101/2023.03.13.532464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α- 32 P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription. Significance Statement RNA polymerase transcription mechanisms have largely been determined from in vitro kinetic and structural biology methods. In contrast to the limited throughput of these approaches, in vivo RNA sequencing provides genome-wide measurements but lacks the ability to dissect direct biochemical from indirect genetic mechanisms. Here, we present a method that bridges this gap, permitting high-throughput fluorescence-based measurements of in vitro steady-state transcription kinetics. We illustrate how an RNA-aptamer-based detection system can be used to generate quantitative information on direct mechanisms of transcriptional regulation and discuss the far-reaching implications for future applications.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric J. Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| |
Collapse
|
7
|
LaFleur TL, Hossain A, Salis HM. Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria. Nat Commun 2022; 13:5159. [PMID: 36056029 PMCID: PMC9440211 DOI: 10.1038/s41467-022-32829-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/19/2022] [Indexed: 12/22/2022] Open
Abstract
Transcription rates are regulated by the interactions between RNA polymerase, sigma factor, and promoter DNA sequences in bacteria. However, it remains unclear how non-canonical sequence motifs collectively control transcription rates. Here, we combine massively parallel assays, biophysics, and machine learning to develop a 346-parameter model that predicts site-specific transcription initiation rates for any σ70 promoter sequence, validated across 22132 bacterial promoters with diverse sequences. We apply the model to predict genetic context effects, design σ70 promoters with desired transcription rates, and identify undesired promoters inside engineered genetic systems. The model provides a biophysical basis for understanding gene regulation in natural genetic systems and precise transcriptional control for engineering synthetic genetic systems.
Collapse
Affiliation(s)
- Travis L LaFleur
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16801, USA
| | - Ayaan Hossain
- Bioinformatics and Genomics, Pennsylvania State University, University Park, PA, 16801, USA
| | - Howard M Salis
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16801, USA.
- Bioinformatics and Genomics, Pennsylvania State University, University Park, PA, 16801, USA.
- Department of Biological Engineering, Pennsylvania State University, University Park, PA, 16801, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16801, USA.
| |
Collapse
|
8
|
Development of a novel platform for recombinant protein production in Corynebacterium glutamicum on ethanol. Synth Syst Biotechnol 2022; 7:765-774. [PMID: 35387228 PMCID: PMC8942793 DOI: 10.1016/j.synbio.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 02/03/2023] Open
Abstract
Corynebacterium glutamicum represents an emerging recombinant protein expression factory due to its ideal features for protein secretion, but its applicability is harmed by the lack of an autoinduction system with tight regulation and high yield. Here, we propose a new recombinant protein manufacturing platform that leverages ethanol as both a delayed carbon source and an inducer. First, we reanalysed the native inducible promoter PICL from the acetate uptake operon and found that its limited capacity is the result of the inadequate translation initial architecture. The two strategies of bicistronic design and ribozyme-based insulator can ensure the high activity of this promoter. Next, through transcriptional engineering that alters transcription factor binding sites (TFBSs) and the first transcribed sequence, the truncated promoter PA256 with a dramatically higher transcription level was generated. When producing the superfolder green fluorescent protein (sfGFP) under 1% ethanol conditions, PA256 exhibited substantially lower protein accumulation in prophase but an approximately 2.5-fold greater final yield than the strong promoter PH36. This superior expression mode was further validated using two secreted proteins, camelid antibody fragment (VHH) and endoxylanase (XynA). Furthermore, utilizing CRISPRi technology, ethanol utilization blocking strains were created, and PA256 was shown to be impaired in the phosphotransacetylase (PTA) knockdown strains, indicating that ethanol metabolism into the tricarboxylic acid cycle is required for PA256 upregulation. Finally, this platform was applied to produce the “de novo design” protein NEO-2/15, and by introducing the N-propeptide of CspB, NEO-2/15 was effectively secreted with the accumulation 281 mg/L obtained after 24 h of shake-flask fermentation. To the best of our knowledge, this is the first report of NEO-2/15 secretory overexpression.
Collapse
|
9
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
10
|
Petushkov IV, Kulbachinskiy AV. Role of Interactions of the CRE Region of Escherichia coli RNA Polymerase with Nontemplate DNA during Promoter Escape. BIOCHEMISTRY (MOSCOW) 2021; 85:792-800. [PMID: 33040723 DOI: 10.1134/s000629792007007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA polymerase (RNAP) recognizes promoter DNA through many interactions that determine specificity of transcription initiation. In addition to the dedicated transcription initiation σ factor in bacteria, the core enzyme of RNAP can also participate in promoter recognition. In particular, guanine residue at the +2 position (+2G) of the nontemplate DNA strand is bound in the CRE pocket formed by the RNAP β subunit. Here, we analyzed the role of these contacts in the process of promoter escape by RNAP by studying point mutations in the β subunit of Escherichia coli RNAP that disrupted these interactions. We found that the presence of +2G in the promoter slowed down the rate of promoter escape and increased proportion of inactive complexes. Amino acid substitutions in the CRE pocket decreased the promoter complex stability and changed the pattern of short RNA products synthesized during initiation, but did not significantly affect the rate of transition to elongation, regardless of the presence of +2G. Thus, the contacts of the CRE pocket with +2G do not make a significant contribution to the kinetics of promoter escape by RNAP, while the observed changes in the efficiency of abortive synthesis are not directly related to the rate of promoter escape.
