1
|
Mpakali A, Barla I, Lu L, Ramesh KM, Thomaidis N, Stern LJ, Giastas P, Stratikos E. Mechanisms of Allosteric Inhibition of Insulin-Regulated Aminopeptidase. J Mol Biol 2024; 436:168449. [PMID: 38244767 DOI: 10.1016/j.jmb.2024.168449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Inhibition of Insulin-Regulated Aminopeptidase is being actively explored for the treatment of several human diseases and several classes of inhibitors have been developed although no clinical applications have been reported yet. Here, we combine enzymological analysis with x-ray crystallography to investigate the mechanism employed by two of the most studied inhibitors of IRAP, an aryl sulfonamide and a 2-amino-4H-benzopyran named HFI-419. Although both compounds have been hypothesized to target the enzyme's active site by competitive mechanisms, we discovered that they instead target previously unidentified proximal allosteric sites and utilize non-competitive inhibition mechanisms. X-ray crystallographic analysis demonstrated that the aryl sulfonamide stabilizes the closed, more active, conformation of the enzyme whereas HFI-419 locks the enzyme in a semi-open, and likely less active, conformation. HFI-419 potency is substrate-dependent and fails to effectively block the degradation of the physiological substrate cyclic peptide oxytocin. Our findings demonstrate alternative mechanisms for inhibiting IRAP through allosteric sites and conformational restricting and suggest that the pharmacology of HFI-419 may be more complicated than initially considered. Such conformation-specific interactions between IRAP and small molecules can be exploited for the design of more effective second-generation allosteric inhibitors.
Collapse
Affiliation(s)
- Anastasia Mpakali
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; National Centre for Scientific Research Demokritos, Athens 15341, Greece
| | - Ioanna Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Liying Lu
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Karthik M Ramesh
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA 01650, USA
| | - Petros Giastas
- Department of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece; National Centre for Scientific Research Demokritos, Athens 15341, Greece.
| |
Collapse
|
2
|
Pande S, Guo HC. Structure-guided discovery of aminopeptidase ERAP1 variants capable of processing antigens with novel PC anchor specificities. Immunology 2024; 171:131-145. [PMID: 37858978 PMCID: PMC10841542 DOI: 10.1111/imm.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) belongs to the oxytocinase subfamily of M1 aminopeptidases (M1APs), which are a diverse family of metalloenzymes involved in a wide range of functions and have been implicated in various chronic and infectious diseases of humans. ERAP1 trims antigenic precursors into correct sizes (8-10 residues long) for Major Histocompatibility Complex (MHC) presentation, by a unique molecular ruler mechanism in which it makes concurrent bindings to substrate N- and C-termini. We have previously determined four crystal structures of ERAP1 C-terminal regulatory domain (termed ERAP1_C domain) in complex with peptide carboxyl (PC)-ends that carry various anchor residues, and identified a specificity subsite for recognizing the PC anchor side chain, denoted as the SC subsite to follow the conventional notations: S1 site for P1, S2 site for P2, and so forth. In this study, we report studies on structure-guided mutational and hydrolysis kinetics, and peptide trimming assays to further examine the functional roles of this SC subsite. Most strikingly, a point mutation V737R results in a change of substrate preference from a hydrophobic to a negatively charged PC anchor residue; the latter is presumed to be a poor substrate for WT ERAP1. These studies validate the crystallographic observations that this SC subsite is directly involved in binding and recognition of the substrate PC anchor and presents a potential target to modulate MHC-restricted immunopeptidomes.
Collapse
Affiliation(s)
- Suchita Pande
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
- Present Address: Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| |
Collapse
|
3
|
Rerick MT, Chen J, Weber SG. Electroosmotic Perfusion, External Microdialysis: Simulation and Experiment. ACS Chem Neurosci 2023. [PMID: 37379416 PMCID: PMC10360060 DOI: 10.1021/acschemneuro.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Information about the rates of hydrolysis of neuropeptides by extracellular peptidases can lead to a quantitative understanding of how the steady-state and transient concentrations of neuropeptides are controlled. We have created a small microfluidic device that electroosmotically infuses peptides into, through, and out of the tissue to a microdialysis probe outside the head. The device is created by two-photon polymerization (Nanoscribe). Inferring quantitative estimates of a rate process from the change in concentration of a substrate that has passed through tissue is challenging for two reasons. One is that diffusion is significant, so there is a distribution of peptide substrate residence times in the tissue. This affects the product yield. The other is that there are multiple paths taken by the substrate as it passes through tissue, so there is a distribution of residence times and thus reaction times. Simulation of the process is essential. The simulations presented here imply that a range of first order rate constants of more than 3 orders of magnitude is measurable and that 5-10 min is required to reach a steady state value of product concentration following initiation of substrate infusion. Experiments using a peptidase-resistant d-amino acid pentapeptide, yaGfl, agree with simulations.
