1
|
Huan M, Liu YD, Zhong R. Identifying initial transformation products during chlorination of the indole moiety and unveiling their formation mechanisms. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1629-1640. [PMID: 39132965 DOI: 10.1039/d4em00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
To identify toxicity drivers within poorly characterized high-molar-weight disinfection by-products (DBPs), relatively stable high-yield initial transformation products generated from aromatic amino acids and peptides and humic substances have drawn much attention. In this study, initial transformation products in chlorination of the indole moiety in tryptophan (Trp) are proposed and their formation mechanisms were investigated using a quantum chemical computational method. The results indicate that 3-Cl-Trp+ is initially formed after the Cl+ of HOCl attacks the indole moiety, and nucleophilic addition with nucleophilic agents (H2O and OCl-) is thermodynamically preferred over deprotonation to generate 2-X-3-Cl-indoline moiety (X = OH and OCl), which is in contrast to indole. Over 25 types of initial transformation products are proposed from the 2-X-3-Cl-indoline moiety and two ring opening pathways were found at N1-C2 and C2-C3 bonds. Significantly, most structures of initial transformation products proposed based on experimental detection m/z values were confirmed using quantum chemical calculations and some new products are proposed in this work. The results are helpful to expand our understanding of the intrinsic reactivity of aromatic ring towards chlorination by hypochlorous acid.
Collapse
Affiliation(s)
- MengXue Huan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Choi SY, Ji H, Park J, Choe JK. Iodide enhances degradation of histidine sidechain and imidazoles and forms new iodinated aromatic disinfection byproducts during chlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134748. [PMID: 38815391 DOI: 10.1016/j.jhazmat.2024.134748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Peptide-bound histidines and imidazoles are important constituents of dissolved organic matter in water, and understanding the formation of halogenated disinfection byproduct (DBP) formation from these compounds during disinfection is important for ensuring a safe drinking water supply. Previous studies suggested that histidine has low reactivity with chlorine only; this study indicates that iodide substantially enhances histidine reactivity with the disinfectant at a time scale from days to hours. Mono- and di-iodinated histidines were identified as dominant transformation products with cumulative molar yields of 3.3 % at 6 h and they were stable in water over 7 days. These products were formed via electrophilic substitution of iodine to imidazole ring when hypoiodous acid reacted with histidine sidechain. Bromide minimally influenced the formation yields of these iodinated products, and higher pH increased yields up to 12 % for pH in the range 5-9. The cumulative concentration of low-molecular-weight DBPs, such as trihalomethanes and haloacetic acids, was less than 0.3 % under the same conditions. Similar iodinated imidazole analogs were also identified from other imidazoles (i.e., imidazole-carboxylic and phenyl-imidazole-carboxylic acids). This study demonstrated that peptide-bound histidine and imidazoles can serve as important precursors to iodinated aromatic DBPs, facilitating the identification of less-known iodinated DBPs.
Collapse
Affiliation(s)
- Seo-Yeong Choi
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea
| | - Hojoong Ji
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea.