Collapse
Affiliation(s)
- I V Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - A V Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| |
Collapse
|
11
|
Balzer Le S, Onsager I, Lorentzen JA, Lale R. Dual UTR-A novel 5' untranslated region design for synthetic biology applications. Synth Biol (Oxf) 2020; 5:ysaa006. [PMID: 32995550 PMCID: PMC7476403 DOI: 10.1093/synbio/ysaa006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 01/07/2023] Open
Abstract
Bacterial 5' untranslated regions of mRNA (UTR) involve in a complex regulation of gene expression; however, the exact sequence features contributing to gene regulation are not yet fully understood. In this study, we report the design of a novel 5' UTR, dual UTR, utilizing the transcriptional and translational characteristics of 5' UTRs in a single expression cassette. The dual UTR consists of two 5' UTRs, each separately leading to either increase in transcription or translation of the reporter, that are separated by a spacer region, enabling de novo translation initiation. We rationally create dual UTRs with a wide range of expression profiles and demonstrate the functionality of the novel design concept in Escherichia coli and Pseudomonas putida using different promoter systems and coding sequences. Overall, we demonstrate the application potential of dual UTR design concept in various synthetic biology applications ranging from fine-tuning of gene expression to maximization of protein production.
Collapse
Affiliation(s)
- Simone Balzer Le
- PhotoSynLab, Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Ingerid Onsager
- PhotoSynLab, Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Jon Andreas Lorentzen
- PhotoSynLab, Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Rahmi Lale
- PhotoSynLab, Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| |
Collapse
|
12
|
Schuller A, Cserjan-Puschmann M, Tauer C, Jarmer J, Wagenknecht M, Reinisch D, Grabherr R, Striedner G. Escherichia coli σ 70 promoters allow expression rate control at the cellular level in genome-integrated expression systems. Microb Cell Fact 2020; 19:58. [PMID: 32138729 PMCID: PMC7059391 DOI: 10.1186/s12934-020-01311-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background The genome-integrated T7 expression system offers significant advantages, in terms of productivity and product quality, even when expressing the gene of interest (GOI) from a single copy. Compared to plasmid-based expression systems, this system does not incur a plasmid-mediated metabolic load, and it does not vary the dosage of the GOI during the production process. However, long-term production with T7 expression system leads to a rapidly growing non-producing population, because the T7 RNA polymerase (RNAP) is prone to mutations. The present study aimed to investigate whether two σ70 promoters, which were recognized by the Escherichia coli host RNAP, might be suitable in genome-integrated expression systems. We applied a promoter engineering strategy that allowed control of expressing the model protein, GFP, by introducing lac operators (lacO) into the constitutive T5 and A1 promoter sequences. Results We showed that, in genome-integrated E. coli expression systems that used σ70 promoters, the number of lacO sites must be well balanced. Promoters containing three and two lacO sites exhibited low basal expression, but resulted in a complete stop in recombinant protein production in partially induced cultures. In contrast, expression systems regulated by a single lacO site and the lac repressor element, lacIQ, on the same chromosome caused very low basal expression, were highly efficient in recombinant protein production, and enables fine-tuning of gene expression levels on a cellular level. Conclusions Based on our results, we hypothesized that this phenomenon was associated with the autoregulation of the lac repressor protein, LacI. We reasoned that the affinity of LacI for the lacO sites of the GOI must be lower than the affinity of LacI to the lacO sites of the endogenous lac operon; otherwise, LacI autoregulation could not take place, and the lack of LacI autoregulation would lead to a disturbance in lac repressor-mediated regulation of transcription. By exploiting the mechanism of LacI autoregulation, we created a novel E. coli expression system for use in recombinant protein production, synthetic biology, and metabolic engineering applications.
Collapse
Affiliation(s)
- Artur Schuller
- Christian Doppler Laboratory for Production of Next-level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Johanna Jarmer
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Daniela Reinisch
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Reingard Grabherr
- Christian Doppler Laboratory for Production of Next-level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
13
|
Heyduk E, Heyduk T. DNA template sequence control of bacterial RNA polymerase escape from the promoter. Nucleic Acids Res 2019; 46:4469-4486. [PMID: 29546317 PMCID: PMC5961368 DOI: 10.1093/nar/gky172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Promoter escape involves breaking of the favourable contacts between RNA polymerase (RNAP) and the promoter to allow transition to an elongation complex. The sequence of DNA template that is transcribed during promoter escape (ITS; Initially Transcribed Sequence) can affect promoter escape by mechanisms that are not yet fully understood. We employed a highly parallel strategy utilizing Next Generation Sequencing (NGS) to collect data on escape properties of thousands of ITS variants. We show that ITS controls promoter escape through a combination of position-dependent effects (most prominently, sequence-directed RNAP pausing), and position-independent effects derived from sequence encoded physical properties of the template (for example, RNA/DNA duplex stability). ITS often functions as an independent unit affecting escape in the same manner regardless of the promoter from which transcription initiates. However, in some cases, a strong dependence of ITS effects on promoter context was observed suggesting that promoters may have 'allosteric' abilities to modulate ITS effects. Large effects of ITS on promoter output and the observed interplay between promoter sequence and ITS effects suggests that the definition of bacterial promoter should include ITS sequence.
Collapse
Affiliation(s)
- Ewa Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
14
|
Mazumder A, Kapanidis AN. Recent Advances in Understanding σ70-Dependent Transcription Initiation Mechanisms. J Mol Biol 2019; 431:3947-3959. [PMID: 31082441 PMCID: PMC7057261 DOI: 10.1016/j.jmb.2019.04.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022]
Abstract
Prokaryotic transcription is one of the most studied biological systems, with relevance to many fields including the development and use of antibiotics, the construction of synthetic gene networks, and the development of many cutting-edge methodologies. Here, we discuss recent structural, biochemical, and single-molecule biophysical studies targeting the mechanisms of transcription initiation in bacteria, including the formation of the open complex, the reaction of initial transcription, and the promoter escape step that leads to elongation. We specifically focus on the mechanisms employed by the RNA polymerase holoenzyme with the housekeeping sigma factor σ70. The recent progress provides answers to long-held questions, identifies intriguing new behaviours, and opens up fresh questions for the field of transcription.
