1
|
Klinman JP, Miller SM, Richards NGJ. A Foundational Shift in Models for Enzyme Function. J Am Chem Soc 2025; 147:14884-14904. [PMID: 40277147 PMCID: PMC12063184 DOI: 10.1021/jacs.5c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
This Perspective addresses the unresolved, and still hotly contested, question of how enzymes transition from stable enzyme-substrate (ES) complexes to successful, femtosecond barrier crossings. By extending Marcus theory to enzyme-catalyzed reactions, we argue that environmental reorganization of the protein scaffold, together with associated water molecules, achieves the intersection of reactant and product potential energy surfaces. After discussing the experimentally demonstrated importance of reduced activation enthalpy in enzyme-catalyzed transformations, we describe new methodologies that measure the temperature dependence of (i) time-averaged hydrogen/deuterium exchange into backbone amides and (ii) time-dependent Stokes shifts to longer emission wavelengths in appended chromophores at the protein/water interface. These methods not only identify specific pathways for the transfer of thermal energy from solvent to the reacting bonds of bound substrates but also suggest that collective thermally activated protein restructuring must occur very rapidly (on the ns-ps time scale) over long distances. Based on these findings, we introduce a comprehensive model for how barrier crossing takes place from the ES complex. This exploits the structural preorganization inherent in protein folding and subsequent conformational sampling, which optimally positions essential catalytic components within ES ground states and correctly places reactive bonds in the substrate(s) relative to embedded energy transfer networks connecting the protein surface to the active site. The existence of these anisotropic energy distribution pathways introduces a new dimension into the ongoing quest for improved de novo enzyme design.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department
of Chemistry, California Institute for Quantitative Biosciences, and Department of
Molecular and Cell Biology University of
California, Berkeley, California 94720, United States
| | - Susan M. Miller
- Department
of Chemistry, California Institute for Quantitative Biosciences, and Department of
Molecular and Cell Biology University of
California, Berkeley, California 94720, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, California 94158, United States
| | - Nigel G. J. Richards
- Foundation
for Applied Molecular Evolution, Alachua, Florida 32615, United States
- School
of
Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
2
|
Hegazy R, Cristobal JR, Richard JP. Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces. Biochemistry 2024; 63:2878-2891. [PMID: 39319842 PMCID: PMC11542618 DOI: 10.1021/acs.biochem.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Glycerol 3-phosphate dehydrogenase catalyzes reversible hydride transfer from glycerol 3-phosphate (G3P) to NAD+ to form dihydroxyacetone phosphate; from the truncated substrate ethylene glycol to NAD+ in a reaction activated by the phosphite dianion substrate fragment; and from G3P to the truncated nicotinamide riboside cofactor in a reaction activated by adenosine 5'-diphosphate, adenosine 5'-monophosphate, and ribose 5-phosphate cofactor fragments. The sum of the stabilization of the transition state for GPDH-catalyzed hydride transfer reactions of the whole substrates by the phosphodianion fragment of G3P and the ADP fragment of NAD+ is 25 kcal/mol. Fourteen kcal/mol of this transition state stabilization is recovered as phosphite dianion and AMP activation of the reactions of the substrate and cofactor fragments. X-ray crystal structures for unliganded GPDH, for a binary GPDH·NAD+ complex, and for a nonproductive ternary GPDH·NAD+·DHAP complex show that the ligand binding energy is utilized to drive an extensive protein conformational change that creates a caged complex for these ligands. The phosphite dianion and AMP fragments are proposed to activate GPDH for the catalysis of hydride transfer by stabilization of this active caged complex. The closure of a conserved loop [292-LNGQKL-297] during substrate binding stabilizes the G3P and NAD+ complexes by interactions, respectively, with the Q295 and K296 loop side chains. The appearance and apparent conservation of two side chains that interact with the hydride donor and acceptor to stabilize the active closed enzyme are proposed to represent a significant improvement in the catalytic performance of GPDH.
Collapse
Affiliation(s)
- Rania Hegazy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - Judith R. Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
3
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Roterman I, Konieczny L, Stapor K, Słupina M. Hydrophobicity-Based Force Field In Enzymes. ACS OMEGA 2024; 9:8188-8203. [PMID: 38405467 PMCID: PMC10882594 DOI: 10.1021/acsomega.3c08728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
The biocatalysis process takes place with the participation of enzymes, which, depending on the reaction carried out, require, apart from the appropriate arrangement of catalytic residues, an appropriate external force field. It is generated by the protein body. The relatively small size of the part directly involved in the process itself is supported by the presence of an often complex structure of the protein body, the purpose of which is to provide an appropriate local force field, eliminating the influence of water. Very often, the large size of the enzyme is an expression of the complex form of this field. In this paper, a comparative analysis of arbitrarily selected enzymes, representatives of different enzyme classes, was carried out, focusing on the measurement of the diversity of the force field provided by a given protein. This analysis was based on the fuzzy oil drop model (FOD) and its modified version (FOD-M), which takes into account the participation of nonaqueous external factors in shaping the structure and thus the force field within the protein. The degree and type of ordering of the hydrophobicity distribution in the protein molecule is the result of the influence of the environment but also the supplier of the local environment for a given process, including the catalysis process in particular. Determining the share of a nonaqueous environment is important due to the ubiquity of polar water, whose participation in processes with high specificity requires control. It can be assumed that some enzymes in their composition have a permanently built-in part, the role of which is reduced to that of a permanent chaperone. It provides a specific external force field needed for the process. The proposed model, generalized to other types of proteins, may also provide a form of recording the environment model for the simulation of the in silico protein folding process, taking into account the impact of its differentiation.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry, Jagiellonian University—Medical
College, Kopernika 7, 31-034 Kraków, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mateusz Słupina
- ALSTOM
ZWUS Sp. z o.o, Modelarska
12, 40-142 Katowice, Poland
| |
Collapse
|
5
|
Hegazy R, Richard JP. Triosephosphate Isomerase: The Crippling Effect of the P168A/I172A Substitution at the Heart of an Enzyme Active Site. Biochemistry 2023; 62:2916-2927. [PMID: 37768194 PMCID: PMC10586322 DOI: 10.1021/acs.biochem.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/01/2023] [Indexed: 09/29/2023]
Abstract
The P168 and I172 side chains sit at the heart of the active site of triosephosphate isomerase (TIM) and play important roles in the catalysis of the isomerization reaction. The phosphodianion of substrate glyceraldehyde 3-phosphate (GAP) drives a conformational change at the TIM that creates a steric interaction with the P168 side chain that is relieved by the movement of P168 that carries the basic E167 side chain into a clamp that consists of the hydrophobic I172 and L232 side chains. The P168A/I172A substitution at TIM from Trypanosoma brucei brucei (TbbTIM) causes a large 120,000-fold decrease in kcat for isomerization of GAP that eliminates most of the difference in the reactivity of TIM compared to the small amine base quinuclidinone for deprotonation of catalyst-bound GAP. The I172A substitution causes a > 2-unit decrease in the pKa of the E167 carboxylic acid in a complex to the intermediate analog PGA, but the P168A substitution at the I172A variant has no further effect on this pKa. The P168A/I172A substitutions cause a 5-fold decrease in Km for the isomerization of GAP from a 0.9 kcal/mol stabilization of the substrate Michaelis complexes. The results show that the P168 and I172 side chains play a dual role in destabilizing the ground-state Michaelis complex to GAP and in promoting stabilization of the transition state for substrate isomerization. This is consistent with an important role for these side chains in an induced fit reaction mechanism [Richard, J. P. (2022) Enabling Role of Ligand-Driven Conformational Changes in Enzyme Evolution. Biochemistry 61, 1533-1542].
Collapse
Affiliation(s)
- Rania Hegazy
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
6
|
Marshall LR, Bhattacharya S, Korendovych IV. Fishing for Catalysis: Experimental Approaches to Narrowing Search Space in Directed Evolution of Enzymes. JACS AU 2023; 3:2402-2412. [PMID: 37772192 PMCID: PMC10523367 DOI: 10.1021/jacsau.3c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023]
Abstract
Directed evolution has transformed protein engineering offering a path to rapid improvement of protein properties. Yet, in practice it is limited by the hyper-astronomic protein sequence search space, and approaches to identify mutagenic hot spots, i.e., locations where mutations are most likely to have a productive impact, are needed. In this perspective, we categorize and discuss recent progress in the experimental approaches (broadly defined as structural, bioinformatic, and dynamic) to hot spot identification. Recent successes in harnessing protein dynamics and machine learning approaches provide new opportunities for the field and will undoubtedly help directed evolution reach its full potential.
Collapse
Affiliation(s)
- Liam R. Marshall
- Department of Chemistry, Syracuse
University, 111 College Place, Syracuse, New York 13224, United States
| | - Sagar Bhattacharya
- Department of Chemistry, Syracuse
University, 111 College Place, Syracuse, New York 13224, United States
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse
University, 111 College Place, Syracuse, New York 13224, United States
| |
Collapse
|
7
|
Cristobal J, Nagorski RW, Richard JP. Utilization of Cofactor Binding Energy for Enzyme Catalysis: Formate Dehydrogenase-Catalyzed Reactions of the Whole NAD Cofactor and Cofactor Pieces. Biochemistry 2023; 62:2314-2324. [PMID: 37463347 PMCID: PMC10399567 DOI: 10.1021/acs.biochem.3c00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Indexed: 07/20/2023]
Abstract
The pressure to optimize enzymatic rate accelerations has driven the evolution of the induced-fit mechanism for enzyme catalysts where the binding interactions of nonreacting phosphodianion or adenosyl substrate pieces drive enzyme conformational changes to form protein substrate cages that are activated for catalysis. We report the results of experiments to test the hypothesis that utilization of the binding energy of the adenosine 5'-diphosphate ribose (ADP-ribose) fragment of the NAD cofactor to drive a protein conformational change activates Candida boidinii formate dehydrogenase (CbFDH) for catalysis of hydride transfer from formate to NAD+. The ADP-ribose fragment provides a >14 kcal/mol stabilization of the transition state for CbFDH-catalyzed hydride transfer from formate to NAD+. This is larger than the ca. 6 kcal/mol stabilization of the ground-state Michaelis complex between CbFDH and NAD+ (KNAD = 0.032 mM). The ADP, AMP, and ribose 5'-phosphate fragments of NAD+ activate CbFDH for catalysis of hydride transfer from formate to nicotinamide riboside (NR). At a 1.0 M standard state, these activators stabilize the hydride transfer transition states by ≈5.5 (ADP), 5.5 (AMP), and 4.4 (ribose 5'-phosphate) kcal/mol. We propose that activation by these cofactor fragments is partly or entirely due to the ion-pair interaction between the guanidino side chain cation of R174 and the activator phosphate anion. This substitutes for the interaction between the α-adenosyl pyrophosphate anion of the whole NAD+ cofactor that holds CbFDH in the catalytically active closed conformation.
