1
|
Zhang H, Chan LY, Zhang H, Jiang T, Craik DJ, Cai W, Yu R. An Orthogonal Protection Strategy for the Synthesis of Conotoxins Containing Three Disulfide Bonds. Mar Drugs 2025; 23:168. [PMID: 40278289 DOI: 10.3390/md23040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Disulfide bonds are crucial for stabilizing bioactive peptides such as conotoxins. We have developed a method for synthesizing conotoxins with three disulfide bonds using Mob, Trt, and Acm protection groups for regionally selective synthesis. This approach enabled the efficient synthesis of peptides with the desired disulfide bond connectivities independent of their sequences. Using our strategy, we synthesized five conotoxins, achieving yields of 20-30%. The results demonstrate the potential of our method for synthesizing complex peptides with multiple disulfide bonds.
Collapse
Affiliation(s)
- Hengyu Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Huanhuan Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wenqing Cai
- Shandong Academy of Pharmaceutical Sciences, Jinan 250100, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Ou M, Xu S, Huang Z, Xu X. In silico toxicology investigation of μ-conotoxin KIIIA on human Na + channel Na v1.2. Int J Biol Macromol 2025; 298:140092. [PMID: 39832599 DOI: 10.1016/j.ijbiomac.2025.140092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Conotoxins(CTXs) can specifically act on multiple ion channels, which are crucial for the development of neurobiology and novel targeted drug development. At present, >10,000 kinds of CTXs have been sequenced, it would be extremely laborious to conduct experiments for each. μ-CTX KIIIA is a type of substance that can selectively recognize voltage-gated sodium ion channels. This article constructs four derivatives of KIIIA and predicts their 3D structures; afterwards, their molecular orbital arrangements and physicochemical properties were calculated using DFT; then, predicted their toxicokinetic parameters such as absorption, distribution, metabolism, excretion (ADME) and toxicity (T) through Machine Learning (ML); finally, molecular docking and molecular dynamics are used to investigate the interaction modes and binding affinity. The results indicate that the toxicity of KIIIA and its derivatives (KIIIA-1 -KIIIA-4) to the human body is mainly concentrated in the liver and respiratory tract. Among four derivatives, KIIIA-2 (5 Ser → Arg) has better toxicokinetics properties and its binding energy to Nav1.2 is -65.32 kcal/mol, which is higher than that of wild type(-32.13 kcal/mol). This study indicate that computational toxicology can facilitate the druggability research of CTXs, and KIIIA-2 can be developed as a potential antiepileptic drug.
Collapse
Affiliation(s)
- Minrui Ou
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Suyan Xu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhixuan Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xiaoping Xu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
3
|
Ho TN, Tran TH, Le HS, Lewis RJ. Advances in the synthesis and engineering of conotoxins. Eur J Med Chem 2025; 282:117038. [PMID: 39561493 DOI: 10.1016/j.ejmech.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Conotoxins, isolated from the venom of carnivorous marine snails of the Conus genus, are disulfide-rich peptides and proteins with well-defined three-dimensional structures. Conotoxins' ability to target a wide range of ion channels and receptors, including voltage- and ligand-gated ion channels, G protein-coupled receptors, monoamine transporters, and enzyme, at exquisite potency and selectivity make them valuable research and therapeutic tools. Despite their potentials, Conus venom peptides are present in limited quantities in nature and possess structural complexity that raises significant synthetic challenges for both chemical synthesis and recombinant expression. Here, we document recent advances in the expression and synthesis of conotoxins, particularly focusing on directed formation of disulfide bonds, chemical ligation techniques, and the integration of non-native functional groups. These advances can provide access to even the most complex conotoxins, accelerating conotoxin-based drug discovery and functional analysis, as well as opening new avenues for the development of drug candidates.
Collapse
Affiliation(s)
- Thao Nt Ho
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam.
| | - Thanh Hoa Tran
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam
| | - Hoang Sinh Le
- The University of Danang- VN-UK Institute for Research and Executive Education, Danang, 550000, Viet Nam
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
4
|
Wang H, Huang J, Zang J, Jin X, Yan N. Drug discovery targeting Na v1.8: Structural insights and therapeutic potential. Curr Opin Chem Biol 2024; 83:102538. [PMID: 39418835 DOI: 10.1016/j.cbpa.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Voltage-gated sodium (Nav) channels are crucial in transmitting action potentials in neurons. The tetrodotoxin-resistant subtype Nav1.8 is predominantly expressed in the peripheral nervous system, offering a unique opportunity to design selective inhibitors for pain relief. A number of compounds have been reported to specifically block Nav1.8. Among these, VX-548 is already in regulatory review for the treatment of moderate-to-severe acute pain and holds the promise to be the first non-opioid pain killer over the past twenty years. Recent structural studies using cryogenic electron microscopy (cryo-EM) and structure-based predictive modeling have provided unprecedented insights into the structural pharmacology of Nav1.8. In this review, we summarize the latest developments in Nav1.8-selective inhibitors, focusing on the druggable sites and mechanisms that confer subtype specificity. These structural insights highlight the potential for Nav1.8 inhibitors to deliver non-addictive pain management, thus illuminating the avenue to next-generation analgesic development.
Collapse
Affiliation(s)
- Huan Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jian Huang
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Jie Zang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Guangming District, Shenzhen 518107, Guangdong Province, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Guangming District, Shenzhen 518132, Guangdong Province, China.
| |
Collapse
|
5
|
Li Z, Wu Q, Yan N. A structural atlas of druggable sites on Na v channels. Channels (Austin) 2024; 18:2287832. [PMID: 38033122 PMCID: PMC10732651 DOI: 10.1080/19336950.2023.2287832] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province, China
| |
Collapse
|
6
|
Pei S, Wang N, Mei Z, Zhangsun D, Craik DJ, McIntosh JM, Zhu X, Luo S. Conotoxins Targeting Voltage-Gated Sodium Ion Channels. Pharmacol Rev 2024; 76:828-845. [PMID: 38914468 PMCID: PMC11331937 DOI: 10.1124/pharmrev.123.000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases, such as epilepsy, neuropathic pain, psychosis, autism, and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds, and these internal crossbraces contribute to conotoxins having compact, well defined structures and high stability. Of the conotoxins containing three disulfide bonds, some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurologic diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities, and designed modifications, with a view toward expanding their applications. SIGNIFICANCE STATEMENT: NaV channels are crucial in various neurologic diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.
Collapse
Affiliation(s)
- Shengrong Pei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Nan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Zaoli Mei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - David J Craik
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - J Michael McIntosh
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Xiaopeng Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| |
Collapse
|
7
|
Elsayed YY, Kühl T, Imhof D. Edman Degradation Reveals Unequivocal Analysis of the Disulfide Connectivity in Peptides and Proteins. Anal Chem 2024; 96:4057-4066. [PMID: 38407829 DOI: 10.1021/acs.analchem.3c04229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Disulfide bridges in peptides and proteins play an essential role in maintaining their conformation, structural integrity, and consequently function. Despite ongoing efforts, it is still not possible to detect disulfide bonds and the connectivity of multiply bridged peptides directly through a simple and sufficiently validated protein sequencing or peptide mapping method. Partial or complete reduction and chemical cysteine modification are required as initial steps, followed by the application of a proper detection method. Edman degradation (ED) has been used for primary sequence determination but is largely neglected since the establishment of mass spectrometry (MS)-based protein sequencing. Here, we evaluated and thoroughly characterized the phenyl thiohydantoin (PTH) cysteine derivatives PTH-S-methyl cysteine and PTH-S-carbamidomethyl cysteine as bioanalytical standards for cysteine detection and quantification as well as for the elucidation of the disulfide connectivity in peptides by ED. Validation of the established derivatives was performed according to the guidelines of the International Committee of Harmonization on bioanalytical method validation, and their analytical properties were confirmed as reference standards. A series of model peptides was sequenced to test the usability of the PTH-Cys-derivatives as standards, whereas the native disulfide-bonded peptides CCAP-vil, μ-conotoxin KIIIA, and human insulin were used as case studies to determine their disulfide bond connectivity completely independent of MS analysis.
