1
|
Zhang J, Liu Z, Zhou Z, Huang Z, Yang Y, Wu J, Liu Y. HNP-1: From Structure to Application Thanks to Multifaceted Functions. Microorganisms 2025; 13:458. [PMID: 40005828 PMCID: PMC11858525 DOI: 10.3390/microorganisms13020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical components of innate immunity in animals and plants, exhibiting thrilling prospectives as alternatives to traditional antibiotics due to their ability to combat pathogens without leading to resistance. Among these, Human Neutrophil Peptide-1 (HNP-1), primarily produced by human neutrophils, exhibits broad-spectrum antimicrobial activity against bacteria and viruses. However, the clinical application of HNP-1 has been hampered by challenges associated with mass production and inconsistent understanding of its bactericidal mechanisms. This review explores the structure and function of HNP-1, discussing its gene expression, distribution, immune functions and the regulatory elements controlling its production, alongside insights into its antimicrobial mechanisms and potential clinical applications as an antimicrobial agent. Furthermore, the review highlights the biosynthesis of HNP-1 using microbial systems as a cost-effective alternative to human extraction and recent studies revealing HNP-1's endogenous bactericidal mechanism. A comprehensive understanding of HNP-1's working mechanisms and production methods will pave the way for its effective clinical utilization in combating antibiotic-resistant infections.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zhaoke Liu
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zhihao Zhou
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Zile Huang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Junzhu Wu
- Department of Biochemistry and Molecular Biology, Center for Experimental Teaching of Basic Medical Science, School of Basic Medical Science, Wuhan University, Wuhan 430072, China; (J.Z.)
| | - Yanhong Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
2
|
Rivera K, Tanaka KJ, Buechel ER, Origel O, Harrison A, Mason KM, Pinkett HW. Antimicrobial Peptide Recognition Motif of the Substrate Binding Protein SapA from Nontypeable Haemophilus influenzae. Biochemistry 2024; 63:294-311. [PMID: 38189237 PMCID: PMC10851439 DOI: 10.1021/acs.biochem.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with respiratory diseases, including otitis media and exacerbations of chronic obstructive pulmonary disease. NTHi exhibits resistance to killing by host antimicrobial peptides (AMPs) mediated by SapA, the substrate binding protein of the sensitivity to antimicrobial peptides (Sap) transporter. However, the specific mechanisms by which SapA selectively binds various AMPs such as defensins and cathelicidin are unknown. In this study, we report mutational analyses of both defensin AMPs and the SapA binding pocket to define the specificity of AMP recognition. Bactericidal assays revealed that NTHi lacking SapA are more susceptible to human beta defensins and LL-37, while remaining highly resistant to a human alpha defensin. In contrast to homologues, our research underscores the distinct specificity of NTHi SapA, which selectively recognizes and binds to peptides containing the charged-hydrophobic motif PKE and RRY. These findings provide valuable insight into the divergence of SapA among bacterial species and NTHi SapA's ability to selectively interact with specific AMPs to mediate resistance.
Collapse
Affiliation(s)
- Kristen
G. Rivera
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kari J. Tanaka
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan R. Buechel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Octavio Origel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alistair Harrison
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Kevin M. Mason
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Heather W. Pinkett
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Awang T, Chairatana P, Pongprayoon P. Molecular dynamics simulations of human α-defensin 5 (HD5) crossing gram-negative bacterial membrane. PLoS One 2023; 18:e0294041. [PMID: 37988380 PMCID: PMC10662769 DOI: 10.1371/journal.pone.0294041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Human α-defensin 5 (HD5) is a cationic antimicrobial peptide exhibiting a wide range of antimicrobial activities. It plays an important role in mucosal immunity of the small intestine. HD5 exerts its bactericidal activities through multiple mechanisms, one of which involves HD5 inducing the formation of pores in the bacterial membrane, subsequently allowing the peptide to enter the bacterial cytoplasm. Nevertheless, the precise molecular intricacies underlying its bactericidal mechanisms remain inadequately understood. In this work, the Potential of Mean Force (PMF) was computed to delve into the energetic properties governing the movement of HD5 across the lipopolysaccharide (LPS) membrane, which is a representative model of the gram-negative bacterial membrane. Our findings indicate that the most favorable free energy is attained when HD5 binds to the surface of the LPS membrane. This favorable interaction is primarily driven by the strong interactions between arginine residues in HD5 and the charged head groups of LPS, serving as the predominant forces facilitating the adhesion of HD5 to the membrane. Our analysis reveals that a dimeric form of HD5 alone is sufficient to create a water-filled channel in the membrane; however, achieving the complete lysis of the gram-negative bacterial membrane requires higher-order oligomerization of HD5. Our results suggest that HD5 employs the toroidal pore formation mechanism to disrupt the integrity of the LPS membrane. Furthermore, we identified that the primary energy barrier obstructing HD5 from traversing the membrane is localized within the hydrophobic core of the membrane, which is also observed for other defensins. Additionally, our study demonstrates that a mixture of HD5-LPS leads to a thinning of the membrane. Taken together, this work provides a deeper insight into the molecular intricacies governing the behavior of HD5 as it translocates through the gram-negative bacterial membrane.
Collapse
Affiliation(s)
- Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Phoom Chairatana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Yadav GP, Wang H, Ouwendijk J, Cross S, Wang Q, Qin F, Verkade P, Zhu MX, Jiang QX. Chromogranin B (CHGB) is dimorphic and responsible for dominant anion channels delivered to cell surface via regulated secretion. Front Mol Neurosci 2023; 16:1205516. [PMID: 37435575 PMCID: PMC10330821 DOI: 10.3389/fnmol.2023.1205516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 07/13/2023] Open
Abstract
Regulated secretion is conserved in all eukaryotes. In vertebrates granin family proteins function in all key steps of regulated secretion. Phase separation and amyloid-based storage of proteins and small molecules in secretory granules require ion homeostasis to maintain their steady states, and thus need ion conductances in granule membranes. But granular ion channels are still elusive. Here we show that granule exocytosis in neuroendocrine cells delivers to cell surface dominant anion channels, to which chromogranin B (CHGB) is critical. Biochemical fractionation shows that native CHGB distributes nearly equally in soluble and membrane-bound forms, and both reconstitute highly selective anion channels in membrane. Confocal imaging resolves granular membrane components including proton pumps and CHGB in puncta on the cell surface after stimulated exocytosis. High pressure freezing immuno-EM reveals a major fraction of CHGB at granule membranes in rat pancreatic β-cells. A cryo-EM structure of bCHGB dimer of a nominal 3.5 Å resolution delineates a central pore with end openings, physically sufficient for membrane-spanning and large single channel conductance. Together our data support that CHGB-containing (CHGB+) channels are characteristic of regulated secretion, and function in granule ion homeostasis near the plasma membrane or possibly in other intracellular processes.
Collapse
Affiliation(s)
- Gaya P. Yadav
- Departments of Microbiology and Cell Science and of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, United States
| | - Haiyuan Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joke Ouwendijk
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging facility, University of Bristol, Bristol, United Kingdom
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Feng Qin
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qiu-Xing Jiang
- Departments of Microbiology and Cell Science and of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, United States
- Cryo-EM Center, Laoshan Laboratory, Qingdao, Shandong, China
| |
Collapse
|
6
|
Bali K, McCoy R, Lu Z, Treiber J, Savva A, Kaminski CF, Salmond G, Salleo A, Mela I, Monson R, Owens RM. Multiparametric Sensing of Outer Membrane Vesicle-Derived Supported Lipid Bilayers Demonstrates the Specificity of Bacteriophage Interactions. ACS Biomater Sci Eng 2023; 9:3632-3642. [PMID: 37137156 PMCID: PMC10265573 DOI: 10.1021/acsbiomaterials.3c00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The use of bacteriophages, viruses that specifically infect bacteria, as antibiotics has become an area of great interest in recent years as the effectiveness of conventional antibiotics recedes. The detection of phage interactions with specific bacteria in a rapid and quantitative way is key for identifying phages of interest for novel antimicrobials. Outer membrane vesicles (OMVs) derived from Gram-negative bacteria can be used to make supported lipid bilayers (SLBs) and therefore in vitro membrane models that contain naturally occurring components of the bacterial outer membrane. In this study, we employed Escherichia coli OMV derived SLBs and use both fluorescent imaging and mechanical sensing techniques to show their interactions with T4 phage. We also integrate these bilayers with microelectrode arrays (MEAs) functionalized with the conducting polymer PEDOT:PSS and show that the pore forming interactions of the phages with the SLBs can be monitored using electrical impedance spectroscopy. To highlight our ability to detect specific phage interactions, we also generate SLBs using OMVs derived from Citrobacter rodentium, which is resistant to T4 phage infection, and identify their lack of interaction with the phage. The work presented here shows how interactions occurring between the phages and these complex SLB systems can be monitored using a range of experimental techniques. We believe this approach can be used to identify phages that work against bacterial strains of interest, as well as more generally to monitor any pore forming structure (such as defensins) interacting with bacterial outer membranes, and thus aid in the development of next generation antimicrobials.