Collapse
Affiliation(s)
- Abhishek Mazumder
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Interplay between σ region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase. Biochem J 2017; 474:4053-4064. [DOI: 10.1042/bcj20170436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022]
Abstract
In bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5′-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site. To monitor the kinetics of promoter escape in real time, we used a molecular beacon assay with fluorescently labeled σ70 subunit of Escherichia coli RNAP. We show that substitutions and deletions in σ region 3.2 decrease the rate of promoter escape and lead to accumulation of inactive complexes during transcription initiation. Secondary channel factors differentially regulate this process depending on the promoter and mutations in σ region 3.2. GreA generally increase the rate of promoter escape; DksA also stimulates promoter escape on certain templates, while GreB either stimulates or inhibits this process depending on the template. When observed, the stimulation of promoter escape correlates with the accumulation of stressed transcription complexes with scrunched DNA, while changes in the RNA 5′-end structure modulate promoter clearance. Thus, the initiation-to-elongation transition is controlled by a complex interplay between RNAP-binding protein factors and the growing RNA chain.
Collapse
|
16
|
Ingargiola A, Lerner E, Chung S, Panzeri F, Gulinatti A, Rech I, Ghioni M, Weiss S, Michalet X. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules. PLoS One 2017; 12:e0175766. [PMID: 28419142 PMCID: PMC5395192 DOI: 10.1371/journal.pone.0175766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 12/03/2022] Open
Abstract
We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.
Collapse
Affiliation(s)
- Antonino Ingargiola
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, United States of America
- * E-mail: (AI); (XM)
| | - Eitan Lerner
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, United States of America
| | - SangYoon Chung
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, United States of America
| | - Francesco Panzeri
- Dipartimento di Elettronica, Informazione e Bioingeneria, Politecnico di Milano, Milan, Italy
| | - Angelo Gulinatti
- Dipartimento di Elettronica, Informazione e Bioingeneria, Politecnico di Milano, Milan, Italy
| | - Ivan Rech
- Dipartimento di Elettronica, Informazione e Bioingeneria, Politecnico di Milano, Milan, Italy
| | - Massimo Ghioni
- Dipartimento di Elettronica, Informazione e Bioingeneria, Politecnico di Milano, Milan, Italy
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, United States of America
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, United States of America
- * E-mail: (AI); (XM)
| |
Collapse
|
17
|
Mechanism of transcription initiation and promoter escape by E. coli RNA polymerase. Proc Natl Acad Sci U S A 2017; 114:E3032-E3040. [PMID: 28348246 DOI: 10.1073/pnas.1618675114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate roles of the discriminator and open complex (OC) lifetime in transcription initiation by Escherichia coli RNA polymerase (RNAP; α2ββ'ωσ70), we compare productive and abortive initiation rates, short RNA distributions, and OC lifetime for the λPR and T7A1 promoters and variants with exchanged discriminators, all with the same transcribed region. The discriminator determines the OC lifetime of these promoters. Permanganate reactivity of thymines reveals that strand backbones in open regions of long-lived λPR-discriminator OCs are much more tightly held than for shorter-lived T7A1-discriminator OCs. Initiation from these OCs exhibits two kinetic phases and at least two subpopulations of ternary complexes. Long RNA synthesis (constrained to be single round) occurs only in the initial phase (<10 s), at similar rates for all promoters. Less than half of OCs synthesize a full-length RNA; the majority stall after synthesizing a short RNA. Most abortive cycling occurs in the slower phase (>10 s), when stalled complexes release their short RNA and make another without escaping. In both kinetic phases, significant amounts of 8-nt and 10-nt transcripts are produced by longer-lived, λPR-discriminator OCs, whereas no RNA longer than 7 nt is produced by shorter-lived T7A1-discriminator OCs. These observations and the lack of abortive RNA in initiation from short-lived ribosomal promoter OCs are well described by a quantitative model in which ∼1.0 kcal/mol of scrunching free energy is generated per translocation step of RNA synthesis to overcome OC stability and drive escape. The different length-distributions of abortive RNAs released from OCs with different lifetimes likely play regulatory roles.
Collapse
|
18
|
Lerner E, Ingargiola A, Lee JJ, Borukhov S, Michalet X, Weiss S. Different types of pausing modes during transcription initiation. Transcription 2017; 8:242-253. [PMID: 28332923 DOI: 10.1080/21541264.2017.1308853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In many cases, initiation is rate limiting to transcription. This due in part to the multiple cycles of abortive transcription that delay promoter escape and the transition from initiation to elongation. Pausing of transcription in initiation can further delay promoter escape. The previously hypothesized pausing in initiation was confirmed by two recent studies from Duchi et al. 1 and from Lerner, Chung et al. 2 In both studies, pausing is attributed to a lack of forward translocation of the nascent transcript during initiation. However, the two works report on different pausing mechanisms. Duchi et al. report on pausing that occurs during initiation predominantly on-pathway of transcript synthesis. Lerner, Chung et al. report on pausing during initiation as a result of RNAP backtracking, which is off-pathway to transcript synthesis. Here, we discuss these studies, together with additional experimental results from single-molecule FRET focusing on a specific distance within the transcription bubble. We show that the results of these studies are complementary to each other and are consistent with a model involving two types of pauses in initiation: a short-lived pause that occurs in the translocation of a 6-mer nascent transcript and a long-lived pause that occurs as a result of 1-2 nucleotide backtracking of a 7-mer transcript.
Collapse
Affiliation(s)
- Eitan Lerner
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Antonino Ingargiola
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Jookyung J Lee
- b Rowan University School of Osteopathic Medicine , Stratford , NJ , USA
| | - Sergei Borukhov
- b Rowan University School of Osteopathic Medicine , Stratford , NJ , USA
| | - Xavier Michalet
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA
| | - Shimon Weiss
- a Department of Chemistry & Biochemistry , University of California , Los Angeles , CA , USA.,c Molecular Biology Institute , University of California , Los Angeles , CA , USA.,d Department of Physiology , University of California , Los Angeles , CA , USA
| |
Collapse
|
19
|
Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:E6562-E6571. [PMID: 27729537 DOI: 10.1073/pnas.1605038113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. Quenched kinetics assays, in combination with gel-based assays, showed that RNAP exit kinetics from complexes stalled at later stages of initiation (e.g., from a 7-base transcript) were markedly slower than from earlier stages (e.g., from a 2- or 4-base transcript). In addition, the RNAP-GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states. Further examination with magnetic tweezers transcription experiments showed that RNAP adopted a long-lived backtracked state during initiation and that the paused-backtracked initiation intermediate was populated abundantly at physiologically relevant nucleoside triphosphate (NTP) concentrations. The paused intermediate population was further increased when the NTP concentration was decreased and/or when an imbalance in NTP concentration was introduced (situations that mimic stress). Our results confirm the existence of a previously hypothesized paused and backtracked RNAP initiation intermediate and suggest it is biologically relevant; furthermore, such intermediates could be exploited for therapeutic purposes and may reflect a conserved state among paused, initiating eukaryotic RNA polymerase II enzymes.