Collapse
Affiliation(s)
- Judith
R. Cristobal
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| | - Richard W. Nagorski
- Department
of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United
States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United
States
| |
Collapse
|
8
|
Markin CJ, Mokhtari DA, Du S, Doukov T, Sunden F, Cook JA, Fordyce PM, Herschlag D. Decoupling of catalysis and transition state analog binding from mutations throughout a phosphatase revealed by high-throughput enzymology. Proc Natl Acad Sci U S A 2023; 120:e2219074120. [PMID: 37428919 PMCID: PMC10629569 DOI: 10.1073/pnas.2219074120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Using high-throughput microfluidic enzyme kinetics (HT-MEK), we measured over 9,000 inhibition curves detailing impacts of 1,004 single-site mutations throughout the alkaline phosphatase PafA on binding affinity for two transition state analogs (TSAs), vanadate and tungstate. As predicted by catalytic models invoking transition state complementary, mutations to active site and active-site-contacting residues had highly similar impacts on catalysis and TSA binding. Unexpectedly, most mutations to more distal residues that reduced catalysis had little or no impact on TSA binding and many even increased tungstate affinity. These disparate effects can be accounted for by a model in which distal mutations alter the enzyme's conformational landscape, increasing the occupancy of microstates that are catalytically less effective but better able to accommodate larger transition state analogs. In support of this ensemble model, glycine substitutions (rather than valine) were more likely to increase tungstate affinity (but not more likely to impact catalysis), presumably due to increased conformational flexibility that allows previously disfavored microstates to increase in occupancy. These results indicate that residues throughout an enzyme provide specificity for the transition state and discriminate against analogs that are larger only by tenths of an Ångström. Thus, engineering enzymes that rival the most powerful natural enzymes will likely require consideration of distal residues that shape the enzyme's conformational landscape and fine-tune active-site residues. Biologically, the evolution of extensive communication between the active site and remote residues to aid catalysis may have provided the foundation for allostery to make it a highly evolvable trait.
Collapse
Affiliation(s)
- Craig J. Markin
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | | | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Light Source, Stanford Linear Accelerator Centre National Accelerator Laboratory, Menlo Park, CA94025
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Jordan A. Cook
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Polly M. Fordyce
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94110
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| |
Collapse
|
9
|
Cristobal JR, Richard JP. Kinetics and mechanism for enzyme-catalyzed reactions of substrate pieces. Methods Enzymol 2023; 685:95-126. [PMID: 37245916 PMCID: PMC10251411 DOI: 10.1016/bs.mie.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The most important difference between enzyme and small molecule catalysts is that only enzymes utilize the large intrinsic binding energies of nonreacting portions of the substrate in stabilization of the transition state for the catalyzed reaction. A general protocol is described to determine the intrinsic phosphodianion binding energy for enzymatic catalysis of reactions of phosphate monoester substrates, and the intrinsic phosphite dianion binding energy in activation of enzymes for catalysis of phosphodianion truncated substrates, from the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates. The enzyme-catalyzed reactions so-far documented that utilize dianion binding interactions for enzyme activation; and, their phosphodianion truncated substrates are summarized. A model for the utilization of dianion binding interactions for enzyme activation is described. The methods for the determination of the kinetic parameters for enzyme-catalyzed reactions of whole and truncated substrates, from initial velocity data, are described and illustrated by graphical plots of kinetic data. The results of studies on the effect of site-directed amino acid substitutions at orotidine 5'-monophosphate decarboxylase, triosephosphate isomerase, and glycerol-3-phosphate dehydrogenase provide strong support for the proposal that these enzymes utilize binding interactions with the substrate phosphodianion to hold the protein catalysts in reactive closed conformations.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
10
|
Asadi M, Warshel A. Analyzing the Reaction of Orotidine 5'-Phosphate Decarboxylase as a Way to Examine Some Key Catalytic Proposals. J Am Chem Soc 2023; 145:1334-1341. [PMID: 36579957 PMCID: PMC11198739 DOI: 10.1021/jacs.2c11728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study analyzes the origin of enzyme catalysis by focusing on the reaction of orotidine 5'-phosphate decarboxylase (ODCase). This reaction involves an enormous catalytic effect of 23 kcal/mol that has been attributed to reactant state destabilization associated with the use of binding energy through the so-called Circe effect. However, our early studies and subsequent key experiments have shown that the presumed effect of the binding energy (namely, the strain exerted by a bond to a phosphate group) does not contribute to the catalysis. In this study, we perform quantitative empirical valence bond calculations that reproduce the catalytic effect of ODCase and the effect of removing the phosphate side chain. The calculations demonstrate that the effect of the phosphate is due to a change in reorganization energy and should not be described as an induced fit effect. Similarly, we show that the overall catalytic effect is due to electrostatic transition state stabilization, which again reflects the smaller reorganization energy in the enzyme than in water. We also elaborate on the problems with the induced fit proposal, including the fact that it does not serve to tell us what the actual origin of the action of the catalytic effect is. In addition to the above points, we use this paper to discuss misconceptions about the meaning of the preorganization effect, as well as other misunderstandings of what is being done in consistent calculations of enzyme catalysis.
Collapse
Affiliation(s)
- Mojgan Asadi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
11
|
Evolution of Ceftriaxone Resistance of Penicillin-Binding Proteins 2 Revealed by Molecular Modeling. Int J Mol Sci 2022; 24:ijms24010176. [PMID: 36613627 PMCID: PMC9820184 DOI: 10.3390/ijms24010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Penicillin-binding proteins 2 (PBP2) are critically important enzymes in the formation of the bacterial cell wall. Inhibition of PBP2 is utilized in the treatment of various diseases, including gonorrhea. Ceftriaxone is the only drug used to treat gonorrhea currently, and recent growth in PBP2 resistance to this antibiotic is a serious threat to human health. Our study reveals mechanistic aspects of the inhibition reaction of PBP2 from the wild-type FA19 strain and mutant 35/02 and H041 strains of Neisseria Gonorrhoeae by ceftriaxone. QM(PBE0-D3/6-31G**)/MM MD simulations show that the reaction mechanism for the wild-type PBP2 consists of three elementary steps including nucleophilic attack, C-N bond cleavage in the β-lactam ring and elimination of the leaving group in ceftriaxone. In PBP2 from the mutant strains, the second and third steps occur simultaneously. For all considered systems, the acylation rate is determined by the energy barrier of the first step that increases in the order of PBP2 from FA19, 35/02 and H041 strains. Dynamic behavior of ES complexes is analyzed using geometry and electron density features including Fukui electrophilicity index and Laplacian of electron density maps. It reveals that more efficient activation of the carbonyl group of the antibiotic leads to the lower energy barrier of nucleophilic attack and larger stabilization of the first reaction intermediate. Dynamical network analysis of MD trajectories explains the differences in ceftriaxone binding affinity: in PBP2 from the wild-type strain, the β3-β4 loop conformation facilitates substrate binding, whereas in PBP2 from the mutant strains, it exists in the conformation that is unfavorable for complex formation. Thus, we clarify that the experimentally observed decrease in the second-order rate constant of acylation (k2/KS) in PBP2 from the mutant strains is due to both a decrease in the acylation rate constant k2 and an increase in the dissociation constant KS.
Collapse
|
12
|
Sarhangi SM, Matyushov DV. Theory of Protein Charge Transfer: Electron Transfer between Tryptophan Residue and Active Site of Azurin. J Phys Chem B 2022; 126:10360-10373. [PMID: 36459590 DOI: 10.1021/acs.jpcb.2c05258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
One reaction step in the conductivity relay of azurin, electron transfer between the Cu-based active site and the tryptophan residue, is studied theoretically and by classical molecular dynamics simulations. Oxidation of tryptophan results in electrowetting of this residue. This structural change makes the free energy surfaces of electron transfer nonparabolic as described by the Q-model of electron transfer. We analyze the medium dynamical effect on protein electron transfer produced by coupled Stokes-shift dynamics and the dynamics of the donor-acceptor distance modulating electron tunneling. The equilibrium donor-acceptor distance falls in the plateau region of the rate constant, where it is determined by the protein-water dynamics, and the probability of electron tunneling does not affect the rate. The crossover distance found here puts most intraprotein electron-transfer reactions under the umbrella of dynamical control. The crossover between the medium-controlled and tunneling-controlled kinetics is combined with the effect of the protein-water medium on the activation barrier to formulate principles of tunability of protein-based charge-transfer chains. The main principle in optimizing the activation barrier is the departure from the Gaussian-Gibbsian statistics of fluctuations promoting activated transitions. This is achieved either by incomplete (nonergodic) sampling, breaking the link between the Stokes-shift and variance reorganization energies, or through wetting-induced structural changes of the enzyme's active site.