Collapse
Affiliation(s)
- Karan Bali
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Reece McCoy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Zixuan Lu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Jeremy Treiber
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Achilleas Savva
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - George Salmond
- Department
of Biochemistry, University of Cambridge, Hopkins Building, Downing Site,
Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Alberto Salleo
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Ioanna Mela
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | - Rita Monson
- Department
of Biochemistry, University of Cambridge, Hopkins Building, Downing Site,
Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Róisín M. Owens
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
7
|
Role of Defensins in Tumor Biology. Int J Mol Sci 2023; 24:ijms24065268. [PMID: 36982340 PMCID: PMC10049535 DOI: 10.3390/ijms24065268] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Defensins have long been considered as merely antimicrobial peptides. Throughout the years, more immune-related functions have been discovered for both the α-defensin and β-defensin subfamily. This review provides insights into the role of defensins in tumor immunity. Since defensins are present and differentially expressed in certain cancer types, researchers started to unravel their role in the tumor microenvironment. The human neutrophil peptides have been demonstrated to be directly oncolytic by permealizing the cell membrane. Further, defensins can inflict DNA damage and induce apoptosis of tumor cells. In the tumor microenvironment, defensins can act as chemoattractants for subsets of immune cells, such as T cells, immature dendritic cells, monocytes and mast cells. Additionally, by activating the targeted leukocytes, defensins generate pro-inflammatory signals. Moreover, immuno-adjuvant effects have been reported in a variety of models. Therefore, the action of defensins reaches beyond their direct antimicrobial effect, i.e., the lysis of microbes invading the mucosal surfaces. By causing an increase in pro-inflammatory signaling events, cell lysis (generating antigens) and attraction and activation of antigen presenting cells, defensins could have a relevant role in activating the adaptive immune system and generating anti-tumor immunity, and could thus contribute to the success of immune therapy.
Collapse
|
8
|
Agadi N, Maity A, Jha AK, Chakrabarti R, Kumar A. Distinct mode of membrane interaction and disintegration by diverse class of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184047. [PMID: 36100074 DOI: 10.1016/j.bbamem.2022.184047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022]
Abstract
The exploitation of conventional antibiotics in conjunction with the adeptness of microbes has led to the emergence of multi-drug-resistant pathogens. This has posed a severe threat to combating life-threatening infectious diseases. Antimicrobial peptides (AMP), which are considered to be the first line of defense in all living organisms, are being developed for therapeutic use. Herein, we determined the NMR solution structure of Rhesus macaque Myeloid Alpha Defensin-4 (RMAD4), a defensin AMP. Additionally, the distinct modes of membrane perturbation for two structurally dissimilar classes of AMPs was studied using biophysical methods namely, Solid-state 31P NMR, DSC and cryo-TEM. The cathelicidin - Bovine myeloid antimicrobial peptide (BMAP-28 (1-18)), which adopts a helical conformation, and the defensin RMAD4 peptide that natively folds to form β-sheets appeared to engage differently with the bacterial membrane. The helical BMAP-28 (1-18) peptide initiates lipid segregation and membrane thinning followed by pore formation, while the β-stranded RMAD4 peptide demonstrates fragmentation of the bilayer by the carpet or detergent-like mechanism of action. Molecular dynamics studies sufficiently corroborated these findings. The structure and mechanism of action of the AMPs studied using experimental and computational approaches are believed to help in providing a platform for the rational design of new competent and cost-effective antimicrobial peptides for therapeutic applications.
Collapse
Affiliation(s)
- Nutan Agadi
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Atanu Maity
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akash Kumar Jha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
9
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
10
|
Zhu S, Gao B, Umetsu Y, Peigneur S, Li P, Ohki S, Tytgat J. Adaptively evolved human oral actinomyces-sourced defensins show therapeutic potential. EMBO Mol Med 2021; 14:e14499. [PMID: 34927385 PMCID: PMC8819291 DOI: 10.15252/emmm.202114499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The development of eukaryote‐derived antimicrobial peptides as systemically administered drugs has proven a challenging task. Here, we report the first human oral actinomyces‐sourced defensin—actinomycesin—that shows promise for systemic therapy. Actinomycesin and its homologs are only present in actinobacteria and myxobacteria, and share similarity with a group of ancient invertebrate‐type defensins reported in fungi and invertebrates. Signatures of natural selection were detected in defensins from the actinomyces colonized in human oral cavity and ruminant rumen and dental plaque, highlighting their role in adaptation to complex multispecies bacterial communities. Consistently, actinomycesin exhibited potent antibacterial activity against oral bacteria and clinical isolates of Staphylococcus and synergized with two classes of human salivary antibacterial factors. Actinomycesin specifically inhibited bacterial peptidoglycan synthesis and displayed weak immunomodulatory activity and low toxicity on human and mammalian cells and ion channels in the heart and central nervous system. Actinomycesin was highly efficient in mice infected with Streptococcus pneumoniae and mice with MRSA‐induced experimental peritoneal infection. This work identifies human oral bacteria as a new source of systemic anti‐infective drugs.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yoshitaka Umetsu
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Ping Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), National Center for Nanoscience and Technology, Beijing, China
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem Rev 2021; 122:9848-9879. [PMID: 34694769 DOI: 10.1021/acs.chemrev.1c00662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional 13C and 15N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance 19F and 1H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on 19F- and 1H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Awang T, Pongprayoon P. The penetration of human defensin 5 (HD5) through bacterial outer membrane: simulation studies. J Mol Model 2021; 27:291. [PMID: 34546425 DOI: 10.1007/s00894-021-04915-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Human α-defensin 5 (HD5) is one of cationic antimicrobial peptides which plays a crucial role in an innate immune system in human body. HD5 shows the killing activity against a broad spectrum of pathogenic bacteria by making a pore in a bacterial membrane and penetrating into a cytosol. Nonetheless, its pore-forming mechanisms remain unclear. Thus, in this work, the constant-velocity steered molecular dynamics (SMD) simulation was used to simulate the permeation of a dimeric HD5 into a gram-negative lipopolysaccharide (LPS) membrane model. Arginine-rich HD5 is found to strongly interact with a LPS surface. Upon arrival, arginines on HD5 interact with lipid A head groups (a top part of LPS) and then drag these charged moieties down into a hydrophobic core resulting in the formation of water-filled pore. Although all arginines are found to interact with a membrane, Arg13 and Arg32 appear to play a dominant role in the HD5 adsorption on a gram-negative membrane. Furthermore, one chain of a dimeric HD5 is required for HD5 adhesion. The interactions of arginine-lipid A head groups play a major role in adhering a cationic HD5 on a membrane surface and retarding a HD5 passage in the meantime.
Collapse
Affiliation(s)
- Tadsanee Awang
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
13
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
14
|
Mok AC, Mody CH, Li SS. Immune Cell Degranulation in Fungal Host Defence. J Fungi (Basel) 2021; 7:484. [PMID: 34208679 PMCID: PMC8234259 DOI: 10.3390/jof7060484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Humans have developed complex immune systems that defend against invading microbes, including fungal pathogens. Many highly specialized cells of the immune system share the ability to store antimicrobial compounds in membrane bound organelles that can be immediately deployed to eradicate or inhibit growth of invading pathogens. These membrane-bound organelles consist of secretory vesicles or granules, which move to the surface of the cell, where they fuse with the plasma membrane to release their contents in the process of degranulation. Lymphocytes, macrophages, neutrophils, mast cells, eosinophils, and basophils all degranulate in fungal host defence. While anti-microbial secretory vesicles are shared among different immune cell types, information about each cell type has emerged independently leading to an uncoordinated and confusing classification of granules and incomplete description of the mechanism by which they are deployed. While there are important differences, there are many similarities in granule morphology, granule content, stimulus for degranulation, granule trafficking, and release of granules against fungal pathogens. In this review, we describe the similarities and differences in an attempt to translate knowledge from one immune cell to another that may facilitate further studies in the context of fungal host defence.