Collapse
|
20
|
Duchi D, Bauer DLV, Fernandez L, Evans G, Robb N, Hwang LC, Gryte K, Tomescu A, Zawadzki P, Morichaud Z, Brodolin K, Kapanidis AN. RNA Polymerase Pausing during Initial Transcription. Mol Cell 2016; 63:939-50. [PMID: 27618490 PMCID: PMC5031556 DOI: 10.1016/j.molcel.2016.08.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 04/12/2016] [Accepted: 08/05/2016] [Indexed: 11/11/2022]
Abstract
In bacteria, RNA polymerase (RNAP) initiates transcription by synthesizing short transcripts that are either released or extended to allow RNAP to escape from the promoter. The mechanism of initial transcription is unclear due to the presence of transient intermediates and molecular heterogeneity. Here, we studied initial transcription on a lac promoter using single-molecule fluorescence observations of DNA scrunching on immobilized transcription complexes. Our work revealed a long pause (“initiation pause,” ∼20 s) after synthesis of a 6-mer RNA; such pauses can serve as regulatory checkpoints. Region sigma 3.2, which contains a loop blocking the RNA exit channel, was a major pausing determinant. We also obtained evidence for RNA backtracking during abortive initial transcription and for additional pausing prior to escape. We summarized our work in a model for initial transcription, in which pausing is controlled by a complex set of determinants that modulate the transition from a 6- to a 7-nt RNA. E. coli RNA polymerase pauses during initial transcription at lac promoters Initiation pausing lasts for ∼20 s and occurs at the transition from 6- to 7-nt RNA Region 3.2 of σ70 is the main protein element controlling pausing Pausing is likely to be controlled further by a complex set of determinants
Collapse
Affiliation(s)
- Diego Duchi
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - David L V Bauer
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Laurent Fernandez
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Geraint Evans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Nicole Robb
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Ling Chin Hwang
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Kristofer Gryte
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Alexandra Tomescu
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Pawel Zawadzki
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Zakia Morichaud
- CNRS FRE 3689, Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Konstantin Brodolin
- CNRS FRE 3689, Centre d'études d'agents Pathogénes et Biotechnologies pour la Santé (CPBS), 1919 route de Mende, 34293 Montpellier, France
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK.
| |
Collapse
|
21
|
Roquet N, Soleimany AP, Ferris AC, Aaronson S, Lu TK. Synthetic recombinase-based state machines in living cells. Science 2016; 353:aad8559. [PMID: 27463678 DOI: 10.1126/science.aad8559] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
Abstract
State machines underlie the sophisticated functionality behind human-made and natural computing systems that perform order-dependent information processing. We developed a recombinase-based framework for building state machines in living cells by leveraging chemically controlled DNA excision and inversion operations to encode states in DNA sequences. This strategy enables convenient readout of states (by sequencing and/or polymerase chain reaction) as well as complex regulation of gene expression. We validated our framework by engineering state machines in Escherichia coli that used one, two, or three chemical inputs to control up to 16 DNA states. These state machines were capable of recording the temporal order of all inputs and performing multi-input, multi-output control of gene expression. We also developed a computational tool for the automated design of gene regulation programs using recombinase-based state machines. Our scalable framework should enable new strategies for recording and studying how combinational and temporal events regulate complex cell functions and for programming sophisticated cell behaviors.
Collapse
Affiliation(s)
- Nathaniel Roquet
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biophysics Program, Harvard University, Boston, MA 02115, USA
| | - Ava P Soleimany
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa C Ferris
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Scott Aaronson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biophysics Program, Harvard University, Boston, MA 02115, USA. Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Šimčíková M, Alves CPA, Brito L, Prather KLJ, Prazeres DMF, Monteiro GA. Improvement of DNA minicircle production by optimization of the secondary structure of the 5′-UTR of ParA resolvase. Appl Microbiol Biotechnol 2016; 100:6725-6737. [DOI: 10.1007/s00253-016-7565-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 01/10/2023]
|
23
|
Chander M, Lee A, Vallery TK, Thandar M, Jiang Y, Hsu LM. Mechanisms of Very Long Abortive Transcript Release during Promoter Escape. Biochemistry 2015; 54:7393-408. [PMID: 26610896 DOI: 10.1021/acs.biochem.5b00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A phage T5 N25 promoter variant, DG203, undergoes the escape transition at the +16 to +19 positions after transcription initiation. By specifically examining the abortive activity of the initial transcribing complex at position +19 (ITC19), we observe the production of both GreB-sensitive and GreB-resistant VLAT19. This suggests that ITC19, which is perched on the brink of escape, is highly unstable and can achieve stabilization through either backtracking or forward translocation. Of the forward-tracked fraction, only a small percentage escapes normally (followed by stepwise elongation) to produce full-length RNA; the rest presumably hypertranslocates to release GreB-resistant VLATs. VLAT formation is dependent not only on consensus -35/-10 promoters with 17 bp spacing but also on sequence characteristics of the spacer DNA. Analysis of DG203 promoter variants containing different spacer sequences reveals that AT-rich spacers intrinsically elevate the level of VLAT formation. The AT-rich spacer of DG203 joined to the -10 box presents an UP element sequence capable of interacting with the polymerase α subunit C-terminal domain (αCTD) during the escape transition, which in turn enhances VLAT release. Utilization of the spacer/-10 region UP element by αCTD subunits requires a 10-15 bp hypertranslocation. We document the physical occurrence of hyper forward translocation using ExoIII footprinting analysis.