| |
Collapse
|
3
|
Jiang J, Tang Y, Cao Z, Zhou C, Yu Z. Effects of hypo-osmotic stress on osmoregulation, antioxidant response, and energy metabolism in sea cucumber Holothuria moebii under desalination environment. ENVIRONMENTAL RESEARCH 2024; 252:118800. [PMID: 38555088 DOI: 10.1016/j.envres.2024.118800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
With global climate changing, hypo-salinity events are increasing in frequency and duration because of continuous rainfall and freshwater inflow, which causes reduced cytosolic osmolarity and cellular stress responses in aquatic animals. Sea cucumbers are considered stenohaline because they lack osmoregulatory organs and are vulnerable to salinity fluctuations. In this study, we performed multiple biochemical assays, de novo transcriptomics, and widely targeted metabolomics to comprehensively explore the osmoregulatory mechanisms and physiological responses of sea cucumber Holothuria moebii to hypo-osmotic stress, which is a representative specie that is frequently exposed to hypo-saline intertidal zones. Our results found that H. moebii contracted their ambulacral feet and oral tentacles, and the coelomic fluid ion concentrations were reduced to be consistent with the environment. The microvilli of intestines and respiratory trees underwent degeneration, and the cytoplasm exhibited swelling and vacuolation. Moreover, the Na+, K+, and Cl- concentrations and Na+/K+-ATPase activity were significantly reduced under hypo-osmotic stress. The decrease in protein kinase A activity and increase in 5'-AMP level indicated a significant inhibition of the cAMP signaling pathway to regulate ion concentrations. And small intracellular organic molecules (amino acids, nucleotides and their derivatives) also play crucial roles in osmoregulation through oxidative deamination of glutamate, nucleotide catabolism, and nucleic acid synthesis. Moreover, lysosomes and peroxisomes removed oxidative damage, whereas antioxidant metabolites, such as N-acetyl amino acids and glutathione, were increased to resist oxidative stress. With prolonged hypo-osmotic stress, glycerophospholipid metabolism was enhanced to maintain membrane stability. Furthermore, acyl-CoA-binding protein activity was significantly inhibited, and only a small amount of acylcarnitine was significantly accumulated, which indicated a disruption in energy metabolism. PPAR signaling pathway and choline content were up-regulated to promote fatty acid metabolism under hypo-osmotic stress. Overall, our results provide new insights into the osmoregulatory mechanisms and physiological responses of sea cucumbers to hypo-osmotic stress.
Collapse
Affiliation(s)
- Junyang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanna Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zonghe Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Jeong C, Kim HJ. YabJ from Staphylococcus aureus entraps chlorides within its pocket. Biochem Biophys Res Commun 2024; 710:149892. [PMID: 38581951 DOI: 10.1016/j.bbrc.2024.149892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Chlorination is a potent disinfectant against various microorganisms, including bacteria and viruses, by inducing protein modifications and functional changes. Chlorine, in the form of sodium hypochlorite, stands out as the predominant sanitizer choice due to its cost-effectiveness and powerful antimicrobial properties. Upon exposure to chlorination, proteins undergo modifications, with amino acids experiencing alterations through the attachment of chloride or oxygen atoms. These modifications lead to shifts in protein function and the modulation of downstream signaling pathways, ultimately resulting in a bactericidal effect. However, certain survival proteins, such as chaperones or transcription factors, aid organisms in overcoming harsh chlorination conditions. The expression of YabJ, a highly conserved protein from Staphylococcus aureus, is regulated by a stress-activated sigma factor called sigma B (σB). This research revealed that S. aureus YabJ maintains its structural integrity even under intense chlorination conditions and harbors sodium hypochlorite molecules within its surface pocket. Notably, the pocket of S. aureus YabJ is primarily composed of amino acids less susceptible to chlorination-induced damage, rendering it resistant to such effects. This study elucidates how S. aureus YabJ evades the detrimental effects of chlorination and highlights its role in sequestering sodium hypochlorite within its structure. Consequently, this process enhances resilience and facilitates adaptation to challenging environmental conditions.
Collapse
Affiliation(s)
- Cheolwoo Jeong
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea
| | - Hyo Jung Kim
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea.
| |
Collapse
|
5
|
Shi JL, Mitch WA. Lysine and Arginine Reactivity and Transformation Products during Peptide Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5852-5860. [PMID: 36976858 DOI: 10.1021/acs.est.2c09556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorine reactions with peptide-bound amino acids form disinfection byproducts and contribute to pathogen inactivation by degrading protein structure and function. Peptide-bound lysine and arginine are two of the seven chlorine-reactive amino acids, but their reactions with chlorine are poorly characterized. Using N-acetylated lysine and arginine as models for peptide-bound amino acids and authentic small peptides, this study demonstrated conversion of the lysine side chain to mono- and dichloramines and the arginine side chain to mono-, di-, and trichloramines in ≤0.5 h. The lysine chloramines formed lysine nitrile and lysine aldehyde at ∼6% yield over ∼1 week. The arginine chloramines formed ornithine nitrile at ∼3% yield over ∼1 week but not the corresponding aldehyde. While researchers hypothesized that the protein aggregation observed during chlorination arises from covalent Schiff base cross-links between lysine aldehyde and lysine on different proteins, no evidence for Schiff base formation was observed. The rapid formation of chloramines and their slow decay indicate that they are more relevant than the aldehydes and nitriles to byproduct formation and pathogen inactivation over timescales relevant to drinking water distribution. Previous research has indicated that lysine chloramines are cytotoxic and genotoxic to human cells. The conversion of lysine and arginine cationic side chains to neutral chloramines should alter protein structure and function and enhance protein aggregation by hydrophobic interactions, contributing to pathogen inactivation.