Collapse
Affiliation(s)
- Adley Ch Mok
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shu Shun Li
- Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University Calgary, Calgary, AB T2N 4N1, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Yeasmin R, Brewer A, Fine LR, Zhang L. Molecular Dynamics Simulations of Human Beta-Defensin Type 3 Crossing Different Lipid Bilayers. ACS OMEGA 2021; 6:13926-13939. [PMID: 34095684 PMCID: PMC8173616 DOI: 10.1021/acsomega.1c01803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Human β defensin type 3 (hBD-3) is a small cationic cysteine-rich peptide. It has a broad spectrum of antimicrobial activities. However, at high concentrations, it also shows hemolytic activity by interrupting red blood cells. To understand the selectivity of hBD-3 disrupting cell membranes, investigating the capability of hBD-3 translocating through different membranes is important. Since hBD-3 in the analogue form in which all three pairs of disulfide bonds are broken has similar antibacterial activities to the wild-type, this project investigates the structure and dynamics of an hBD-3 analogue in monomer, dimer, and tetramer forms through both zwitterionic and negatively charged lipid bilayers using molecular dynamics (MD) simulations. One tetramer structure of hBD-3 was predicted by running all-atom MD simulations on hBD-3 in water at a high concentration, which was found to be stable in water during 400 ns all-atom simulations based on root-mean-squared deviation, root-mean-squared fluctuation, buried surface area, and binding interaction energy calculations. After that, hBD-3 in different forms was placed inside different membranes, and then steered MD simulation was conducted to pull the hBD-3 out of the membrane along the z-direction to generate different configurational windows to set up umbrella-sampling (US) simulations. Because extensive sampling is important to obtain accurate free energy barriers, coarse-grained US MD simulations were performed in each window. Based on the long-term simulation result, membrane thinning was found near hBD-3 in different lipid bilayers and in different hBD-3 oligomer systems. By calculating the root-mean-squared deviation of the z-coordinate of hBD-3 molecules, rotation of the oligomer inside the bilayer and stretching of the oligomer structure along the z-direction were observed. Although reorientation of lipid heads toward the hBD-3 tetramer was observed based on the density profile calculation, the order parameter calculation shows that hBD-3 disrupts 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipids more significantly and makes it less ordered than on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Calculating the free energy of hBD-3 through different lipid bilayers, it was found that generally hBD-3 encounters a lower energy barrier through negatively charged lipid membranes than the zwitterionic membrane. hBD-3 in different forms needs to overcome a lower energy barrier crossing the combined POPC+POPS bilayer through the POPS leaflet than through the POPC leaflet. Besides that, the potential of mean force result suggests that hBD-3 forms an oligomer translocating negatively charged lipid membranes at a low concentration. This study supplied new insight into the antibacterial mechanism of hBD-3 through different membranes.
Collapse
|
16
|
Kusnierova P, Bystronova I, Walder P, Hlubek R, Vsiansky F, Stejskal D. Alpha-defensins determination in different types of synovial fluid and parallel collected serum samples by ELISA. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:367-374. [PMID: 33899825 DOI: 10.5507/bp.2021.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
AIMS The study aims were to verify the serum (S) and synovial fluid (SF) reference intervals (RIs) for human neutrophil defensins (HNP1-3); measure S and SF defensin concentrations in different types of SF, including non-inflammatory, inflammatory non-pyogenic, inflammatory pyogenic, and hemorrhagic; and to compare the HNP1-3 concentrations in SF and S with those of other inflammatory biomarkers. METHODS SF and S samples were collected from 92 patients. HNP1-3 concentrations were determined using enzyme-linked immunosorbent assays; glucose, lactate, interleukin-6, and procalcitonin using an automatic analyzer; and presepsin using a Pathfast system. There were 61 non-inflammatory, 11 inflammatory non-pyogenic, 11 inflammatory pyogenic, and 9 hemorrhagic SF. Non-inflammatory SF was divided into non-inflammatory normal and non-inflammatory osteoarthritis. The former was used to estimate the HNP1-3 RI in SF and S. RESULTS The estimated HNP1-3 RIs of SF and S were 12.47-437.42 mg/L and 5.45-44.75 µg/L, respectively. HNP1-3 differed significantly between S and SF and individual groups of SF (P<0.001 and P=0.001, respectively). There were significant relationships between SF HNP1-3 and S HNP1-3 (P<0.001), S C-reactive protein (P<0.001), and S interleukin-6 (P=0.007), and between SF HNP1-3 and SF C-reactive protein (P=0.004) and SF interleukin-6 (P<0.001). The highest kappa coefficient was between SF HNP1-3 and SF interleukin-6 (κ=0.507). CONCLUSIONS We validated the SF HNP1-3 diagnostic kit and demonstrated that SF and S HNP1-3 are promising biomarkers for distinguishing inflammatory from non-inflammatory joint diseases.
Collapse
Affiliation(s)
- Pavlina Kusnierova
- Institute of Laboratory Diagnostics, Department of Clinical Biochemistry, University Hospital Ostrava, Czech Republic
| | - Iveta Bystronova
- Institute of Laboratory Diagnostics, Department of Clinical Biochemistry, University Hospital Ostrava, Czech Republic.,Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Pavel Walder
- Orthopedic Department, University Hospital Ostrava, Czech Republic
| | - Rudolf Hlubek
- Orthopedic Department, University Hospital Ostrava, Czech Republic
| | - Frantisek Vsiansky
- Institute of Laboratory Diagnostics, Department of Clinical Biochemistry, University Hospital Ostrava, Czech Republic
| | - David Stejskal
- Institute of Laboratory Diagnostics, Department of Clinical Biochemistry, University Hospital Ostrava, Czech Republic
| |
Collapse
|
17
|
Drab E, Sugihara K. Cooperative Function of LL-37 and HNP1 Protects Mammalian Cell Membranes from Lysis. Biophys J 2020; 119:2440-2450. [PMID: 33157121 DOI: 10.1016/j.bpj.2020.10.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023] Open
Abstract
LL-37, cleaved from human cathelicidin, and human neutrophil peptide-1 (HNP1) from the defensin family are antimicrobial peptides that are occasionally co-released from neutrophils, which synergistically kill bacteria. We report that this couple presents another type of cooperativity against host eukaryotic cells, in which they antagonistically minimize cytotoxicity by protecting membranes from lysis. Our results describe the potential of the LL-37/HNP1 cooperativity that switches from membrane-destructive to membrane-protective functions, depending on whether the target is an enemy or a host.
Collapse
Affiliation(s)
- Ewa Drab
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan; Department of Physical Chemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Antimicrobial Mechanism of pBD2 against Staphylococcus aureus. Molecules 2020; 25:molecules25153513. [PMID: 32752087 PMCID: PMC7435708 DOI: 10.3390/molecules25153513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) show high antibacterial activity against pathogens, which makes them potential new therapeutics to prevent and cure diseases. Porcine beta defensin 2 (pBD2) is a newly discovered AMP and has shown antibacterial activity against different bacterial species including multi-resistant bacteria. In this study, the functional mechanism of pBD2 antibacterial activity against Staphylococcus aureus was investigated. After S. aureus cells were incubated with different concentrations of pBD2, the morphological changes in S. aureus and locations of pBD2 were detected by electron microscopy. The differentially expressed genes (DEGs) were also analyzed. The results showed that the bacterial membranes were broken, bulging, and perforated after treatment with pBD2; pBD2 was mainly located on the membranes, and some entered the cytoplasm. Furthermore, 31 DEGs were detected and confirmed by quantitative real-time PCR (qRT-PCR). The known functional DEGs were associated with transmembrane transport, transport of inheritable information, and other metabolic processes. Our data suggest that pBD2 might have multiple modes of action, and the main mechanism by which pBD2 kills S. aureus is the destruction of the membrane and interaction with DNA. The results imply that pBD2 is an effective bactericide for S. aureus, and deserves further study as a new therapeutic substance against S. aureus.
Collapse
|
19
|
Senneville E, Robineau O, Loiez C, de Saint Vincent B, Dartus J, Migaud H. A profile on the Synovasure alpha defensin test for the detection of periprosthetic infections. Expert Rev Mol Diagn 2020; 20:895-904. [PMID: 32662687 DOI: 10.1080/14737159.2020.1792780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Clinicians have waited a long time for a 'universal' marker that may help them distinguish infected from non-infected total joint arthroplasties when doubts persist after using classical clinical and biological signs of infection. In recent years, synovial fluid biomarkers including leukocyte esterase, alpha-defensins, and CRP have shown promising results for the diagnosis of periprosthetic joint infections (PJIs). AREAS COVERED This review provides an overview of the rational and the use of the Synovasure® alpha-defensin tests in patients with a suspicion of PJI. Using a systematic investigation by keywords, we looked for all citations (and the citations to these citations) of the selected papers. EXPERT OPINION The Synovasure® alpha-defensin tests demonstrate high potential for the diagnosis of PJIs. However, the data currently available also show that the universal marker of infection in the settings of PJIs is still to be discovered.