Collapse
Affiliation(s)
- Michael T Rerick
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Weimershaus M, Carvalho C, Rignault R, Waeckel-Enee E, Dussiot M, van Endert P, Maciel TT, Hermine O. Mast cell-mediated inflammation relies on insulin-regulated aminopeptidase controlling cytokine export from the Golgi. J Allergy Clin Immunol 2023:S0091-6749(23)00090-8. [PMID: 36708814 DOI: 10.1016/j.jaci.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND On activation, mast cells rapidly release preformed inflammatory mediators from large cytoplasmic granules via regulated exocytosis. This acute degranulation is followed by a late activation phase involving synthesis and secretion of cytokines, growth factors, and other inflammatory molecules via the constitutive pathway that remains ill defined. OBJECTIVE We investigated the role for an insulin-responsive vesicle-like endosomal compartment, marked by insulin-regulated aminopeptidase (IRAP), in the secretion of TNF-α and IL-6 in mast cells and macrophages. METHODS Murine knockout (KO) mouse models (IRAP-KO and kit-Wsh/sh) were used to study inflammatory disease models and to measure and mechanistically investigate cytokine secretion and degranulation in bone marrow-derived mast cells in vitro. RESULTS IRAP-KO mice are protected from TNF-α-dependent kidney injury and inflammatory arthritis. In the absence of IRAP, TNF-α and IL-6 but not IL-10 fail to be efficiently secreted. Moreover, chemical targeting of IRAP endosomes reduced proinflammatory cytokine secretion. Mechanistically, impaired TNF-α export from the Golgi and reduced colocalization of vesicle-associated membrane protein (VAMP) 3-positive TNF-α transport vesicles with syntaxin 4 (aka Stx4) was observed in IRAP-KO mast cells, while VAMP8-dependent exocytosis of secretory granules was facilitated. CONCLUSION IRAP plays a novel role in mast cell-mediated inflammation through the regulation of exocytic trafficking of cytokines.
Collapse
Affiliation(s)
- Mirjana Weimershaus
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France.
| | - Caroline Carvalho
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France
| | - Rachel Rignault
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France
| | | | - Michael Dussiot
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Peter van Endert
- INSERM UMR 1151, CNRS UMR 8253, Paris, France; Université de Paris Cité, Paris, France
| | - Thiago Trovati Maciel
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Olivier Hermine
- Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM U1163, F-75015, Paris, France; Université de Paris Cité, Paris, France; Hôpital Necker Enfants Malades, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
5
|
Sui L, Guo HC. Enhanced recombinant expression and purification of human IRAP for biochemical and crystallography studies. Biochem Biophys Rep 2021; 27:101042. [PMID: 34169156 PMCID: PMC8207215 DOI: 10.1016/j.bbrep.2021.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Insulin-regulated aminopeptidase (IRAP) in humans is a membrane bound enzyme that has multiple functions. It was first described as a companion protein of the insulin-responsive glucose transporter, Glut4, in specialized vesicles. The protein has subsequently been shown to be identical to the oxytocinase/aminopeptidase or the angiotensin IV (Ang IV) receptor (AT4 receptor). Some AT4 ligand peptides, such as Ang IV and LVV-hemorphin-7, have been shown to act as IRAP inhibitors that exert memory-enhancing properties. As such IRAP has been a target for developing cognitive enhancers. To facilitate detailed mechanistic studies of IRAP catalysis and inhibition, and to pave the way for biophysical and structural studies of IRAP in complex with peptide inhibitors, we report here an optimized expression and purification system using High Five insect cells. We also report biochemical characterizations of the purified recombinant IRAP with a standard aminopeptidase substrate and an optimized IRAP peptide inhibitor with a Ki of 98 nM.
