1
|
Zheng ZY, Zhou JX, Peng ZX, Ni HG. Computational simulation of bioaccumulation and trophic transfer of antibiotics mechanisms in aquatic food chain. WATER RESEARCH 2025; 272:122951. [PMID: 39675200 DOI: 10.1016/j.watres.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Numerous antibiotics have been detected in aquatic ecosystems and induced severe toxic effects on aquatic organisms. However, mechanisms of bioaccumulation and trophic transfer of antibiotics are not adequately discussed, to the best of our knowledge. In this context, the bidirectional selective effect values (BSEV) and trophic transfer efficiency ratio (TTER) of 24 antibiotics in a simulated food chain (Chlorella sorokiniana-Daphnia magna-Danio rerio) were first calculated to mirror the bioaccumulation and biomagnification. Based on estimates above, the multi-output machine learning (ML) models, including K nearest neighbor (KNN), Support vector machine (SVM), Extremely randomized trees (ERT) and Extreme gradient boosting (XGBoost), were constructed, followed by molecular dynamics (MD) simulation and density functional theory (DFT) calculation to explore the bioaccumulation and biomagnification mechanism. According to our results, sulfonamide antibiotics had greater capacity biomagnification, while β-lactam and tetracycline antibiotics showed opposite results. Meanwhile Cytochromes P450 (CYP450) in Danio rerio played a key role in the food chain. The ERT model exhibited reliable prediction with indicators of R2 = 0.816, MAE = 0.039, MSE = 0.003, RMSE = 0.053 and MAPE = 8.923. The AATS5s was identified as the most contributing descriptor. The differences in the atomic composition, structure and binding ability to enzymes of antibiotics lead to the differences in their bioaccumulation. Van der Waals interactions (ΔEvdw) and non-polar interactions (ΔGnonpolar) were the main driving energy for the biometabolism capability of antibiotics. Tetracyclines are the most readily biometabolized, whereas sulfonamides are more difficult to biometabolize due to their low binding capacity and low reactivity.
Collapse
Affiliation(s)
- Zi-Yi Zheng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jing-Xuan Zhou
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhao-Xing Peng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Gu X, Xu Y, Zhang J, Yu S, Wang L, Luo J, Wei P, Yang J, Zhang L, Yan M, Wei G. A potent antimicrobial glycolipopeptide GLIP and its promising combined antimicrobial effect. Int J Biol Macromol 2024; 281:136166. [PMID: 39448287 DOI: 10.1016/j.ijbiomac.2024.136166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Here, the glycolipopeptide GLIP was obtained by coupling IL-C8 and the monosaccharide molecule D-(+)-glucosamine to the N-terminal and C-terminal of the peptide P, which was designed on the basis of the biological characteristics of the antimicrobial peptides. In vitro bioactivity and physicochemical properties assays confirmed that GLIP had excellent antimicrobial activity against Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 29213, as well as good stability in serum and trypsin, low hemolysis, and good bacterial membrane-disrupting ability. In addition, the glycolipopeptide GLIP could self-assembly in aqueous solution to form spherical nano-aggregates, which could encapsulate the small molecule antibiotic TC to form the nanomedicine GLIP@TC and release the TC continuously and slowly in a sustained-release manner, exerting the combined antimicrobial effect of both. The results of animal experiments demonstrated the excellent in vivo antimicrobial activities of GLIP and nanomedicine GLIP@TC. Finally, molecular docking experiment showed that the GLIP could effectively bind to penicillin-binding protein 5 (PBP5) of E. coli and possibly inhibit its D-Ala carboxypeptidase (CPase) activity. All these results may imply the great potential of GLIP for clinical application against bacterial drug resistance.
Collapse
Affiliation(s)
- Xiulian Gu
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Yan Xu
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Jintao Zhang
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Shui Yu
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Lei Wang
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Junlin Luo
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Pengxiang Wei
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Jingyi Yang
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Lu Zhang
- Department of Pharmacy Science, Binzhou Medical University, China
| | - Miaomiao Yan
- Department of Pharmacy Science, Binzhou Medical University, China.
| | - Guangcheng Wei
- Department of Pharmacy Science, Binzhou Medical University, China.
| |
Collapse
|
3
|
Merten EM, Sears JD, Leisner TM, Hardy PB, Ghoshal A, Hossain MA, Asressu KH, Brown PJ, Tse EG, Stashko MA, Li K, Norris-Drouin JL, Herring LE, Mordant AL, Webb TS, Mills CA, Barker NK, Streblow ZJ, Perveen S, Arrowsmith CH, Couñago RM, Arnold JJ, Cameron CE, Streblow DN, Moorman NJ, Heise MT, Willson TM, Popov KI, Pearce KH. Identification of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach. Proc Natl Acad Sci U S A 2024; 121:e2409166121. [PMID: 39388272 PMCID: PMC11494320 DOI: 10.1073/pnas.2409166121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV nonstructural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow-up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a kinact /KI of 6.4 × 103 M-1s-1. LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity in proteomic experiments or against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the identification and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic.
Collapse
Affiliation(s)
- Eric M. Merten
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - John D. Sears
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Tina M. Leisner
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - P. Brian Hardy
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Anirban Ghoshal
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kesatebrhan Haile Asressu
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Peter J. Brown
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Edwin G. Tse
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Michael A. Stashko
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kelin Li
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jacqueline L. Norris-Drouin
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Laura E. Herring
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Angie L. Mordant
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Thomas S. Webb
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Christine A. Mills
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Natalie K. Barker
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR97006
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Rafael Miguez Couñago
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP13083-886, Brazil
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR97006
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mark T. Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Timothy M. Willson
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Konstantin I. Popov
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kenneth H. Pearce
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Molecular Therapeutics Research Program, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
4
|
Rostamighadi M, Kamelshahroudi A, Pitsitikas V, Jacobson KA, Salavati R. Pilot-Scale Screening of Clinically Approved Drugs to Identify Uridine Insertion/Deletion RNA Editing Inhibitors in Trypanosoma brucei. ACS Infect Dis 2024; 10:3289-3303. [PMID: 39118542 PMCID: PMC11456206 DOI: 10.1021/acsinfecdis.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
RNA editing pathway is a validated target in kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) that cause severe diseases in humans and livestock. An essential large protein complex, the editosome, mediates uridine insertion and deletion in RNA editing through a stepwise process. This study details the discovery of editosome inhibitors by screening a library of widely used human drugs using our previously developed in vitro biochemical Ribozyme Insertion Deletion Editing (RIDE) assay. Subsequent studies on the mode of action of the identified hits and hit expansion efforts unveiled compounds that interfere with RNA-editosome interactions and novel ligase inhibitors with IC50 values in the low micromolar range. Docking studies on the ligase demonstrated similar binding characteristics for ATP and our novel epigallocatechin gallate inhibitor. The inhibitors demonstrated potent trypanocidal activity and are promising candidates for drug repurposing due to their lack of cytotoxic effects. Further studies are necessary to validate these targets using more definitive gene-editing techniques and to enhance the safety profile.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Arezou Kamelshahroudi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Vanessa Pitsitikas
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, Maryland 20892, United States
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3 V9, Canada
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Quebec, Canada
| |
Collapse
|
5
|
Merten EM, Sears JD, Leisner TM, Hardy PB, Ghoshal A, Hossain MA, Asressu KH, Brown PJ, Stashko MA, Herring L, Mordant AL, Webb TS, Mills CA, Barker NK, Streblow ZJ, Perveen S, Arrowsmith C, Arnold JJ, Cameron CE, Streblow DN, Moorman NJ, Heise M, Willson TM, Popov K, Pearce KH. Discovery of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586341. [PMID: 38562906 PMCID: PMC10983941 DOI: 10.1101/2024.03.22.586341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 x 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.