Collapse
Affiliation(s)
- Yomnah Y Elsayed
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, Cairo 11566, Egypt
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| |
Collapse
|
8
|
McMahon KL, Vetter I, Schroeder CI. Voltage-Gated Sodium Channel Inhibition by µ-Conotoxins. Toxins (Basel) 2024; 16:55. [PMID: 38251271 PMCID: PMC10819908 DOI: 10.3390/toxins16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
µ-Conotoxins are small, potent pore-blocker inhibitors of voltage-gated sodium (NaV) channels, which have been identified as pharmacological probes and putative leads for analgesic development. A limiting factor in their therapeutic development has been their promiscuity for different NaV channel subtypes, which can lead to undesirable side-effects. This review will focus on four areas of µ-conotoxin research: (1) mapping the interactions of µ-conotoxins with different NaV channel subtypes, (2) µ-conotoxin structure-activity relationship studies, (3) observed species selectivity of µ-conotoxins and (4) the effects of µ-conotoxin disulfide connectivity on activity. Our aim is to provide a clear overview of the current status of µ-conotoxin research.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Christina I. Schroeder
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
9
|
McMahon KL, O'Brien H, Schroeder CI, Deuis JR, Venkatachalam D, Huang D, Green BR, Bandyopadhyay PK, Li Q, Yandell M, Safavi-Hemami H, Olivera BM, Vetter I, Robinson SD. Identification of sodium channel toxins from marine cone snails of the subgenera Textilia and Afonsoconus. Cell Mol Life Sci 2023; 80:287. [PMID: 37689602 PMCID: PMC10492761 DOI: 10.1007/s00018-023-04935-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Voltage-gated sodium (NaV) channels are transmembrane proteins that play a critical role in electrical signaling in the nervous system and other excitable tissues. µ-Conotoxins are peptide toxins from the venoms of marine cone snails (genus Conus) that block NaV channels with nanomolar potency. Most species of the subgenera Textilia and Afonsoconus are difficult to acquire; therefore, their venoms have yet to be comprehensively interrogated for µ-conotoxins. The goal of this study was to find new µ-conotoxins from species of the subgenera Textilia and Afonsoconus and investigate their selectivity at human NaV channels. Using RNA-seq of the venom gland of Conus (Textilia) bullatus, we identified 12 µ-conotoxin (or µ-conotoxin-like) sequences. Based on these sequences we designed primers which we used to identify additional µ-conotoxin sequences from DNA extracted from historical specimens of species from Textilia and Afonsoconus. We synthesized six of these µ-conotoxins and tested their activity on human NaV1.1-NaV1.8. Five of the six synthetic peptides were potent blockers of human NaV channels. Of these, two peptides (BuIIIB and BuIIIE) were potent blockers of hNaV1.3. Three of the peptides (BuIIIB, BuIIIE and AdIIIA) had submicromolar activity at hNaV1.7. This study serves as an example of the identification of new peptide toxins from historical DNA and provides new insights into structure-activity relationships of µ-conotoxins with activity at hNaV1.3 and hNaV1.7.
Collapse
Affiliation(s)
- Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Henrik O'Brien
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- Peptide Therapeutics, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Di Huang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brad R Green
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Qing Li
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
- Cancer Bioinformatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mark Yandell
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
10
|
Tran P, Tran HNT, McMahon KL, Deuis JR, Ragnarsson L, Norman A, Sharpe SJ, Payne RJ, Vetter I, Schroeder CI. Changes in Potency and Subtype Selectivity of Bivalent Na V Toxins are Knot-Specific. Bioconjug Chem 2023. [PMID: 37262436 DOI: 10.1021/acs.bioconjchem.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Disulfide-rich peptide toxins have long been studied for their ability to inhibit voltage-gated sodium channel subtype NaV1.7, a validated target for the treatment of pain. In this study, we sought to combine the pore blocking activity of conotoxins with the gating modifier activity of spider toxins to design new bivalent inhibitors of NaV1.7 with improved potency and selectivity. To do this, we created an array of heterodimeric toxins designed to target human NaV1.7 by ligating a conotoxin to a spider toxin and assessed the potency and selectivity of the resulting bivalent toxins. A series of spider-derived gating modifier toxins (GpTx-1, ProTx-II, gHwTx-IV, JzTx-V, CcoTx-1, and Pn3a) and two pore-blocker μ-conotoxins, SxIIIC and KIIIA, were used for this study. We employed either enzymatic ligation with sortase A for C- to N-terminal ligation or click chemistry for N- to N-terminal ligation. The bivalent peptide resulting from ligation of ProTx-II and SxIIIC (Pro[LPATG6]Sx) was shown to be the best combination as native ProTx-II potency at hNaV1.7 was conserved following ligation. At hNaV1.4, a synergistic effect between the pore blocker and gating modifier toxin moieties was observed, resulting in altered sodium channel subtype selectivity compared to the parent peptides. Further studies including mutant bivalent peptides and mutant hNaV1.7 channels suggested that gating modifier toxins have a greater contribution to the potency of the bivalent peptides than pore blockers. This study delineated potential benefits and drawbacks of designing pharmacological hybrid peptides targeting hNaV1.7.
Collapse
Affiliation(s)
- Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Simon J Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Genentech, 1 DNA Way South San Francisco, California 94080, United States
| |
Collapse
|
11
|
Jian X, Wu Y, Mei Z, Zhu X, Zhangsun D, Luo S. Synthesis of the Most Potent Isomer of μ-Conotoxin KIIIA Using Different Strategies. Molecules 2023; 28:molecules28083377. [PMID: 37110612 PMCID: PMC10143212 DOI: 10.3390/molecules28083377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
In the chemical synthesis of conotoxins with multiple disulfide bonds, the oxidative folding process can result in diverse disulfide bond connectivities, which presents a challenge for determining the natural disulfide bond connectivities and leads to significant structural differences in the synthesized toxins. Here, we focus on KIIIA, a μ-conotoxin that has high potency in inhibiting Nav1.2 and Nav1.4. The non-natural connectivity pattern (C1-C9, C2-C15, C4-C16) of KIIIA exhibits the highest activity. In this study, we report an optimized Fmoc solid-phase synthesis of KIIIA using various strategies. Our results indicate that free random oxidation is the simplest method for peptides containing triple disulfide bonds, resulting in high yields and a simplified process. Alternatively, the semi-selective strategy utilizing Trt/Acm groups can also produce the ideal isomer, albeit with a lower yield. Furthermore, we performed distributed oxidation using three different protecting groups, optimizing their positions and cleavage order. Our results showed that prioritizing the cleavage of the Mob group over Acm may result in disulfide bond scrambling and the formation of new isomers. We also tested the activity of synthesized isomers on Nav1.4. These findings provide valuable guidance for the synthesis of multi-disulfide-bonded peptides in future studies.
Collapse
Affiliation(s)
- Xunxun Jian
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yong Wu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Zaoli Mei
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
13
|
Kimball IH, Nguyen PT, Olivera BM, Sack JT, Yarov-Yarovoy V. Molecular determinants of μ-conotoxin KIIIA interaction with the human voltage-gated sodium channel Na V1.7. Front Pharmacol 2023; 14:1156855. [PMID: 37007002 PMCID: PMC10060530 DOI: 10.3389/fphar.2023.1156855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The voltage-gated sodium (NaV) channel subtype NaV1.7 plays a critical role in pain signaling, making it an important drug target. Here we studied the molecular interactions between μ-Conotoxin KIIIA (KIIIA) and the human NaV1.7 channel (hNaV1.7). We developed a structural model of hNaV1.7 using Rosetta computational modeling and performed in silico docking of KIIIA using RosettaDock to predict residues forming specific pairwise contacts between KIIIA and hNaV1.7. We experimentally validated these contacts using mutant cycle analysis. Comparison between our KIIIA-hNaV1.7 model and the cryo-EM structure of KIIIA-hNaV1.2 revealed key similarities and differences between NaV channel subtypes with potential implications for the molecular mechanism of toxin block. The accuracy of our integrative approach, combining structural data with computational modeling, experimental validation, and molecular dynamics simulations, suggests that Rosetta structural predictions will be useful for rational design of novel biologics targeting specific NaV channels.