Collapse
Affiliation(s)
- Monica Chander
- Biology Department, Bryn Mawr College , Bryn Mawr, Pennsylvania 19010, United States
| | - Ahri Lee
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Tenaya K Vallery
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Mya Thandar
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Yunnan Jiang
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Lilian M Hsu
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| |
Collapse
|
24
|
Skancke J, Bar N, Kuiper M, Hsu LM. Sequence-Dependent Promoter Escape Efficiency Is Strongly Influenced by Bias for the Pretranslocated State during Initial Transcription. Biochemistry 2015; 54:4267-75. [PMID: 26083830 DOI: 10.1021/acs.biochem.5b00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abortive transcription initiation can be rate-limiting for promoter escape and therefore represents a barrier to productive gene expression. The mechanism for abortive initiation is unknown, but the amount of abortive transcript is known to vary with the composition of the initial transcribed sequence (ITS). Here, we used a thermodynamic model of translocation combined with experimental validation to investigate the relationship between ITS and promoter escape on a set of phage T5 N25 promoters. We found a strong, negative correlation between RNAP's propensity to occupy the pretranslocated state during initial transcription and the efficiency of promoter escape (r = -0.67; p < 10(-6)). This correlation was almost entirely caused by free energy changes due to variation in the RNA 3' dinucleotide sequence at each step, implying that this sequence element controls the disposition of initial transcribing complexes. We tested our model experimentally by constructing a set of novel N25-ITS promoter variants; quantitative transcription analysis again showed a strong correlation (r = -0.81; p < 10(-6)). Our results support a model in which sequence-directed bias for the pretranslocated state during scrunching results in increased backtracking, which limits the efficiency of promoter escape. This provides an answer to the long-standing issue of how sequence composition of the ITS affects promoter escape efficiency.
Collapse
Affiliation(s)
- Jørgen Skancke
- †Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælandsvei 4, 7491 Trondheim, Norway
| | - Nadav Bar
- †Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Sælandsvei 4, 7491 Trondheim, Norway
| | - Martin Kuiper
- ‡Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Lilian M Hsu
- §Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
| |
Collapse
|
25
|
Differential role of base pairs on gal promoters strength. J Mol Biol 2014; 427:792-806. [PMID: 25543084 DOI: 10.1016/j.jmb.2014.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/16/2014] [Accepted: 12/18/2015] [Indexed: 11/23/2022]
Abstract
Sequence alignments of promoters in prokaryotes postulated that the frequency of occurrence of a base pair at a given position of promoter elements reflects its contribution to intrinsic promoter strength. We directly assessed the contribution of the four base pairs in each position in the intrinsic promoter strength by keeping the context constant in Escherichia coli cAMP-CRP (cAMP receptor protein) regulated gal promoters by in vitro transcription assays. First, we show that base pair frequency within known consensus elements correlates well with promoter strength. Second, we observe some substitutions upstream of the ex-10 TG motif that are important for promoter function. Although the galP1 and P2 promoters overlap, only three positions where substitutions inactivated both promoters were found. We propose that RNA polymerase binds to the -12T base pair as part of double-stranded DNA while opening base pairs from -11A to +3 to form the single-stranded transcription bubble DNA during isomerization. The cAMP-CRP complex rescued some deleterious substitutions in the promoter region. The base pair roles and their flexibilities reported here for E. coli gal promoters may help construction of synthetic promoters in gene circuitry experiments in which overlapping promoters with differential controls may be warranted.
Collapse
|
26
|
Kinetics of promoter escape by bacterial RNA polymerase: effects of promoter contacts and transcription bubble collapse. Biochem J 2014; 463:135-44. [PMID: 24995916 DOI: 10.1042/bj20140179] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Promoter escape by RNA polymerase, the transition between the initiation and elongation, is a critical step that defines transcription output at many promoters. In the present study we used a real-time fluorescence assay for promoter melting and escape to study the determinants of the escape. Perturbation of core promoter-polymerase contacts had opposing effects on the rates of melting and escape, demonstrating a direct role of core promoter elements sequence in setting not only the kinetics of promoter melting, but also the kinetics of promoter escape. The start of RNA synthesis is accompanied by an enlargement of the transcription bubble and pulling in of the downstream DNA into the enzyme, resulting in DNA scrunching. Promoter escape results in collapse of the enlarged bubble. To test whether the energy that could be potentially released by the collapse of the bubble plays a role in determining escape kinetics, we measured the rates of promoter escape in promoter constructs, in which the amount of this energy was perturbed by introducing sequence mismatches. We found no significant changes in the rate of promoter escape with these promoter constructs suggesting that the energy released upon bubble collapse does not play a critical role in determining the kinetics of promoter escape.
Collapse
|
27
|
Strobel EJ, Roberts JW. Regulation of promoter-proximal transcription elongation: enhanced DNA scrunching drives λQ antiterminator-dependent escape from a σ70-dependent pause. Nucleic Acids Res 2014; 42:5097-108. [PMID: 24550164 PMCID: PMC4005639 DOI: 10.1093/nar/gku147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During initial transcription, RNA polymerase remains bound at the promoter and synthesizes RNA without movement along the DNA template, drawing downstream DNA into itself in a process called scrunching and thereby storing energy to sever the bonds that hold the enzyme at the promoter. We show that DNA scrunching also is the driving force behind the escape of RNA polymerase from a regulatory pause of the late gene operon of bacteriophage λ, and that this process is enhanced by the activity of the Q(λ) antiterminator. Furthermore, we show that failure of transcription complexes to escape the pause results in backtracking and arrest in a process analogous to abortive initiation. We identify a sequence element that modulates both abortive synthesis and the formation of arrested elongation complexes.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
28
|
Ang J, Harris E, Hussey BJ, Kil R, McMillen DR. Tuning response curves for synthetic biology. ACS Synth Biol 2013; 2:547-67. [PMID: 23905721 PMCID: PMC3805330 DOI: 10.1021/sb4000564] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 01/07/2023]
Abstract
Synthetic biology may be viewed as an effort to establish, formalize, and develop an engineering discipline in the context of biological systems. The ability to tune the properties of individual components is central to the process of system design in all fields of engineering, and synthetic biology is no exception. A large and growing number of approaches have been developed for tuning the responses of cellular systems, and here we address specifically the issue of tuning the rate of response of a system: given a system where an input affects the rate of change of an output, how can the shape of the response curve be altered experimentally? This affects a system's dynamics as well as its steady-state properties, both of which are critical in the design of systems in synthetic biology, particularly those with multiple components. We begin by reviewing a mathematical formulation that captures a broad class of biological response curves and use this to define a standard set of varieties of tuning: vertical shifting, horizontal scaling, and the like. We then survey the experimental literature, classifying the results into our defined categories, and organizing them by regulatory level: transcriptional, post-transcriptional, and post-translational.