Collapse
|
6
|
Cun WY, Bate CE, Srikhanta YN, Hutton ML, Webb CT, Revitt-Mills SA, Lyras D, McGowan S, Yu H, Keller PA, Pyne SG. Design, Synthesis, and Evaluation of Cephamycin-Based Antisporulation Agents targeting Clostridioides difficile. J Med Chem 2024; 67:450-466. [PMID: 38112278 DOI: 10.1021/acs.jmedchem.3c01662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
With the aim of discovering small molecule inhibitors of the sporulation process in Clostridioides difficile, we prepared a series of C-7 α-(4-substituted-1H-1,2,3-triazol-1-yl)acetamide analogues of cefotetan, a known inhibitor of the C. difficile sporulation-specific protein target CdSpoVD. These analogues were evaluated using both in vitro binding assays with CdSpoVD and antisporulation assays against C. difficile. Further design concepts were aided utilizing the predicted docking scores (DS) using both AlphaFold (AF) models, and a crystal structure of the CdSpoVD protein (PDB 7RCZ). Despite being 1 order of magnitude more potent as a sporulation inhibitor than cefotetan, in vivo studies on compound 6a in a murine-model of C. difficile infection demonstrated comparable spore shedding capabilities as cefotetan. Importantly, compound 6a had no concerning broad spectrum antibacterial activities, toxicity, or hemolytic activity and thus has potential for further drug development.
Collapse
Affiliation(s)
- Wendy Y Cun
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong 2522 New South Wales, Australia
| | - Clara E Bate
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Victoria Australia
| | - Yogitha N Srikhanta
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Victoria Australia
| | - Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Victoria Australia
| | - Chaille T Webb
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Victoria Australia
| | - Sarah A Revitt-Mills
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Victoria Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Victoria Australia
| | - Sheena McGowan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, Victoria Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong 2522 New South Wales, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong 2522 New South Wales, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong 2522 New South Wales, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong 2522 New South Wales, Australia
| |
Collapse
|
7
|
Zhang J, Gao W, Wang Y, Chang J, Yu B. Targeted covalent inhibitors for novel therapeutics. Future Med Chem 2023; 15:1739-1741. [PMID: 37791528 DOI: 10.4155/fmc-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Affiliation(s)
- Jingya Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenshuo Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junbiao Chang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, 453007, China
| | - Bin Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
8
|
Diessner EM, Takahashi GR, Martin RW, Butts CT. Comparative Modeling and Analysis of Extremophilic D-Ala-D-Ala Carboxypeptidases. Biomolecules 2023; 13:328. [PMID: 36830697 PMCID: PMC9953012 DOI: 10.3390/biom13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria. Using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis, we examine both conserved features and trends across thermal groups. Our findings suggest a number of hypotheses for experimental investigation.
Collapse
Affiliation(s)
| | - Gemma R. Takahashi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Carter T. Butts
- Departments of Sociology, Statistics, Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Chalkha M, Nour H, Chebbac K, Nakkabi A, Bahsis L, Bakhouch M, Akhazzane M, Bourass M, Chtita S, Bin Jardan YA, Augustyniak M, Bourhia M, Aboul-Soud MA, El Yazidi M. Synthesis, Characterization, DFT Mechanistic Study, Antimicrobial Activity, Molecular Modeling, and ADMET Properties of Novel Pyrazole-isoxazoline Hybrids. ACS OMEGA 2022; 7:46731-46744. [PMID: 36570248 PMCID: PMC9773794 DOI: 10.1021/acsomega.2c05788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
A series of new heterocycle hybrids incorporating pyrazole and isoxazoline rings was successfully synthesized, characterized, and evaluated for their antimicrobial responses. The synthesized compounds were obtained utilizing N-alkylation and 1,3-dipolar cycloaddition reactions, as well as their structures were established through spectroscopic methods and confirmed by mass spectrometry. To get more light on the regioselective synthesis of new hybrid compounds, mechanistic studies were performed using DFT calculations with B3LYP/6-31G(d,p) basis set. Additionally, the results of the preliminary screening indicate that some of the examined hybrids showed potent antimicrobial activity, compared to standard drugs. The results confirm that the antimicrobial activity is strongly dependent on the nature of the substituents linked pyrazole and isoxazoline rings. Furthermore, molecular docking studies were conducted to highlight the interaction modes between the investigated hybrid compounds and the Escherichia coli and Candida albicans receptors. Notably, the results demonstrate that the investigated compounds have strong protein binding affinities. The stability of the formed complexes by the binding between the hybrid compound 6c, and the target proteins was also confirmed using a 100 ns molecular dynamics simulation. Finally, the prediction of ADMET properties suggests that almost all hybrid compounds possess good pharmacokinetic profiles and no signs of observed toxicity, except for compounds 6e, 6f, and 6g.
Collapse
Affiliation(s)
- Mohammed Chalkha
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| | - Hassan Nour
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Khalid Chebbac
- Laboratory
of Biotechnology Conservation and Valorisation of Natural Resources,
Faculty of Sciences Dhar El Mahraz, Sidi
Mohammed Ben Abdallah University, P.O.