Collapse
Key Words
- AT4, Ang IV receptor
- Ang IV, angiotensin IV
- Cognitive enhancers
- Crystallization
- ERAP, endoplasmic reticulum aminopeptidase
- Expression and purification
- IEX, ion exchange chromatography
- IMAC, immobilized metal ion affinity chromatography
- IRAP, insulin-regulated aminopeptidase
- Insulin-regulated aminopeptidase (IRAP)
- L-AMC, leucine 7-amido-4-methylcoumarin
- LVV-H7, LVV-hemorphin-7
- MHC-I, major histocompatibility complex class I
- Peptide inhibitor
- SEC, size exclusion chromatography
- Substrate affinity
Collapse
Affiliation(s)
- Lufei Sui
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA, 01854, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA, 01854, USA
| |
Collapse
|
6
|
Ramírez-Expósito MJ, Dueñas-Rodríguez B, Carrera-González MP, Navarro-Cecilia J, Martínez-Martos JM. Insulin-Regulated Aminopeptidase in Women with Breast Cancer: A Role beyond the Regulation of Oxytocin and Vasopressin. Cancers (Basel) 2020; 12:cancers12113252. [PMID: 33158090 PMCID: PMC7694176 DOI: 10.3390/cancers12113252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Insulin-regulated aminopeptidase (IRAP) is a well-known enzyme involved mainly in the regulation of the peptide hormones, oxytocin and vasopressin. However, this enzyme activity has hardly been analyzed in breast cancer patients. Additionally, the influence of both the hormonal status (pre or postmenopause) and the administration of neoadjuvant chemotherapy have rarely been studied. We show that there is a weak association between IRAP activity and the circulating levels of peptide hormones with variations depending on the hormonal status and the neoadjuvant treatment, and propose a role beyond oxytocin and vasopressin regulation that is related to the local mammary renin-angiotensin system and glucose transportation to the cells. Abstract Insulin-regulated aminopeptidase (IRAP) is the only enzyme known to cleave oxytocin and vasopressin; however, it is also the high-affinity binding site for angiotensin IV (AngIV) receptor type 4 (AT4) ligands and it is related to insulin-dependent glucose transporters through the translocation of the glucose transporter type 4 (GLUT4). Previous studies have demonstrated an association between IRAP activity and the number and size of mammary tumors in an animal model of breast cancer (BC). Also, a highly significant increase in IRAP activity has been found in BC tissue from women patients. Here, we found no changes in circulating IRAP in premenopausal (preMP) women, but it increased significantly in postmenopausal (postMP) women not treated with neoadjuvant chemotherapy (NACH). However, in women treated with NACH, IRAP activity increased in both preMP and postMP women. Two years of follow-up indicated lower levels of IRAP activity in untreated preMP women, but a return to control levels in untreated postMP women, while IRAP activity returned to control levels in women treated with NACH. Circulating oxytocin decreased in both preMP and postMP women during the follow-up period. Differences in Oxytocin appeared between preMP and postMP women treated with NACH, but not in women who were not treated with NACH. On the contrary, circulating vasopressin increased in untreated and treated preMP and postMP women, with most of the differences related to the hormonal status as well as the neoadjuvant treatment during the two year follow-up We propose that IRAP is involved in mechanisms related not only to oxytocin and/or vasopressin regulation, but also to the local mammary RAS through AngIV and its role in glucose transportation through the IRAP/GLUT4 system.
Collapse
Affiliation(s)
- María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
| | - Basilio Dueñas-Rodríguez
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
- Unit of Breast Pathology, Complejo Hospitalario de Jaén, E-23007 Jaén, Spain
| | - María Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, Instituto Maimónides de Investigación Biomédica de Córdoba, University of Cordoba, 14004 Córdoba, Spain
| | - Joaquín Navarro-Cecilia
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
- Unit of Breast Pathology, Complejo Hospitalario de Jaén, E-23007 Jaén, Spain
| | - Jose Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, E-23071 Jaén, Spain; (M.J.R.-E.); (B.D.-R.); (M.P.C.-G.); (J.N.-C.)
- Correspondence: ; Tel.: +34-953-212-600; Fax: +34-953-212-943
| |
Collapse
|
7
|
Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front Mol Biosci 2020; 7:583556. [PMID: 33195428 PMCID: PMC7606930 DOI: 10.3389/fmolb.2020.583556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.
Collapse
Affiliation(s)
| | - Irini Evnouchidou
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Inovarion, Paris, France
| | - Vivien Caillens
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Peter van Endert
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Université de Paris, INSERM Unité 1151, CNRS UMR 8253, Paris, France.,Service d'immunologie biologique, AP-HP, Hôpital Necker, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| |
Collapse
|
8
|
Abstract
Mutations in protein-coding regions can lead to large biological changes and are associated with genetic conditions, including cancers and Mendelian diseases, as well as drug resistance. Although whole genome and exome sequencing help to elucidate potential genotype-phenotype correlations, there is a large gap between the identification of new variants and deciphering their molecular consequences. A comprehensive understanding of these mechanistic consequences is crucial to better understand and treat diseases in a more personalized and effective way. This is particularly relevant considering estimates that over 80% of mutations associated with a disease are incorrectly assumed to be causative. A thorough analysis of potential effects of mutations is required to correctly identify the molecular mechanisms of disease and enable the distinction between disease-causing and non-disease-causing variation within a gene. Here we present an overview of our integrative mutation analysis platform, which focuses on refining the current genotype-phenotype correlation methods by using the wealth of protein structural information.