Collapse
Affiliation(s)
- Setare Mostajabi Sarhangi
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona85287-1504, United States
| | - Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona85287-1504, United States
| |
Collapse
|
13
|
Fernandez P, Richard JP. Adenylate Kinase-Catalyzed Reactions of AMP in Pieces: Specificity for Catalysis at the Nucleoside Activator and Dianion Catalytic Sites. Biochemistry 2022; 61:2766-2775. [PMID: 36413937 PMCID: PMC9731266 DOI: 10.1021/acs.biochem.2c00531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The pressure to optimize the enzymatic rate acceleration for adenylate kinase (AK)-catalyzed phosphoryl transfer has led to the evolution of an induced-fit mechanism, where the binding energy from interactions between the protein and substrate adenosyl group is utilized to drive a protein conformational change that activates the enzyme for catalysis. The adenine group of adenosine contributes 11.8 kcal mol-1 to the total ≥14.7 kcal mol-1 adenosine stabilization of the transition state for AK-catalyzed phosphoryl transfer to AMP. The relative third-order rate constants for activation of adenylate kinase, by the C-5 truncated adenosine 1-(β-d-erythrofuranosyl)adenine (EA), for catalysis of phosphoryl transfer from ATP to phosphite dianion (HP, kcat/KHPKAct = 260 M-2 s-1), fluorophosphate (47 M-2 s-1), and phosphate (9.6 M-2 s-1), show that substitution of -F for -H and of -OH for -H at HP results, respectively, in decreases in the reactivity of AK for catalysis of phosphoryl transfer due to polar and steric effects of the -F and -OH substituents. The addition of a 5'-CH2OH to the EA activator results in a 3.0 kcal mol-1 destabilization of the transition state for AK-activated phosphoryl transfer to HP due to a steric effect. This is smaller than the 8.3 kcal mol-1 steric effect of the 5'-CH2OH substituent at OMP on HP-activated OMPDC-catalyzed decarboxylation of 1-(β-d-erythrofuranosyl)orotate. The 2'-OH ribosyl substituent shows significant interactions with the transition states for AK-catalyzed phosphoryl transfer from ATP to AMP and for adenosine-activated AK-catalyzed phosphoryl transfer from ATP to HP.
Collapse
Affiliation(s)
- Patrick
L. Fernandez
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York14260−3000, United States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York14260−3000, United States
| |
Collapse
|
14
|
Rational Engineering of 3α-Hydroxysteroid Dehydrogenase/Carbonyl Reductase for a Biomimetic Nicotinamide Mononucleotide Cofactor. Catalysts 2022. [DOI: 10.3390/catal12101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enzymes are powerful biological catalysts for natural substrates but they have low catalytic efficiency for non-natural substrates. Protein engineering can be used to optimize enzymes for catalysis and stability. 3α-Hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) catalyzes the oxidoreduction reaction of NAD+ with androsterone. Based on the structure and catalytic mechanism, we mutated the residues of T11, I13, D41, A70, and I112 and they interacted with different portions of NAD+ to switch cofactor specificity to biomimetic cofactor nicotinamide mononucleotide (NMN+). Compared to wild-type 3α-HSD/CR, the catalytic efficiency of these mutants for NAD+ decreased significantly except for the T11 mutants but changed slightly for NMN+ except for the A70K mutant. The A70K mutant increased the catalytic efficiency for NMN+ by 8.7-fold, concomitant with a significant decrease in NAD+ by 1.4 × 104-fold, resulting in 9.6 × 104-fold cofactor specificity switch toward NMN+ over NAD+. Meanwhile, the I112K variant increased the thermal stability and changed to a three-state transition from a two-state transition of thermal unfolding of wild-type 3α-HSD/CR by differential scanning fluorimetry. Molecular docking analysis indicated that mutations on these residues affect the position and conformation of the docked NAD+ and NMN+, thereby affecting their activity. A70K variant sterically blocks the binding with NAD+, restores the H-bonding interactions of catalytic residues of Y155 and K159 with NMN+, and enhances the catalytic efficiency for NMN+.
Collapse
|
15
|
Gao S, Zhang W, Barrow SL, Iavarone AT, Klinman JP. Temperature-dependent hydrogen deuterium exchange shows impact of analog binding on adenosine deaminase flexibility but not embedded thermal networks. J Biol Chem 2022; 298:102350. [PMID: 35933011 PMCID: PMC9483566 DOI: 10.1016/j.jbc.2022.102350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
The analysis of hydrogen deuterium exchange by mass spectrometry as a function of temperature and mutation has emerged as a generic and efficient tool for the spatial resolution of protein networks that are proposed to function in the thermal activation of catalysis. In this work, we extend temperature-dependent hydrogen deuterium exchange from apo-enzyme structures to protein-ligand complexes. Using adenosine deaminase as a prototype, we compared the impacts of a substrate analog (1-deaza-adenosine) and a very tight-binding inhibitor/transition state analog (pentostatin) at single and multiple temperatures. At a single temperature, we observed different hydrogen deuterium exchange-mass spectrometry properties for the two ligands, as expected from their 106-fold differences in strength of binding. By contrast, analogous patterns for temperature-dependent hydrogen deuterium exchange mass spectrometry emerge in the presence of both 1-deaza-adenosine and pentostatin, indicating similar impacts of either ligand on the enthalpic barriers for local protein unfolding. We extended temperature-dependent hydrogen deuterium exchange to a function-altering mutant of adenosine deaminase in the presence of pentostatin and revealed a protein thermal network that is highly similar to that previously reported for the apo-enzyme (Gao et al., 2020, JACS 142, 19936-19949). Finally, we discuss the differential impacts of pentostatin binding on overall protein flexibility versus site-specific thermal transfer pathways in the context of models for substrate-induced changes to a distributed protein conformational landscape that act in synergy with embedded protein thermal networks to achieve efficient catalysis.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
| | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Samuel L Barrow
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anthony T Iavarone
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
16
|
Reetz M. Witnessing the Birth of Directed Evolution of Stereoselective Enzymes as Catalysts in Organic Chemistry. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Reetz M. Making Enzymes Suitable for Organic Chemistry by Rational Protein Design. Chembiochem 2022; 23:e202200049. [PMID: 35389556 PMCID: PMC9401064 DOI: 10.1002/cbic.202200049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/07/2022] [Indexed: 11/25/2022]
Abstract
This review outlines recent developments in protein engineering of stereo- and regioselective enzymes, which are of prime interest in organic and pharmaceutical chemistry as well as biotechnology. The widespread application of enzymes was hampered for decades due to limited enantio-, diastereo- and regioselectivity, which was the reason why most organic chemists were not interested in biocatalysis. This attitude began to change with the advent of semi-rational directed evolution methods based on focused saturation mutagenesis at sites lining the binding pocket. Screening constitutes the labor-intensive step (bottleneck), which is the reason why various research groups are continuing to develop techniques for the generation of small and smart mutant libraries. Rational enzyme design, traditionally an alternative to directed evolution, provides small collections of mutants which require minimal screening. This approach first focused on thermostabilization, and did not enter the field of stereoselectivity until later. Computational guides such as the Rosetta algorithms, HotSpot Wizard metric, and machine learning (ML) contribute significantly to decision making. The newest advancements show that semi-rational directed evolution such as CAST/ISM and rational enzyme design no longer develop on separate tracks, instead, they have started to merge. Indeed, researchers utilizing the two approaches have learned from each other. Today, the toolbox of organic chemists includes enzymes, primarily because the possibility of controlling stereoselectivity by protein engineering has ensured reliability when facing synthetic challenges. This review was also written with the hope that undergraduate and graduate education will include enzymes more so than in the past.
Collapse
Affiliation(s)
- Manfred Reetz
- Max-Planck-Institut fur KohlenforschungMülheim an der RuhrGermany
| |
Collapse
|
18
|
Abstract
Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding. A seminal step in the development of modern enzyme catalysts was the evolution of enzymes that couple substrate binding to a conformational change. These include enzymes that function in glycolysis (triosephosphate isomerase), the biosynthesis of lipids (glycerol phosphate dehydrogenase), the hexose monophosphate shunt (6-phosphogluconate dehydrogenase), and the mevalonate pathway (isopentenyl diphosphate isomerase), catalyze the final step in the biosynthesis of pyrimidine nucleotides (orotidine monophosphate decarboxylase), and regulate the cellular levels of adenine nucleotides (adenylate kinase). The evolution of enzymes that undergo ligand-driven conformational changes to form active protein-substrate cages is proposed to proceed by selection of variants, in which the selected side chain substitutions destabilize a second protein conformer that shows compensating enhanced binding interactions with the substrate. The advantages inherent to enzymes that incorporate a conformational change into the catalytic cycle provide a strong driving force for the evolution of flexible protein folds such as the TIM barrel. The appearance of these folds represented a watershed event in enzyme evolution that enabled the rapid propagation of enzyme activities within enzyme superfamilies.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
19
|
Robertson AJ, Cruz-Navarrete FA, Wood HP, Vekaria N, Hounslow AM, Bisson C, Cliff MJ, Baxter NJ, Waltho JP. An Enzyme with High Catalytic Proficiency Utilizes Distal Site Substrate Binding Energy to Stabilize the Closed State but at the Expense of Substrate Inhibition. ACS Catal 2022; 12:3149-3164. [PMID: 35692864 PMCID: PMC9171722 DOI: 10.1021/acscatal.1c05524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/10/2022] [Indexed: 02/05/2023]
Abstract
Understanding the factors that underpin the enormous catalytic proficiencies of enzymes is fundamental to catalysis and enzyme design. Enzymes are, in part, able to achieve high catalytic proficiencies by utilizing the binding energy derived from nonreacting portions of the substrate. In particular, enzymes with substrates containing a nonreacting phosphodianion group coordinated in a distal site have been suggested to exploit this binding energy primarily to facilitate a conformational change from an open inactive form to a closed active form, rather than to either induce ground state destabilization or stabilize the transition state. However, detailed structural evidence for the model is limited. Here, we use β-phosphoglucomutase (βPGM) to investigate the relationship between binding a phosphodianion group in a distal site, the adoption of a closed enzyme form, and catalytic proficiency. βPGM catalyzes the isomerization of β-glucose 1-phosphate to glucose 6-phosphate via phosphoryl transfer reactions in the proximal site, while coordinating a phosphodianion group of the substrate(s) in a distal site. βPGM has one of the largest catalytic proficiencies measured and undergoes significant domain closure during its catalytic cycle. We find that side chain substitution at the distal site results in decreased substrate binding that destabilizes the closed active form but is not sufficient to preclude the adoption of a fully closed, near-transition state conformation. Furthermore, we reveal that binding of a phosphodianion group in the distal site stimulates domain closure even in the absence of a transferring phosphoryl group in the proximal site, explaining the previously reported β-glucose 1-phosphate inhibition. Finally, our results support a trend whereby enzymes with high catalytic proficiencies involving phosphorylated substrates exhibit a greater requirement to stabilize the closed active form.