Box 1796, Fez 30000, Morocco
| | - Asmae Nakkabi
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| | - Lahoucine Bahsis
- Laboratory
of Analytical and Molecular Chemistry, Polydisciplinary Faculty, Cadi Ayyad University, P.O. Box 4162, Safi 46000, Morocco
- Department
of Chemistry, Faculty of Sciences of El Jadida, Chouaïb Doukkali University,
P.O. Box 20, El Jadida 24000, Morocco
| | - Mohamed Bakhouch
- Laboratory
of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Mohamed Akhazzane
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
- Cité
de l’innovation, Université
Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, 30000 Fez, Morocco
| | - Mohamed Bourass
- Université
de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 351 Cours de la Libération, F-33405 Talence, Cédex France
| | - Samir Chtita
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, 11451 Riyadh, Saudi Arabia
| | - Maria Augustyniak
- Institute
of Biology, Biotechnology and Environmental Protection, Faculty of
Natural Sciences, University of Silesia
in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohammed Bourhia
- Higher
Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Mourad A.M. Aboul-Soud
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University,
P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohamed El Yazidi
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| |
Collapse
|
10
|
Abstract
Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
11
|
Perera WPTD, Dissanayake DMRK, Unagolla JM, De Silva RT, Bathige SDNK, Pahalagedara LR. Albumin grafted coaxial electrosparyed polycaprolactone-zinc oxide nanoparticle for sustained release and activity enhanced antibacterial drug delivery. RSC Adv 2022; 12:1718-1727. [PMID: 35425191 PMCID: PMC8978970 DOI: 10.1039/d1ra07847j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] Open
Abstract
One of the most serious issues faced by the healthcare sector is the development of multidrug resistance among various pathogens. It is such that developing new and more capable drugs takes far too long to counter such resistance. In order to overcome these concerns, this study focused on improving upon the coaxial electrospraying process by producing cloxacillin loaded albumin polycaprolactone (PCL) with a ZnO coating for sustained and activity enhanced drug delivery. Albumin-grafted, polycaprolactone-coated, zinc oxide-loaded cloxacillin (APCL-CLOX-ZnO) nanoparticles with a diameter of 85-110 nm were obtained via a coaxial electrospray technique. The encapsulation efficiency of cloxacillin of ZnO-CLOX was found to be approximately 60%. The loading efficiencies of ZnO-CLOX and APCL-CLOX-ZnO were found to be 40% and 28% respectively. Albumin was employed in order to impart immune evasion properties to the formulation. Drug-loaded ZnO NPs were analyzed using SEM, TEM, FT-IR and TGA. This novel formulation was shown to possess sustained release characteristics owing to the PCL and albumin coatings, relative to uncoated counterparts. ZnO-CLOX and APCL-CLOX-ZnO exhibited 72% and 52% cloxacillin release within 24 h. APCL-CLOX-ZnO exhibited potent antimicrobial activity against S. epidermidis, B. cereus and P. aeruginosa and some activity against E. coli with inhibition zones 32 ± 1.4, 34 ± 0.3, 32 ± 0.6 and 11 ± 0.4 mm, respectively. Cytotoxicity studies against murine preosteoblast cells revealed that the albumin-PCL coating served to drastically reduce initial toxicity against healthy mammalian cells. In vitro lung deposition study showed 70% of APCL-CLOX-ZnO particles can reach up to the alveoli level. Therefore, this novel coaxial nanoformulation may serve as a promising drug delivery platform for the treatment of bacterial infections including respiratory tract complications.
Collapse
Affiliation(s)
- W Pamoda Thavish D Perera
- Academy of the Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - D M Ranga K Dissanayake
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
- Department of Pharmacy and Pharmaceutical Sciences, University of Sri Jayewardenepura Gangodawila Nugegoda 10250 Sri Lanka
| | - Janitha M Unagolla
- Department of Bioengineering, College of Engineering, University of Toledo Toledo OH 43607 USA
| | - Rangika T De Silva
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - Sanjaya D N K Bathige
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| | - Lakshitha R Pahalagedara
- Sri Lanka Institute of Nanotechnology Nanotechnology and Science Park, Mahenwatte, Pitipana Homagama 10206 Sri Lanka
| |
Collapse
|
12
|
Satishkumar N, Alexander JAN, Poon R, Buggeln E, Argudín MA, Strynadka NCJ, Chatterjee SS. PBP4-mediated β-lactam resistance among clinical strains of Staphylococcus aureus. J Antimicrob Chemother 2021; 76:2268-2272. [PMID: 34151961 DOI: 10.1093/jac/dkab201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND PBP4, a low-molecular-weight PBP in Staphylococcus aureus, is not considered to be a classical mediator of β-lactam resistance. Previous studies carried out by our group with laboratory strains of S. aureus demonstrated the ability of PBP4 to produce β-lactam resistance through mutations associated with the pbp4 promoter and/or gene. Recent studies of β-lactam-resistant clinical isolates of S. aureus have reported similar mutations associated with pbp4. OBJECTIVES To determine if pbp4-associated mutations reported among clinical strains of S. aureus mediate β-lactam resistance. METHODS The pbp4 promoters and genes bearing mutations from clinical isolates were cloned into a heterologous host. Reporter, growth and Bocillin assays were performed to assess their role in β-lactam resistance. X-ray crystallography was used to obtain acyl-enzyme intermediate structures of the WT and mutant PBP4 with nafcillin and cefoxitin. RESULTS Of the five strains that contained pbp4 promoter mutations, three strains exhibited enhanced expression of PBP4. The R200L mutation in pbp4 resulted in increased survival in the presence of the β-lactams nafcillin and cefoxitin. Further, introduction of either a promoter or a gene mutation into the genome of a WT host increased the ability of the strains to resist the action of β-lactams. The four high-resolution X-ray structures presented demonstrate the binding pose of the β-lactams tested and provide hints for further drug development. CONCLUSIONS Mutations associated with the pbp4 promoter and pbp4 gene altered protein activity and mediated β-lactam resistance among the clinically isolated strains that were studied.
Collapse
Affiliation(s)
- Nidhi Satishkumar
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - J Andrew N Alexander
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond Poon
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Emma Buggeln
- Division of HIV/AIDS, Infectious Diseases and Global Health, Department of Medicine, University of California, San Francisco, San Francisco General Hospital, San Francisco, CA, USA
| | - Maria A Argudín
- National Reference Centre for Staphylococcus aureus, Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles, Brussels, Belgium
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Som S Chatterjee
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, USA
| |
Collapse
|
13
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
14
|
Ntombela T, Seupersad A, Maseko S, Ibeji CU, Tolufashe G, Maphumulo SI, Naicker T, Baijnath S, Maguire GEM, Govender T, Lamichhane G, Honarparvar B, Kruger HG. Mechanistic insight on the inhibition of D, D-carboxypeptidase from Mycobacterium tuberculosis by β-lactam antibiotics: an ONIOM acylation study. J Biomol Struct Dyn 2021; 40:7645-7655. [PMID: 33719919 DOI: 10.1080/07391102.2021.1899052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mycobacterium tuberculosis cell wall is intricate and impermeable to many agents. A D, D-carboxypeptidase (DacB1) is one of the enzymes involved in the biosynthesis of cell wall peptidoglycan and catalyzes the terminal D-alanine cleavage from pentapeptide precursors. Catalytic activity and mechanism by which DacB1 functions is poorly understood. Herein, we investigated the acylation mechanism of DacB1 by β-lactams using a 6-membered ring transition state model that involves a catalytic water molecule in the reaction pathway. The full transition states (TS) optimization plus frequency were achieved using the ONIOM (B3LYP/6-31 + G(d): AMBER) method. Subsequently, the activation free energies were computed via single-point calculations on fully optimized structures using B3LYP/6-311++(d,p): AMBER and M06-2X/6-311++(d,p): AMBER with an electronic embedding scheme. The 6-membered ring transition state is an effective model to examine the inactivation of DacB1 via acylation by β-lactams antibiotics (imipenem, meropenem, and faropenem) in the presence of the catalytic water. The ΔG# values obtained suggest that the nucleophilic attack on the carbonyl carbon is the rate-limiting step with 13.62, 19.60 and 30.29 kcal mol-1 for Imi-DacB1, Mero-DacB1 and Faro-DacB1, respectively. The electrostatic potential (ESP) and natural bond orbital (NBO) analysis provided significant electronic details of the electron-rich region and charge delocalization, respectively, based on the concerted 6-membered ring transition state. The stabilization energies of charge transfer within the catalytic reaction pathway concurred with the obtained activation free energies. The outcomes of this study provide important molecular insight into the inactivation of D, D-carboxypeptidase by β-lactams.