Collapse
Affiliation(s)
- Ian H. Kimball
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Phuong T. Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | | | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Mansbach R, Patel LA, Watson NA, Kubicek-Sutherland JZ, Gnanakaran S. Inferring Pathways of Oxidative Folding from Prefolding Free Energy Landscapes of Disulfide-Rich Toxins. J Phys Chem B 2023; 127:1689-1703. [PMID: 36791259 PMCID: PMC9987446 DOI: 10.1021/acs.jpcb.2c07124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Indexed: 02/17/2023]
Abstract
Short, cysteine-rich peptides can exist in stable or metastable structural ensembles due to the number of possible patterns of formation of their disulfide bonds. One interesting subset of this peptide group is the conotoxins, which are produced by aquatic snails in the family Conidae. The μ conotoxins, which are antagonists and blockers of the voltage-gated sodium channel, exist in a folding spectrum: on one end of the spectrum are more hirudin-like folders, which form disulfide bonds and then reshuffle them, leading to an ensemble of kinetically trapped isomers, and on the other end are more BPTI-like folders, which form the native disulfide bonds one by one in a particular order, leading to a preponderance of conformations existing in a single stable state. In this Article, we employ the composite diffusion map approach to study the unified free energy surface of prefolding μ-conotoxin equilibrium. We identify the two most important nonlinear collective modes of the unified folding landscape and demonstrate that in the absence of their disulfides, the conotoxins can be thought of as largely disordered polymers. A small increase in the number of hydrophobic residues in the protein shifts the free energy landscape toward hydrophobically collapsed coil conformations responsible for cysteine proximity in hirudin-like folders, compared to semiextended coil conformations with more distal cysteines in BPTI-like folders. Overall, this work sheds important light on the folding processes and free energy landscapes of cysteine-rich peptides and demonstrates the extent to which sequence and length contribute to these landscapes.
Collapse
Affiliation(s)
| | - Lara A. Patel
- OpenEye
Scientific Research, Santa Fe, New Mexico 87508, United States
| | - Natalya A. Watson
- Physics
Department, University of Concordia, Montreal, QC H4B 1R6, Canada
| | | | - S. Gnanakaran
- Physical
Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Zhao Z, Pan T, Chen S, Harvey PJ, Zhang J, Li X, Yang M, Huang L, Wang S, Craik DJ, Jiang T, Yu R. Design, synthesis, and mechanism of action of novel μ-conotoxin KIIIA analogues for inhibition of the voltage-gated sodium channel Na v1.7. J Biol Chem 2023; 299:103068. [PMID: 36842500 PMCID: PMC10074208 DOI: 10.1016/j.jbc.2023.103068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023] Open
Abstract
μ-Conotoxin KIIIA, a selective blocker of sodium channels, has strong inhibitory activity against several Nav isoforms, including Nav1.7, and has potent analgesic effects, but it contains three pairs of disulfide bonds, making structural modification difficult and synthesis complex. To circumvent these difficulties, we designed and synthesized three KIIIA analogues with one disulfide bond deleted. The most active analogue, KIIIA-1, was further analyzed, and its binding pattern to hNav1.7 was determined by molecular dynamics simulations. Guided by the molecular dynamics computational model, we designed and tested 32 second-generation and 6 third-generation analogues of KIIIA-1 on hNav1.7 expressed in HEK293 cells. Several analogues showed significantly improved inhibitory activity on hNav1.7, and the most potent peptide, 37, was approximately 4-fold more potent than the KIIIA Isomer I and 8-fold more potent than the wildtype (WT) KIIIA in inhibiting hNav1.7 current. Intraperitoneally injected 37 exhibited potent in vivo analgesic activity in a formalin-induced inflammatory pain model, with activity reaching ∼350-fold of the positive control drug morphine. Overall, peptide 37 has a simplified disulfide-bond framework and exhibits potent in vivo analgesic effects and has promising potential for development as a pain therapy in the future.
Collapse
Affiliation(s)
- Zitong Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Teng Pan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linhong Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
16
|
Espiritu MJ, Taylor JK, Sugai CK, Thapa P, Loening NM, Gusman E, Baoanan ZG, Baumann MH, Bingham JP. Characterization of the Native Disulfide Isomers of the Novel χ-Conotoxin PnID: Implications for Further Increasing Conotoxin Diversity. Mar Drugs 2023; 21:61. [PMID: 36827103 PMCID: PMC9964023 DOI: 10.3390/md21020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
χ-Conotoxins are known for their ability to selectively inhibit norepinephrine transporters, an ability that makes them potential leads for treating various neurological disorders, including neuropathic pain. PnID, a peptide isolated from the venom of Conus pennaceus, shares high sequence homology with previously characterized χ-conotoxins. Whereas previously reported χ-conotoxins seem to only have a single native disulfide bonding pattern, PnID has three native isomers due to the formation of different disulfide bond patterns during its maturation in the venom duct. In this study, the disulfide connectivity and three-dimensional structure of these disulfide isomers were explored using regioselective synthesis, chromatographic coelution, and solution-state nuclear magnetic resonance spectroscopy. Of the native isomers, only the isomer with a ribbon disulfide configuration showed pharmacological activity similar to other χ-conotoxins. This isomer inhibited the rat norepinephrine transporter (IC50 = 10 ± 2 µM) and has the most structural similarity to previously characterized χ-conotoxins. In contrast, the globular isoform of PnID showed more than ten times less activity against this transporter and the beaded isoform did not display any measurable biological activity. This study is the first report of the pharmacological and structural characterization of an χ-conotoxin from a species other than Conus marmoreus and is the first report of the existence of natively-formed conotoxin isomers.
Collapse
Affiliation(s)
- Michael J. Espiritu
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Ste. 451, Hillsboro, OR 97123, USA
| | - Jonathan K. Taylor
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Ste. 451, Hillsboro, OR 97123, USA
| | - Christopher K. Sugai
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| | - Parashar Thapa
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| | - Nikolaus M. Loening
- Department of Chemistry, Lewis & Clark College, 615 S Palatine Hill Road, Portland, OR 97219, USA
| | - Emma Gusman
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Ste. 451, Hillsboro, OR 97123, USA
| | - Zenaida G. Baoanan
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
- Department of Biology, College of Science, University of the Philippines Baguio, Baguio City 2600, Philippines
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), 333 Cassell Drive Suite 4400, Baltimore, MD 21224, USA
| | - Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai’i, Honolulu, HI 96822, USA
| |
Collapse
|
17
|
McMahon KL, Tran HNT, Deuis JR, Craik DJ, Vetter I, Schroeder CI. µ-Conotoxins Targeting the Human Voltage-Gated Sodium Channel Subtype NaV1.7. Toxins (Basel) 2022; 14:toxins14090600. [PMID: 36136538 PMCID: PMC9506549 DOI: 10.3390/toxins14090600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
µ-Conotoxins are small, potent, peptide voltage-gated sodium (NaV) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype NaV1.7 has so far been limited. We recently identified a novel µ-conotoxin, SxIIIC, which potently inhibits human NaV1.7 (hNaV1.7). SxIIIC has high sequence homology with other µ-conotoxins, including SmIIIA and KIIIA, yet shows different NaV channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of µ-conotoxins SxIIIC, SmIIIA and KIIIA at hNaV channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related µ-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNaV1.7. Analysis of other µ-conotoxins at hNaV1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of µ-conotoxins to inhibit hNaV1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNaV1.4. Comparison of µ-conotoxin NMR solution structures identified differences that may contribute to the variance in hNaV1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNaV1.7, when compared to KIIIA. This work could assist in designing µ-conotoxin derivatives specific for hNaV1.7.