Collapse
Affiliation(s)
- Eric Senneville
- Rererent Center for Complex Bone and Joint Infections , Gustave Dron Hospital , Tourcoing, France.,Rererent Center for Complex Bone and Joint Infections, Roger Salengro Hospital , Lille, France.,Faculty of Medecine Henri Warembourg, Lille University , France
| | - Olivier Robineau
- Rererent Center for Complex Bone and Joint Infections , Gustave Dron Hospital , Tourcoing, France.,Rererent Center for Complex Bone and Joint Infections, Roger Salengro Hospital , Lille, France.,Faculty of Medecine Henri Warembourg, Lille University , France
| | - Caroline Loiez
- Rererent Center for Complex Bone and Joint Infections, Roger Salengro Hospital , Lille, France
| | - Benoit de Saint Vincent
- Rererent Center for Complex Bone and Joint Infections, Roger Salengro Hospital , Lille, France
| | - Julien Dartus
- Rererent Center for Complex Bone and Joint Infections, Roger Salengro Hospital , Lille, France
| | - Henri Migaud
- Rererent Center for Complex Bone and Joint Infections, Roger Salengro Hospital , Lille, France.,Faculty of Medecine Henri Warembourg, Lille University , France
| |
Collapse
|
20
|
Sathoff AE, Lewenza S, Samac DA. Plant defensin antibacterial mode of action against Pseudomonas species. BMC Microbiol 2020; 20:173. [PMID: 32560676 PMCID: PMC7304088 DOI: 10.1186/s12866-020-01852-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Though many plant defensins exhibit antibacterial activity, little is known about their antibacterial mode of action (MOA). Antimicrobial peptides with a characterized MOA induce the expression of multiple bacterial outer membrane modifications, which are required for resistance to these membrane-targeting peptides. Mini-Tn5-lux mutant strains of Pseudomonas aeruginosa with Tn insertions disrupting outer membrane protective modifications were assessed for sensitivity against plant defensin peptides. These transcriptional lux reporter strains were also evaluated for lux gene expression in response to sublethal plant defensin exposure. Also, a plant pathogen, Pseudomonas syringae pv. syringae was modified through transposon mutagenesis to create mutants that are resistant to in vitro MtDef4 treatments. RESULTS Plant defensins displayed specific and potent antibacterial activity against strains of P. aeruginosa. A defensin from Medicago truncatula, MtDef4, induced dose-dependent gene expression of the aminoarabinose modification of LPS and surface polycation spermidine production operons. The ability for MtDef4 to damage bacterial outer membranes was also verified visually through fluorescent microscopy. Another defensin from M. truncatula, MtDef5, failed to induce lux gene expression and limited outer membrane damage was detected with fluorescent microscopy. The transposon insertion site on MtDef4 resistant P. syringae pv. syringae mutants was sequenced, and modifications of ribosomal genes were identified to contribute to enhanced resistance to plant defensin treatments. CONCLUSIONS MtDef4 damages the outer membrane similar to polymyxin B, which stimulates antimicrobial peptide resistance mechanisms to plant defensins. MtDef5, appears to have a different antibacterial MOA. Additionally, the MtDef4 antibacterial mode of action may also involve inhibition of translation.
Collapse
Affiliation(s)
- Andrew E Sathoff
- Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN, 55108, USA.
- Department of Biology, Dakota State University, 820 N Washington Ave, Madison, SD, 57042, USA.
| | - Shawn Lewenza
- Department of Microbiology and Infectious Disease, 3330 Hospital Dr. N.W., University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Faculty of Science and Technology, 1 University Dr., Athabasca University, Athabasca, AB, T9S 3A3, Canada
| | - Deborah A Samac
- Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN, 55108, USA
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN, 55108, USA
| |
Collapse
|
21
|
Kang X, Elson C, Penfield J, Kirui A, Chen A, Zhang L, Wang T. Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog. Commun Biol 2019; 2:402. [PMID: 31701030 PMCID: PMC6825183 DOI: 10.1038/s42003-019-0653-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Human β-defensins (hBD) play central roles in antimicrobial activities against various microorganisms and in immune-regulation. These peptides perturb phospholipid membranes for function, but it is not well understood how defensins approach, insert and finally disrupt membranes on the molecular level. Here we show that hBD-3 analogs interact with lipid bilayers through a conserved surface that is formed by two adjacent loops in the solution structure. By integrating a collection of 13C, 1H and 31P solid-state NMR methods with long-term molecular dynamic simulations, we reveal that membrane-binding rigidifies the peptide, enhances structural polymorphism, and promotes β-strand conformation. The peptide colocalizes with negatively charged lipids, confines the headgroup motion, and deforms membrane into smaller, ellipsoidal vesicles. This study designates the residue-specific, membrane-bound topology of hBD-3 analogs, serves as the basis for further elucidating the function-relevant structure and dynamics of other defensins, and facilitates the development of defensin-mimetic antibiotics, antifungals, and anti-inflammatories.
Collapse
Affiliation(s)
- Xue Kang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Christopher Elson
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Jackson Penfield
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Alex Kirui
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Adrian Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505 USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
22
|
Structural insights into the AapA1 toxin of Helicobacter pylori. Biochim Biophys Acta Gen Subj 2019; 1864:129423. [PMID: 31476357 DOI: 10.1016/j.bbagen.2019.129423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously reported the identification of the aapA1/IsoA1 locus as part of a new family of toxin-antitoxin (TA) systems in the human pathogen Helicobacter pylori. AapA1 belongs to type I TA bacterial toxins, and both its mechanism of action towards the membrane and toxicity features are still unclear. METHODS The biochemical characterization of the AapA1 toxic peptide was carried out using plasmid-borne expression and mutational approaches to follow its toxicity and localization. Biophysical properties of the AapA1 interaction with lipid membranes were studied by solution and solid-state NMR spectroscopy, plasmon waveguide resonance (PWR) and molecular modeling. RESULTS We show that despite a low hydrophobic index, this toxin has a nanomolar affinity to the prokaryotic membrane. NMR spectroscopy reveals that the AapA1 toxin is structurally organized into three distinct domains: a positively charged disordered N-terminal domain (D), a single α-helix (H), and a basic C-terminal domain (R). The R domain interacts and destabilizes the membrane, while the H domain adopts a transmembrane conformation. These results were confirmed by alanine scanning of the minimal sequence required for toxicity. CONCLUSION Our results have shown that specific amino acid residues along the H domain, as well as the R domain, are essential for the toxicity of the AapA1 toxin. GENERAL SIGNIFICANCE Untangling and understanding the mechanism of action of small membrane-targeting toxins are difficult, but nevertheless contributes to a promising search and development of new antimicrobial drugs.
Collapse
|
23
|
Antimicrobial peptide ROAD-1 triggers phase change in local membrane environment to execute its activity. J Mol Model 2019; 25:281. [PMID: 31468141 DOI: 10.1007/s00894-019-4163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/15/2019] [Indexed: 10/26/2022]
Abstract
Emergence of antibiotic-resistant pathogens has paved way for development of newer class of drugs that would not be susceptible to resistance. Antimicrobial peptides such as defensins that target the microbial membrane are promising candidates. ROAD-1 is an alpha-defensin present in the oral cavity of rhesus macaque and shares very high sequence similarity to human enteric defensin 5. In this study we have performed microsecond long all atom molecular dynamic simulations to understand the mechanism of action of ROAD-1. We find that ROAD-1 is able to adopt an energetically stable conformation predominantly stabilized by electrostatic interactions only in presence of bacterial membranes. In mammalian membrane even though it gets absorbed onto the bilayer, it is unable to adopt an equilibrium conformation. Binding of ROAD-1 to bilayer induces clustering of POPG molecules up to 15 Å around the peptide. POPG molecules show higher order parameters than the neighboring POPE implying coexistence of different phases. Analysis of binding free energy of ROAD-1-membrane complex indicates Arg1, Arg2, Arg7, and Arg25 to play key role in its antimicrobial activity. Unlike its homolog HD5, ROAD-1 is not observed to form a dimer. Our study gives insight into the membrane-bound conformation of ROAD-1 and its mechanism of action that can aid in designing defensin-based therapeutics. Graphical abstract Antimicrobial peptide ROAD-1 adopts a different membrane-bound conformation as compared with HD5 even though they belong to the same family implying a different mechanism of action.