Collapse
Affiliation(s)
- Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anya Seupersad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sibusiso Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gideon Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Siyabonga Innocent Maphumulo
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Faculty of Science and Agriculture, Department of Chemistry, University of Zululand, Richards Bay, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Ipte PR, Satpati AK. Probing the interaction of ciprofloxacin and E. coli by electrochemistry, spectroscopy and atomic force microscopy. Biophys Chem 2020; 266:106456. [PMID: 32835912 DOI: 10.1016/j.bpc.2020.106456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022]
Abstract
Under the present investigation, effect of ciprofloxacin (CIP) on Escherichia coli has been investigated using electrochemical, spectroscopic and atomic force microscope (AFM) measurements. Investigation reveals the interaction pattern of CIP with E. coli. The CIP essentially interacts with the outer membrane protein F (OmpF), the formation constant of the complex forms between CIP and the OmpF active sites over E. coli is obtained as log Kf of 12.1. Spectroscopic measurements are carried out, which supports the electrochemical measurements on the interaction between CIP and E. coli, at a higher concentration, CIP induces lysis of the E. coli cell membrane. Spectroscopic investigations further reveals that the FeS containing proteins present inside the E. coli cells released out through the ruptured cell membrane of E. coli. Different degrees of detrimental effects on E. coli has been observed when exposed to different concentrations of the drugs. The microscopic images obtained from the AFM scans of E. coli in presence of CIP shows deformation of the E. coli cell wall and its rupture with increasing concentrations of CIP.
Collapse
Affiliation(s)
- Priyanka R Ipte
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Ashis Kumar Satpati
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
16
|
Kochan K, Nethercott C, Taghavimoghaddam J, Richardson Z, Lai E, Crawford SA, Peleg AY, Wood BR, Heraud P. Rapid Approach for Detection of Antibiotic Resistance in Bacteria Using Vibrational Spectroscopy. Anal Chem 2020; 92:8235-8243. [PMID: 32407103 DOI: 10.1021/acs.analchem.0c00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we applied vibrational spectroscopy to investigate the drug response following incubation of S. aureus with oxacillin. The main focus of this work was to identify the chemical changes caused by oxacillin over time and to determine the feasibility of the spectroscopic approach to detect antimicrobial resistance. The oxacillin-induced changes in the chemical composition of susceptible bacteria, preceding (and leading to) the inhibition of growth, included an increase in the relative content of nucleic acids, alteration in the α-helical/β-sheet protein ratio, structural changes in carbohydrates (observed via changes in the band at 1035 cm-1), and significant thickening of the cell wall. These observations enabled a dose-dependent discrimination between susceptible bacteria incubated with and without oxacillin after 120 min. In methicillin resistant strains, no spectral differences were observed between cells, regardless of drug exposure. These results pave the way for a new, rapid spectroscopic approach to detect drug resistance in pathogens, based on their early positive/negative drug response.
Collapse
Affiliation(s)
- Kamila Kochan
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia
| | - Cara Nethercott
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia
| | | | - Zack Richardson
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia
| | - Elizabeth Lai
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia
| | - Simon A Crawford
- The Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne 3004, Victoria, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia.,School of Chemistry, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Campus, Clayton 3800, Victoria, Australia
| |
Collapse
|
17
|
Shalaby MAW, Dokla EME, Serya RAT, Abouzid KAM. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur J Med Chem 2020; 199:112312. [PMID: 32442851 DOI: 10.1016/j.ejmech.2020.112312] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most β-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.
Collapse
Affiliation(s)
- Menna-Allah W Shalaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
18
|
Davoodi S, Daryaee F, Chang A, Walker SG, Tonge PJ. Correlating Drug-Target Residence Time and Post-antibiotic Effect: Insight into Target Vulnerability. ACS Infect Dis 2020; 6:629-636. [PMID: 32011855 DOI: 10.1021/acsinfecdis.9b00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Target vulnerability correlates the level of drug-target engagement required to generate a pharmacological response. High vulnerability targets are those that require only a relatively small fraction of occupancy to achieve the desired pharmacological outcome, whereas low vulnerability targets require high levels of engagement. Here, we demonstrate that the slope of the correlation between drug-target residence time and the post-antibiotic effect (PAE) can be used to define the vulnerability of bacterial targets. For macrolides, a steep slope is observed between residence time on the E. coli ribosome and the PAE, indicating that the ribosome is a highly vulnerable drug target. The analysis of the residence time-PAE data for erythromycin, azithromycin, spiramycin, and telithromycin using a mechanistic pharmacokinetic-pharmacodynamic model that integrates drug-target kinetics into predictions of drug activity lead to the successful prediction of the cellular PAE for tylosin, which has the longest residence time (7.1 h) and PAE (5.8 h). Although the macrolide data support a connection between residence time, PAE, and bactericidality, many bactericidal β-lactam antibiotics do not give a PAE, illustrating the role of factors such as protein resynthesis in the expression of target vulnerability.
Collapse
|
19
|
Small-molecule covalent bond formation at tyrosine creates a binding site and inhibits activation of Ral GTPases. Proc Natl Acad Sci U S A 2020; 117:7131-7139. [PMID: 32179690 DOI: 10.1073/pnas.1913654117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ral (Ras-like) GTPases are directly activated by oncogenic Ras GTPases. Mutant K-Ras (G12C) has enabled the development of covalent K-Ras inhibitors currently in clinical trials. However, Ral, and the overwhelming majority of mutant oncogenic K-Ras, are devoid of a druggable pocket and lack an accessible cysteine for the development of a covalent inhibitor. Here, we report that covalent bond formation by an aryl sulfonyl fluoride electrophile at a tyrosine residue (Tyr-82) inhibits guanine exchange factor Rgl2-mediated nucleotide exchange of Ral GTPase. A high-resolution 1.18-Å X-ray cocrystal structure shows that the compound binds to a well-defined binding site in RalA as a result of a switch II loop conformational change. The structure, along with additional high-resolution crystal structures of several analogs in complex with RalA, confirm the importance of key hydrogen bond anchors between compound sulfone oxygen atoms and Ral backbone nitrogen atoms. Our discovery of a pocket with features found on known druggable sites and covalent modification of a bystander tyrosine residue present in Ral and Ras GTPases provide a strategy that could lead to therapeutic agent targeting oncogenic Ras mutants that are devoid of a cysteine nucleophile.