Collapse
Affiliation(s)
- Kirsten L. McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hue N. T. Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence: (I.V.); (C.I.S.)
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Correspondence: (I.V.); (C.I.S.)
| |
Collapse
|
18
|
Tran HNT, McMahon KL, Deuis JR, Vetter I, Schroeder CI. Structural and functional insights into the inhibition of human voltage-gated sodium channels by μ-conotoxin KIIIA disulfide isomers. J Biol Chem 2022; 298:101728. [PMID: 35167877 PMCID: PMC8927997 DOI: 10.1016/j.jbc.2022.101728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
μ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a ‘native’ CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, μ-conotoxin KIIIA, the smallest and most studied μ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native μ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native μ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three μ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of μ-conotoxins targeting therapeutically relevant NaV subtypes.
Collapse
Affiliation(s)
- Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
19
|
Meng G, Kuyucak S. Computational Design of High-Affinity Blockers for Sodium Channel Na V1.2 from μ-Conotoxin KIIIA. Mar Drugs 2022; 20:md20020154. [PMID: 35200683 PMCID: PMC8880641 DOI: 10.3390/md20020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
The voltage-gated sodium channel subtype 1.2 (NaV1.2) is instrumental in the initiation of action potentials in the nervous system, making it a natural drug target for neurological diseases. Therefore, there is much pharmacological interest in finding blockers of NaV1.2 and improving their affinity and selectivity properties. An extensive family of peptide toxins from cone snails (conotoxins) block NaV channels, thus they provide natural templates for the design of drugs targeting NaV channels. Unfortunately, progress was hampered due to the absence of any NaV structures. The recent determination of cryo-EM structures for NaV channels has finally broken this impasse. Here, we use the NaV1.2 structure in complex with μ-conotoxin KIIIA (KIIIA) in computational studies with the aim of improving KIIIA's affinity and blocking capacity for NaV1.2. Only three KIIIA amino acid residues are available for mutation (S5, S6, and S13). After performing molecular modeling and simulations on NaV1.2-KIIIA complex, we have identified the S5R, S6D, and S13K mutations as the most promising for additional contacts. We estimate these contacts to boost the affinity of KIIIA for NaV1.2 from nanomole to picomole domain. Moreover, the KIIIA[S5R, S6D, S13K] analogue makes contacts with all four channel domains, thus enabling the complete blocking of the channel (KIIIA partially blocks as it has contacts with three domains). The proposed KIIIA analogue, once confirmed experimentally, may lead to novel anti-epileptic drugs.
Collapse
|
20
|
Tran HNT, Tran P, Deuis JR, McMahon KL, Yap K, Craik DJ, Vetter I, Schroeder CI. Evaluation of Efficient Non-reducing Enzymatic and Chemical Ligation Strategies for Complex Disulfide-Rich Peptides. Bioconjug Chem 2021; 32:2407-2419. [PMID: 34751572 PMCID: PMC10167913 DOI: 10.1021/acs.bioconjchem.1c00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Double-knotted peptides identified in venoms and synthetic bivalent peptide constructs targeting ion channels are emerging tools for the study of ion channel pharmacology and physiology. These highly complex and disulfide-rich peptides contain two individual cystine knots, each comprising six cysteines and three disulfide bonds. Until now, native double-knotted peptides, such as Hi1a and DkTx, have only been isolated from venom or produced recombinantly, whereas engineered double-knotted peptides have successfully been produced through enzymatic ligation using sortase A to form a seamless amide bond at the ligation site between two knotted toxins, and by alkyne/azide click chemistry, joining two peptide knots via a triazole linkage. To further pursue these double-knotted peptides as pharmacological tools or probes for therapeutically relevant ion channels, we sought to identify a robust methodology resulting in a high yield product that lends itself to rapid production and facile mutational studies. In this study, we evaluated the ligation efficiency of enzymatic (sortase A5°, butelase 1, wild-type OaAEP 1, C247A-OaAEP 1, and peptiligase) and mild chemical approaches (α-ketoacid-hydroxylamine, KAHA) for forming a native amide bond linking the toxins while maintaining the native disulfide connectivity of each pre-folded peptide. We used two NaV1.7 inhibitors: PaurTx3, a spider-derived gating modifier peptide, and KIIIA, a small cone snail-derived pore blocker peptide, which have previously been shown to increase affinity and inhibitory potency on hNaV1.7 when ligated together. Correctly folded peptides were successfully ligated in varying yields, without disulfide bond shuffling or reduction, with sortase A5° being the most efficient, resulting in 60% ligation conversion within 15 min. In addition, electrophysiology studies demonstrated that for these two peptides, the amino acid composition of the linker did not affect the activity of the double-knotted peptides. This study demonstrates the powerful application of enzymes in efficiently ligating complex disulfide-rich peptides, paving the way for facile production of double-knotted peptides.
Collapse
Affiliation(s)
- Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
21
|
Sanches K, Wai DCC, Norton RS. Conformational dynamics in peptide toxins: Implications for receptor interactions and molecular design. Toxicon 2021; 201:127-140. [PMID: 34454969 DOI: 10.1016/j.toxicon.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Peptide toxins are potent and often exquisitely selective probes of the structure and function of ion channels and receptors, and are therefore of significant interest to the pharmaceutical and biotech industries as both pharmacological tools and therapeutic leads. The three-dimensional structures of peptide toxins are essential as a basis for understanding their structure-activity relationships and their binding to target receptors, as well as in guiding the design of analogues with modified potency and/or selectivity for key targets. NMR spectroscopy has played a key role in elucidating the structures of peptide toxins and probing their structure-function relationships. In this article, we highlight the additional important contribution of NMR to characterising the dynamics of peptide toxins. We also compare the information available from NMR measurements with that afforded by molecular dynamics simulations. We describe several examples of the importance of dynamics measurements over a range of timescales for understanding the structure-function relationships of peptide toxins and their receptor engagement. Peptide toxins that inhibit the voltage-gated potassium channel KV1.3 with pM affinities display different degrees of conformational flexibility, even though they contain multiple disulfide bonds, and this flexibility can affect the relative orientation of residues that have been shown to be critical for channel binding. Information on the dynamic properties of peptide toxins is important in the design of analogues or mimetics where receptor-bound structures are not available.