Collapse
|
24
|
Sathoff AE, Samac DA. Antibacterial Activity of Plant Defensins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:507-514. [PMID: 30501455 DOI: 10.1094/mpmi-08-18-0229-cr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant defensins are antimicrobial host defense peptides expressed in all higher plants. Performing a significant role in plant innate immunity, plant defensins display potent activity against a wide range of pathogens. Vertebrate and invertebrate defensins have well-characterized antibacterial activity, but plant defensins are commonly considered to display antimicrobial activity against only fungi. In this review, we highlight the often-overlooked antibacterial activity of plant defensins. Also, we illustrate methods to evaluate defensins for antibacterial activity and describe the current advances in uncovering their antibacterial modes of action.
Collapse
Affiliation(s)
- Andrew E Sathoff
- 1 Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN, 55108, U.S.A.; and
| | - Deborah A Samac
- 1 Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN, 55108, U.S.A.; and
- 2 USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, U.S.A
| |
Collapse
|
25
|
Liang S, Guo XK, Ou J, Huang R, Xue Q, Zhang B, Chung Y, Wu W, Dong C, Yang X, Hu X. Nutrient Sensing by the Intestinal Epithelium Orchestrates Mucosal Antimicrobial Defense via Translational Control of Hes1. Cell Host Microbe 2019; 25:706-718.e7. [DOI: 10.1016/j.chom.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/28/2019] [Accepted: 03/20/2019] [Indexed: 01/28/2023]
|
26
|
Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Front Cell Infect Microbiol 2019; 9:128. [PMID: 31114762 PMCID: PMC6503114 DOI: 10.3389/fcimb.2019.00128] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Rapidly growing resistance of pathogenic bacteria to conventional antibiotics leads to inefficiency of traditional approaches of countering infections and determines the urgent need for a search of fundamentally new anti-infective drugs. Antimicrobial peptides (AMPs) of the innate immune system are promising candidates for a role of such novel antibiotics. However, some cytotoxicity of AMPs toward host cells limits their active implementation in medicine and forces attempts to design numerous structural analogs of the peptides with optimized properties. An alternative route for the successful AMPs introduction may be their usage in combination with conventional antibiotics. Synergistic antibacterial effects have been reported for a number of such combinations, however, the molecular mechanisms of the synergy remain poorly understood and little is known whether AMPs cytotoxicy for the host cells increases upon their application with antibiotics. Our study is directed to examination of a combined action of natural AMPs with different structure and mode of action (porcine protegrin 1, caprine bactenecin ChBac3.4, human alpha- and beta-defensins (HNP-1, HNP-4, hBD-2, hBD-3), human cathelicidin LL-37), and egg white lysozyme with varied antibiotic agents (gentamicin, ofloxacin, oxacillin, rifampicin, polymyxin B, silver nanoparticles) toward selected bacteria, including drug-sensitive and drug-resistant strains, as well as toward some mammalian cells (human erythrocytes, PBMC, neutrophils, murine peritoneal macrophages and Ehrlich ascites carcinoma cells). Using “checkerboard titrations” for fractional inhibitory concentration indexes evaluation, it was found that synergy in antibacterial action mainly occurs between highly membrane-active AMPs (e.g., protegrin 1, hBD-3) and antibiotics with intracellular targets (e.g., gentamicin, rifampcin), suggesting bioavailability increase as the main model of such interaction. In some combinations modulation of dynamics of AMP-bacterial membrane interaction in presence of the antibiotic was also shown. Cytotoxic effects of the same combinations toward normal eukaryotic cells were rarely synergistic. The obtained data approve that combined application of antimicrobial peptides with antibiotics or other antimicrobials is a promising strategy for further development of new approach for combating antibiotic-resistant bacteria by usage of AMP-based therapeutics. Revealing the conventional antibiotics that increase the activity of human endogenous AMPs against particular pathogens is also important for cure strategies elaboration.
Collapse
Affiliation(s)
- Maria S Zharkova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Dmitriy S Orlov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Olga Yu Golubeva
- Laboratory of Nanostructures Research, Institute of Silicate Chemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Oleg B Chakchir
- Nanobiotechnology Laboratory, Saint Petersburg National Research Academic University of the Russian Academy of Science, Saint Petersburg, Russia
| | - Igor E Eliseev
- Nanobiotechnology Laboratory, Saint Petersburg National Research Academic University of the Russian Academy of Science, Saint Petersburg, Russia
| | - Tatyana M Grinchuk
- Laboratory of Intracellular Signaling, Institute of Cytology of the Russian Academy of Science, Saint Petersburg, Russia
| | - Olga V Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
27
|
Scheidler CM, Kick LM, Schneider S. Ribosomal Peptides and Small Proteins on the Rise. Chembiochem 2019; 20:1479-1486. [PMID: 30648812 DOI: 10.1002/cbic.201800715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 11/05/2022]
Abstract
Genetically encoded and ribosomally synthesised peptides and small proteins act as important regulators in fundamental cellular processes, including gene expression, development, signalling and metabolism. Moreover, they also play a crucial role in eukaryotic and prokaryotic defence against microorganisms. Extremely diverse in size and structure, they are often subject to extensive post-translational modification. Recent technological advances are now allowing the analysis of the whole cellular transcriptome and proteome, revealing the presence of hundreds of long-overlooked alternative and short open reading frames (short ORFs, or sORFs) in mRNA and supposedly noncoding RNAs. However, in many instances the biological roles of their translational products remain to be elucidated. Here we provide an overview on the intriguing structural and functional diversity of ribosomally synthesised peptides and newly discovered peptides and small proteins.
Collapse
Affiliation(s)
- Christopher M Scheidler
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Leonhard M Kick
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sabine Schneider
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
28
|
Yeasmin R, Buck M, Weinberg A, Zhang L. Translocation of Human β Defensin Type 3 through a Neutrally Charged Lipid Membrane: A Free Energy Study. J Phys Chem B 2018; 122:11883-11894. [DOI: 10.1021/acs.jpcb.8b08285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rabeta Yeasmin
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | | | | | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
29
|
Chen RB, Zhang K, Zhang H, Gao CY, Li CL. Analysis of the antimicrobial mechanism of porcine beta defensin 2 against E. coli by electron microscopy and differentially expressed genes. Sci Rep 2018; 8:14711. [PMID: 30279556 PMCID: PMC6168601 DOI: 10.1038/s41598-018-32822-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Porcine beta defensin 2 (pBD2) is a cationic antimicrobial peptide with broad spectrum antibacterial activity, which makes it a potential alternative to antibiotics to prevent and cure diseases of pigs. However, development of pBD2 as an effective antibiotic agent requires molecular understanding of its functional mechanism against pathogens. In this study, we investigated the functional mechanism of pBD2 antibacterial activity. Escherichia coli was incubated with different pBD2 concentrations for different times. Electron microscopy was used to analyze the locations of pBD2 and its induced morphological changes in E. coli. Gene expression analysis was also performed to further understand the molecular changes of E. coli in response to pBD2 incubation. The results demonstrated that E. coli membranes were broken, holed, and wrinkled after treatment with pBD2, and pBD2 was located on the cell membranes and manly in the cytoplasm. Furthermore, 38 differentially expressed genes (DEGs) were detected, successfully sequenced and confirmed by quantitative real-time PCR (qRT-PCR). Most of the known functional DEGs were associated with DNA transcription and translation and located in the cytoplasm. Collectively, the results suggest that pBD2 could have multiple modes of action and the main mechanism for killing E. coli might be influence on DNA transcription and translation by targeting intracellular molecules after membrane damage, although transport and metabolism proteins were also affected.