Collapse
Affiliation(s)
- Jordan Ang
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Edouard Harris
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Brendan J. Hussey
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Richard Kil
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - David R. McMillen
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
29
|
Samanta S, Martin CT. Insights into the mechanism of initial transcription in Escherichia coli RNA polymerase. J Biol Chem 2013; 288:31993-2003. [PMID: 24047893 DOI: 10.1074/jbc.m113.497669] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has long been known that during initial transcription of the first 8-10 bases of RNA, complexes are relatively unstable, leading to the release of short abortive RNA transcripts. An early "stressed intermediate" model led to a more specific mechanistic model proposing "scrunching" stress as the basis for the instability. Recent studies in the single subunit T7 RNA polymerase have argued against scrunching as the energetic driving force and instead argue for a model in which pushing of the RNA-DNA hybrid against a protein element associated with promoter binding, while likely driving promoter release, reciprocally leads to instability of the hybrid. In this study, we test these models in the structurally unrelated multisubunit bacterial RNA polymerase. Via the targeted introduction of mismatches and nicks in the DNA, we demonstrate that neither downstream bubble collapse nor compaction/scrunching of either the single-stranded template or nontemplate strands is a major force driving abortive instability (although collapse from the downstream end of the bubble does contribute significantly to the instability of artificially halted complexes). In contrast, pushing of the hybrid against a mobile protein element (σ3.2 in the bacterial enzyme) results in substantially increased abortive instability and is likely the primary energetic contributor to abortive cycling. The results suggest that abortive instability is a by-product of the mechanistic need to couple the energy of nucleotide addition (RNA chain growth) to driving the timed release of promoter contacts during initial transcription.
Collapse
Affiliation(s)
- Satamita Samanta
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
30
|
Le Bihan YV, Matot B, Pietrement O, Giraud-Panis MJ, Gasparini S, Le Cam E, Gilson E, Sclavi B, Miron S, Le Du MH. Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:409-19. [DOI: 10.1107/s0907444912049311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/30/2012] [Indexed: 11/11/2022]
|
31
|
Rhodius VA, Mutalik VK, Gross CA. Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucleic Acids Res 2011; 40:2907-24. [PMID: 22156164 PMCID: PMC3326320 DOI: 10.1093/nar/gkr1190] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.
Collapse
Affiliation(s)
- Virgil A Rhodius
- Department of Microbiology and Immunology, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
32
|
Bochkareva A, Yuzenkova Y, Tadigotla VR, Zenkin N. Factor-independent transcription pausing caused by recognition of the RNA-DNA hybrid sequence. EMBO J 2011; 31:630-9. [PMID: 22124324 PMCID: PMC3273390 DOI: 10.1038/emboj.2011.432] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/07/2011] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase pausing during transcription is implicated in controlling gene expression. This study identifies a new type of pausing mechanism, by which the RNAP core recognizes the shape of base pairs of the RNA–DNA hybrid, which determines the rate of translocation and the nucleotide addition cycle. The expression of a number of viral and bacterial genes is shown to be subject to this mechanism. Pausing of transcription is an important step of regulation of gene expression in bacteria and eukaryotes. Here we uncover a factor-independent mechanism of transcription pausing, which is determined by the ability of the elongating RNA polymerase to recognize the sequence of the RNA–DNA hybrid. We show that, independently of thermodynamic stability of the elongation complex, RNA polymerase directly ‘senses' the shape and/or identity of base pairs of the RNA–DNA hybrid. Recognition of the RNA–DNA hybrid sequence delays translocation by RNA polymerase, and thus slows down the nucleotide addition cycle through ‘in pathway' mechanism. We show that this phenomenon is conserved among bacterial and eukaryotic RNA polymerases, and is involved in regulatory pauses, such as a pause regulating the production of virulence factors in some bacteria and a pause regulating transcription/replication of HIV-1. The results indicate that recognition of RNA–DNA hybrid sequence by multi-subunit RNA polymerases is involved in transcription regulation and may determine the overall rate of transcription elongation.
Collapse
Affiliation(s)
- Aleksandra Bochkareva
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
33
|
Saecker RM, Record MT, deHaseth PL. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol 2011; 412:754-71. [PMID: 21371479 PMCID: PMC3440003 DOI: 10.1016/j.jmb.2011.01.018] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Initiation of RNA synthesis from DNA templates by RNA polymerase (RNAP) is a multi-step process, in which initial recognition of promoter DNA by RNAP triggers a series of conformational changes in both RNAP and promoter DNA. The bacterial RNAP functions as a molecular isomerization machine, using binding free energy to remodel the initial recognition complex, placing downstream duplex DNA in the active site cleft and then separating the nontemplate and template strands in the region surrounding the start site of RNA synthesis. In this initial unstable "open" complex the template strand appears correctly positioned in the active site. Subsequently, the nontemplate strand is repositioned and a clamp is assembled on duplex DNA downstream of the open region to form the highly stable open complex, RP(o). The transcription initiation factor, σ(70), plays critical roles in promoter recognition and RP(o) formation as well as in early steps of RNA synthesis.