Collapse
Affiliation(s)
- Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
22
|
Knuhtsen A, Whiting R, McWhinnie FS, Whitmore C, Smith BO, Green AC, Timperley CM, Kinnear KI, Jamieson AG. μ‐Conotoxin KIIIA
peptidomimetics that block human
voltage‐gated
sodium channels. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Astrid Knuhtsen
- School of Chemistry, Joseph Black Building University of Glasgow Glasgow UK
| | - Rachel Whiting
- Chemical, Biological and Radiological Division Defence Science and Technology Laboratory, Porton Down Salisbury, Wiltshire UK
| | | | - Charlotte Whitmore
- Chemical, Biological and Radiological Division Defence Science and Technology Laboratory, Porton Down Salisbury, Wiltshire UK
| | - Brian O. Smith
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, Joseph Black Building University of Glasgow Glasgow UK
| | - A. Christopher Green
- Chemical, Biological and Radiological Division Defence Science and Technology Laboratory, Porton Down Salisbury, Wiltshire UK
| | - Christopher M. Timperley
- Chemical, Biological and Radiological Division Defence Science and Technology Laboratory, Porton Down Salisbury, Wiltshire UK
| | - Kenneth I. Kinnear
- Chemical, Biological and Radiological Division Defence Science and Technology Laboratory, Porton Down Salisbury, Wiltshire UK
| | - Andrew G. Jamieson
- School of Chemistry, Joseph Black Building University of Glasgow Glasgow UK
| |
Collapse
|
23
|
Peschel A, Cardoso FC, Walker AA, Durek T, Stone MRL, Braga Emidio N, Dawson PE, Muttenthaler M, King GF. Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. J Med Chem 2020; 63:12773-12785. [PMID: 33078946 PMCID: PMC7667638 DOI: 10.1021/acs.jmedchem.0c01107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Voltage-gated
sodium (NaV) channels are pore-forming
transmembrane proteins that play essential roles in excitable cells,
and they are key targets for antiepileptic, antiarrhythmic, and analgesic
drugs. We implemented a heterobivalent design strategy to modulate
the potency, selectivity, and binding kinetics of NaV channel
ligands. We conjugated μ-conotoxin KIIIA, which occludes the
pore of the NaV channels, to an analogue of huwentoxin-IV,
a spider-venom peptide that allosterically modulates channel gating.
Bioorthogonal hydrazide and copper-assisted azide–alkyne cycloaddition
conjugation chemistries were employed to generate heterobivalent ligands
using polyethylene glycol linkers spanning 40–120 Å. The
ligand with an 80 Å linker had the most pronounced bivalent effects,
with a significantly slower dissociation rate and 4–24-fold
higher potency compared to those of the monovalent peptides for the
human NaV1.4 channel. This study highlights the power of
heterobivalent ligand design and expands the repertoire of pharmacological
probes for exploring the function of NaV channels.
Collapse
Affiliation(s)
- Alicia Peschel
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - M Rhia L Stone
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
24
|
Walker AA, Robinson SD, Hamilton BF, Undheim EAB, King GF. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics 2020; 20:e1900324. [PMID: 32820606 DOI: 10.1002/pmic.201900324] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/07/2020] [Indexed: 11/11/2022]
Abstract
Animal venoms are renowned for their toxicity, biochemical complexity, and as a source of compounds with potential applications in medicine, agriculture, and industry. Polypeptides underlie much of the pharmacology of animal venoms, and elucidating these arsenals of polypeptide toxins-known as the venom proteome or venome-is an important step in venom research. Proteomics is used for the identification of venom toxins, determination of their primary structure including post-translational modifications, as well as investigations into the physiology underlying their production and delivery. Advances in proteomics and adjacent technologies has led to a recent upsurge in publications reporting venom proteomes. Improved mass spectrometers, better proteomic workflows, and the integration of next-generation sequencing of venom-gland transcriptomes and venomous animal genomes allow quicker and more accurate profiling of venom proteomes with greatly reduced starting material. Technologies such as imaging mass spectrometry are revealing additional insights into the mechanism, location, and kinetics of venom toxin production. However, these numerous new developments may be overwhelming for researchers designing venom proteome studies. Here, the field of venom proteomics is reviewed and some practical solutions for simplifying mass spectrometry workflows to study animal venoms are offered.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Brett F Hamilton
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland, 4072, Australia.,Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, 7491, Norway.,Department of Bioscience, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, Oslo, 0316, Norway
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
25
|
Bäuml CA, Paul George AA, Schmitz T, Sommerfeld P, Pietsch M, Podsiadlowski L, Steinmetzer T, Biswas A, Imhof D. Distinct 3-disulfide-bonded isomers of tridegin differentially inhibit coagulation factor XIIIa: The influence of structural stability on bioactivity. Eur J Med Chem 2020; 201:112474. [PMID: 32698061 DOI: 10.1016/j.ejmech.2020.112474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022]
Abstract
Tridegin is a 66mer cysteine-rich coagulation factor XIIIa (FXI-IIa) inhibitor from the giant amazon leech Haementeria ghilianii of yet unknown disulfide connectivity. This study covers the structural and functional characterization of five different 3-disulfide-bonded tridegin isomers. In addition to three previously identified isomers, one isomer containing the inhibitory cystine knot (ICK, knottin) motif, and one isomer with the leech antihemostatic protein (LAP) motif were synthesized in a regioselective manner. A fluorogenic enzyme activity assay revealed a positive correlation between the constriction of conformational flexibility in the N-terminal part of the peptide and the inhibitory potential towards FXI-IIa with clear differences between the isomers. This observation was supported by molecular dynamics (MD) simulations and subsequent molecular docking studies. The presented results provide detailed structure-activity relationship studies of different tridegin disulfide isomers towards FXI-IIa and reveal insights into the possibly existing native linkage compared to non-native disulfide tridegin species.
Collapse
Affiliation(s)
- Charlotte A Bäuml
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Thomas Schmitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Paul Sommerfeld
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig (ZFMK), Adenauerallee 160, D-53113, Bonn, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, D-35032, Marburg, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
26
|
Qu Q, Gao S, Wu F, Zhang M, Li Y, Zhang L, Bierer D, Tian C, Zheng J, Liu L. Synthesis of Disulfide Surrogate Peptides Incorporating Large‐Span Surrogate Bridges Through a Native‐Chemical‐Ligation‐Assisted Diaminodiacid Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qian Qu
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Shuai Gao
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Fangming Wu
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei 230031 China
| | - Meng‐Ge Zhang
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Ying Li
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Long‐Hua Zhang
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Donald Bierer
- Bayer AGDepartment of Medicinal Chemistry Aprather Weg 18A 42096 Wuppertal Germany
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei 230031 China
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Ji‐Shen Zheng
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Lei Liu
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Qu Q, Gao S, Wu F, Zhang MG, Li Y, Zhang LH, Bierer D, Tian CL, Zheng JS, Liu L. Synthesis of Disulfide Surrogate Peptides Incorporating Large-Span Surrogate Bridges Through a Native-Chemical-Ligation-Assisted Diaminodiacid Strategy. Angew Chem Int Ed Engl 2020; 59:6037-6045. [PMID: 32060988 DOI: 10.1002/anie.201915358] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/19/2020] [Indexed: 12/17/2022]
Abstract
The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide-containing peptides. However, peptides incorporating large-span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)-assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible-to-obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X-ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.
Collapse
Affiliation(s)
- Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuai Gao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fangming Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Meng-Ge Zhang
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Ying Li
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Hua Zhang
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Donald Bierer
- Bayer AG, Department of Medicinal Chemistry, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.,School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Ji-Shen Zheng
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Tran HNT, Tran P, Deuis JR, Agwa AJ, Zhang AH, Vetter I, Schroeder CI. Enzymatic Ligation of a Pore Blocker Toxin and a Gating Modifier Toxin: Creating Double-Knotted Peptides with Improved Sodium Channel NaV1.7 Inhibition. Bioconjug Chem 2019; 31:64-73. [DOI: 10.1021/acs.bioconjchem.9b00744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hue N. T. Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Akello J. Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alan H. Zhang
- Center for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Paul George AA, Heimer P, Leipold E, Schmitz T, Kaufmann D, Tietze D, Heinemann SH, Imhof D. Effect of Conformational Diversity on the Bioactivity of µ-Conotoxin PIIIA Disulfide Isomers. Mar Drugs 2019; 17:E390. [PMID: 31269696 PMCID: PMC6669574 DOI: 10.3390/md17070390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022] Open
Abstract
Cyclic µ-conotoxin PIIIA, a potent blocker of skeletal muscle voltage-gated sodium channel NaV1.4, is a 22mer peptide stabilized by three disulfide bonds. Combining electrophysiological measurements with molecular docking and dynamic simulations based on NMR solution structures, we investigated the 15 possible 3-disulfide-bonded isomers of µ-PIIIA to relate their blocking activity at NaV1.4 to their disulfide connectivity. In addition, three µ-PIIIA mutants derived from the native disulfide isomer, in which one of the disulfide bonds was omitted (C4-16, C5-C21, C11-C22), were generated using a targeted protecting group strategy and tested using the aforementioned methods. The 3-disulfide-bonded isomers had a range of different conformational stabilities, with highly unstructured, flexible conformations with low or no channel-blocking activity, while more constrained molecules preserved 30% to 50% of the native isomer's activity. This emphasizes the importance and direct link between correct fold and function. The elimination of one disulfide bond resulted in a significant loss of blocking activity at NaV1.4, highlighting the importance of the 3-disulfide-bonded architecture for µ-PIIIA. µ-PIIIA bioactivity is governed by a subtle interplay between an optimally folded structure resulting from a specific disulfide connectivity and the electrostatic potential of the conformational ensemble.