Collapse
Affiliation(s)
- Rui-Bo Chen
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China
| | - Kun Zhang
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China
| | - Heng Zhang
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China
| | - Chun-Yu Gao
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China
| | - Chun-Li Li
- Department of Animal and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, Henan, The People's Republic of China.
| |
Collapse
|
30
|
Lei R, Hou J, Chen Q, Yuan W, Cheng B, Sun Y, Jin Y, Ge L, Ben-Sasson SA, Chen J, Wang H, Lu W, Fang X. Self-Assembling Myristoylated Human α-Defensin 5 as a Next-Generation Nanobiotics Potentiates Therapeutic Efficacy in Bacterial Infection. ACS NANO 2018; 12:5284-5296. [PMID: 29856606 DOI: 10.1021/acsnano.7b09109] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The increasing prevalence of antibacterial resistance globally underscores the urgent need to the update of antibiotics. Here, we describe a strategy for inducing the self-assembly of a host-defense antimicrobial peptide (AMP) into nanoparticle antibiotics (termed nanobiotics) with significantly improved pharmacological properties. Our strategy involves the myristoylation of human α-defensin 5 (HD5) as a therapeutic target and subsequent self-assembly in aqueous media in the absence of exogenous excipients. Compared with its parent HD5, the C-terminally myristoylated HD5 (HD5-myr)-assembled nanobiotic exhibited significantly enhanced broad-spectrum bactericidal activity in vitro. Mechanistically, it selectively killed Escherichia coli ( E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) through disruption of the cell wall and/or membrane structure. The in vivo results further demonstrated that the HD5-myr nanobiotic protected against skin infection by MRSA and rescued mice from E. coli-induced sepsis by lowering the systemic bacterial burden and alleviating organ damage. The self-assembled HD5-myr nanobiotic also showed negligible hemolytic activity and substantially low toxicity in animals. Our findings validate this design rationale as a simple yet versatile strategy for generating AMP-derived nanobiotics with excellent in vivo tolerability. This advancement will likely have a broad impact on antibiotic discovery and development efforts aimed at combating antibacterial resistance.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Jinchao Hou
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Qixing Chen
- The Children's Hospital, School of Medicine , Zhejiang University , Hangzhou 310052 , China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Yue Jin
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Lujie Ge
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Shmuel A Ben-Sasson
- Department of Developmental Biology, Institute for Medical Research Israel-Canada , The Hebrew University-Hadassah Medical School , Jerusalem 91120 , Israel
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology , Ningbo University , Ningbo 315211 , China
| | - Hangxiang Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| |
Collapse
|
31
|
Cazorla SI, Maldonado-Galdeano C, Weill R, De Paula J, Perdigón GDV. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity. Front Microbiol 2018; 9:736. [PMID: 29713315 PMCID: PMC5911494 DOI: 10.3389/fmicb.2018.00736] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus. Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.
Collapse
Affiliation(s)
- Silvia I Cazorla
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Carolina Maldonado-Galdeano
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Ricardo Weill
- Departamento de Investigación y Desarrollo, DANONE, Buenos Aires, Argentina
| | - Juan De Paula
- Servicio de Gastroenterología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela D V Perdigón
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
32
|
Ageitos J, Sánchez-Pérez A, Calo-Mata P, Villa T. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 2017; 133:117-138. [DOI: 10.1016/j.bcp.2016.09.018] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023]
|
33
|
Sankaran-Walters S, Hart R, Dills C. Guardians of the Gut: Enteric Defensins. Front Microbiol 2017; 8:647. [PMID: 28469609 PMCID: PMC5395650 DOI: 10.3389/fmicb.2017.00647] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/29/2017] [Indexed: 01/01/2023] Open
Abstract
Enteric defensins likely play a key role in the management of the human microbiome throughout development. The functional and mechanistic diversity of defensins is much greater than was initially thought. Defensin expression and overall Paneth cell physiology likely plays a key role in the development of colitis and other inflammatory or dysbiotic diseases of the gut. As our understanding of enteric defensins grows, their potential as tools of clinical intervention becomes more apparent. In this review, we focus on the function and activity of Paneth Cell defensins and highlight their role in disease.
Collapse
|
34
|
Mathew B, Nagaraj R. Variations in the interaction of human defensins with Escherichia coli: Possible implications in bacterial killing. PLoS One 2017; 12:e0175858. [PMID: 28423004 PMCID: PMC5397029 DOI: 10.1371/journal.pone.0175858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Human α and β-defensins are cationic antimicrobial peptides characterized by three disulfide bonds with a triple stranded β-sheet motif. It is presumed that interaction with the bacterial cell surface and membrane permeabilization by defensins is an important step in the killing process. In this study, we have compared interactions of three human α-defensins HNP3, HNP4, HD5 and human β-defensins HBD1-4 that are active against Escherichia coli, with its cell surface and inner membrane as well as negatively charged model membranes. We have also included the inactive α-defensin HD6 in the study. Among the α-defensins, HNP4, HD5 and HD6 were more effective in increasing the zeta potential as compared to HNP3. Among the β-defensins, HBD1 was the least effective in increasing the zeta potential. The zeta potential modulation data indicate variations in the surface charge neutralizing ability of α- and β-defensins. Comparison of E. coli inner membrane and model membrane permeabilizing abilities indicated that HD5, HD6 and HBD1 do not permeabilize membranes. Although HBD4 does not permeabilize model membranes, considerable damage to the inner membrane of E. coli is observed. Our data indicate that mammalian defensins do not kill E. coli by a simple mechanism involving membrane permeabilization though their antibacterial potencies are very similar.
Collapse
Affiliation(s)
- Basil Mathew
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
35
|
Montero-Alejo V, Corzo G, Porro-Suardíaz J, Pardo-Ruiz Z, Perera E, Rodríguez-Viera L, Sánchez-Díaz G, Hernández-Rodríguez EW, Álvarez C, Peigneur S, Tytgat J, Perdomo-Morales R. Panusin represents a new family of β-defensin-like peptides in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:310-321. [PMID: 27616720 DOI: 10.1016/j.dci.2016.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Beta_defensin have been solely found in vertebrates until β-defensin-like peptides were described as transcript isoforms in two species of Panulirus genus. They were considered as putative antimicrobials since their biological activity have not been demonstrated. Here we purified and characterized a defensin-like peptide from the hemocytes of spiny lobster P. argus, hereafter named panusin. Structurally, panusin presents a cysteine-stabilized α/β motif, and is prone to form homodimers. Biological activity of panusin showed broad-spectrum antimicrobial activity, characterized for being strikingly salt-resistant. Panusin did not showed hemolytic activity but was demonstrated its binding capacity to different lipid membrane models, indicating amphipathicity of β-sheet core as driving force for its antimicrobial activity. Panusin is considered a new kind of arthropod defensin which share structural and biological features with beta-defensin from vertebrates. The presence of beta-defensin like peptides in crustacean might suggest the emergence of the evolutionary relationship of β-defensins from vertebrates.
Collapse
Affiliation(s)
- Vivian Montero-Alejo
- Biochemistry Department, Center for Pharmaceuticals Research and Development, Havana, Cuba.
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Javier Porro-Suardíaz
- Biochemistry Department, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Zenia Pardo-Ruiz
- Biochemistry Department, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Erick Perera
- Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Gabriela Sánchez-Díaz
- Department for Basic and Biomedical Sciences, Medicine Faculty, Artemisa, Cuba; Laboratory of Computational and Theoretical Chemistry, University of Havana, Havana, Cuba
| | - Erix Wiliam Hernández-Rodríguez
- Department for Basic and Biomedical Sciences, Medicine Faculty, Artemisa, Cuba; Laboratory of Computational and Theoretical Chemistry, University of Havana, Havana, Cuba
| | - Carlos Álvarez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
36
|
The Interplay between Defensins and Microbiota in Crohn's Disease. Mediators Inflamm 2017; 2017:8392523. [PMID: 28246439 PMCID: PMC5299173 DOI: 10.1155/2017/8392523] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 02/08/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammation of the intestinal mucosa, characterized by periods of acute recurrence and remission. Depending on the specific region affected, CD is classified as ileal CD or colonic CD. It is largely accepted that the intestinal microbiota is involved in the onset of the pathology. Indeed, a reduced immune tolerance to components of the intestinal commensal microbiota and inflammation of the intestinal barrier typifies patients with CD. Several studies have shown defective expression of intestinal antimicrobial peptides (AMPs) in patients with CD compared to controls, particularly defensins. A reduction in α-defensins is observed in ileal CD, while β-defensins are increased in colonic CD. In addition to an immunological basis, the disease is frequently associated with genetic alterations including mutations of NOD2 gene. Several therapeutic strategies to circumvent the dysfunction observed in CD are currently under investigation. These include the use of delivery systems to administer endogenous AMPs and the engineering of peptidomimetics that could ameliorate the severity of CD. In this review, the role defensins play in CD and the strategies aimed at overcoming bacterial resistance will be discussed.