Collapse
Affiliation(s)
- Angus J. Robertson
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Henry P. Wood
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Nikita Vekaria
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Andrea M. Hounslow
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Claudine Bisson
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
20
|
Wang Y, Rickhaus M, Blacque O, Baldridge KK, Juríček M, Siegel JS. Cooperative Weak Dispersive Interactions Actuate Catalysis in a Shape-Selective Abiological Racemase. J Am Chem Soc 2022; 144:2679-2684. [PMID: 35120406 PMCID: PMC8855437 DOI: 10.1021/jacs.1c11032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
A simple abiological
host–guest system demonstrates racemase
activity with catalytic rate enhancements of 104 without
employing traditional functional groups. Cooperative weak interactions
enhanced through shape-complementarity between the catalyst active
site and the reaction transition state drive this activity, as proposed
by Pauling for enzymes. In analogy to the Jencks’ concept of
catalytic antibodies, it is shown that a hapten resembling the planar
transition state of the bowl inversion acts as a potent inhibitor
of this catalytic process. In contrast, no substrate/product inhibition
is detected, and a relatively weak binding of the substrate is observed
(Ka ≈ 102 M–1 at 293 K). This simple box-and-bowl system demonstrates that shape
selectivity arising from cooperative dispersive forces suffices for
the emergence of a catalytic system with an enzyme-like thermodynamic
profile.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kim K Baldridge
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| | - Michal Juríček
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jay S Siegel
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China
| |
Collapse
|
21
|
Exploring the Catalytic Mechanism of the RNA Cap Modification by nsp16-nsp10 Complex of SARS-CoV-2 through a QM/MM Approach. Int J Mol Sci 2021; 23:ijms23010300. [PMID: 35008724 PMCID: PMC8745711 DOI: 10.3390/ijms23010300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
The inhibition of key enzymes that may contain the viral replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have assumed central importance in drug discovery projects. Nonstructural proteins (nsps) are essential for RNA capping and coronavirus replication since it protects the virus from host innate immune restriction. In particular, nonstructural protein 16 (nsp16) in complex with nsp10 is a Cap-0 binding enzyme. The heterodimer formed by nsp16-nsp10 methylates the 5′-end of virally encoded mRNAs to mimic cellular mRNAs and thus it is one of the enzymes that is a potential target for antiviral therapy. In this study, we have evaluated the mechanism of the 2′-O methylation of the viral mRNA cap using hybrid quantum mechanics/molecular mechanics (QM/MM) approach. It was found that the calculated free energy barriers obtained at M062X/6-31+G(d,p) is in agreement with experimental observations. Overall, we provide a detailed molecular analysis of the catalytic mechanism involving the 2′-O methylation of the viral mRNA cap and, as expected, the results demonstrate that the TS stabilization is critical for the catalysis.
Collapse
|
22
|
Cristobal JR, Brandão TAS, Reyes AC, Richard JP. Protein-Ribofuranosyl Interactions Activate Orotidine 5'-Monophosphate Decarboxylase for Catalysis. Biochemistry 2021; 60:3362-3373. [PMID: 34726391 DOI: 10.1021/acs.biochem.1c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of a global, substrate-driven, enzyme conformational change in enabling the extraordinarily large rate acceleration for orotidine 5'-monophosphate decarboxylase (OMPDC)-catalyzed decarboxylation of orotidine 5'-monophosphate (OMP) is examined in experiments that focus on the interactions between OMPDC and the ribosyl hydroxyl groups of OMP. The D37 and T100' side chains of OMPDC interact, respectively, with the C-3' and C-2' hydroxyl groups of enzyme-bound OMP. D37G and T100'A substitutions result in 1.4 kcal/mol increases in the activation barrier ΔG⧧ for catalysis of decarboxylation of the phosphodianion-truncated substrate 1-(β-d-erythrofuranosyl)orotic acid (EO) but result in larger 2.1-2.9 kcal/mol increases in ΔG⧧ for decarboxylation of OMP and for phosphite dianion-activated decarboxylation of EO. This shows that these substitutions reduce transition-state stabilization by the Q215, Y217, and R235 side chains at the dianion binding site. The D37G and T100'A substitutions result in <1.0 kcal/mol increases in ΔG⧧ for activation of OMPDC-catalyzed decarboxylation of the phosphoribofuranosyl-truncated substrate FO by phosphite dianions. Experiments to probe the effect of D37 and T100' substitutions on the kinetic parameters for d-glycerol 3-phosphate and d-erythritol 4-phosphate activators of OMPDC-catalyzed decarboxylation of FO show that ΔG⧧ for sugar phosphate-activated reactions is increased by ca. 2.5 kcal/mol for each -OH interaction eliminated by D37G or T100'A substitutions. We conclude that the interactions between the D37 and T100' side chains and ribosyl or ribosyl-like hydroxyl groups are utilized to activate OMPDC for catalysis of decarboxylation of OMP, EO, and FO.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tiago A S Brandão
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
23
|
Fernandez PL, Richard JP. Adenylate Kinase-Catalyzed Reaction of AMP in Pieces: Enzyme Activation for Phosphoryl Transfer to Phosphite Dianion. Biochemistry 2021; 60:2672-2676. [PMID: 34435776 DOI: 10.1021/acs.biochem.1c00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of adenosine 5'-triphosphate (ATP) and adenosine 5'-monophosphate (AMP) to adenylate kinase (AdK) drives closure of lids over the substrate adenosyl groups. We test the hypothesis that this conformational change activates AdK for catalysis. The rate constants for Homo sapiens adenylate kinase 1 (HsAdK1)-catalyzed phosphoryl group transfer to AMP, kcat/Km = 7.0 × 106 M-1 s-1, and phosphite dianion, (kHPi)obs ≤1 × 10-4 M-1 s-1, show that the binding energy of the adenosyl group effects a ≥7.0 × 1010-fold rate acceleration of phosphoryl transfer from ATP. The third-order rate constant of kcat/KHPiKEA = 260 M-2 s-1 for 1-(β-d-erythrofuranosyl)adenine (EA)-activated phosphoryl transfer to phosphite dianion was determined, and the isohypophosphate reaction product characterized by 31P NMR. The results demonstrate the following: (i) a ≥14.7 kcal/mol stabilization of the transition state for phosphoryl transfer by the adenosyl group of AMP and a ≥2.6 × 106-fold rate acceleration from the EA-driven conformational change and (ii) the recovery of ≥8.7 kcal/mol of this transition state stabilization for EA-activated phosphoryl transfer from ATP to phosphite.
Collapse
Affiliation(s)
- Patrick L Fernandez
- Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
24
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
25
|
Richard JP, Cristobal JR, Amyes TL. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe. Acc Chem Res 2021; 54:2532-2542. [PMID: 33939414 PMCID: PMC8157535 DOI: 10.1021/acs.accounts.1c00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Linear free energy relationships (LFERs) for substituent effects on reactions that
proceed through similar transition states provide insight into transition state
structures. A classical approach to the analysis of LFERs showed that differences in the
slopes of Brønsted correlations for addition of substituted alkyl alcohols to
ring-substituted 1-phenylethyl carbocations and to the β-galactopyranosyl
carbocation intermediate of reactions catalyzed by β-galactosidase provide
evidence that the enzyme catalyst modifies the curvature of the energy surface at the
saddle point for the transition state for nucleophile addition. We have worked to
generalize the use of LFERs in the determination of enzyme mechanisms. The defining
property of enzyme catalysts is their specificity for binding the transition state with
a much higher affinity than the substrate. Triosephosphate isomerase (TIM), orotidine
5′-monophosphate decarboxylase (OMPDC), and glycerol 3-phosphate dehydrogenase
(GPDH) show effective catalysis of reactions of phosphorylated substrates and strong
phosphite dianion activation of reactions of phosphodianion truncated substrates, with
rate constants kcat/Km
(M–1 s–1) and
kcat/KdKHPi
(M–2 s–1), respectively. Good linear logarithmic
correlations, with a slope of 1.1, between these kinetic parameters determined for
reactions catalyzed by five or more variant forms of each catalyst are observed, where
the protein substitutions are mainly at side chains which function to stabilize the cage
complex between the enzyme and substrate. This shows that the enzyme-catalyzed reactions
of a whole substrate and substrate pieces proceed through transition states of similar
structures. It provides support for the proposal that the dianion binding energy of
whole phosphodianion substrates and of phosphite dianion is used to drive the conversion
of these protein catalysts from flexible and entropically rich ground states to stiff
and catalytically active Michaelis complexes that show the same activity toward
catalysis of the reactions of whole and phosphodianion truncated substrates. There is a
good linear correlation, with a slope of 0.73, between values of the dissociation
constants log Ki for release of the transition state analog
phosphoglycolate (PGA) trianion and log
kcat/Km for isomerization of
GAP for wild-type and variants of TIM. This correlation shows that the substituted amino
acid side chains act to stabilize the complex between TIM and the PGA trianion and that
ca. 70% of this stabilization is observed at the transition state for
substrate deprotonation. The correlation provides evidence that these side chains
function to enhance the basicity of the E165 side chain of TIM, which deprotonates the
bound carbon acid substrate. There is a good linear correlation, with a slope of 0.74,
between the values of ΔG‡ and
ΔG° determined by electron valence bond (EVB) calculations
to model deprotonation of dihydroxyacetone phosphate (DHAP) in water and when bound to
wild-type and variant forms of TIM to form the enediolate reaction intermediate. This
correlation provides evidence that the stabilizing interactions of the transition state
for TIM-catalyzed deprotonation of DHAP are optimized by placement of amino acid side
chains in positions that provide for the maximum stabilization of the charged reaction
intermediate, relative to the neutral substrate.