Collapse
Affiliation(s)
- Jiaming Lily Shi
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
6
|
Hallberg LAE, Thorsen NW, Hartsema EA, Hägglund PM, Hawkins CL. Mapping the modification of histones by the myeloperoxidase-derived oxidant hypochlorous acid (HOCl). Free Radic Biol Med 2022; 192:152-164. [PMID: 36152914 DOI: 10.1016/j.freeradbiomed.2022.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 01/02/2023]
Abstract
Histones are critical for the packaging of nuclear DNA and chromatin assembly, which is facilitated by the high abundance of Lys and Arg residues within these proteins. These residues are also the site of a range of post-translational modifications, which influence the regulatory function of histones. Histones are also present in the extracellular environment, following release by various pathways, particularly neutrophil extracellular traps (NETs). NETs contain myeloperoxidase, which retains its enzymatic activity and produces hypochlorous acid (HOCl). This suggests that histones could be targets for HOCl under conditions where aberrant NET release is prevalent, such as chronic inflammation. In this study, we examine the reactivity of HOCl with a mixture of linker (H1) and core (H2A, H2B, H3 and H4) histones. HOCl modified the histones in a dose- and time-dependent manner, resulting in structural changes to the proteins and the formation of a range of post-translational modification products. N-Chloramines are major products following exposure of the histones to HOCl and decompose over 24 h forming Lys nitriles and carbonyls (aminoadipic semialdehydes). Chlorination and dichlorination of Tyr, but not Trp residues, is also observed. Met sulfoxide and Met sulfones are formed, though these oxidation products are also detected albeit at a lower extent, in the non-treated histones. Evidence for histone fragmentation and aggregation was also obtained. These results could have implications for the development of chronic inflammatory diseases, given the key role of Lys residues in regulating histone function.
Collapse
Affiliation(s)
- Line A E Hallberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Nicoline W Thorsen
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Els A Hartsema
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Per M Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark.
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark.
| |
Collapse
|
7
|
Wang WL, Nong YJ, Yang ZW, Wu QY, Hübner U. Chlorination of isothiazolinone biocides: kinetics, reactive species, pathway, and toxicity evolution. WATER RESEARCH 2022; 223:119021. [PMID: 36057235 DOI: 10.1016/j.watres.2022.119021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Due to the Covid-19 pandemic, the worldwide biocides application has been increased, which will eventually result in enhanced residuals in treated wastewater. At the same time, chlorine disinfection of secondary effluents and hospital wastewaters has been intensified. With respect to predicted elevated exposure in wastewater, the chlorination kinetics, transformation pathways and toxicity evolution were investigated in this study for two typical isothiazolinone biocides, methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT). Second-order rate constants of 0.13 M-1·s-1, 1.95 × 105 M-1·s-1 and 5.14 × 105 M-1·s-1 were determined for the reaction of MIT with HOCl, Cl2O and Cl2, respectively, while reactivity of CMIT was around 1-2 orders of magnitude lower. While chlorination of isothiazolinone biocides at pH 7.1 was dominated by Cl2O-oxidation, acidic pH and elevated Cl- concentration favored free active chlorine (FAC) speciation into Cl2 and increased overall isothiazolinone removal. Regardless of the dominant FAC species, the elimination of MIT and CMIT resulted in an immediate loss of acute toxicity under all experimental conditions, which was attributed to a preferential attack at the S-atom resulting in subsequent formation of sulfoxides and sulfones and eventually an S-elimination. However, chlorination of isothiazolinone biocides in secondary effluent only achieved <10% elimination at typical disinfection chlorine exposure 200 mg·L-1·min, but was predicted to be remarkably increased by acidizing solution to pH 5.5. Alternative measures might be needed to minimize the discharge of these toxic chemicals into the aquatic environment.