Collapse
|
37
|
Gan W, Schneidman D, Zhang N, Ma B, Nussinov R. Probing Oligomerized Conformations of Defensin in the Membrane. Methods Mol Biol 2017; 1529:353-362. [PMID: 27914061 PMCID: PMC6484831 DOI: 10.1007/978-1-4939-6637-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Computational prediction and design of membrane protein-protein interactions facilitate biomedical engineering and biotechnological applications. Due to their antimicrobial activity, human defensins play an important role in the innate immune system. Human defensins are attractive pharmaceutical targets due to their small size, broad activity spectrum, reduced immunogenicity, and resistance to proteolysis. Protein engineering based modification of defensins can improve their pharmaceutical properties. Here we present an approach to computationally probe defensins' oligomerization states in the membrane. First, we develop a novel docking and rescoring algorithm. Then, on the basis of the 3D structure of Sapecin, an insect defensin, and a model of its antimicrobial ion-channel, we optimize the parameters of our empirical scoring function. Finally, we apply our docking program and scoring function to the hBD-2 (human β-defensin-2) molecule and obtain structures of four possible oligomers. These results can be used in higher level simulations.
Collapse
Affiliation(s)
- Wenxun Gan
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, China
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Dina Schneidman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Ning Zhang
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, China
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA.
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA.
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
38
|
Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins. Sci Rep 2016; 6:32499. [PMID: 27581352 PMCID: PMC5007486 DOI: 10.1038/srep32499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Human defensins are innate immune defense peptides with a remarkably broad repertoire of anti-pathogen activities. In addition to modulating immune response, inflammation, and angiogenesis, disintegrating bacterial membranes, and inactivating bacterial toxins, defensins are known to intercept various viruses at different stages of their life cycles, while remaining relatively benign towards human cells and proteins. Recently we have found that human defensins inactivate proteinaceous bacterial toxins by taking advantage of their low thermodynamic stability and acting as natural “anti-chaperones”, i.e. destabilizing the native conformation of the toxins. In the present study we tested various proteins produced by several viruses (HIV-1, PFV, and TEV) and found them to be susceptible to destabilizing effects of human α-defensins HNP-1 and HD-5 and the synthetic θ-defensin RC-101, but not β-defensins hBD-1 and hBD-2 or structurally related plant-derived peptides. Defensin-induced unfolding promoted exposure of hydrophobic groups otherwise confined to the core of the viral proteins. This resulted in precipitation, an enhanced susceptibility to proteolytic cleavage, and a loss of viral protein activities. We propose, that defensins recognize and target a common and essential physico-chemical property shared by many bacterial toxins and viral proteins – the intrinsically low thermodynamic protein stability.
Collapse
|
39
|
Sharma H, Nagaraj R. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS One 2015; 10:e0119525. [PMID: 25785690 PMCID: PMC4364940 DOI: 10.1371/journal.pone.0119525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.
Collapse
Affiliation(s)
- Himanshu Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
40
|
Abstract
The mammalian gastrointestinal tract is home to a dense community of resident bacteria and is also exposed to microorganisms from the external environment. The epithelial surface of the intestine plays a critical role in host protection by producing a diverse repertoire of antimicrobial proteins that directly kill or hinder the growth of microorganisms. Here we discuss the general principles that govern the mechanisms of action of epithelial antimicrobial proteins, regulation of antimicrobial protein expression and activity, and in vivo functions of intestinal antimicrobial proteins. We also consider how altered antimicrobial protein expression and function can contribute to disease and how these endogenous antibiotics might be harnessed for the benefit of human health.
Collapse
|
41
|
|
42
|
Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins. Immunity 2014; 41:709-21. [PMID: 25517613 DOI: 10.1016/j.immuni.2014.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/17/2014] [Indexed: 02/08/2023]
Abstract
Defensins are short cationic, amphiphilic, cysteine-rich peptides that constitute the front-line immune defense against various pathogens. In addition to exerting direct antibacterial activities, defensins inactivate several classes of unrelated bacterial exotoxins. To date, no coherent mechanism has been proposed to explain defensins' enigmatic efficiency toward various toxins. In this study, we showed that binding of neutrophil ?-defensin HNP1 to affected bacterial toxins caused their local unfolding, potentiated their thermal melting and precipitation, exposed new regions for proteolysis, and increased susceptibility to collisional quenchers without causing similar effects on tested mammalian structural and enzymatic proteins. Enteric ?-defensin HD5 and ?-defensin hBD2 shared similar toxin-unfolding effects with HNP1, albeit to different degrees. We propose that protein susceptibility to inactivation by defensins is contingent to their thermolability and conformational plasticity and that defensin-induced unfolding is a key element in the general mechanism of toxin inactivation by human defensins.
Collapse
|
43
|
Kwon B, Waring AJ, Hong M. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. Biophys J 2014; 105:2333-42. [PMID: 24268145 DOI: 10.1016/j.bpj.2013.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/25/2022] Open
Abstract
Domain formation in bacteria-mimetic membranes due to cationic peptide binding was recently proposed based on calorimetric data. We now use (2)H solid-state NMR to critically examine the presence and absence of domains in bacterial membranes containing zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) lipids. Chain-perdeuterated POPE and POPG are used in single-component membranes, binary POPE/POPG (3:1) membranes, and membranes containing one of four cationic peptides: two antimicrobial peptides (AMPs) of the β-hairpin family of protegrin-1 (PG-1), and two cell-penetrating peptides (CPPs), HIV TAT and penetratin. (2)H quadrupolar couplings were measured to determine the motional amplitudes of POPE and POPG acyl chains as a function of temperature. Homogeneously mixed POPE/POPG membranes should give the same quadrupolar couplings for the two lipids, whereas the presence of membrane domains enriched in one of the two lipids should cause distinct (2)H quadrupolar couplings that reflect different chain disorder. At physiological temperature (308 K), we observed no or only small coupling differences between POPE and POPG in the presence of any of the cationic peptides. However, around ambient temperature (293 K), at which gel- and liquid-crystalline phases coexist in the peptide-free POPE/POPG membrane, the peptides caused distinct quadrupolar couplings for the two lipids, indicating domain formation. The broad-spectrum antimicrobial peptide PG-1 ordered ∼40% of the POPE lipids while disordering POPG. The Gram-negative selective PG-1 mutant, IB549, caused even larger differences in the POPE and POPG disorder: ∼80% of POPE partitioned into the ordered phase, whereas all of the POPG remained in the disordered phase. In comparison, TAT rigidified POPE and POPG similarly in the binary membrane at ambient temperature, indicating that TAT does not cause dynamic heterogeneity but interacts with the membrane with a different mechanism. Penetratin maintained the POPE order but disordered POPG, suggesting moderate domain separation. These results provide insight into the extent of domain formation in bacterial membranes and the possible peptide structural requirements for this phenomenon.
Collapse
Affiliation(s)
- Byungsu Kwon
- Department of Chemistry, Iowa State University, Ames, Iowa
| | | | | |
Collapse
|
44
|
Cheng DQ, Li Y, Huang JF. Molecular evolution of the primate α-/θ-defensin multigene family. PLoS One 2014; 9:e97425. [PMID: 24819937 PMCID: PMC4018336 DOI: 10.1371/journal.pone.0097425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/21/2014] [Indexed: 12/18/2022] Open
Abstract
The primate α-/θ-defensin multigene family encodes versatile endogenous cationic and amphipathic peptides that have broad-spectrum antibacterial, antifungal and antiviral activity. Although previous studies have reported that α-/θ-defensin (DEFA/DEFT) genes are under birth-and-death evolution with frequent duplication and rapid evolution, the phylogenetic relationships of the primate DEFA/DEFT genes; the genetic bases for the existence of similar antimicrobial spectra among closely related species; and the evolutionary processes involved in the emergence of cyclic θ-defensins in Old World monkeys and their subsequent loss of function in humans, chimpanzees and gorillas require further investigation. In this study, the DEFA/DEFT gene repertoires from primate and treeshrew were collected, followed by detailed phylogenetic, sequence and structure, selection pressure and comparative genomics analyses. All treeshrew, prosimian and simian DEFA/DEFT genes are grouped into two major clades, which are tissue-specific for enteric and myeloid defensins in simians. The simian enteric and myeloid α-defensins are classified into six functional gene clusters with diverged sequences, variable structures, altered functional constraints and different selection pressures, which likely reflect the antimicrobial spectra among closely related species. Species-specific duplication or pseudogenization within each simian cluster implies that the antimicrobial spectrum is ever-shifting, most likely challenged by the ever-changing pathogen environment. The DEFT evolved from the myeloid DEFA8. The prosegment of θ-defensin is detected with adaptive changes coevolving with the new protein fold of mature peptide, coincident with the importance of the prosegment for the correct folding of the mature peptide. Lastly, a less-is-hitchhiking hypothesis was proposed as a possible explanation for the expansion of pseudogene DEFTP and the loss of functional DEFT, where the gain or loss of the hitchhiker is determined by its adjacent driver gene during the birth-and-death evolutionary process.