Collapse
|
20
|
Smith JR, Rybak JM, Claeys KC. Imipenem-Cilastatin-Relebactam: A Novel β-Lactam-β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacotherapy 2020; 40:343-356. [PMID: 32060929 DOI: 10.1002/phar.2378] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imipenem-cilastatin-relebactam (IMI-REL) is a novel β-lactam-β-lactamase inhibitor combination recently approved for the treatment of complicated urinary tract infections (cUTIs) and complicated intraabdominal infections (cIAIs). Relebactam is a β-lactamase inhibitor with the ability to inhibit a broad spectrum of β-lactamases such as class A and class C β-lactamases, including carbapenemases. The addition of relebactam to imipenem restores imipenem activity against several imipenem-resistant bacteria, including Enterobacteriaceae and Pseudomonas aeruginosa. Clinical data demonstrate that IMI-REL is well tolerated and effective in the treatment of cUTIs and cIAIs due to imipenem-resistant bacteria. In a phase III trial comparing IMI-REL with imipenem plus colistin, favorable clinical response was achieved in 71% and 70% of patients, respectively. Available clinical and pharmacokinetic data support the approved dosage of a 30-minute infusion of imipenem 500 mg-cilastatin 500 mg-relebactam 250 mg every 6 hours, along with dosage adjustments based on renal function. In this review, we describe the chemistry, mechanism of action, spectrum of activity, pharmacokinetics and pharmacodynamics, and clinical efficacy, and safety and tolerability of this new agent. The approval of IMI-REL represents another important step in the ongoing fight against multidrug-resistant gram-negative pathogens.
Collapse
Affiliation(s)
- Jordan R Smith
- Department of Clinical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina.,Cone Health, Greensboro, North Carolina
| | - Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Science, University of Tennessee College of Pharmacy, Memphis, Tennessee
| | | |
Collapse
|
21
|
Structural insight into YcbB-mediated beta-lactam resistance in Escherichia coli. Nat Commun 2019; 10:1849. [PMID: 31015395 PMCID: PMC6478713 DOI: 10.1038/s41467-019-09507-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/03/2022] Open
Abstract
The bacterial cell wall plays a crucial role in viability and is an important drug target. In Escherichia coli, the peptidoglycan crosslinking reaction to form the cell wall is primarily carried out by penicillin-binding proteins that catalyse D,D-transpeptidase activity. However, an alternate crosslinking mechanism involving the L,D-transpeptidase YcbB can lead to bypass of D,D-transpeptidation and beta-lactam resistance. Here, we show that the crystallographic structure of YcbB consists of a conserved L,D-transpeptidase catalytic domain decorated with a subdomain on the dynamic substrate capping loop, peptidoglycan-binding and large scaffolding domains. Meropenem acylation of YcbB gives insight into the mode of inhibition by carbapenems, the singular antibiotic class with significant activity against L,D-transpeptidases. We also report the structure of PBP5-meropenem to compare interactions mediating inhibition. Additionally, we probe the interaction network of this pathway and assay beta-lactam resistance in vivo. Our results provide structural insights into the mechanism of action and the inhibition of L,D-transpeptidation, and into YcbB-mediated antibiotic resistance. In E. coli, alternate peptidoglycan crosslinking reactions carried out by the L,D-transpeptidase YcbB can lead to beta-lactam resistance. Here, Caveney et al. solve the crystal structure of YcbB and shed light into its mechanism of action and into YcbB-mediated antibiotic resistance.
Collapse
|
22
|
Ekennia AC, Onwudiwe DC, Osowole AA, Okpareke OC, Olubiyi OO, Lane JR. Coordination compounds of heterocyclic bases: synthesis, characterization, computational and biological studies. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Alexander JAN, Chatterjee SS, Hamilton SM, Eltis LD, Chambers HF, Strynadka NCJ. Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureus. J Biol Chem 2018; 293:19854-19865. [PMID: 30366985 DOI: 10.1074/jbc.ra118.004952] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/24/2018] [Indexed: 01/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes serious community-acquired and nosocomial infections worldwide. MRSA strains are resistant to a variety of antibiotics, including the classic penicillin and cephalosporin classes of β-lactams, making them intractable to treatment. Although β-lactam resistance in MRSA has been ascribed to the acquisition and activity of penicillin-binding protein 2a (PBP2a, encoded by mecA), it has recently been observed that resistance can also be mediated by penicillin-binding protein 4 (PBP4). Previously, we have shown that broad-spectrum β-lactam resistance can arise following serial passaging of a mecA-negative COL strain of S. aureus, creating the CRB strain. This strain has two missense mutations in pbp4 and a mutation in the pbp4 promoter, both of which play an instrumental role in β-lactam resistance. To better understand PBP4's role in resistance, here we have characterized its kinetics and structure with clinically relevant β-lactam antibiotics. We present the first crystallographic PBP4 structures of apo and acyl-enzyme intermediate forms complexed with three late-generation β-lactam antibiotics: ceftobiprole, ceftaroline, and nafcillin. In parallel, we characterized the structural and kinetic effects of the PBP4 mutations present in the CRB strain. Localized within the transpeptidase active-site cleft, the two substitutions appear to have different effects depending on the drug. With ceftobiprole, the missense mutations impaired the Km value 150-fold, decreasing the proportion of inhibited PBP4. However, ceftaroline resistance appeared to be mediated by other factors, possibly including mutation of the pbp4 promoter. Our findings provide evidence that S. aureus CRB has at least two PBP4-mediated resistance mechanisms.