Collapse
Affiliation(s)
- Wen-Long Wang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yu-Jia Nong
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zheng-Wei Yang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian-Yuan Wu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany.
| |
Collapse
|
8
|
Lim S, Shi JL, von Gunten U, McCurry DL. Ozonation of organic compounds in water and wastewater: A critical review. WATER RESEARCH 2022; 213:118053. [PMID: 35196612 DOI: 10.1016/j.watres.2022.118053] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Ozonation has been applied in water treatment for more than a century, first for disinfection, later for oxidation of inorganic and organic pollutants. In recent years, ozone has been increasingly applied for enhanced municipal wastewater treatment for ecosystem protection and for potable water reuse. These applications triggered significant research efforts on the abatement efficiency of organic contaminants and the ensuing formation of transformation products. This endeavor was accompanied by developments in analytical and computational chemistry, which allowed to improve the mechanistic understanding of ozone reactions. This critical review assesses the challenges of ozonation of impaired water qualities such as wastewaters and provides an up-to-date compilation of the recent kinetic and mechanistic findings of ozone reactions with dissolved organic matter, various functional groups (olefins, aromatic compounds, heterocyclic compounds, aliphatic nitrogen-containing compounds, sulfur-containing compounds, hydrocarbons, carbanions, β-diketones) and antibiotic resistance genes.
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Jiaming Lily Shi
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
9
|
Simpson AMA, Suh MJ, Plewa MJ, Mitch WA. Formation of Oleic Acid Chlorohydrins in Vegetables during Postharvest Chlorine Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1233-1243. [PMID: 34941240 DOI: 10.1021/acs.est.1c04362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High chlorine doses (50-200 mg/L) are used in postharvest washing facilities to control foodborne pathogen outbreaks. However, chlorine can react with biopolymers (e.g., lipids) within the produce to form chlorinated byproducts that remain in the food. During chlorination of micelles of oleic acid, an 18-carbon alkene fatty acid, chlorine added rapidly across the double bond to form the two 9,10-chlorohydrin isomers at a 100% yield. The molar conversion of lipid-bound oleic acid to 9,10-chlorohydrins in chlorine-treated glyceryl trioleate and produce was much lower, reflecting the restricted access of chlorine to lipids. Yields from spinach treated with 100 mg/L chlorine at 7.5 °C for 2 min increased from 0.05% (0.9 nmol/g-spinach) for whole leaf spinach to 0.11% (2 nmol/g) when shredding increased chlorine access. Increasing temperature (21 °C) and chlorine contact time (15 min) increased yields from shredded spinach to 0.83% (22 nmol/g) at 100 mg/L chlorine and to 1.8% (53 nmol/g) for 200 mg/L chlorine. Oleic acid 9,10-chlorohydrin concentrations were 2.4-2.7 nmol/g for chlorine-treated (100 mg/L chlorine at 7.5 °C for 2 min) broccoli, carrots, and butterhead lettuce, but 0.5-1 nmol/g for cabbage, kale, and red leaf lettuce. Protein-bound chlorotyrosine formation was higher in the same vegetables (5-32 nmol/g). The Chinese hamster ovary cell chronic cytotoxicity LC50 value for oleic acid 9,10-chlorohydrins was 0.106 mM. The cytotoxicity associated with the chlorohydrins and chlorotyrosines in low masses (9-52 g) of chlorine-washed vegetables would be comparable to that associated with trihalomethanes and haloacetic acids at levels of regulatory concern in drinking water.