Collapse
Affiliation(s)
- John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Judith R. Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
26
|
Zalloum WA, Zalloum N. Comparative QM/MM Molecular Dynamics and Umbrella Sampling Simulations: Interaction of the Zinc-Bound Intermediate Gem-Diolate Trapoxin A Inhibitor and Acetyl-l-lysine Substrate with Histone Deacetylase 8. J Phys Chem B 2021; 125:5321-5337. [PMID: 33998791 DOI: 10.1021/acs.jpcb.1c01696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeting the genetic material without destruction is a priority to develop safe anticancer drugs. Histone deacetylase 8 (HDAC8), which is proved to be involved in carcinogenesis, is an enzyme associated with the chromatin for post-translational deacetylation of acetylated lysine. In this study, HDAC8 co-crystallized with the intermediate state tetrapeptide Trapoxin A (TA) inhibitor and the holoenzyme are utilized to find their conformational ensembles. Furthermore, the co-crystallized intermediate gem-diolate TA was used to find optimum interactions with the active site residues by conventional molecular dynamics (MD) simulation and QM/MM umbrella sampling. Finally, the intermediate state of the acetyl-l-lysine substrate was explored by QM/MM steered MD and compared to the binding of the intermediate state of the inhibitor. This research showed that HDAC8 is flexible and exists in conformational ensembles in its holoenzyme state. Binding of the intermediate state TA stabilizes its conformation. The optimum binding to the active site of HDAC8 for structures of gem-diolate TA (intermediate state) and acetyl-l-lysine (intermediate state) was determined according to the corresponding energy profiles. The use of these models will aid in the design of potentially reversible, potent, and selective inhibitors of HDAC8 for cancer treatment.
Collapse
Affiliation(s)
- Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O. Box 2882, Amman 11821, Jordan
| | - Needa Zalloum
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
27
|
Gardner SH, Reinhardt CJ, Chan J. Advances in Activity-Based Sensing Probes for Isoform-Selective Imaging of Enzymatic Activity. Angew Chem Int Ed Engl 2021; 60:5000-5009. [PMID: 32274846 PMCID: PMC7544620 DOI: 10.1002/anie.202003687] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Until recently, there were no generalizable methods for assessing the effects of post-translational regulation on enzymatic activity. Activity-based sensing (ABS) has emerged as a powerful approach for monitoring small-molecule and enzyme activities within living systems. Initial examples of ABS were applied for measuring general enzymatic activity; however, a recent focus has been placed on increasing the selectivity to monitor a single enzyme or isoform. The highest degree of selectivity is required for differentiating between isoforms, where the targets display significant structural similarities as a result of a gene duplication or alternative splicing. This Minireview highlights key examples of small-molecule isoform-selective probes with a focus on the relevance of isoform differentiation, design strategies to achieve selectivity, and applications in basic biology or in the clinic.
Collapse
Affiliation(s)
- Sarah H Gardner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher J Reinhardt
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
28
|
Fernandez PL, Nagorski RW, Cristobal JR, Amyes TL, Richard JP. Phosphodianion Activation of Enzymes for Catalysis of Central Metabolic Reactions. J Am Chem Soc 2021; 143:2694-2698. [PMID: 33560827 PMCID: PMC7919737 DOI: 10.1021/jacs.0c13423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The activation barriers ΔG⧧ for
kcat/Km for the reactions of
whole substrates catalyzed by 6-phosphogluconate dehydrogenase, glucose 6-phosphate
dehydrogenase, and glucose 6-phosphate isomerase are reduced by 11–13 kcal/mol by
interactions between the protein and the substrate phosphodianion. Between 4 and 6
kcal/mol of this dianion binding energy is expressed at the transition state for
phosphite dianion activation of the respective enzyme-catalyzed reactions of truncated
substrates d-xylonate or d-xylose. These and earlier results from
studies on β-phosphoglucomutase, triosephosphate isomerase, and glycerol
3-phosphate dehydrogenase define a cluster of six enzymes that catalyze reactions in
glycolysis or of glycolytic intermediates, and which utilize substrate dianion binding
energy for enzyme activation. Dianion-driven conformational changes, which convert
flexible open proteins to tight protein cages for the phosphorylated substrate, have
been thoroughly documented for five of these six enzymes. The clustering of metabolic
enzymes which couple phosphodianion-driven conformational changes to enzyme activation
suggests that this catalytic motif has been widely propagated in the proteome.
Collapse
Affiliation(s)
- Patrick L Fernandez
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Richard W Nagorski
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
29
|
Gardner SH, Reinhardt CJ, Chan J. Fortschritte bei aktivitätsbasierten Sonden für die isoformselektive Bildgebung enzymatischer Aktivität. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah H. Gardner
- Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Christopher J. Reinhardt
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jefferson Chan
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
30
|
Brandão TAS, Richard JP. Orotidine 5'-Monophosphate Decarboxylase: The Operation of Active Site Chains Within and Across Protein Subunits. Biochemistry 2020; 59:2032-2040. [PMID: 32374983 PMCID: PMC7476526 DOI: 10.1021/acs.biochem.0c00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The D37 and T100′
side chains of orotidine 5′-monophosphate
decarboxylase (OMPDC) interact with the C-3′ and C-2′
ribosyl hydroxyl groups, respectively, of the bound substrate. We
compare the intra-subunit interactions of D37 with the inter-subunit
interactions of T100′ by determining the effects of the D37G,
D37A, T100′G, and T100′A substitutions on the following:
(a) kcat and kcat/Km values for the OMPDC-catalyzed decarboxylations
of OMP and 5-fluoroorotidine 5′-monophosphate (FOMP) and (b)
the stability of dimeric OMPDC relative to the monomer. The D37G and
T100′A substitutions resulted in 2 kcal mol–1 increases in ΔG† for kcat/Km for the decarboxylation
of OMP, while the D37A and T100′G substitutions resulted in
larger 4 and 5 kcal mol–1 increases, respectively,
in ΔG†. The D37G and T100′A
substitutions both resulted in smaller 2 kcal mol–1 decreases in ΔG† for the
decarboxylation of FOMP compared to that of OMP. These results show
that the D37G and T100′A substitutions affect the barrier to
the chemical decarboxylation step while the D37A and T100′G
substitutions also affect the barrier to a slow, ligand-driven enzyme
conformational change. Substrate binding induces the movement of an
α-helix (G′98–S′106) toward the substrate
C-2′ ribosyl hydroxy bound at the main subunit. The T100′G
substitution destabilizes the enzyme dimer by 3.5 kcal mol–1 compared to the monomer, which is consistent with the known destabilization
of α-helices by the internal Gly side chains [Serrano, L., et
al. (1992) Nature, 356, 453–455].
We propose that the T100′G substitution weakens the α-helical
contacts at the dimer interface, which results in a decrease in the
dimer stability and an increase in the barrier to the ligand-driven
conformational change.
Collapse
Affiliation(s)
- Tiago A S Brandão
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - John P Richard
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
31
|
The role of ligand-gated conformational changes in enzyme catalysis. Biochem Soc Trans 2020; 47:1449-1460. [PMID: 31657438 PMCID: PMC6824834 DOI: 10.1042/bst20190298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 11/17/2022]
Abstract
Structural and biochemical studies on diverse enzymes have highlighted the importance of ligand-gated conformational changes in enzyme catalysis, where the intrinsic binding energy of the common phosphoryl group of their substrates is used to drive energetically unfavorable conformational changes in catalytic loops, from inactive open to catalytically competent closed conformations. However, computational studies have historically been unable to capture the activating role of these conformational changes. Here, we discuss recent experimental and computational studies, which can remarkably pinpoint the role of ligand-gated conformational changes in enzyme catalysis, even when not modeling the loop dynamics explicitly. Finally, through our joint analyses of these data, we demonstrate how the synergy between theory and experiment is crucial for furthering our understanding of enzyme catalysis.
Collapse
|
32
|
Prejanò M, Medina FE, Ramos MJ, Russo N, Fernandes PA, Marino T. How the Destabilization of a Reaction Intermediate Affects Enzymatic Efficiency: The Case of Human Transketolase. ACS Catal 2020; 10:2872-2881. [PMID: 33828899 PMCID: PMC8016368 DOI: 10.1021/acscatal.9b04690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Indexed: 12/16/2022]
Abstract
![]()
Atomic
resolution X-ray crystallography has shown that an intermediate
(the X5P-ThDP adduct) of the catalytic cycle of transketolase (TK)
displays a significant, putatively highly energetic, out-of-plane
distortion in a sp2 carbon
adjacent to a lytic bond, suggested to lower the barrier of the subsequent
step, and thus was postulated to embody a clear-cut demonstration
of the intermediate destabilization effect. The lytic
bond of the subsequent rate-limiting step was very elongated in the
X-ray structure (1.61 Å), which was proposed to be a consequence
of the out-of-plane distortion. Here we use high-level QM and QM/MM
calculations to study the intermediate destabilization effect. We show that the intrinsic energy penalty for the observed
distortion is small (0.2 kcal·mol–1) and that
the establishment of a favorable hydrogen bond within X5P-ThDP, instead
of enzyme steric strain, was found to be the main cause for the distortion.
As the net energetic effect of the distortion is small, the establishment
of the internal hydrogen bond (−0.6 kcal·mol–1) offsets the associated penalty. This makes the distorted structure
more stable than the nondistorted one. Even though the energy contributions
determined here are close to the accuracy of the computational methods
in estimating penalties for geometric distortions, our data show that
the intermediate destabilization effect provides
a small contribution to the observed reaction rate and does not represent
a catalytic effect that justifies the many orders of magnitude which
enzymes accelerate reaction rates. The results help to understand
the intrinsic enzymatic machinery behind enzyme’s amazing proficiency.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Fabiola E. Medina
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
33
|
da Costa CHS, Bonatto V, Dos Santos AM, Lameira J, Leitão A, Montanari CA. Evaluating QM/MM Free Energy Surfaces for Ranking Cysteine Protease Covalent Inhibitors. J Chem Inf Model 2020; 60:880-889. [PMID: 31944110 DOI: 10.1021/acs.jcim.9b00847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One tactic for cysteine protease inhibition is to form a covalent bond between an electrophilic atom of the inhibitor and the thiol of the catalytic cysteine. In this study, we evaluate the reaction free energy obtained from a hybrid quantum mechanical/molecular mechanical (QM/MM) free energy profile as a predictor of affinity for reversible, covalent inhibitors of rhodesain. We demonstrate that the reaction free energy calculated with the PM6/MM potential is in agreement with the experimental data and suggest that the free energy profile for covalent bond formation in a protein environment may be a useful tool for the inhibitor design.