Collapse
|
9
|
Mpakali A, Saridakis E, Giastas P, Maben Z, Stern LJ, Larhed M, Hallberg M, Stratikos E. Structural Basis of Inhibition of Insulin-Regulated Aminopeptidase by a Macrocyclic Peptidic Inhibitor. ACS Med Chem Lett 2020; 11:1429-1434. [PMID: 32676150 PMCID: PMC7357224 DOI: 10.1021/acsmedchemlett.0c00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin-regulated aminopeptidase (IRAP) is a transmembrane zinc metallopeptidase with many important biological functions and an emerging pharmacological target. Although previous structural studies have given insight on how IRAP recognizes linear peptides, how it recognizes its physiological cyclic ligands remains elusive. Here, we report the first crystal structure of IRAP with the macrocyclic peptide inhibitor HA08 that combines structural elements from angiotensin IV and the physiological substrates oxytocin and vasopressin. The compound is found in the catalytic site in a near canonical substrate-like configuration and inhibits by a competitive mechanism. Comparison with previously solved structures of IRAP along with small-angle X-ray scattering experiments suggests that IRAP is in an open conformation in solution but undergoes a closing conformational change upon inhibitor binding. Stabilization of the closed conformation in combination with catalytic water exclusion by the tightly juxtaposed GAMEN loop is proposed as a mechanism of inhibition.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National
Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece
| | - Emmanuel Saridakis
- National
Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece
| | - Petros Giastas
- National
Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece
| | - Zachary Maben
- Department
of Pathology, University of Massachusetts
Medical School, Worcester, Massachusetts 01655, United States
| | - Lawrence J. Stern
- Department
of Pathology, University of Massachusetts
Medical School, Worcester, Massachusetts 01655, United States
| | - Mats Larhed
- Department
of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Mathias Hallberg
- The
Beijer Laboratory, Division of Biological Research on Drug Dependence,
Department of Pharmaceutical Biosciences, BMC, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | - Efstratios Stratikos
- National
Center for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece
| |
Collapse
|
10
|
Synthesis and Structure-Activity relationship of 1-(5-isoquinolinesulfonyl)piperazine analogues as inhibitors of Mycobacterium tuberculosis IMPDH. Eur J Med Chem 2019; 174:309-329. [PMID: 31055147 PMCID: PMC6990405 DOI: 10.1016/j.ejmech.2019.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a major infectious disease associated increasingly with drug resistance. Thus, new anti-tubercular agents with novel mechanisms of action are urgently required for the treatment of drug-resistant TB. In prior work, we identified compound 1 (cyclohexyl(4-(isoquinolin-5-ylsulfonyl)piperazin-1-yl)methanone) and showed that its anti-tubercular activity is attributable to inhibition of inosine-5′-monophosphate dehydrogenase (IMPDH) in Mycobacterium tuberculosis. In the present study, we explored the structure–activity relationship around compound 1 by synthesizing and evaluating the inhibitory activity of analogues against M. tuberculosis IMPDH in biochemical and whole-cell assays. X-ray crystallography was performed to elucidate the mode of binding of selected analogues to IMPDH. We establish the importance of the cyclohexyl, piperazine and isoquinoline rings for activity, and report the identification of an analogue with IMPDH-selective activity against a mutant of M. tuberculosis that is highly resistant to compound 1. We also show that the nitrogen in urea analogues is required for anti-tubercular activity and identify benzylurea derivatives as promising inhibitors that warrant further investigation. Forty-eight analogues of 1-(5-isoquinolinesulfonyl)piperazine were synthesized. Biochemical, whole-cell, and X-ray studies were performed to elucidate the IMPDH inhibition. Piperazine and isoquinoline rings were essential for target-selective whole-cell activity. Compound 47 showed improved IC50 against the MtbIMPDH and maintained on-target whole-cell activity. Compound 21 showed activity against IMPDH in both wild type M. tuberculosis and a resistant mutant of compound 1.
Collapse
|
11
|
Trapero A, Pacitto A, Singh V, Sabbah M, Coyne AG, Mizrahi V, Blundell TL, Ascher DB, Abell C. Fragment-Based Approach to Targeting Inosine-5'-monophosphate Dehydrogenase (IMPDH) from Mycobacterium tuberculosis. J Med Chem 2018; 61:2806-2822. [PMID: 29547284 PMCID: PMC5900554 DOI: 10.1021/acs.jmedchem.7b01622] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Tuberculosis (TB)
remains a major cause of mortality worldwide,
and improved treatments are needed to combat emergence of drug resistance.
Inosine 5′-monophosphate dehydrogenase (IMPDH), a crucial enzyme
required for de novo synthesis of guanine nucleotides,
is an attractive TB drug target. Herein, we describe the identification
of potent IMPDH inhibitors using fragment-based screening and structure-based
design techniques. Screening of a fragment library for Mycobacterium
thermoresistible (Mth) IMPDH ΔCBS
inhibitors identified a low affinity phenylimidazole derivative. X-ray
crystallography of the Mth IMPDH ΔCBS–IMP–inhibitor
complex revealed that two molecules of the fragment were bound in
the NAD binding pocket of IMPDH. Linking the two molecules of the
fragment afforded compounds with more than 1000-fold improvement in
IMPDH affinity over the initial fragment hit.