Collapse
Affiliation(s)
- J Andrew N Alexander
- From the Department of Biochemistry and Molecular Biology.,the Centre for Blood Research, and
| | - Som S Chatterjee
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Stephanie M Hamilton
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Lindsay D Eltis
- From the Department of Biochemistry and Molecular Biology.,the Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Henry F Chambers
- the Division of Infectious Disease, Department of Medicine, San Francisco General Hospital, San Francisco, California 94110
| | - Natalie C J Strynadka
- From the Department of Biochemistry and Molecular Biology, .,the Centre for Blood Research, and
| |
Collapse
|
24
|
Crystal Structures of Penicillin-Binding Protein D2 from Listeria monocytogenes and Structural Basis for Antibiotic Specificity. Antimicrob Agents Chemother 2018; 62:AAC.00796-18. [PMID: 30082290 DOI: 10.1128/aac.00796-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
β-Lactam antibiotics that inhibit penicillin-binding proteins (PBPs) have been widely used in the treatment of bacterial infections. However, the molecular basis underlying the different inhibitory potencies of β-lactams against specific PBPs is not fully understood. Here, we present the crystal structures of penicillin-binding protein D2 (PBPD2) from Listeria monocytogenes, a Gram-positive foodborne bacterial pathogen that causes listeriosis in humans. The acylated structures in complex with four antibiotics (penicillin G, ampicillin, cefotaxime, and cefuroxime) revealed that the β-lactam core structures were recognized by a common set of residues; however, the R1 side chains of each antibiotic participate in different interactions with PBPD2. In addition, the structural complementarities between the side chains of β-lactams and the enzyme were found to be highly correlated with the relative reactivities of penam or cephem antibiotics against PBPD2. Our study provides the structural basis for the inhibition of PBPD2 by clinically important β-lactam antibiotics that are commonly used in listeriosis treatment. Our findings imply that the modification of β-lactam side chains based on structural complementarity could be useful for the development of potent inhibitors against β-lactam-resistant PBPs.
Collapse
|
25
|
Yeh CH, Walsh SI, Craney A, Tabor MG, Voica AF, Adhikary R, Morris SE, Romesberg FE. Optimization of a β-Lactam Scaffold for Antibacterial Activity via the Inhibition of Bacterial Type I Signal Peptidase. ACS Med Chem Lett 2018; 9:376-380. [PMID: 29670704 DOI: 10.1021/acsmedchemlett.8b00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 11/30/2022] Open
Abstract
β-Lactam antibiotics, one of the most important class of human therapeutics, act via the inhibition of penicillin-binding proteins (PBPs). The unparalleled success in their development has inspired efforts to develop them as inhibitors of other targets. Bacterial type I signal peptidase is evolutionarily related to the PBPs, but the stereochemistry of its substrates and its catalytic mechanism suggest that β-lactams with the 5S stereochemistry, as opposed to the 5R stereochemistry of the traditional β-lactams, would be required for inhibition. We report the synthesis and evaluation of a variety of 5S penem derivatives and identify several with promising activity against both a Gram-positive and a Gram-negative bacterial pathogen. To our knowledge these are the first 5S β-lactams to possess significant antibacterial activity and the first β-lactams imparted with antibacterial activity via optimization of the inhibition of a target other than a PBP. Along with the privileged status of their scaffold and the promise of bacterial signal peptidase I (SPase) as a target, this activity makes these compounds promising leads for development as novel therapeutics.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Chemistry, The Scripps Research Institute, La Jolla California 92037 United States
| | - Shawn I. Walsh
- Department of Chemistry, The Scripps Research Institute, La Jolla California 92037 United States
| | - Arryn Craney
- Department of Chemistry, The Scripps Research Institute, La Jolla California 92037 United States
| | - M. Greg Tabor
- Department of Chemistry, The Scripps Research Institute, La Jolla California 92037 United States
| | - Ana-Florina Voica
- Department of Chemistry, The Scripps Research Institute, La Jolla California 92037 United States
| | - Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla California 92037 United States
| | - Sydney E. Morris
- Department of Chemistry, The Scripps Research Institute, La Jolla California 92037 United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla California 92037 United States
| |
Collapse
|
26
|
Ekennia AC, Osowole AA, Olasunkanmi LO, Onwudiwe DC, Olubiyi OO, Ebenso EE. Synthesis, characterization, DFT calculations and molecular docking studies of metal (II) complexes. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Meiresonne NY, van der Ploeg R, Hink MA, den Blaauwen T. Activity-Related Conformational Changes in d,d-Carboxypeptidases Revealed by In Vivo Periplasmic Förster Resonance Energy Transfer Assay in Escherichia coli. mBio 2017; 8:e01089-17. [PMID: 28900026 PMCID: PMC5596342 DOI: 10.1128/mbio.01089-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022] Open
Abstract
One of the mechanisms of β-lactam antibiotic resistance requires the activity of d,d-carboxypeptidases (d,d-CPases) involved in peptidoglycan (PG) synthesis, making them putative targets for new antibiotic development. The activity of PG-synthesizing enzymes is often correlated with their association with other proteins. The PG layer is maintained in the periplasm between the two membranes of the Gram-negative cell envelope. Because no methods existed to detect in vivo interactions in this compartment, we have developed and validated a Förster resonance energy transfer assay. Using the fluorescent-protein donor-acceptor pair mNeonGreen-mCherry, periplasmic protein interactions were detected in fixed and in living bacteria, in single samples or in plate reader 96-well format. We show that the d,d-CPases PBP5, PBP6a, and PBP6b of Escherichia coli change dimer conformation between resting and active states. Complementation studies and changes in localization suggest that these d,d-CPases are not redundant but that their balanced activity is required for robust PG synthesis.IMPORTANCE The periplasmic space between the outer and the inner membrane of Gram-negative bacteria contains many essential regulatory, transport, and cell wall-synthesizing and -hydrolyzing proteins. To date, no assay is available to determine protein interactions in this compartment. We have developed a periplasmic protein interaction assay for living and fixed bacteria in single samples or 96-well-plate format. Using this assay, we were able to demonstrate conformation changes related to the activity of proteins that could not have been detected by any other living-cell method available. The assay uniquely expands our toolbox for antibiotic screening and mode-of-action studies.
Collapse
Affiliation(s)
- Nils Y Meiresonne
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - René van der Ploeg
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark A Hink
- Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Nagra S, Kumar D, Bhattacharyya R, Banerjee D, Mukherjee T. Designing of a penta-peptide against drug resistant E. coli. Bioinformation 2017; 13:192-195. [PMID: 28729761 PMCID: PMC5512857 DOI: 10.6026/97320630013192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/05/2017] [Accepted: 06/05/2017] [Indexed: 01/21/2023] Open
Abstract
Drug resistant pathogens are vibrant global problem. Penicillin binding protein 5 (PBP5) plays important role in bacterial cell wall biosynthesis. Mutation in PBP5 is a well-known mechanism for development of drug resistant strain of bacteria. In this context we have designed a peptide that fits better at the ligand-binding site of mutant PBP5 compared to wild type PBP5. It is expected that the designed peptide will halt the growth of drug resistant pathogen harboring mutant variety of PBP5. We have recommended experimental validation of the above concept.