Collapse
Affiliation(s)
- Clauber H S da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos , Universidade Federal do Pará , Rua Augusto Correa S/N , 66075-110 Belém , PA , Brazil
| | - Vinícius Bonatto
- Grupo de Quı́mica Medicinal do Instituto de Quı́mica de São Carlos da , Universidade de São Paulo, NEQUIMED/IQSC/USP , 13566-590 São Carlos , SP , Brazil
| | - Alberto M Dos Santos
- Laboratório de Planejamento e Desenvolvimento de Fármacos , Universidade Federal do Pará , Rua Augusto Correa S/N , 66075-110 Belém , PA , Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos , Universidade Federal do Pará , Rua Augusto Correa S/N , 66075-110 Belém , PA , Brazil.,Grupo de Quı́mica Medicinal do Instituto de Quı́mica de São Carlos da , Universidade de São Paulo, NEQUIMED/IQSC/USP , 13566-590 São Carlos , SP , Brazil
| | - Andrei Leitão
- Grupo de Quı́mica Medicinal do Instituto de Quı́mica de São Carlos da , Universidade de São Paulo, NEQUIMED/IQSC/USP , 13566-590 São Carlos , SP , Brazil
| | - Carlos A Montanari
- Grupo de Quı́mica Medicinal do Instituto de Quı́mica de São Carlos da , Universidade de São Paulo, NEQUIMED/IQSC/USP , 13566-590 São Carlos , SP , Brazil
| |
Collapse
|
34
|
Renko M, Fiedler M, Rutherford TJ, Schaefer JV, Plückthun A, Bienz M. Rotational symmetry of the structured Chip/LDB-SSDP core module of the Wnt enhanceosome. Proc Natl Acad Sci U S A 2019; 116:20977-20983. [PMID: 31570581 PMCID: PMC6800368 DOI: 10.1073/pnas.1912705116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Chip/LIM-domain binding protein (LDB)-single-stranded DNA-binding protein (SSDP) (ChiLS) complex controls numerous cell-fate decisions in animal cells, by mediating transcription of developmental control genes via remote enhancers. ChiLS is recruited to these enhancers by lineage-specific LIM-domain proteins that bind to its Chip/LDB subunit. ChiLS recently emerged as the core module of the Wnt enhanceosome, a multiprotein complex that primes developmental control genes for timely Wnt responses. ChiLS binds to NPFxD motifs within Pygopus (Pygo) and the Osa/ARID1A subunit of the BAF chromatin remodeling complex, which could synergize with LIM proteins in tethering ChiLS to enhancers. Chip/LDB and SSDP both contain N-terminal dimerization domains that constitute the bulk of their structured cores. Here, we report the crystal structures of these dimerization domains, in part aided by DARPin chaperones. We conducted systematic surface scanning by structure-designed mutations, followed by in vitro and in vivo binding assays, to determine conserved surface residues required for binding between Chip/LDB, SSDP, and Pygo-NPFxD. Based on this, and on the 4:2 (SSDP-Chip/LDB) stoichiometry of ChiLS, we derive a highly constrained structural model for this complex, which adopts a rotationally symmetrical SSDP2-LDB2-SSDP2 architecture. Integrity of ChiLS is essential for Pygo binding, and our mutational analysis places the NPFxD pockets on either side of the Chip/LDB dimer, each flanked by an SSDP dimer. The symmetry and multivalency of ChiLS underpin its function as an enhancer module integrating Wnt signals with lineage-specific factors to operate context-dependent transcriptional switches that are pivotal for normal development and cancer.
Collapse
Affiliation(s)
- Miha Renko
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Marc Fiedler
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Trevor J Rutherford
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Mariann Bienz
- Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, United Kingdom;
| |
Collapse
|
35
|
Kulkarni YS, Amyes TL, Richard JP, Kamerlin SCL. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase. J Am Chem Soc 2019; 141:16139-16150. [PMID: 31508957 PMCID: PMC7032883 DOI: 10.1021/jacs.9b08713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report results of detailed empirical valence bond simulations that model the effect of several amino acid substitutions on the thermodynamic (ΔG°) and kinetic activation (ΔG⧧) barriers to deprotonation of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) bound to wild-type triosephosphate isomerase (TIM), as well as to the K12G, E97A, E97D, E97Q, K12G/E97A, I170A, L230A, I170A/L230A, and P166A variants of this enzyme. The EVB simulations model the observed effect of the P166A mutation on protein structure. The E97A, E97Q, and E97D mutations of the conserved E97 side chain result in ≤1.0 kcal mol-1 decreases in the activation barrier for substrate deprotonation. The agreement between experimental and computed activation barriers is within ±1 kcal mol-1, with a strong linear correlation between ΔG⧧ and ΔG° for all 11 variants, with slopes β = 0.73 (R2 = 0.994) and β = 0.74 (R2 = 0.995) for the deprotonation of DHAP and GAP, respectively. These Brønsted-type correlations show that the amino acid side chains examined in this study function to reduce the standard-state Gibbs free energy of reaction for deprotonation of the weak α-carbonyl carbon acid substrate to form the enediolate phosphate reaction intermediate. TIM utilizes the cationic side chain of K12 to provide direct electrostatic stabilization of the enolate oxyanion, and the nonpolar side chains of P166, I170, and L230 are utilized for the construction of an active-site cavity that provides optimal stabilization of the enediolate phosphate intermediate relative to the carbon acid substrate.
Collapse
Affiliation(s)
- Yashraj S Kulkarni
- Science for Life Laboratory, Department of Chemistry - BMC , Uppsala University, BMC , Box 576, S-751 23 Uppsala , Sweden
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Chemistry - BMC , Uppsala University, BMC , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
36
|
Goryanova B, Amyes TL, Richard JP. Role of the Carboxylate in Enzyme-Catalyzed Decarboxylation of Orotidine 5'-Monophosphate: Transition State Stabilization Dominates Over Ground State Destabilization. J Am Chem Soc 2019; 141:13468-13478. [PMID: 31365243 PMCID: PMC6735427 DOI: 10.1021/jacs.9b04823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Kinetic
parameters kex (s–1)
and kex/Kd (M–1 s–1) are reported
for exchange
for deuterium in D2O of the C-6 hydrogen of 5-fluororotidine
5′-monophosphate (FUMP) catalyzed by the Q215A,
Y217F, and Q215A/Y217F variants of yeast orotidine 5′-monophosphate
decarboxylase (ScOMPDC) at pD 8.1, and by the Q215A
variant at pD 7.1–9.3. The pD rate profiles for wildtype ScOMPDC and the Q215A variant are identical, except for
a 2.5 log unit downward displacement in the profile for the Q215A
variant. The Q215A, Y217F and Q215A/Y217F substitutions cause 1.3–2.0
kcal/mol larger increases in the activation barrier for wildtype ScOMPDC-catalyzed deuterium exchange compared with decarboxylation,
because of the stronger apparent side chain interaction with the transition
state for the deuterium exchange reaction. The stabilization of the
transition state for the OMPDC-catalyzed deuterium exchange reaction
of FUMP is ca. 19 kcal/mol smaller than the transition
state for decarboxylation of OMP, and ca. 8 kcal/mol
smaller than for OMPDC-catalyzed deprotonation of FUMP to form the vinyl carbanion intermediate common to OMPDC-catalyzed
reactions OMP/FOMP and UMP/FUMP. We propose
that ScOMPDC shows similar stabilizing interactions
with the common portions of decarboxylation and deprotonation transition
states that lead to formation of this vinyl carbanion intermediate,
and that there is a large ca. (19–8) = 11 kcal/mol stabilization
of the former transition state from interactions with the nascent
CO2 of product. The effects of Q215A and Y217F substitutions
on kcat/Km for decarboxylation of OMP are expressed mainly as
an increase in Km for the reactions catalyzed
by the variant enzymes, while the effects on kex/Kd for deuterium exchange are
expressed mainly as an increase in kex. This shows that the Q215 and Y217 side chains stabilize the Michaelis
complex to OMP for the decarboxylation reaction, compared
with the complex to FUMP for the deuterium exchange reaction.
These results provide strong support for the conclusion that interactions
which stabilize the transition state for ScOMPDC-catalyzed
decarboxylation at a nonpolar enzyme active site dominate over interactions
that destabilize the ground-state Michaelis complex.
Collapse
Affiliation(s)
- Bogdana Goryanova
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
37
|
Gair JJ, Qiu Y, Khade RL, Chan NH, Filatov AS, Zhang Y, Lewis JC. Synthesis, Characterization, and Theoretical Investigation of a Transition State Analogue for Proton Transfer during C–H Activation by a Rhodium-Pincer Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joseph J. Gair
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yehao Qiu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Rahul L. Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Natalie H. Chan
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Alexander S. Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
38
|
Hwang CC, Chang PR, Hsieh CL, Chou YH, Wang TP. Thermodynamic analysis of remote substrate binding energy in 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis. Chem Biol Interact 2019; 302:183-189. [PMID: 30794798 DOI: 10.1016/j.cbi.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
Abstract
The binding energy of enzyme and substrate is used to lower the activation energy for the catalytic reaction. 3α-HSD/CR uses remote binding interactions to accelerate the reaction of androsterone with NAD+. Here, we examine the enthalpic and entropic components of the remote binding energy in the 3α-HSD/CR-catalyzed reaction of NAD+ with androsterone versus the substrate analogs, 2-decalol and cyclohexanol, by analyzing the temperature-dependent kinetic parameters through steady-state kinetics. The effects of temperature on kcat/Km for 3α-HSD/CR acting on androsterone, 2-decalol, and cyclohexanol show the reactions are entropically favorable but enthalpically unfavorable. Thermodynamic analysis from the temperature-dependent values of Km and kcat shows the binding of the E-NAD+ complex with either 2-decalol or cyclohexanol to form the ternary complex is endothermic and entropy-driven, and the subsequent conversion to the transition state is both enthalpically and entropically unfavorable. Hence, solvation entropy may play an important role in the binding process through both the desolvation of the solute molecules and the release of bound water molecules from the active site into bulk solvent. As compared to the thermodynamic parameters of 3α-HSD/CR acting on cyclohexanol, the hydrophobic interaction of the B-ring of steroids with the active site of 3α-HSD/CR contributes to catalysis by increasing exclusively the entropy of activation (ΔTΔS‡ = 1.8 kcal/mol), while the BCD-ring of androsterone significantly lowers ΔΔH‡ by 10.4 kcal/mol with a slight entropic penalty of -1.9 kcal/mol. Therefore, the remote non-reacting sites of androsterone may induce a conformational change of the substrate binding loop with an entropic cost for better interaction with the transition state to decrease the enthalpy of activation, significantly increasing catalytic efficiency.