Collapse
Affiliation(s)
- Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Thomas Schmitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Desiree Kaufmann
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Daniel Tietze
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
30
|
Shen Y, Xu L, Huang J, Serra A, Yang H, Tam JP. Potentides: New Cysteine-Rich Peptides with Unusual Disulfide Connectivity from Potentilla anserina. Chembiochem 2019; 20:1995-2004. [PMID: 30927482 DOI: 10.1002/cbic.201900127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/06/2022]
Abstract
Cysteine-rich peptides (CRPs), which are disulfide-constrained peptides with 3 to 5 disulfide bonds and molecular weights of 2 to 6 kDa, are generally hyperstable and resistant to thermal, chemical, and enzymatic degradation. Herein, the discovery and characterization of a novel suite of CRPs, collectively named potentides pA1-pA16 from the root of the medicinal herb Potentilla anserina L, are described. Through a combination of proteomic and transcriptomic methods, it is shown that 35-residue potentide pA3, which is the most abundant member of potentides, exhibits high stability against heat, acidic, and proteolytic degradation. Transcriptomic analysis revealed that potentide precursor sequences contained four tandem repeats in the mature domain, which is the first report on tandem repeats being found in the Rosaceae family. Disulfide mapping showed that potentide pA3 displayed a novel disulfide connectivity of C1-C3, C2-C6, and C4-C5; a cystine motif that has not been reported in plant CRPs. Transcriptomic data mining and a neighbor-joining clustering analysis revealed 56 potentide homologues and their distribution in the families of Rosaceae and Ranunculaceae in angiosperm. Altogether, these results reveal a new plant CRP structure with an unusual cystine connectivity. Additionally, this study expands the families and structure diversity of CRPs as potentially active peptide pharmaceuticals.
Collapse
Affiliation(s)
- Yuping Shen
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Lili Xu
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - Jiayi Huang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Huan Yang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P.R. China
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
31
|
Morales Duque H, Campos Dias S, Franco OL. Structural and Functional Analyses of Cone Snail Toxins. Mar Drugs 2019; 17:md17060370. [PMID: 31234371 PMCID: PMC6628382 DOI: 10.3390/md17060370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cone snails are marine gastropod mollusks with one of the most powerful venoms in nature. The toxins, named conotoxins, must act quickly on the cone snails´ prey due to the fact that snails are extremely slow, reducing their hunting capability. Therefore, the characteristics of conotoxins have become the object of investigation, and as a result medicines have been developed or are in the trialing process. Conotoxins interact with transmembrane proteins, showing specificity and potency. They target ion channels and ionotropic receptors with greater regularity, and when interaction occurs, there is immediate physiological decompensation. In this review we aimed to evaluate the structural features of conotoxins and the relationship with their target types.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS 79.117-900, Brazil.
| |
Collapse
|
32
|
Sajeevan KA, Roy D. Principal Component Analysis of a Conotoxin Delineates the Link among Peptide Sequence, Dynamics, and Disulfide Bond Isoforms. J Phys Chem B 2019; 123:5483-5493. [DOI: 10.1021/acs.jpcb.9b04090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karuna Anna Sajeevan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar,
Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar,
Kapra Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
33
|
Denisov SS, Ippel JH, Mans BJ, Dijkgraaf I, Hackeng TM. SecScan: a general approach for mapping disulfide bonds in synthetic and recombinant peptides and proteins. Chem Commun (Camb) 2019; 55:1374-1377. [PMID: 30520894 DOI: 10.1039/c8cc08777f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selenocysteine scanning (SecScan) is a novel technique to map disulfide networks in proteins independent of structure-based distance information and mass spectrometry. SecScan applies systematic substitution of single Cys by Sec in combination with NMR spectroscopy for reliable and unambiguous determination of disulfide bond networks.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Pan X, Li Z, Huang X, Huang G, Gao S, Shen H, Liu L, Lei J, Yan N. Molecular basis for pore blockade of human Na + channel Na v1.2 by the μ-conotoxin KIIIA. Science 2019; 363:1309-1313. [PMID: 30765605 DOI: 10.1126/science.aaw2999] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
The voltage-gated sodium channel Nav1.2 is responsible for the initiation and propagation of action potentials in the central nervous system. We report the cryo-electron microscopy structure of human Nav1.2 bound to a peptidic pore blocker, the μ-conotoxin KIIIA, in the presence of an auxiliary subunit, β2, to an overall resolution of 3.0 angstroms. The immunoglobulin domain of β2 interacts with the shoulder of the pore domain through a disulfide bond. The 16-residue KIIIA interacts with the extracellular segments in repeats I to III, placing Lys7 at the entrance to the selectivity filter. Many interacting residues are specific to Nav1.2, revealing a molecular basis for KIIIA specificity. The structure establishes a framework for the rational design of subtype-specific blockers for Nav channels.
Collapse
Affiliation(s)
- Xiaojing Pan
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoshuang Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuai Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaizong Shen
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Peigneur S, Cheneval O, Maiti M, Leipold E, Heinemann SH, Lescrinier E, Herdewijn P, De Lima ME, Craik DJ, Schroeder CI, Tytgat J. Where cone snails and spiders meet: design of small cyclic sodium-channel inhibitors. FASEB J 2018; 33:3693-3703. [PMID: 30509130 DOI: 10.1096/fj.201801909r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 13 aa residue voltage-gated sodium (NaV) channel inhibitor peptide, Pn, containing 2 disulfide bridges was designed by using a chimeric approach. This approach was based on a common pharmacophore deduced from sequence and secondary structural homology of 2 NaV inhibitors: Conus kinoshitai toxin IIIA, a 14 residue cone snail peptide with 3 disulfide bonds, and Phoneutria nigriventer toxin 1, a 78 residue spider toxin with 7 disulfide bonds. As with the parent peptides, this novel NaV channel inhibitor was active on NaV1.2. Through the generation of 3 series of peptide mutants, we investigated the role of key residues and cyclization and their influence on NaV inhibition and subtype selectivity. Cyclic PnCS1, a 10 residue peptide cyclized via a disulfide bond, exhibited increased inhibitory activity toward therapeutically relevant NaV channel subtypes, including NaV1.7 and NaV1.9, while displaying remarkable serum stability. These peptides represent the first and the smallest cyclic peptide NaV modulators to date and are promising templates for the development of toxin-based therapeutic agents.-Peigneur, S., Cheneval, O., Maiti, M., Leipold, E., Heinemann, S. H., Lescrinier, E., Herdewijn, P., De Lima, M. E., Craik, D. J., Schroeder, C. I., Tytgat, J. Where cone snails and spiders meet: design of small cyclic sodium-channel inhibitors.