Collapse
Affiliation(s)
- Ruth M. Saecker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pieter L. deHaseth
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106-4973, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
34
|
Exploring the 5'-UTR DNA region as a target for optimizing recombinant gene expression from the strong and inducible Pm promoter in Escherichia coli. J Biotechnol 2011; 158:224-30. [PMID: 21801767 DOI: 10.1016/j.jbiotec.2011.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/27/2011] [Accepted: 07/04/2011] [Indexed: 11/24/2022]
Abstract
By using the strong and inducible Pm promoter as a model, we recently reported that the β-lactamase production (encoded by bla) can be stimulated up to 20-fold in Escherichia coli by mutating the DNA region corresponding to the 5'-untranslated region of mRNA (UTR). One striking observation was the unexpected large stimulatory effect some of these UTR variants had on the bla transcript production level. We here demonstrate that such UTR variants can also be used to improve the expression level of the alternative genes celB (encoding phosphoglucomutase) and inf-α2b (encoding human cytokine interferon α2b), which both can be expressed to high levels even with the wild-type Pm UTR DNA sequence. Our data indicated some degree of context dependency between the UTR DNA and concomitant recombinant gene sequences. By constructing and using a synthetic operon, we demonstrated that UTR variants optimized for high-level expression of probably any recombinant gene can be efficiently selected from large UTR mutant libraries. The stimulation affected both the transcript production and translational level, and such modified UTR sequences therefore clearly have a significant applied potential for improvement of recombinant gene expression processes.
Collapse
|
35
|
Stepanova E, Wang M, Severinov K, Borukhov S. Early transcriptional arrest at Escherichia coli rplN and ompX promoters. J Biol Chem 2010; 284:35702-13. [PMID: 19854830 DOI: 10.1074/jbc.m109.053983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial transcription elongation factors GreA and GreB stimulate the intrinsic RNase activity of RNA polymerase (RNAP), thus helping the enzyme to read through pausing and arresting sites on DNA. Gre factors also accelerate RNAP transition from initiation to elongation. Here, we characterized the molecular mechanism by which Gre factors facilitate transcription at two Escherichia coli promoters, PrplN and PompX, that require GreA for optimal in vivo activity. Using in vitro transcription assays, KMnO(4) footprinting, and Fe(2+)-induced hydroxyl radical mapping, we show that during transcription initiation at PrplN and PompX in the absence of Gre factors, RNAP falls into a condition of promoter-proximal transcriptional arrest that prevents production of full-length transcripts both in vitro and in vivo. Arrest occurs when RNAP synthesizes 9-14-nucleotide-long transcripts and backtracks by 5-7 (PrplN) or 2-4 (PompX) nucleotides. Initiation factor sigma(70) contributes to the formation of arrested complexes at both promoters. The signal for promoter-proximal arrest at PrplN is bipartite and requires two elements: the extended -10 promoter element and the initial transcribed region from positions +2 to +6. GreA and GreB prevent arrest at PrplN and PompX by inducing cleavage of the 3'-proximal backtracked portion of RNA at the onset of arrested complex formation and stimulate productive transcription by allowing RNAP to elongate the 5'-proximal transcript cleavage products in the presence of substrates. We propose that promoter-proximal arrest is a common feature of many bacterial promoters and may represent an important physiological target of regulation by transcript cleavage factors.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Department of Cell Biology, School of Osteopathic Medicine at Stratford, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | | | |
Collapse
|
36
|
Abstract
In Bacteria, transcription is catalyzed by a single RNA polymerase (RNAP) whose promoter selectivity and activity is governed by a wide variety of transcription factors. The net effect of these transcriptional regulators is to determine which genes are transcribed, and at what levels, under any specific growth condition. RNAP thus serves as a nexus of gene regulation that integrates the information coming from a variety of sensory systems to appropriately modulate gene expression. The techniques presented in this volume provide a set of tools and approaches for investigating the factors controlling RNAP activity at both individual promoters and on a genomic scale. This introductory chapter provides a brief overview of RNAP and the transcription cycle and introduces general principles of how the fundamental steps of transcription are influenced by both DNA (promoter) sequences and trans-acting factors.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, 327 Wing Hall, Ithaca, NY 14853-8101, USA.
| |
Collapse
|
37
|
Abstract
Abortive initiation, when first discovered, was an enigmatic phenomenon, but fully three decades hence, it has been shown to be an integral step in the transcript initiation process intimately tied to the promoter escape reaction undergone by RNA polymerase at the initiation-elongation transition. A detailed understanding of abortive initiation-promoter escape has brought within reach a full description of the transcription initiation mechanism. This enormous progress was the result of convergent biochemical, genetic, and biophysical investigations propelled by parallel advances in quantitation technology. This chapter discusses the knowledge gained through the biochemical approach and a high resolution method that yields quantitative and qualitative information regarding abortive initiation-promoter escape at a promoter.
Collapse
Affiliation(s)
- Lilian M Hsu
- Program in Biochemistry, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA.
| |
Collapse
|
38
|
Abstract
Promoter escape is the process that an initiated RNA polymerase (RNAP) molecule undergoes to achieve the initiation-elongation transition. Having made this transition, an RNAP molecule would be relinquished from its promoter hold to perform productive (full-length) transcription. Prior to the transition, this process is accompanied by abortive RNA formation-the amount and pattern of which is controlled by the promoter sequence information. Qualitative and quantitative analysis of abortive/productive transcription from several Escherichia coli promoters and their sequence variants led to the understanding that a strong (RNAP-binding) promoter is more likely to be rate limited (during transcription initiation) at the escape step and produce abortive transcripts. Of the two subelements in a promoter, the PRR (the core Promoter Recognition Region) was found to set the initiation frequency and the rate-limiting step, while the ITS (the Initial Transcribed Sequence region) modulated the ratio of abortive versus productive transcription. The highly abortive behavior of E. coli RNAP could be ameliorated by the presence of Gre (transcript cleavage stimulatory) factor(s), linking the first step in abortive RNA formation by the initial transcribing complexes (ITC) to RNAP backtracking. The discovery that translocation during the initiation stage occurs via DNA scrunching provided the source of energy that converts each ITC into a highly unstable "stressed intermediate." Mapping all of the biochemical information onto an X-ray crystallographic structural model of an open complex gave rise to a plausible mechanism of transcription initiation. The chapter concludes with contemplations of the kinetics and thermodynamics of abortive initiation-promoter escape.