Collapse
Affiliation(s)
- Adam M-A Simpson
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Min-Jeong Suh
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Drive, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
10
|
Long MJC, Huang KT, Aye Y. The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chem Soc Rev 2021; 50:12269-12291. [PMID: 34779447 DOI: 10.1039/d1cs00467k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this tutorial review, we compare and contrast the chemical mechanisms of electrophile/oxidant sensing, and the molecular mechanisms of signal propagation. We critically analyze biological systems in which these different pathways are believed to be manifest and what the data really mean. Finally, we discuss applications of this knowledge to disease treatment and drug development.
Collapse
Affiliation(s)
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Schammel MH, Martin-Culet KR, Taggart GA, Sivey JD. Structural effects on the bromination rate and selectivity of alkylbenzenes and alkoxybenzenes in aqueous solution. Phys Chem Chem Phys 2021; 23:16594-16610. [PMID: 34318844 DOI: 10.1039/d1cp02422a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aqueous free bromine species (e.g., HOBr, BrCl, Br2, BrOCl, Br2O, and H2OBr+) can react with activated aromatic compounds via electrophilic aromatic substitution to generate products with industrial applications, environmental consequences, and potentially adverse biological effects. The relative contributions of these brominating agents to overall bromination rates can be calculated via nonlinear regression analyses of kinetic data collected under a variety of solution conditions, including variations in parameters (e.g., [Cl-], [Br-], and pH) known to influence free bromine speciation. Herein, kinetic experiments conducted in batch reactors were employed to evaluate the contributions of steric and electronic effects on bromination of monosubstituted alkylbenzenes (ethyl, isopropyl, tert-butyl) and alkoxybenzenes (ethoxy, isopropoxy, tert-butoxy) and to elucidate the inherent reactivities of aqueous brominating agents towards these aromatic compounds. For bromination at the para position of alkylbenzenes, overall reactivity increased from tert-butyl < ethyl ≈ isopropyl. For bromination at the para position of alkoxybenzenes, reactivity increased from tert-butoxy < ethoxy < isopropoxy. In going from ethyl to tert-butyl and ethoxy to isopropoxy, unfavorable steric effects attenuated the favorable electronic effects imparted by the substituents. When comparing unsubstituted benzene, alkyl-, and alkoxybenzenes, the structure of the substituent has a significant effect on bromination rates, nucleophile regioselectivity, and electrophile chemoselectivity. Hirshfeld charges were useful predictors of reactivity and regioselectivity. The experimental results were also modeled using Taft equations. Collectively, these findings indicate that steric effects, electronic effects, and brominating agents other than HOBr can influence aromatic compound bromination in solutions of free bromine.
Collapse
Affiliation(s)
- Marella H Schammel
- Department of Chemistry, Towson University, 8000 York Road, Towson, Maryland 21252, USA.
| | | | | | | |
Collapse
|
12
|
Choe JK, Hua LC, Komaki Y, Simpson AMA, McCurry DL, Mitch WA. Evaluation of Histidine Reactivity and Byproduct Formation during Peptide Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1790-1799. [PMID: 33492937 DOI: 10.1021/acs.est.0c07408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The covalent modifications resulting from chlorine reactions with peptide-bound amino acids contribute to pathogen inactivation and disinfection byproduct (DBP) formation. Previous research suggested that histidine is the third most reactive of the seven chlorine-reactive amino acids, leading to the formation of 2-chlorohistidine, 2-oxohistidine, or low-molecular-weight byproducts such as trihalomethanes. This study demonstrates that histidine is less reactive toward formation of chlorine transformation products (transformation time scale of hours to days) than five of the seven chlorine-reactive amino acids, including tyrosine (transformation time scale of minutes). Chlorine targeted tyrosine in preference to histidine within peptides, indicating that chlorine reactions with tyrosine and other more reactive amino acids could contribute more to the structural modifications to proteins over the short time scales relevant to pathogen inactivation. Over the longer time scales relevant to disinfection byproduct formation in treatment plants or distribution systems, this study identified β-cyanoalanine as the dominant transformation product of chlorine reactions with peptide-bound histidine, with molar yields of ∼50% after 1 day. While a chlorinated histidine intermediate was observed at lower yields (maximum ∼5%), the cumulative concentration of the conventional low-molecular-weight DBPs (e.g., trihalomethanes) was ≤7%. These findings support the need to identify the high-yield initial transformation products of chlorine reactions with important precursor structures to facilitate the identification of unknown DBPs.