Collapse
Affiliation(s)
- Chi-Ching Hwang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| | - Pei-Ru Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Lin Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yun-Hao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
39
|
Abstract
![]()
The enormous rate accelerations observed
for many enzyme catalysts
are due to strong stabilizing interactions between the protein and
reaction transition state. The defining property of these catalysts
is their specificity for binding the transition state with a much
higher affinity than substrate. Experimental results are presented
which show that the phosphodianion-binding energy of phosphate monoester
substrates is used to drive conversion of their protein catalysts
from flexible and entropically rich ground states to stiff and catalytically
active Michaelis complexes. These results are generalized to other
enzyme-catalyzed reactions. The existence of many enzymes in flexible,
entropically rich, and inactive ground states provides a mechanism
for utilization of ligand-binding energy to mold these catalysts into
stiff and active forms. This reduces the substrate-binding energy
expressed at the Michaelis complex, while enabling the full and specific
expression of large transition-state binding energies. Evidence is
presented that the complexity of enzyme conformational changes increases
with increases in the enzymatic rate acceleration. The requirement
that a large fraction of the total substrate-binding energy be utilized
to drive conformational changes of floppy enzymes is proposed to favor
the selection and evolution of protein folds with multiple flexible
unstructured loops, such as the TIM-barrel fold. The effect of protein
motions on the kinetic parameters for enzymes that undergo ligand-driven
conformational changes is considered. The results of computational
studies to model the complex ligand-driven conformational change in
catalysis by triosephosphate isomerase are presented.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry , SUNY, University at Buffalo , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
40
|
Reyes AC, Amyes TL, Richard JP. Primary Deuterium Kinetic Isotope Effects: A Probe for the Origin of the Rate Acceleration for Hydride Transfer Catalyzed by Glycerol-3-Phosphate Dehydrogenase. Biochemistry 2018; 57:4338-4348. [PMID: 29927590 PMCID: PMC6091503 DOI: 10.1021/acs.biochem.8b00536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Large
primary deuterium kinetic isotope effects (1° DKIEs)
on enzyme-catalyzed hydride transfer may be observed when the transferred
hydride tunnels through the energy barrier. The following 1°
DKIEs on kcat/Km and relative reaction driving force are reported for wild-type and
mutant glycerol-3-phosphate dehydrogenase (GPDH)-catalyzed reactions
of NADL (L = H, D): wild-type GPDH, ΔΔG⧧ = 0 kcal/mol, 1° DKIE = 1.5;
N270A, 5.6 kcal/mol, 3.1; R269A, 9.1 kcal/mol, 2.8; R269A + 1.0 M
guanidine, 2.4 kcal/mol, 2.7; R269A/N270A, 11.5 kcal/mol, 2.4. Similar
1° DKIEs were observed on kcat. The
narrow range of 1° DKIEs (2.4–3.1) observed for a 9.1
kcal/mol change in reaction driving force provides strong evidence
that these are intrinsic 1° DKIEs on rate-determining hydride
transfer. Evidence is presented that the intrinsic DKIE on wild-type
GPDH-catalyzed reduction of DHAP lies in this range. A similar range
of 1° DKIEs (2.4–2.9) on (kcat/KGA, M–1 s–1) was reported for dianion-activated hydride transfer from NADL to
glycolaldehyde (GA) [Reyes, A. C.; Amyes, T. L.; Richard, J.
P. J. Am. Chem. Soc.2016, 138, 14526–14529].
These 1° DKIEs are much smaller than those observed for enzyme-catalyzed
hydrogen transfer that occurs mainly by quantum mechanical tunneling.
These results support the conclusion that the rate acceleration for
GPDH-catalyzed reactions is due to the stabilization of the transition
state for hydride transfer by interactions with the protein catalyst.
The small 1° DKIEs reported for mutant GPDH-catalyzed and for
wild-type dianion-activated reactions are inconsistent with a model
where the dianion binding energy is utilized in the stabilization
of a tunneling ready state.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
41
|
Richard JP, Amyes TL, Reyes AC. Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis. Acc Chem Res 2018; 51:960-969. [PMID: 29595949 PMCID: PMC6016548 DOI: 10.1021/acs.accounts.8b00059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The mystery associated with catalysis by what were once regarded
as protein black boxes, diminished with the X-ray crystallographic
determination of the three-dimensional structures of enzyme–substrate
complexes. The report that several high-resolution X-ray crystal structures
of orotidine 5′-monophosphate decarboxylase (OMPDC) failed
to provide a consensus mechanism for enzyme-catalyzed decarboxylation
of OMP to form uridine 5′-monophosphate, therefore, provoked
a flurry of controversy. This controversy was fueled by the enormous
1023-fold rate acceleration for this enzyme, which had
“jolted many biochemists’ assumptions about
the catalytic potential of enzymes.” Our studies on
the mechanism of action of OMPDC provide strong evidence that catalysis
by this enzyme is not fundamentally different from less proficient
catalysts, while highlighting important architectural elements that
enable a peak level of performance. Many enzymes undergo substrate-induced
protein conformational changes that trap their substrates in solvent
occluded protein cages, but the conformational change induced by ligand
binding to OMPDC is incredibly complex, as required to enable the
development of 22 kcal/mol of stabilizing binding interactions with
the phosphodianion and ribosyl substrate fragments of OMP. The binding
energy from these fragments is utilized to activate OMPDC for catalysis
of decarboxylation at the orotate fragment of OMP, through the creation
of a tight, catalytically active, protein cage from the floppy, open,
unliganded form of OMPDC. Such utilization of binding energy for ligand-driven
conformational changes provides a general mechanism to obtain specificity
in transition state binding. The rate enhancement that results from
the binding of carbon acid substrates to enzymes is partly due to
a reduction in the carbon acid pKa that
is associated with ligand binding. The binding of UMP to OMPDC results
in an unusually large >12 unit decrease in the pKa = 29 for abstraction of the C-6 substrate hydrogen,
due to stabilization of an enzyme-bound vinyl carbanion, which is
also an intermediate of OMPDC-catalyzed decarboxylation. The protein–ligand
interactions operate to stabilize the vinyl carbanion at the enzyme
active site compared to aqueous solution, rather than to stabilize
the transition state for the concerted electrophilic displacement
of CO2 by H+ that avoids formation of this reaction
intermediate. There is evidence that OMPDC induces strain into the
bound substrate. The interaction between the amide side chain of Gln-215
from the phosphodianion gripper loop and the hydroxymethylene side
chain of Ser-154 from the pyrimidine umbrella of ScOMPDC position the amide side chain to interact with the phosphodianion
of OMP. There are no direct stabilizing interactions between dianion
gripper protein side chains Gln-215, Tyr-217, and Arg-235 and the
pyrimidine ring at the decarboxylation transition state. Rather these
side chains function solely to hold OMPDC in the catalytically active
closed conformation. The hydrophobic side chains that line the active
site of OMPDC in the region of the departing CO2 product
may function to stabilize the decarboxylation transition state by
providing hydrophobic solvation of this product.
Collapse
Affiliation(s)
- John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Archie C. Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
42
|
Kulkarni YS, Liao Q, Byléhn F, Amyes TL, Richard JP, Kamerlin SCL. Role of Ligand-Driven Conformational Changes in Enzyme Catalysis: Modeling the Reactivity of the Catalytic Cage of Triosephosphate Isomerase. J Am Chem Soc 2018. [PMID: 29516737 PMCID: PMC5867644 DOI: 10.1021/jacs.8b00251] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
We have previously performed empirical
valence bond calculations
of the kinetic activation barriers, ΔG‡calc, for the deprotonation of complexes
between TIM and the whole substrate glyceraldehyde-3-phosphate (GAP, Kulkarni et al.J.
Am. Chem. Soc.2017, 139, 10514–1052528683550). We now extend
this work to also study the deprotonation of the substrate pieces
glycolaldehyde (GA) and GA·HPi [HPi = phosphite
dianion]. Our combined calculations provide activation barriers, ΔG‡calc, for the TIM-catalyzed
deprotonation of GAP (12.9 ± 0.8 kcal·mol–1), of the substrate piece GA (15.0 ± 2.4 kcal·mol–1), and of the pieces GA·HPi (15.5 ± 3.5 kcal·mol–1). The effect of bound dianion on ΔG‡calc is small (≤2.6 kcal·mol–1), in comparison to the much larger 12.0 and 5.8 kcal·mol–1 intrinsic phosphodianion and phosphite dianion binding
energy utilized to stabilize the transition states for TIM-catalyzed
deprotonation of GAP and GA·HPi, respectively. This
shows that the dianion binding energy is essentially fully expressed
at our protein model for the Michaelis complex, where it is utilized
to drive an activating change in enzyme conformation. The results
represent an example of the synergistic use of results from experiments
and calculations to advance our understanding of enzymatic reaction
mechanisms.