Collapse
|
39
|
Laishram RS, Gowrishankar J. Environmental regulation operating at the promoter clearance step of bacterial transcription. Genes Dev 2008; 21:1258-72. [PMID: 17504942 PMCID: PMC1865496 DOI: 10.1101/gad.1520507] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vivo transcription of the Escherichia coli argO gene, which encodes an arginine (Arg) exporter, requires the LysR-family regulator protein ArgP (previously called IciA) and is induced in the presence of Arg or its naturally occurring antimetabolite analog canavanine. Lysine (Lys) addition, on the other hand, phenocopies an argP mutation to result in the shutoff of argO expression. We now report that the ArgP dimer by itself is able to bind the argO promoter-operator region to form a binary complex, but that the formation of a ternary complex with RNA polymerase is greatly stimulated only in presence of a coeffector. Both Arg and Lys were proficient as coeffectors for ArgP-mediated recruitment of RNA polymerase to, and open complex formation at, the argO promoter, although only Arg (but not Lys) was competent to activate transcription. The two coeffectors competed for binding to ArgP, and the ternary complex that had been assembled on the argO template in the presence of Lys could be chased into a transcriptionally active state upon Arg addition. Our results support a novel mechanism of argO regulation in which Lys-bound ArgP reversibly restrains RNA polymerase at the promoter, at a step (following open complex formation) that precedes, and is common to, both abortive and productive transcription. This represents, therefore, the first example of an environmental signal regulating the final step of promoter clearance by RNA polymerase in bacterial transcription. We propose that, in E. coli cells, the ternary complex remains assembled and poised at the argO promoter at all times to respond, positively or negatively, to instantaneous changes in the ratio of intracellular Arg to Lys concentrations.
Collapse
Affiliation(s)
- Rakesh S. Laishram
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
- Corresponding author.E-MAIL ; FAX 91-40-27155610
| |
Collapse
|
40
|
Wang Q, Tullius TD, Levin JR. Effects of discontinuities in the DNA template on abortive initiation and promoter escape by Escherichia coli RNA polymerase. J Biol Chem 2007; 282:26917-26927. [PMID: 17650506 DOI: 10.1074/jbc.m702473200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using singly gapped or nicked templates containing the T7A1 promoter, we have measured several kinetic parameters related to the process of transcription initiation by Escherichia coli RNA polymerase, confirming and extending previous results using a population of randomly gapped templates. A reduced probability of transcript abortion at RNA lengths of 6 and 7 nucleotides and a lower ratio of abortive to productive initiation events was observed for some discontinuous templates, consistent with models attributing abortive initiation to the accumulation of strain in the initiating complex. The effect of DNA discontinuity on abortion of shorter RNA transcripts (2-3 nucleotides) was less pronounced; abortion at these short chain lengths may primarily be attributed to the low stability of the RNA-DNA hybrid. Certain discontinuities had significant effects on the intrinsic catalytic capacity of the open complex and also on the partitioning between productive and unproductive complexes, suggesting that subtle changes in the conformation of the open complex can profoundly affect its function. The rate and efficiency of promoter escape were not correlated with the stability of the open promoter complex despite previous suggestions to the contrary. We conclude that the stability of the open promoter complex is only one of several factors that contribute to the overall rate of promoter escape.
Collapse
Affiliation(s)
- Qun Wang
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215 and the
| | - Thomas D Tullius
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215 and the
| | - Judith R Levin
- Departments of Biological Sciences and Chemistry, Goucher College, Baltimore, Maryland 21204.
| |
Collapse
|
41
|
Stepanova E, Lee J, Ozerova M, Semenova E, Datsenko K, Wanner BL, Severinov K, Borukhov S. Analysis of promoter targets for Escherichia coli transcription elongation factor GreA in vivo and in vitro. J Bacteriol 2007; 189:8772-85. [PMID: 17766423 PMCID: PMC2168603 DOI: 10.1128/jb.00911-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription elongation factor GreA induces nucleolytic activity of bacterial RNA polymerase (RNAP). In vitro, transcript cleavage by GreA contributes to transcription efficiency by (i) suppressing pauses and arrests, (ii) stimulating RNAP promoter escape, and (iii) enhancing transcription fidelity. However, it is unclear which of these functions is (are) most relevant in vivo. By comparing global gene expression profiles of Escherichia coli strains lacking Gre factors and strains expressing either the wild type (wt) or a functionally inactive GreA mutant, we identified genes that are potential targets of GreA action. Data analysis revealed that in the presence of chromosomally expressed GreA, 19 genes are upregulated; an additional 105 genes are activated upon overexpression of the wt but not the mutant GreA. Primer extension reactions with selected transcription units confirmed the gene array data. The most prominent stimulatory effect (threefold to about sixfold) of GreA was observed for genes of ribosomal protein operons and the tna operon, suggesting that transcript cleavage by GreA contributes to optimal expression levels of these genes in vivo. In vitro transcription assays indicated that the stimulatory effect of GreA upon the transcription of these genes is mostly due to increased RNAP recycling due to facilitated promoter escape. We propose that transcript cleavage during early stages of initiation is thus the main in vivo function of GreA. Surprisingly, the presence of the wt GreA also led to the decreased transcription of many genes. The mechanism of this effect is unknown and may be indirect.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Department of Cell Biology, UMDNJ-SOM at Stratford, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | | | | | | | | | | | | | | |
Collapse
|