Collapse
Affiliation(s)
- Sachin Nagra
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, haryana 133207
| | - Deepak Kumar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012
| | - Rajasri Bhattacharyya
- past: Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, haryana 133207; present: Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012
| | - Tapan Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, haryana 133207
| |
Collapse
|
29
|
Synthesis, spectral, thermal, antibacterial and molecular docking studies of some metal(II) complexes of 2-(1,3-benzothiazol-2-ylamino)naphthalene-1,4-dione. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2780-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Brem J, Cain R, Cahill S, McDonough MA, Clifton IJ, Jiménez-Castellanos JC, Avison MB, Spencer J, Fishwick CWG, Schofield CJ. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat Commun 2016; 7:12406. [PMID: 27499424 PMCID: PMC4979060 DOI: 10.1038/ncomms12406] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022] Open
Abstract
β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as 'transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs.
Collapse
Affiliation(s)
- Jürgen Brem
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Ricky Cain
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Samuel Cahill
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Michael A. McDonough
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Ian J. Clifton
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | - Matthew B. Avison
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
31
|
Nemmara VV, Nicholas RA, Pratt RF. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5. Biochemistry 2016; 55:4065-76. [PMID: 27420403 DOI: 10.1021/acs.biochem.6b00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States
| | - R F Pratt
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
32
|
Affiliation(s)
- R. F. Pratt
- Department
of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
33
|
Structural and computational analysis of peptide recognition mechanism of class-C type penicillin binding protein, alkaline D-peptidase from Bacillus cereus DF4-B. Sci Rep 2015; 5:13836. [PMID: 26370172 PMCID: PMC4570186 DOI: 10.1038/srep13836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 01/07/2023] Open
Abstract
Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the crystal structure of ADP (apo) form was determined at 2.1 Å resolution. The fold of ADP is similar to that of the class C penicillin-binding proteins of type-AmpH. Docking simulations and fragment molecular orbital analyses of two peptides, (D-Phe)4 and (D-Phe)2-(L-Phe)2, with the putative substrate binding sites of ADP indicated that the P1 residue of the peptide interacts with hydrophobic residues at the S1 site of ADP. Furthermore, molecular dynamics simulation of ADP for 50 nsec suggested that the ADP forms large cavity at the active site. Formation of the cavity suggested that the ADP has open state in the solution. For the ADP, having the open state is convenient to bind the peptides having bulky side chain, such as (D-Phe)4. Taken together, we predicted peptide recognition mechanism of ADP.
Collapse
|
34
|
Zhou C, Niu H, Yu H, Zhou L, Wang Z. Effects of two novel amino acid substitutions on the penicillin binding properties of the PBP5 C‑terminal from Enterococcus faecium. Mol Med Rep 2015; 12:5281-5. [PMID: 26165634 DOI: 10.3892/mmr.2015.4057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 06/05/2015] [Indexed: 11/06/2022] Open
Abstract
The low‑affinity penicillin‑binding protein (PBP)5 is responsible for resistance to β‑lactam antibiotics in Enterococcus faecium. (E. faecium). In order to evaluate more fully the potential of this species for the development of resistance to β-lactam antibiotics, the present study aimed to examine the extent of penicillin-binding protein (PBP) variations in a collection of clinical E. faecium isolates. In the present study, the C‑terminal domain of PBP5 (PBP5‑CD) of 13 penicillin‑resistant clinical isolates of E. faecium were sequenced and the correlation between penicillin resistance and particular amino acid changes were analyzed. The present study identified for the first time, to the best of our knowledge, two novel substitutions (Tyr460Phe and Ala462Thr or Val462Thr) of E. faecium PBP5‑CD. The covalent interaction between penicillin and PBP5‑CD was also investigated using homology modeling and molecular docking methods. The theoretical calculation revealed that Phe460 and Thr462 were involved in penicillin binding, suggesting that substitutions at these positions exert effects on the affinity for penicillin, and this increased affinity translates into lower resistance in vitro.
Collapse
Affiliation(s)
- Chengjiang Zhou
- Department of Medical and Cell Biology, Baotou Medical College, Baotou 014010, P.R. China
| | - Haiying Niu
- Clinical Laboratory, The First Affiliated Hospital, Baotou Medical College, Baotou 014010, P.R. China
| | - Hui Yu
- Clinical Laboratory, The Second Affiliated Hospital, Baotou Medical College, Baotou 014010, P.R. China
| | - Lishe Zhou
- Department of Medical and Cell Biology, Baotou Medical College, Baotou 014010, P.R. China
| | - Zhanli Wang
- Clinical Laboratory, The First Affiliated Hospital, Baotou Medical College, Baotou 014010, P.R. China
| |
Collapse
|
35
|
Penicillin-binding proteins: evergreen drug targets. Curr Opin Pharmacol 2014; 18:112-9. [DOI: 10.1016/j.coph.2014.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
|
36
|
Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance. Antimicrob Agents Chemother 2013; 57:3137-46. [PMID: 23629710 DOI: 10.1128/aac.00505-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Penicillin-binding protein 5 (PBP5) is one of the most abundant PBPs in Pseudomonas aeruginosa. Although its main function is that of a cell wall dd-carboxypeptidase, it possesses sufficient β-lactamase activity to contribute to the ability of P. aeruginosa to resist the antibiotic activity of the β-lactams. The study of these dual activities is important for understanding the mechanisms of antibiotic resistance by P. aeruginosa, an important human pathogen, and to the understanding of the evolution of β-lactamase activity from the PBP enzymes. We purified a soluble version of P. aeruginosa PBP5 (designated Pa sPBP5) by deletion of its C-terminal membrane anchor. Under in vitro conditions, Pa sPBP5 demonstrates both dd-carboxypeptidase and expanded-spectrum β-lactamase activities. Its crystal structure at a 2.05-Å resolution shows features closely resembling those of the class A β-lactamases, including a shortened loop spanning residues 74 to 78 near the active site and with respect to the conformations adopted by two active-site residues, Ser101 and Lys203. These features are absent in the related PBP5 of Escherichia coli. A comparison of the two Pa sPBP5 monomers in the asymmetric unit, together with molecular dynamics simulations, revealed an active-site flexibility that may explain its carbapenemase activity, a function that is absent in the E. coli PBP5 enzyme. Our functional and structural characterizations underscore the versatility of this PBP5 in contributing to the β-lactam resistance of P. aeruginosa while highlighting how broader β-lactamase activity may be encoded in the structural folds shared by the PBP and serine β-lactamase classes.