Collapse
Affiliation(s)
- Yashraj S Kulkarni
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 Uppsala , Sweden
| | - Qinghua Liao
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 Uppsala , Sweden
| | - Fabian Byléhn
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 Uppsala , Sweden.,Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , United Kingdom
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 Uppsala , Sweden
| |
Collapse
|
43
|
Reyes AC, Amyes TL, Richard JP. A reevaluation of the origin of the rate acceleration for enzyme-catalyzed hydride transfer. Org Biomol Chem 2018; 15:8856-8866. [PMID: 28956050 DOI: 10.1039/c7ob01652b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is no consensus of opinion on the origin of the large rate accelerations observed for enzyme-catalyzed hydride transfer. The interpretation of recent results from studies on hydride transfer reactions catalyzed by alcohol dehydrogenase (ADH) focus on the proposal that the effective barrier height is reduced by quantum-mechanical tunneling through the energy barrier. This interpretation contrasts sharply with the notion that enzymatic rate accelerations are obtained through direct stabilization of the transition state for the nonenzymatic reaction in water. The binding energy of the dianion of substrate DHAP provides 11 kcal mol-1 stabilization of the transition state for the hydride transfer reaction catalyzed by glycerol-3-phosphate dehydrogenase (GPDH). We summarize evidence that the binding interactions between (GPDH) and dianion activators are utilized directly for stabilization of the transition state for enzyme-catalyzed hydride transfer. The possibility is considered, and then discounted, that these dianion binding interactions are utilized for the stabilization of a tunnel ready state (TRS) that enables efficient tunneling of the transferred hydride through the energy barrier, and underneath the energy maximum for the transition state. It is noted that the evidence to support the existence of a tunnel-ready state for the hydride transfer reactions catalyzed by ADH is ambiguous. We propose that the rate acceleration for ADH is due to the utilization of the binding energy of the cofactor NAD+/NADH in the stabilization of the transition state for enzyme-catalyzed hydride transfer.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, USA.
| | | | | |
Collapse
|
44
|
He R, Reyes AC, Amyes TL, Richard JP. Enzyme Architecture: The Role of a Flexible Loop in Activation of Glycerol-3-phosphate Dehydrogenase for Catalysis of Hydride Transfer. Biochemistry 2018; 57:3227-3236. [PMID: 29337541 PMCID: PMC6001809 DOI: 10.1021/acs.biochem.7b01282] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The side chain of Q295 of glycerol-3-phosphate
dehydrogenase from
human liver (hlGPDH) lies in a flexible loop, that
folds over the phosphodianion of substrate dihydroxyacetone phosphate
(DHAP). Q295 interacts with the side-chain cation from R269, which
is ion-paired to the substrate phosphodianion. Kinetic parameters kcat/Km (M–1 s–1) and kcat/KGAKHPi (M–2 s–1) were determined, respectively, for catalysis
of the reduction of DHAP and for dianion activation of catalysis of
reduction of glycolaldehyde (GA) catalyzed by wild-type, Q295G, Q295S,
Q295A, and Q295N mutants of hlGPDH. These mutations
result in up to a 150-fold decrease in (kcat/Km)DHAP and up to a 2.7 kcal/mol
decrease in the intrinsic phosphodianion binding energy. The data
define a linear correlation with slope 1.1, between the intrinsic
phosphodianion binding energy and the intrinsic phosphite dianion
binding energy for activation of hlGPDH-catalyzed
reduction of GA, that demonstrates a role for Q295 in optimizing this
dianion binding energy. The R269A mutation of wild-type GPDH results
in a 9.1 kcal/mol destabilization of the transition state for reduction
of DHAP, but the same R269A mutation of N270A and Q295A mutants result
in smaller 5.9 and 4.9 kcal/mol transition-state destabilization.
Similarly, the N270A or Q295A mutations of R269A GPDH each result
in large falloffs in the efficiency of rescue of the R269A mutant
by guanidine cation. We conclude that N270, which interacts for the
substrate phosphodianion and Q295, which interacts with the guanidine
side chain of R269, function to optimize the apparent
transition-state stabilization provided by the cationic side chain
of R269.
Collapse
Affiliation(s)
- Rui He
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Archie C Reyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
45
|
Reyes AC, Amyes TL, Richard JP. Enzyme Architecture: Erection of Active Orotidine 5'-Monophosphate Decarboxylase by Substrate-Induced Conformational Changes. J Am Chem Soc 2017; 139:16048-16051. [PMID: 29058891 PMCID: PMC5720041 DOI: 10.1021/jacs.7b08897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Orotidine
5′-monophosphate decarboxylase (OMPDC) catalyzes
the decarboxylation of 5-fluoroorotate (FO) with kcat/Km = 1.4 ×
10–7 M–1 s–1. Combining this and related kinetic parameters shows that the 31
kcal/mol stabilization of the transition state for decarboxylation
of OMP provided by OMPDC represents the sum of 11.8 and 10.6 kcal/mol
stabilization by the substrate phosphodianion and the ribosyl ring,
respectively, and an 8.6 kcal/mol stabilization from the orotate ring.
The transition state for OMPDC-catalyzed decarboxylation of FO is stabilized by 5.2, 7.2, and 9.0 kcal/mol, respectively,
by 1.0 M phosphite dianion, d-glycerol 3-phosphate and d-erythritol 4-phosphate. The stabilization is due to the utilization
of binding interactions of the substrate fragments to drive an enzyme
conformational change, which locks the orotate ring of the whole substrate,
or the substrate pieces in a caged complex. We propose that enzyme-activation
is a possible, and perhaps probable, consequence of any substrate-induced
enzyme conformational change.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | - Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| |
Collapse
|
46
|
Kulkarni Y, Liao Q, Petrović D, Krüger DM, Strodel B, Amyes TL, Richard JP, Kamerlin SCL. Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase. J Am Chem Soc 2017; 139:10514-10525. [PMID: 28683550 PMCID: PMC5543394 DOI: 10.1021/jacs.7b05576] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/22/2022]
Abstract
Triosephosphate isomerase (TIM) is a proficient catalyst of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde phosphate (GAP), via general base catalysis by E165. Historically, this enzyme has been an extremely important model system for understanding the fundamentals of biological catalysis. TIM is activated through an energetically demanding conformational change, which helps position the side chains of two key hydrophobic residues (I170 and L230), over the carboxylate side chain of E165. This is critical both for creating a hydrophobic pocket for the catalytic base and for maintaining correct active site architecture. Truncation of these residues to alanine causes significant falloffs in TIM's catalytic activity, but experiments have failed to provide a full description of the action of this clamp in promoting substrate deprotonation. We perform here detailed empirical valence bond calculations of the TIM-catalyzed deprotonation of DHAP and GAP by both wild-type TIM and its I170A, L230A, and I170A/L230A mutants, obtaining exceptional quantitative agreement with experiment. Our calculations provide a linear free energy relationship, with slope 0.8, between the activation barriers and Gibbs free energies for these TIM-catalyzed reactions. We conclude that these clamping side chains minimize the Gibbs free energy for substrate deprotonation, and that the effects on reaction driving force are largely expressed at the transition state for proton transfer. Our combined analysis of previous experimental and current computational results allows us to provide an overview of the breakdown of ground-state and transition state effects in enzyme catalysis in unprecedented detail, providing a molecular description of the operation of a hydrophobic clamp in triosephosphate isomerase.
Collapse
Affiliation(s)
- Yashraj
S. Kulkarni
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala S-751 24, Sweden
| | - Qinghua Liao
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala S-751 24, Sweden
| | - Dušan Petrović
- Institute
of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dennis M. Krüger
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala S-751 24, Sweden
| | - Birgit Strodel
- Institute
of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, Jülich 52425, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Tina L. Amyes
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Shina C. L. Kamerlin
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala S-751 24, Sweden
| |
Collapse
|
47
|
Abstract
What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.
Collapse
Affiliation(s)
- Stephen D Fried
- Proteins and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305;
| |
Collapse
|
48
|
Amyes TL, Malabanan MM, Zhai X, Reyes AC, Richard JP. Enzyme activation through the utilization of intrinsic dianion binding energy. Protein Eng Des Sel 2017; 30:157-165. [PMID: 27903763 DOI: 10.1093/protein/gzw064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 11/12/2022] Open
Abstract
43 We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed.
Collapse
Affiliation(s)
- T L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| | - M M Malabanan
- Department of Biochemistry, Vanderbilt University, Nashville, TN37205-0146, USA
| | - X Zhai
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843-2128, USA
| | - A C Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| | - J P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| |
Collapse
|
49
|
Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:103-148. [PMID: 28828732 PMCID: PMC5927602 DOI: 10.1007/5584_2017_93] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels-protozymes and Urzymes-associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric-middle base-pairing frequencies in sense/antisense alignments-that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically-active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7260, USA.
| |
Collapse
|
50
|
Reyes AC, Amyes TL, Richard JP. Enzyme Architecture: Self-Assembly of Enzyme and Substrate Pieces of Glycerol-3-Phosphate Dehydrogenase into a Robust Catalyst of Hydride Transfer. J Am Chem Soc 2016; 138:15251-15259. [PMID: 27792325 PMCID: PMC5291162 DOI: 10.1021/jacs.6b09936] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The stabilization of the transition
state for hlGPDH-catalyzed reduction of DHAP due
to the action of the phosphodianion
of DHAP and the cationic side chain of R269 is between 12.4 and 17
kcal/mol. The R269A mutation of glycerol-3-phosphate dehydrogenase
(hlGPDH) results in a 9.1 kcal/mol destabilization
of the transition state for enzyme-catalyzed reduction of dihydroxyacetone
phosphate (DHAP) by NADH, and there is a 6.7 kcal/mol stabilization of this transition state by 1.0 M guanidine cation (Gua+) [J. Am. Chem. Soc.2015, 137, 5312–5315]. The R269A mutant shows no detectable
activity toward reduction of glycolaldehyde (GA), or activation of
this reaction by 30 mM HPO32–. We report
the unprecedented self-assembly of R269A hlGPDH,
dianions (X2– = FPO32–, HPO32–, or SO42–), Gua+ and GA into a functioning catalyst of the reduction
of GA, and fourth-order reaction rate constants kcat/KGAKXKGua. The linear logarithmic correlation
(slope = 1.0) between values of kcat/KGAKX for dianion
activation of wildtype hlGPDH-catalyzed reduction
of GA and kcat/KGAKXKGua shows that the electrostatic interaction between exogenous dianions
and the side chain of R269 is not significantly perturbed by cutting hlGPDH into R269A and Gua+ pieces. The advantage
for connection of hlGPDH (R269A mutant + Gua+) and substrate pieces (GA + HPi) pieces, (ΔGS‡)HPi+E+Gua = 5.6 kcal/mol, is nearly equal to the sum
of the advantage to connection of the substrate pieces, (ΔGS‡)GA+HPi = 3.3 kcal/mol, for wildtype hlGPDH-catalyzed reaction of GA + HPi, and for connection
of the enzyme pieces, (ΔGS‡)E+Gua = 2.4
kcal/mol, for Gua+ activation of the R269A hlGPDH-catalyzed reaction of DHAP.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | - Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| |
Collapse
|