Collapse
Affiliation(s)
- Ana Trapero
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Angela Pacitto
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , United Kingdom
| | - Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, Faculty of Health Sciences , University of Cape Town , Rondebosch 7701 , Cape Town , South Africa
| | - Mohamad Sabbah
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Anthony G Coyne
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, Faculty of Health Sciences , University of Cape Town , Rondebosch 7701 , Cape Town , South Africa
| | - Tom L Blundell
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , United Kingdom
| | - David B Ascher
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , United Kingdom.,Department of Biochemistry and Molecular Biology, Bio21 Institute , University of Melbourne , 30 Flemington Road , Parkville , Victoria 3052 , Australia
| | - Chris Abell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
12
|
Pires DEV, Kaminskas LM, Ascher DB. Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand. Methods Mol Biol 2018; 1762:271-284. [PMID: 29594777 DOI: 10.1007/978-1-4939-7756-7_14] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A crucial factor for the approval and success of any drug is how it behaves in the body. Many drugs, however, do not reach the market due to poor efficacy or unacceptable side effects. It is therefore important to take these into consideration early in the drug development process, both in the prioritization of potential hits, and optimization of lead compounds. In silico approaches offer a cost and time-effective approach to rapidly screen and optimize pharmacokinetic and toxicity properties. Here we demonstrate the use of the comprehensive analysis system pkCSM, to allow early identification of potential problems, prioritization of hits, and optimization of leads.
Collapse
Affiliation(s)
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - David B Ascher
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:3-13. [PMID: 27913149 DOI: 10.1016/j.pbiomolbio.2016.10.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
|
14
|
Albanaz ATS, Rodrigues CHM, Pires DEV, Ascher DB. Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design. Expert Opin Drug Discov 2017; 12:553-563. [PMID: 28490289 DOI: 10.1080/17460441.2017.1322579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mutations introduce diversity into genomes, leading to selective changes and driving evolution. These changes have contributed to the emergence of many of the current major health concerns of the 21st century, from the development of genetic diseases and cancers to the rise and spread of drug resistance. The experimental systematic testing of all mutations in a system of interest is impractical and not cost-effective, which has created interest in the development of computational tools to understand the molecular consequences of mutations to aid and guide rational experimentation. Areas covered: Here, the authors discuss the recent development of computational methods to understand the effects of coding mutations to protein function and interactions, particularly in the context of the 3D structure of the protein. Expert opinion: While significant progress has been made in terms of innovative tools to understand and quantify the different range of effects in which a mutation or a set of mutations can give rise to a phenotype, a great gap still exists when integrating these predictions and drawing causality conclusions linking variants. This often requires a detailed understanding of the system being perturbed. However, as part of the drug development process it can be used preemptively in a similar fashion to pharmacokinetics predictions, to guide development of therapeutics to help guide the design and analysis of clinical trials, patient treatment and public health policy strategies.
Collapse
Affiliation(s)
- Amanda T S Albanaz
- a Centro de Pesquisas René Rachou, FIOCRUZ , Belo Horizonte , MG , Brazil.,b Department of Biochemistry and Immunology , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Carlos H M Rodrigues
- a Centro de Pesquisas René Rachou, FIOCRUZ , Belo Horizonte , MG , Brazil.,b Department of Biochemistry and Immunology , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Douglas E V Pires
- a Centro de Pesquisas René Rachou, FIOCRUZ , Belo Horizonte , MG , Brazil
| | - David B Ascher
- a Centro de Pesquisas René Rachou, FIOCRUZ , Belo Horizonte , MG , Brazil.,c Department of Biochemistry , University of Cambridge , Cambridge , Cambridgeshire , UK.,d Department of Biochemistry and Molecular Biology , University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
15
|
The Presence, Persistence and Functional Properties of Plasmodium vivax Duffy Binding Protein II Antibodies Are Influenced by HLA Class II Allelic Variants. PLoS Negl Trop Dis 2016; 10:e0005177. [PMID: 27959918 PMCID: PMC5154503 DOI: 10.1371/journal.pntd.0005177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
Background The human malaria parasite Plasmodium vivax infects red blood cells through a key pathway that requires interaction between Duffy binding protein II (DBPII) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). A high proportion of P. vivax-exposed individuals fail to develop antibodies that inhibit DBPII-DARC interaction, and genetic factors that modulate this humoral immune response are poorly characterized. Here, we investigate if DBPII responsiveness could be HLA class II-linked. Methodology/Principal Findings A community-based open cohort study was carried out in an agricultural settlement of the Brazilian Amazon, in which 336 unrelated volunteers were genotyped for HLA class II (DRB1, DQA1 and DQB1 loci), and their DBPII immune responses were monitored over time (baseline, 6 and 12 months) by conventional serology (DBPII IgG ELISA-detected) and functional assays (inhibition of DBPII–erythrocyte binding). The results demonstrated an increased susceptibility of the DRB1*13:01 carriers to develop and sustain an anti-DBPII IgG response, while individuals with the haplotype DRB1*14:02-DQA1*05:03-DQB1*03:01 were persistent non-responders. HLA class II gene polymorphisms also influenced the functional properties of DBPII antibodies (BIAbs, binding inhibitory antibodies), with three alleles (DRB1*07:01, DQA1*02:01 and DQB1*02:02) comprising a single haplotype linked with the presence and persistence of the BIAbs response. Modelling the structural effects of the HLA-DRB1 variants revealed a number of differences in the peptide-binding groove, which is likely to lead to altered antigen binding and presentation profiles, and hence may explain the differences in subject responses. Conclusions/Significance The current study confirms the heritability of the DBPII antibody response, with genetic variation in HLA class II genes influencing both the development and persistence of IgG antibody responses. Cellular studies to increase knowledge of the binding affinities of DBPII peptides for class II molecules linked with good or poor antibody responses might lead to the development of strategies for controlling the type of helper T cells activated in response to DBPII. Vaccines are a crucial component of the current efforts to eliminate malaria, and much of the vaccine-related research on P. vivax has been focused on the Duffy binding protein II (DBPII), a ligand for human blood stage infection. A high proportion of individuals who are naturally exposed to P. vivax fail to develop neutralizing antibodies, but the host genetic factors modulating this immune response are poorly characterized. We investigated whether DBPII responsiveness was dependent on the variability of human leucocyte antigen (HLA) class II cell surface proteins involved in the regulation of immune responses. To obtain a reliable estimate of DBPII antibodies, we carried out a longitudinal study, collecting serum from the same individuals over a period of 12-months. The results confirmed the heritability of the DBPII immune response, with genetic variation in HLA class II genes influencing both the development and persistence of the antibody response. HLA class II genotype also influenced the ability of DBPII antibodies to block the ligand-receptor interaction in vitro. Computational approaches identified structural specificity between HLA variants, which we propose as an explanation for differences between a good or poor antibody responder. These results may have implications for vaccine development, and might lead to strategies for controlling the type of immune response activated in response to DBPII.
Collapse
|
16
|
Pires DEV, Blundell TL, Ascher DB. mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Sci Rep 2016; 6:29575. [PMID: 27384129 PMCID: PMC4935856 DOI: 10.1038/srep29575] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
The ability to predict how a mutation affects ligand binding is an essential step in understanding, anticipating and improving the design of new treatments for drug resistance, and in understanding genetic diseases. Here we present mCSM-lig, a structure-guided computational approach for quantifying the effects of single-point missense mutations on affinities of small molecules for proteins. mCSM-lig uses graph-based signatures to represent the wild-type environment of mutations, and small-molecule chemical features and changes in protein stability as evidence to train a predictive model using a representative set of protein-ligand complexes from the Platinum database. We show our method provides a very good correlation with experimental data (up to ρ = 0.67) and is effective in predicting a range of chemotherapeutic, antiviral and antibiotic resistance mutations, providing useful insights for genotypic screening and to guide drug development. mCSM-lig also provides insights into understanding Mendelian disease mutations and as a tool for guiding protein design. mCSM-lig is freely available as a web server at http://structure.bioc.cam.ac.uk/mcsm_lig.
Collapse
Affiliation(s)
- Douglas E V Pires
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.,Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, Brazil
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - David B Ascher
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
17
|
Pires DEV, Chen J, Blundell TL, Ascher DB. In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity. Sci Rep 2016; 6:19848. [PMID: 26797105 PMCID: PMC4726175 DOI: 10.1038/srep19848] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022] Open
Abstract
Despite interest in associating polymorphisms with clinical or experimental phenotypes, functional interpretation of mutation data has lagged behind generation of data from modern high-throughput techniques and the accurate prediction of the molecular impact of a mutation remains a non-trivial task. We present here an integrated knowledge-driven computational workflow designed to evaluate the effects of experimental and disease missense mutations on protein structure and interactions. We exemplify its application with analyses of saturation mutagenesis of DBR1 and Gal4 and show that the experimental phenotypes for over 80% of the mutations correlate well with predicted effects of mutations on protein stability and RNA binding affinity. We also show that analysis of mutations in VHL using our workflow provides valuable insights into the effects of mutations, and their links to the risk of developing renal carcinoma. Taken together the analyses of the three examples demonstrate that structural bioinformatics tools, when applied in a systematic, integrated way, can rapidly analyse a given system to provide a powerful approach for predicting structural and functional effects of thousands of mutations in order to reveal molecular mechanisms leading to a phenotype. Missense or non-synonymous mutations are nucleotide substitutions that alter the amino acid sequence of a protein. Their effects can range from modifying transcription, translation, processing and splicing, localization, changing stability of the protein, altering its dynamics or interactions with other proteins, nucleic acids and ligands, including small molecules and metal ions. The advent of high-throughput techniques including sequencing and saturation mutagenesis has provided large amounts of phenotypic data linked to mutations. However, one of the hurdles has been understanding and quantifying the effects of a particular mutation, and how they translate into a given phenotype. One approach to overcome this is to use robust, accurate and scalable computational methods to understand and correlate structural effects of mutations with disease.