Collapse
Affiliation(s)
- Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Lap-Cuong Hua
- Institute of Environmental Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8529, Japan
| | - Adam M-A Simpson
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Hypochlorous acid-mediated modification of proteins and its consequences. Essays Biochem 2019; 64:75-86. [DOI: 10.1042/ebc20190045] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
AbstractMyeloperoxidase (MPO) is a mammalian heme peroxidase released by activated immune cells, which forms chemical oxidants, including hypochlorous acid (HOCl), to kill bacteria and other invading pathogens. In addition to this important role in the innate immune system, there is significant evidence from numerous chronic inflammatory pathologies for the elevated production of HOCl and associated oxidative modification of proteins and damage to host tissue. Proteins are major targets for HOCl in biological systems, owing to their abundance and the high reactivity of several amino acid side-chains with this oxidant. As such, there is significant interest in understanding the molecular mechanisms involved in HOCl-mediated protein damage and defining the consequences of these reactions. Exposure of proteins to HOCl results in a wide range of oxidative modifications and the formation of chlorinated products, which alter protein structure and enzyme activity, and impact the function of biological systems. This review describes the reactivity of HOCl with proteins, including the specific pathways involved in side-chain modification, backbone fragmentation and aggregation, and outlines examples of some of the biological consequences of these reactions, particularly in relation to the development of chronic inflammatory disease.
Collapse
|
14
|
Misztal T, Golaszewska A, Tomasiak-Lozowska MM, Iwanicka M, Marcinczyk N, Leszczynska A, Chabielska E, Rusak T. The myeloperoxidase product, hypochlorous acid, reduces thrombus formation under flow and attenuates clot retraction and fibrinolysis in human blood. Free Radic Biol Med 2019; 141:426-437. [PMID: 31279970 DOI: 10.1016/j.freeradbiomed.2019.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/24/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Hypochlorite (HOCl), a strong oxidant and antimicrobial agent, has been proposed to be associated with hemostatic abnormalities during inflammatory response. However, its complex impact on hemostasis is not completely understood. In this report we studied the effect of clinically relevant (micromolar) HOCl concentrations on thrombus formation under flow, kinetics of platelet-fibrin clot formation, its architecture, retraction, and lysis. We found that HOCl (up to 500 µM) did not affect kinetics of coagulation measured in whole blood. HOCl (500-1000 µM) markedly diminished thrombus formation under flow. Clot retraction rate was reduced by HOCl dose-dependently (50-500 µM). HOCl (125-500 µM) inhibited fibrinolysis in whole blood and in platelet-depleted plasma, dose-dependently. Activity of plasmin was reduced by HOCl at concentrations started from 500 µM. HOCl (up to 500 µM) did not reduce plasminogen binding to fibrin under flow. HOCl (125-500 µM) modulated architecture of fibrin- and platelet-fibrin clots towards structures made of thin and densely packed fibers. Exposure of pure fibrinogen to HOCl (10-1000 µM) resulted in formation of dityrosine and was associated with altered fibrin structure derived from such modified fibrinogen. HOCl-altered fibrin net structure was not related with modulation of platelet procoagulant response, thrombin generation, and factor XIII activity. We conclude that, in human blood, clinically relevant HOCl concentrations may inhibit thrombus formation under flow, clot retraction and fibrinolysis. Fibrinolysis and clot retraction seem to be the most sensitive to HOCl-evoked inhibition. HOCl-modified fibrinogen and altered clot structure associated with it are likely to be primary sources of attenuated fibrinolysis.