Collapse
Affiliation(s)
- Dong-Qiang Cheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Yaan, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming Institute of Zoology-Chinese University of Hongkong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming, China
- * E-mail:
| |
Collapse
|
45
|
Emmertsen F, Glenthøj A, Sønderskov J, Kampmann P, Sengeløv H, Borregaard N. ProHNPs are specific markers of normal myelopoiesis. Blood Cancer J 2014; 4:e193. [PMID: 24658371 PMCID: PMC3972697 DOI: 10.1038/bcj.2014.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/23/2022] Open
Abstract
Pro human neutrophil peptides (proHNP)s are proforms of α-defensins produced by precursors of human neutrophils. They are secreted to bone marrow plasma in large amounts by myelocytes. We hypothesized that the plasma concentration of proHNPs might serve as a specific marker of myelopoietic activity, heralding the onset of normal myelopoiesis before reappearance of neutrophils, in the setting of bone marrow regeneration. To investigate this, plasma levels of proHNPs were measured by enzyme-linked immunosorbent assay in blood samples collected from patients undergoing allogeneic (n=11) or autologous (n=16) stem cell transplantations (SCTs) and patients receiving chemotherapy for acute leukemia (n=14). To compare proHNPs with previously suggested myeloid markers, myeloperoxidase (MPO), lysozyme and neutrophil gelatinase-associated lipocalin (NGAL) were also assayed. In all but one patient, chemotherapy led to the complete disappearance of ProHNPs from plasma. It reappeared in plasma on average 6.3 days before reappearance of neutrophils in the allogeneic setting, whereas this was reduced to an average of 2.8 days in the autologous SCT patients who received granulocyte colony-stimulating factor. Patients with acute myeloid leukemia (n=19) had significantly lower levels of plasma proHNPs than healthy controls, indicating that proHNPs are not produced by leukemic blasts. We conclude that plasma concentration of proHNPs is a clinically useful marker of normal myelopoiesis.
Collapse
Affiliation(s)
- F Emmertsen
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - A Glenthøj
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - J Sønderskov
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - P Kampmann
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - H Sengeløv
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - N Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol 2014; 5:97. [PMID: 24688483 PMCID: PMC3960590 DOI: 10.3389/fmicb.2014.00097] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 01/07/2023] Open
Abstract
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
47
|
James T, Gallagher L, Titze J, Bourke P, Kavanagh J, Arendt E, Bond U. In situ
production of human β
defensin-3 in lager yeasts provides bactericidal activity against beer-spoiling bacteria under fermentation conditions. J Appl Microbiol 2013; 116:368-79. [DOI: 10.1111/jam.12382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/01/2013] [Accepted: 10/21/2013] [Indexed: 02/03/2023]
Affiliation(s)
- T.C. James
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| | - L. Gallagher
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| | - J. Titze
- School of Food and Nutritional Science; University College Cork; Cork Ireland
| | - P. Bourke
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| | - J. Kavanagh
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| | - E. Arendt
- School of Food and Nutritional Science; University College Cork; Cork Ireland
| | - U. Bond
- Moyne Institute for Preventive Medicine; School of Genetics and Microbiology; Trinity College Dublin; College Green; Dublin Ireland
| |
Collapse
|
48
|
Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang QX, Hooper LV. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 2013; 505:103-7. [PMID: 24256734 PMCID: PMC4160023 DOI: 10.1038/nature12729] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 10/02/2013] [Indexed: 12/12/2022]
Abstract
Human body surface epithelia coexist in close association with complex
bacterial communities and are protected by a variety of antibacterial proteins.
C-type lectins of the RegIII family are bactericidal proteins that limit direct
contact between bacteria and the intestinal epithelium and thus promote
tolerance to the intestinal microbiota1,2. RegIII lectins
recognize their bacterial targets by binding peptidoglycan
carbohydrate1,3 but the mechanism by which they kill
bacteria is unknown. Here we elucidate the mechanistic basis for RegIII
bactericidal activity. Here we show that human RegIIIα
(hRegIIIα, also known as HIP/PAP) binds membrane phospholipids and kills
bacteria by forming a hexameric membrane-permeabilizing oligomeric pore. We
derive a three-dimensional model of the hRegIIIα pore by docking the
hRegIIIα crystal structure into a cryo-electron microscopic map of the
pore complex, and show that the model accords with experimentally determined
properties of the pore. Lipopolysaccharide inhibits hRegIIIα
pore-forming activity, explaining why hRegIIIα is bactericidal for
Gram-positive but not Gram-negative bacteria. Our findings identify C-type
lectins as mediators of membrane attack in the mucosal immune system, and
provide detailed insight into an antibacterial mechanism that promotes mutualism
with the resident microbiota.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hui Zheng
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mehabaw G Derebe
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Keith M Callenberg
- Department of Biological Sciences, University of Pittsburgh, and Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania 15261, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Darcy Rollins
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel C Propheter
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Josep Rizo
- Department of Biochemistry and Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael Grabe
- 1] Department of Biological Sciences, University of Pittsburgh, and Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania 15261, USA [2] Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143, USA
| | - Qiu-Xing Jiang
- 1] Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2]
| | - Lora V Hooper
- 1] Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] The Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [3]
| |
Collapse
|
49
|
Cellular response to Trypanosoma cruzi infection induces secretion of defensin α-1, which damages the flagellum, neutralizes trypanosome motility, and inhibits infection. Infect Immun 2013; 81:4139-48. [PMID: 23980110 DOI: 10.1128/iai.01459-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. Here we show that colonic epithelial model HCT116 cells respond to Trypanosoma cruzi infection by secreting defensin α-1, which reduces infection. We also report the early effects of defensin α-1 on invasive trypomastigotes that involve damage of the flagellar structure to inhibit parasite motility and reduce cellular infection. Short exposure of defensin α-1 to trypomastigotes shows that defensin α-1 binds to the flagellum, resulting in flagellar membrane and axoneme alterations, followed by breaking of the flagellar membrane connected to the trypanosome body, leading to detachment and release of the parasite flagellum. In addition, defensin α-1 induces a significant reduction in parasite motility in a peptide concentration-dependent manner, which is abrogated by anti-defensin α-1 IgG. Preincubation of trypomastigotes with a concentration of defensin α-1 that inhibits 50% trypanosome motility significantly reduced cellular infection by 80%. Thus, human defensin α-1 is an innate immune molecule that is secreted by HCT116 cells in response to T. cruzi infection, inhibits T. cruzi motility, and plays an important role in reducing cellular infection. This is the first report showing a novel cellular innate immune response to a human parasite by secretion of defensin α-1, which neutralizes the motility of a human parasite to reduce cellular infection. The mode of activity of human defensin α-1 against T. cruzi and its function may provide insights for the development of new antiparasitic strategies.
Collapse
|
50
|
Flatt JW, Kim R, Smith JG, Nemerow GR, Stewart PL. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS One 2013; 8:e61571. [PMID: 23620768 PMCID: PMC3631211 DOI: 10.1371/journal.pone.0061571] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
Human α-defensins are proteins of the innate immune system that suppress viral and bacterial infections by multiple mechanisms including membrane disruption. For viruses that lack envelopes, such as human adenovirus (HAdV), other, less well defined, mechanisms must be involved. A previous structural study on the interaction of an α-defensin, human α-defensin 5 (HD5), with HAdV led to a proposed mechanism in which HD5 stabilizes the vertex region of the capsid and blocks uncoating steps required for infectivity. Studies with virus chimeras comprised of capsid proteins from sensitive and resistant serotypes supported this model. To further characterize the critical binding site, we determined subnanometer resolution cryo-electron microscopy (cryoEM) structures of HD5 complexed with both neutralization-sensitive and -resistant HAdV chimeras. Models were built for the vertex regions of these chimeras with monomeric and dimeric forms of HD5 in various initial orientations. CryoEM guided molecular dynamics flexible fitting (MDFF) was used to restrain the majority of the vertex model in well-defined cryoEM density. The RGD-containing penton base loops of both the sensitive and resistant virus chimeras are predicted to be intrinsically disordered, and little cryoEM density is observed for them. In simulations these loops from the sensitive virus chimera, interact with HD5, bridge the penton base and fiber proteins, and provides significant stabilization with a three-fold increase in the intermolecular nonbonded interactions of the vertex complex. In the case of the resistant virus chimera, simulations revealed fewer bridging interactions and reduced stabilization by HD5. This study implicates a key dynamic region in mediating a stabilizing interaction between a viral capsid and a protein of the innate immune system with potent anti-viral activity.
Collapse
Affiliation(s)
- Justin W. Flatt
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert Kim
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Glen R. Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Phoebe L. Stewart
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|