Collapse
Affiliation(s)
- Steve Peigneur
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, Belgium.,Department de Bioquímica e Imunologia, Laboratório de Venenos e Toxinas Animais, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo-Horizonte, Brazil
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mohitosh Maiti
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Enrico Leipold
- Department of Biophysics, Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University Jena, Germany
| | - Eveline Lescrinier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Maria Elena De Lima
- Department de Bioquímica e Imunologia, Laboratório de Venenos e Toxinas Animais, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo-Horizonte, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Biomedicina e Medicina, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Grupo Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, Katholieke Universiteit (KU) Leuven, Campus Gasthuisberg, Leuven, Belgium
| |
Collapse
|
36
|
Paul George AA, Heimer P, Maaß A, Hamaekers J, Hofmann-Apitius M, Biswas A, Imhof D. Insights into the Folding of Disulfide-Rich μ-Conotoxins. ACS OMEGA 2018; 3:12330-12340. [PMID: 30411002 PMCID: PMC6217517 DOI: 10.1021/acsomega.8b01465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The study of protein conformations using molecular dynamics (MD) simulations has been in place for decades. A major contribution to the structural stability and native conformation of a protein is made by the primary sequence and disulfide bonds formed during the folding process. Here, we investigated μ-conotoxins GIIIA, KIIIA, PIIIA, SIIIA, and SmIIIA as model peptides possessing three disulfide bonds. Their NMR structures were used for MD simulations in a novel approach studying the conformations between the folded and the unfolded states by systematically breaking the distinct disulfide bonds and monitoring the conformational stability of the peptides. As an outcome, the use of a combination of the existing knowledge and results from the simulations to classify the studied peptides within the extreme models of disulfide folding pathways, namely the bovine pancreatic trypsin inhibitor pathway and the hirudin pathway, is demonstrated. Recommendations for the design and synthesis of cysteine-rich peptides with a reduced number of disulfide bonds conclude the study.
Collapse
Affiliation(s)
- Ajay Abisheck Paul George
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Pascal Heimer
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Astrid Maaß
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Jan Hamaekers
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
- Bonn-Aachen
International Center for Information Technology, University of Bonn, Endenicher Allee 19 C, D-53115 Bonn, Germany
| | - Arijit Biswas
- Institute
for Experimental Hematology, University
Hospital Bonn, Sigmund-Freud-Straße
25, D-53127 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
37
|
Shi J, So LY, Chen F, Liang J, Chow HY, Wong KY, Wan S, Jiang T, Yu R. Influences of disulfide connectivity on structure and antimicrobial activity of tachyplesin I. J Pept Sci 2018; 24:e3087. [PMID: 29870123 DOI: 10.1002/psc.3087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Tachyplesin I is a potent antimicrobial peptide with broad spectrum of antimicrobial activity. It has 2 disulfide bonds and can form 3 disulfide bond isomers. In this study, the structure and antimicrobial activity of 3 tachyplesin I isomers (tachyplesin I, 3C12C, 3C7C) were investigated using molecular dynamic simulations, circular dichroism structural study, as well as antimicrobial activity and hemolysis assay. Our results suggest that in comparison to the native peptide, the 2 isomers (3C12C, 3C7C) have substantial structural and activity variations. The native peptide is in the ribbon conformation, while 3C12C and 3C7C possess remarkably different secondary structures, which are referred as "globular" and "beads" isomers, respectively. The substantially decreased hemolysis effects for these 2 isomers is accompanied by significantly decreased anti-gram-positive bacterial activity.
Collapse
Affiliation(s)
- Juan Shi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Lok-Yan So
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong
| | - Fangling Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| |
Collapse
|
38
|
Tikhonov DB, Zhorov BS. Predicting Structural Details of the Sodium Channel Pore Basing on Animal Toxin Studies. Front Pharmacol 2018; 9:880. [PMID: 30131702 PMCID: PMC6090064 DOI: 10.3389/fphar.2018.00880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic voltage-gated sodium channels play key roles in physiology and are targets for many toxins and medically important drugs. Physiology, pharmacology, and general architecture of the channels has long been the subject of intensive research in academia and industry. In particular, animal toxins such as tetrodotoxin, saxitoxin, and conotoxins have been used as molecular probes of the channel structure. More recently, X-ray structures of potassium and prokaryotic sodium channels allowed elaborating models of the toxin-channel complexes that integrated data from biophysical, electrophysiological, and mutational studies. Atomic level cryo-EM structures of eukaryotic sodium channels, which became available in 2017, show that the selectivity filter structure and other important features of the pore domain have been correctly predicted. This validates further employments of toxins and other small molecules as sensitive probes of fine structural details of ion channels.
Collapse
Affiliation(s)
- Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
39
|
|
40
|
Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol 2018; 175:2138-2157. [PMID: 28749537 PMCID: PMC5980290 DOI: 10.1111/bph.13962] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (NaV channels) are essential for the initiation and propagation of action potentials that critically influence our ability to respond to a diverse range of stimuli. Physiological and pharmacological studies have linked abnormal function of NaV channels to many human disorders, including chronic neuropathic pain. These findings, along with the description of the functional properties and expression pattern of NaV channel subtypes, are helping to uncover subtype specific roles in acute and chronic pain and revealing potential opportunities to target these with selective inhibitors. High-throughput screens and automated electrophysiology platforms have identified natural toxins as a promising group of molecules for the development of target-specific analgesics. In this review, the role of toxins in defining the contribution of NaV channels in acute and chronic pain states and their potential to be used as analgesic therapies are discussed. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Richard J Lewis
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
41
|
Sajeevan KA, Roy D. Peptide Sequence and Solvent as Levers to Control Disulfide Connectivity in Multiple Cysteine Containing Venom Toxins. J Phys Chem B 2018; 122:5776-5789. [DOI: 10.1021/acs.jpcb.8b01437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Karuna Anna Sajeevan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
42
|
Heimer P, Tietze AA, Bäuml CA, Resemann A, Mayer FJ, Suckau D, Ohlenschläger O, Tietze D, Imhof D. Conformational μ-Conotoxin PIIIA Isomers Revisited: Impact of Cysteine Pairing on Disulfide-Bond Assignment and Structure Elucidation. Anal Chem 2018; 90:3321-3327. [DOI: 10.1021/acs.analchem.7b04854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Alesia A. Tietze
- Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Charlotte A. Bäuml
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anja Resemann
- MALDI Applications and Proteomics R&D, Bruker Daltonics GmbH, Fahrenheitstrasse 4, D-28359 Bremen, Germany
| | - Franz Josef Mayer
- MALDI Applications and Proteomics R&D, Bruker Daltonics GmbH, Fahrenheitstrasse 4, D-28359 Bremen, Germany
| | - Detlev Suckau
- MALDI Applications and Proteomics R&D, Bruker Daltonics GmbH, Fahrenheitstrasse 4, D-28359 Bremen, Germany
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging − Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Daniel Tietze
- Eduard Zintl Institute of Inorganic and Physical Chemistry, Darmstadt University of Technology, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
43
|
Aqueous ionic liquids influence the disulfide bond isoform equilibrium in conotoxin AuIB: a consequence of the Hofmeister effect? Biophys Rev 2018; 10:769-780. [PMID: 29294259 DOI: 10.1007/s12551-017-0391-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The appearance of several disulfide bond isoforms in multiple cysteine containing venom peptides poses a significant challenge in their synthesis and purification under laboratory conditions. Recent experiments suggest that careful tuning of solvent and temperature conditions can propel the disulfide bond isoform equilibrium in favor of the most potent, native form. Certain aqueous ionic liquids (ILs) have proven significantly useful as solvents for this purpose, while exceptions have also been noted. To elucidate the molecular level origin behind such a preference, we report a detailed explicit solvent replica exchange molecular dynamics study of a conotoxin, AuIB, in pure water and four different aqueous IL solutions (~45-60% v/v). The ILs studied here are comprised of cations like 1-ethyl-3-methyl-imidazolium (Im21+) or 1-butyl-3-methyl-imidazolium (Im41+) coupled with either acetate (OAc-) or chloride (Cl-) as the counter anion. Our simulations unfold interesting features of the conformational spaces sampled by the peptide and its solvation in pure water and aqueous IL solutions. Detailed investigation into populations of the globular disulfide bond isoform of AuIB in aqueous IL solutions reveal distinct trends which might be related to the Hofmeister effect of the cation and anion of the IL and of specific interactions of the aqueous IL solutions with the peptide. In accordance with experimental observations, the aqueous [Im21][OAc] solution is found to promote the highest globular isoform population in AuIB.