Collapse
Affiliation(s)
- Douglas E V Pires
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.,Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, Brazil
| | - Jing Chen
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - David B Ascher
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
18
|
Ascher DB, Jubb HC, Pires DEV, Ochi T, Higueruelo A, Blundell TL. Protein-Protein Interactions: Structures and Druggability. MULTIFACETED ROLES OF CRYSTALLOGRAPHY IN MODERN DRUG DISCOVERY 2015. [DOI: 10.1007/978-94-017-9719-1_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Hermans SJ, Ascher DB, Hancock NC, Holien JK, Michell BJ, Chai SY, Morton CJ, Parker MW. Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides. Protein Sci 2014; 24:190-9. [PMID: 25408552 DOI: 10.1002/pro.2604] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/10/2014] [Indexed: 11/12/2022]
Abstract
Insulin-regulated aminopeptidase (IRAP or oxytocinase) is a membrane-bound zinc-metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP-specific cognitive enhancers into the crystal structure provides a molecular basis for their structure-activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan J Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Victoria, 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
An evolutionary analysis of antigen processing and presentation across different timescales reveals pervasive selection. PLoS Genet 2014; 10:e1004189. [PMID: 24675550 PMCID: PMC3967941 DOI: 10.1371/journal.pgen.1004189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/06/2014] [Indexed: 12/28/2022] Open
Abstract
The antigenic repertoire presented by MHC molecules is generated by the antigen processing and presentation (APP) pathway. We analyzed the evolutionary history of 45 genes involved in APP at the inter- and intra-species level. Results showed that 11 genes evolved adaptively in mammals. Several positively selected sites involve positions of fundamental importance to the protein function (e.g. the TAP1 peptide-binding domains, the sugar binding interface of langerin, and the CD1D trafficking signal region). In CYBB, all selected sites cluster in two loops protruding into the endosomal lumen; analysis of missense mutations responsible for chronic granulomatous disease (CGD) showed the action of different selective forces on the very same gene region, as most CGD substitutions involve aminoacid positions that are conserved in all mammals. As for ERAP2, different computational methods indicated that positive selection has driven the recurrent appearance of protein-destabilizing variants during mammalian evolution. Application of a population-genetics phylogenetics approach showed that purifying selection represented a major force acting on some APP components (e.g. immunoproteasome subunits and chaperones) and allowed identification of positive selection events in the human lineage. We also investigated the evolutionary history of APP genes in human populations by developing a new approach that uses several different tests to identify the selection target, and that integrates low-coverage whole-genome sequencing data with Sanger sequencing. This analysis revealed that 9 APP genes underwent local adaptation in human populations. Most positive selection targets are located within noncoding regions with regulatory function in myeloid cells or act as expression quantitative trait loci. Conversely, balancing selection targeted nonsynonymous variants in TAP1 and CD207 (langerin). Finally, we suggest that selected variants in PSMB10 and CD207 contribute to human phenotypes. Thus, we used evolutionary information to generate experimentally-testable hypotheses and to provide a list of sites to prioritize in follow-up analyses. Antigen-presenting cells digest intracellular and extracellular proteins and display the resulting antigenic repertoire on cell surface molecules for recognition by T cells. This process initiates cell-mediated immune responses and is essential to detect infections. The antigenic repertoire is generated by the antigen processing and presentation pathway. Because several pathogens evade immune recognition by hampering this process, genes involved in antigen processing and presentation may represent common natural selection targets. Thus, we analyzed the evolutionary history of these genes during mammalian evolution and in the more recent history of human populations. Evolutionary analyses in mammals indicated that positive selection targeted a very high proportion of genes (24%), and revealed that many selected sites affect positions of fundamental importance to the protein function. In humans, we found different signatures of natural selection acting both on regions that are expected to regulate gene expression levels or timing and on coding variants; two human selected polymorphisms may modulate the susceptibility to Crohn's disease and to HIV-1 infection. Therefore, we provide a comprehensive evolutionary analysis of antigen processing and we show that evolutionary studies can provide useful information concerning the location and nature of functional variants, ultimately helping to clarify phenotypic differences between and within species.