Collapse
|
37
|
Lamers RP, Cavallari JF, Burrows LL. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One 2013; 8:e60666. [PMID: 23544160 PMCID: PMC3609863 DOI: 10.1371/journal.pone.0060666] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/01/2013] [Indexed: 11/19/2022] Open
Abstract
Active efflux of antimicrobial agents is a primary mechanism by which bacterial pathogens can become multidrug resistant. The combined use of efflux pump inhibitors (EPIs) with pump substrates is under exploration to overcome efflux-mediated multidrug resistance. Phenylalanine-arginine β-naphthylamide (PAβN) is a well-studied EPI that is routinely combined with fluoroquinolone antibiotics, but few studies have assessed its utility in combination with β-lactam antibiotics. The initial goal of this study was to assess the efficacy of β-lactams in combination with PAβN against the opportunistic pathogen, Pseudomonas aeruginosa. PAβN reduced the minimal inhibitory concentrations (MICs) of several β-lactam antibiotics against P. aeruginosa; however, the susceptibility changes were not due entirely to efflux inhibition. Upon PAβN treatment, intracellular levels of the chromosomally-encoded AmpC β-lactamase that inactivates β-lactam antibiotics were significantly reduced and AmpC levels in supernatants correspondingly increased, potentially due to permeabilization of the outer membrane. PAβN treatment caused a significant increase in uptake of 8-anilino-1-naphthylenesulfonic acid, a fluorescent hydrophobic probe, and sensitized P. aeruginosa to bulky antibiotics (e.g. vancomycin) that are normally incapable of crossing the outer membrane, as well as to detergent-like bile salts. Supplementation of growth media with magnesium to stabilize the outer membrane increased MICs in the presence of PAβN and restored resistance to vancomycin. Thus, PAβN permeabilizes bacterial membranes in a concentration-dependent manner at levels below those typically used in combination studies, and this additional mode of action should be considered when using PAβN as a control for efflux studies.
Collapse
Affiliation(s)
- Ryan P. Lamers
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Joseph F. Cavallari
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Yoshida H, Kawai F, Obayashi E, Akashi S, Roper DI, Tame JRH, Park SY. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms. J Mol Biol 2012; 423:351-64. [PMID: 22846910 DOI: 10.1016/j.jmb.2012.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution.
Collapse
Affiliation(s)
- Hisashi Yoshida
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Molina-Quiroz RC, Muñoz-Villagrán CM, de la Torre E, Tantaleán JC, Vásquez CC, Pérez-Donoso JM. Enhancing the antibiotic antibacterial effect by sub lethal tellurite concentrations: tellurite and cefotaxime act synergistically in Escherichia coli. PLoS One 2012; 7:e35452. [PMID: 22536386 PMCID: PMC3334966 DOI: 10.1371/journal.pone.0035452] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/16/2012] [Indexed: 12/28/2022] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria during the last decades has become a public health concern worldwide. Aiming to explore new alternatives to treat antibiotic-resistant bacteria and given that the tellurium oxyanion tellurite is highly toxic for most microorganisms, we evaluated the ability of sub lethal tellurite concentrations to strengthen the effect of several antibiotics. Tellurite, at nM or µM concentrations, increased importantly the toxicity of defined antibacterials. This was observed with both Gram negative and Gram positive bacteria, irrespective of the antibiotic or tellurite tolerance of the particular microorganism. The tellurite-mediated antibiotic-potentiating effect occurs in laboratory and clinical, uropathogenic Escherichia coli, especially with antibiotics disturbing the cell wall (ampicillin, cefotaxime) or protein synthesis (tetracycline, chloramphenicol, gentamicin). In particular, the effect of tellurite on the activity of the clinically-relevant, third-generation cephalosporin (cefotaxime), was evaluated. Cell viability assays showed that tellurite and cefotaxime act synergistically against E. coli. In conclusion, using tellurite like an adjuvant could be of great help to cope with several multi-resistant pathogens.
Collapse
Affiliation(s)
- Roberto C. Molina-Quiroz
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Claudia M. Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Erick de la Torre
- Laboratorio de Microbiología y Biotecnología, Facultad de Ciencias, Universidad San Luis Gonzaga, Ica, Perú
| | - Juan C. Tantaleán
- Laboratorio de Microbiología y Biotecnología, Facultad de Ciencias, Universidad San Luis Gonzaga, Ica, Perú
| | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
- * E-mail: (CCV); (JMPD)
| | - José M. Pérez-Donoso
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
- * E-mail: (CCV); (JMPD)
| |
Collapse
|
40
|
Fedarovich A, Nicholas RA, Davies C. The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis. J Mol Biol 2012; 418:316-30. [PMID: 22365933 DOI: 10.1016/j.jmb.2012.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Abstract
Penicillin-binding protein A (PBPA) is a class B penicillin-binding protein that is important for cell division in Mycobacterium tuberculosis. We have determined a second crystal structure of PBPA in apo form and compared it with an earlier structure of apoenzyme. Significant structural differences in the active site region are apparent, including increased ordering of a β-hairpin loop and a shift of the SxN active site motif such that it now occupies a position that appears catalytically competent. Using two assays, including one that uses the intrinsic fluorescence of a tryptophan residue, we have also measured the second-order acylation rate constants for the antibiotics imipenem, penicillin G, and ceftriaxone. Of these, imipenem, which has demonstrable anti-tubercular activity, shows the highest acylation efficiency. Crystal structures of PBPA in complex with the same antibiotics were also determined, and all show conformational differences in the β5-α11 loop near the active site, but these differ for each β-lactam and also for each of the two molecules in the crystallographic asymmetric unit. Overall, these data reveal the β5-α11 loop of PBPA as a flexible region that appears important for acylation and provide further evidence that penicillin-binding proteins in apo form can occupy different conformational states.
Collapse
Affiliation(s)
- Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
41
|
Sliwa A, Dive G, Zervosen A, Verlaine O, Sauvage E, Marchand-Brynaert J. Unprecedented inhibition of resistant penicillin bindingproteins by bis-2-oxoazetidinylmacrocycles. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00251e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis-2-oxoazetidinyl macrocycles, obtained as unexpected products of RCM cyclizations, exhibit good activities against d,d-peptidase from Actinomadura R39 and revealed very promising activities against PBP2a from methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Aline Sliwa
- Institute of Condensed Matter and Nanosciences (IMCN)
- Molecules, Solids and Reactivity (MOST)
- Université Catholique de Louvain
- Louvain-la-Neuve
- Belgium
| | - Georges Dive
- Centre d'ingénierie des Protéines (CIP)
- Université de Liège
- Sart-Tilman
- Belgium
| | - Astrid Zervosen
- Centre de Recherches du Cyclotron
- B30, Université de Liège
- Sart Tilman
- Belgium
| | - Olivier Verlaine
- Centre d'ingénierie des Protéines (CIP)
- Université de Liège
- Sart-Tilman
- Belgium
| | - Eric Sauvage
- Centre d'ingénierie des Protéines (CIP)
- Université de Liège
- Sart-Tilman
- Belgium
| | - Jacqueline Marchand-Brynaert
- Institute of Condensed Matter and Nanosciences (IMCN)
- Molecules, Solids and Reactivity (MOST)
- Université Catholique de Louvain
- Louvain-la-Neuve
- Belgium
| |
Collapse
|