Collapse
|
44
|
Naraga AMB, Belleza OJV, Villaraza AJL. Total synthesis of μ-conotoxin lt5d. RSC Adv 2018; 8:36579-36583. [PMID: 35558937 PMCID: PMC9088864 DOI: 10.1039/c8ra03706j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/23/2018] [Indexed: 11/21/2022] Open
Abstract
The total synthesis of μ-conotoxin lt5d is presented for the first time employing two different strategies.
Collapse
Affiliation(s)
- A. M. B. Naraga
- Institute of Chemistry
- College of Science
- National Science Complex
- University of the Philippines
- Quezon City
| | - O. J. V. Belleza
- Institute of Chemistry
- College of Science
- National Science Complex
- University of the Philippines
- Quezon City
| | - A. J. L. Villaraza
- Institute of Chemistry
- College of Science
- National Science Complex
- University of the Philippines
- Quezon City
| |
Collapse
|
45
|
Hoggard MF, Rodriguez AM, Cano H, Clark E, Tae HS, Adams DJ, Godenschwege TA, Marí F. In vivo and in vitro testing of native α-conotoxins from the injected venom of Conus purpurascens. Neuropharmacology 2017; 127:253-259. [PMID: 28917942 DOI: 10.1016/j.neuropharm.2017.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
α-Conotoxins inhibit nicotinic acetylcholine receptors (nAChRs) and are used as probes to study cholinergic pathways in vertebrates. Model organisms, such as Drosophila melanogaster, express nAChRs in their CNS that are suitable to investigate the neuropharmacology of α-conotoxins in vivo. Here we report the paired nanoinjection of native α-conotoxin PIA and two novel α-conotoxins, PIC and PIC[O7], from the injected venom of Conus purpurascens and electrophysiological recordings of their effects on the giant fiber system (GFS) of D. melanogaster and heterologously expressed nAChRs in Xenopus oocytes. α-PIA caused disruption of the function of giant fiber dorsal longitudinal muscle (GF-DLM) pathway by inhibiting the Dα7 nAChR a homolog to the vertebrate α7 nAChR, whereas PIC and PIC[O7] did not. PIC and PIC[O7] reversibly inhibited ACh-evoked currents mediated by vertebrate rodent (r)α1β1δγ, rα1β1δε and human (h)α3β2, but not hα7 nAChR subtypes expressed in Xenopus oocytes with the following selectivity: rα1β1δε > rα1β1δγ ≈ hα3β2 >> hα7. Our study emphasizes the importance of loop size and α-conotoxin sequence specificity for receptor binding. These studies can be used for the evaluation of the neuropharmacology of novel α-conotoxins that can be utilized as molecular probes for diseases such as, Alzheimer's, Parkinson's, and cancer. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Mickelene F Hoggard
- Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC 29412, USA; Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Alena M Rodriguez
- Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Herminsul Cano
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Evan Clark
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Frank Marí
- Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC 29412, USA; Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA.
| |
Collapse
|
46
|
Wright ZVF, McCarthy S, Dickman R, Reyes FE, Sanchez-Martinez S, Cryar A, Kilford I, Hall A, Takle AK, Topf M, Gonen T, Thalassinos K, Tabor AB. The Role of Disulfide Bond Replacements in Analogues of the Tarantula Toxin ProTx-II and Their Effects on Inhibition of the Voltage-Gated Sodium Ion Channel Na v1.7. J Am Chem Soc 2017; 139:13063-13075. [PMID: 28880078 PMCID: PMC5618157 DOI: 10.1021/jacs.7b06506] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Spider
venom toxins, such as Protoxin-II (ProTx-II), have recently
received much attention as selective Nav1.7 channel blockers,
with potential to be developed as leads for the treatment of chronic
nocioceptive pain. ProTx-II is a 30-amino acid peptide with three
disulfide bonds that has been reported to adopt a well-defined inhibitory
cystine knot (ICK) scaffold structure. Potential drawbacks with such
peptides include poor pharmacodynamics and potential scrambling of
the disulfide bonds in vivo. In order to address
these issues, in the present study we report the solid-phase synthesis
of lanthionine-bridged analogues of ProTx-II, in which one of the
three disulfide bridges is replaced with a thioether linkage, and
evaluate the biological properties of these analogues. We have also
investigated the folding and disulfide bridging patterns arising from
different methods of oxidation of the linear peptide precursor. Finally,
we report the X-ray crystal structure of ProTx-II to atomic resolution;
to our knowledge this is the first crystal structure of an ICK spider
venom peptide not bound to a substrate.
Collapse
Affiliation(s)
- Zoë V F Wright
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Stephen McCarthy
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Rachael Dickman
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Francis E Reyes
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Silvia Sanchez-Martinez
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Adam Cryar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Ian Kilford
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Adrian Hall
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Andrew K Takle
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Alethea B Tabor
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
47
|
|
48
|
Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET. Proc Natl Acad Sci U S A 2017; 114:E1857-E1865. [PMID: 28202723 DOI: 10.1073/pnas.1700453114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play crucial roles in excitable cells. Although vertebrate Nav function has been extensively studied, the detailed structural basis for voltage-dependent gating mechanisms remain obscure. We have assessed the structural changes of the Nav voltage sensor domain using lanthanide-based resonance energy transfer (LRET) between the rat skeletal muscle voltage-gated sodium channel (Nav1.4) and fluorescently labeled Nav1.4-targeting toxins. We generated donor constructs with genetically encoded lanthanide-binding tags (LBTs) inserted at the extracellular end of the S4 segment of each domain (with a single LBT per construct). Three different Bodipy-labeled, Nav1.4-targeting toxins were synthesized as acceptors: β-scorpion toxin (Ts1)-Bodipy, KIIIA-Bodipy, and GIIIA-Bodipy analogs. Functional Nav-LBT channels expressed in Xenopus oocytes were voltage-clamped, and distinct LRET signals were obtained in the resting and slow inactivated states. Intramolecular distances computed from the LRET signals define a geometrical map of Nav1.4 with the bound toxins, and reveal voltage-dependent structural changes related to channel gating.
Collapse
|
49
|
Roy D, Lakshminarayanan M. Scrambling of disulfide bond scaffolds in neurotoxin AuIB: A molecular dynamics simulation study. Biopolymers 2016; 106:196-209. [DOI: 10.1002/bip.22799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/05/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Durba Roy
- Department of Chemistry; Birla Institute of Technology and Science-Pilani; Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad Telangana 500078 India
| | - Madhavkrishnan Lakshminarayanan
- Department of Chemistry; Birla Institute of Technology and Science-Pilani; Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal Hyderabad Telangana 500078 India
| |
Collapse
|
50
|
Murray JK, Long J, Zou A, Ligutti J, Andrews KL, Poppe L, Biswas K, Moyer BD, McDonough SI, Miranda LP. Single Residue Substitutions That Confer Voltage-Gated Sodium Ion Channel Subtype Selectivity in the NaV1.7 Inhibitory Peptide GpTx-1. J Med Chem 2016; 59:2704-17. [DOI: 10.1021/acs.jmedchem.5b01947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Justin K. Murray
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jason Long
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Anruo Zou
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joseph Ligutti
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kristin L. Andrews
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Leszek Poppe
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kaustav Biswas
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bryan D. Moyer
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Stefan I. McDonough
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Les P. Miranda
- Therapeutic Discovery and ‡Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
- Therapeutic Discovery and ∥Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|