Collapse
|
21
|
Nikolaou A, Stijlemans B, Laoui D, Schouppe E, Tran HTT, Tourwé D, Chai SY, Vanderheyden PML, Van Ginderachter JA. Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. J Renin Angiotensin Aldosterone Syst 2014; 15:466-79. [DOI: 10.1177/1470320313507621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Alexandros Nikolaou
- Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Benoit Stijlemans
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Huyen TT Tran
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Vrije Universiteit Brussel, Belgium
| | - Siew Y Chai
- Department of Physiology, Monash University, Australia
| | | | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
22
|
Nikolaou A, Eynde IVD, Tourwé D, Vauquelin G, Tóth G, Mallareddy JR, Poglitsch M, Van Ginderachter JA, Vanderheyden PM. [3H]IVDE77, a novel radioligand with high affinity and selectivity for the insulin-regulated aminopeptidase. Eur J Pharmacol 2013; 702:93-102. [DOI: 10.1016/j.ejphar.2013.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
23
|
Discovery of inhibitors of insulin-regulated aminopeptidase as cognitive enhancers. Int J Hypertens 2012; 2012:789671. [PMID: 23304452 PMCID: PMC3529497 DOI: 10.1155/2012/789671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022] Open
Abstract
The hexapeptide angiotensin IV (Ang IV) is a metabolite of angiotensin II (Ang II) and plays a central role in the brain. It was reported more than two decades ago that intracerebroventricular injection of Ang IV improved memory and learning in the rat. Several hypotheses have been put forward to explain the positive effects of Ang IV and related analogues on cognition. It has been proposed that the insulin-regulated aminopeptidase (IRAP) is the main target of Ang IV. This paper discusses progress in the discovery of inhibitors of IRAP as potential enhancers of cognitive functions. Very potent inhibitors of the protease have been synthesised, but pharmacokinetic issues (including problems associated with crossing the blood-brain barrier) remain to be solved. The paper also briefly presents an overview of the status in the discovery of inhibitors of ACE and renin, and of AT1R antagonists and AT2R agonists, in order to enable other discovery processes within the RAS system to be compared. The paper focuses on the relationship between binding affinities/inhibition capacity and the structures of the ligands that interact with the target proteins.
Collapse
|
24
|
Structural approaches to probing metal interaction with proteins. J Inorg Biochem 2012; 115:138-47. [DOI: 10.1016/j.jinorgbio.2012.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/02/2012] [Accepted: 02/20/2012] [Indexed: 12/13/2022]
|
25
|
Ascher DB, Polekhina G, Parker MW. Crystallization and preliminary X-ray diffraction analysis of human endoplasmic reticulum aminopeptidase 2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:468-71. [PMID: 22505422 PMCID: PMC3325822 DOI: 10.1107/s1744309112006963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/16/2012] [Indexed: 11/10/2022]
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a critical enzyme involved in the final processing of MHC class I antigens. Peptide trimming by ERAP2 and the other members of the oxytocinase subfamily is essential to customize longer precursor peptides in order to fit them to the correct length required for presentation on major histocompatibility complex class I molecules. While recent structures of ERAP1 have provided an understanding of the `molecular-ruler' mechanism of substrate selection, little is known about the complementary activities of its homologue ERAP2 despite their sharing 49% sequence identity. In order to gain insights into the structure-function relationship of the oxytocinase subfamily, and in particular ERAP2, the luminal region of human ERAP2 has been crystallized in the presence of the inhibitor bestatin. The crystals belonged to an orthorhombic space group and diffracted anisotropically to 3.3 Å resolution in the best direction on an in-house X-ray source. A molecular-replacement solution suggested that the enzyme has adopted the closed state as has been observed in other inhibitor-bound aminopeptidase structures.
Collapse
Affiliation(s)
- David B. Ascher
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Galina Polekhina
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
- Centre for Cancer Research, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Michael W. Parker
- Biota Structural Biology Laboratory, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
- Bio21 Molecular Science and Biotechnology Institute and Department of Biochemistry and Molecular Biology, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Birtley JR, Saridakis E, Stratikos E, Mavridis IM. The Crystal Structure of Human Endoplasmic Reticulum Aminopeptidase 2 Reveals the Atomic Basis for Distinct Roles in Antigen Processing. Biochemistry 2011; 51:286-95. [DOI: 10.1021/bi201230p] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- James R. Birtley
- Structural and Supramolecular Chemistry Laboratory, Institute of
Physical Chemistry, National Center for Scientific Research Demokritos, Aghia Paraskevi 15310, Athens, Greece
| | - Emmanuel Saridakis
- Structural and Supramolecular Chemistry Laboratory, Institute of
Physical Chemistry, National Center for Scientific Research Demokritos, Aghia Paraskevi 15310, Athens, Greece
| | - Efstratios Stratikos
- Protein Chemistry Laboratory,
IRRP, National Center for Scientific Research Demokritos, Aghia Paraskevi 15310, Athens, Greece
| | - Irene M. Mavridis
- Structural and Supramolecular Chemistry Laboratory, Institute of
Physical Chemistry, National Center for Scientific Research Demokritos, Aghia Paraskevi 15310, Athens, Greece
| |
Collapse
|