Collapse
Affiliation(s)
- Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089, Bialystok, Poland.
| | - Agata Golaszewska
- Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089, Bialystok, Poland.
| | | | - Marta Iwanicka
- Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089, Bialystok, Poland.
| | - Natalia Marcinczyk
- Department of Biopharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089, Bialystok, Poland.
| | - Agnieszka Leszczynska
- Department of Biopharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089, Bialystok, Poland.
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, Kilinskiego 1, 15-089, Bialystok, Poland.
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089, Bialystok, Poland.
| |
Collapse
|
15
|
Ulfig A, Schulz AV, Müller A, Lupilov N, Leichert LI. N-chlorination mediates protective and immunomodulatory effects of oxidized human plasma proteins. eLife 2019; 8:47395. [PMID: 31298656 PMCID: PMC6650281 DOI: 10.7554/elife.47395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Hypochlorous acid (HOCl), a powerful antimicrobial oxidant, is produced by neutrophils to fight infections. Here, we show that N-chlorination, induced by HOCl concentrations encountered at sites of inflammation, converts blood plasma proteins into chaperone-like holdases that protect other proteins from aggregation. This chaperone-like conversion was reversible by antioxidants and was abrogated by prior methylation of basic amino acids. Furthermore, reversible N-chlorination of basic amino acid side chains is the major factor that converts plasma proteins into efficient activators of immune cells. Finally, HOCl-modified serum albumin was found to act as a pro-survival molecule that protects neutrophils from cell death induced by highly immunogenic foreign antigens. We propose that activation and enhanced persistence of neutrophils mediated by HOCl-modified plasma proteins, resulting in the increased and prolonged generation of ROS, including HOCl, constitutes a potentially detrimental positive feedback loop that can only be attenuated through the reversible nature of the modification involved.
Collapse
Affiliation(s)
- Agnes Ulfig
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Anton V Schulz
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Müller
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Natalie Lupilov
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lars I Leichert
- Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Wang Y, Hong F, Li D, Qi J, Liu X. A novel strategy for evaluation of natural products acting on the myeloperoxidase/hypochlorous acid system by combining high-performance liquid chromatography-photodiode array detection-chemiluminescence and ultrafiltration-mass spectrometry techniques. J Sep Sci 2018; 41:4222-4232. [DOI: 10.1002/jssc.201800658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Wang
- Jiangsu key Laboratory of TCM Evaluation and Translational Research; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Fang Hong
- Jiangsu key Laboratory of TCM Evaluation and Translational Research; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Dapeng Li
- Jiangsu key Laboratory of TCM Evaluation and Translational Research; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Jin Qi
- Jiangsu key Laboratory of TCM Evaluation and Translational Research; School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing P. R. China
| | - Xuming Liu
- School of Life Science and Technology; China Pharmaceutical University; Nanjing P. R. China
| |
Collapse
|
17
|
Komaki Y, Simpson AMA, Choe JK, Plewa MJ, Mitch WA. Chlorotyrosines versus Volatile Byproducts from Chlorine Disinfection during Washing of Spinach and Lettuce. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9361-9369. [PMID: 30040386 DOI: 10.1021/acs.est.8b03005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Following the Food Safety Modernization Act of 2011 in the U.S., guidelines for disinfection washes in food packaging facilities are under consideration to control pathogen risks. However, disinfectant exposures may need optimization because the high concentrations of chlorine disinfectant promote the formation of high levels of disinfection byproducts (DBPs). When chlorine doses up through the 200 mg/L as Cl2 range relevant to the current practice were applied to spinach and lettuce, significant DBP formation was observed, even within 5 min at 7 °C. Concentrations of volatile chlorinated DBPs in washwater were far higher than typically observed in disinfected drinking water (e.g., 350 μg/L 1,1-dichloropropanone). However, these DBPs partitioned to the aqueous phase and so represent a greater concern for the disposal or reuse of washwater than for consumer exposure via food. The volatile DBPs represent the low-yield, final products of chlorination reactions with multiple biomolecular precursors. The initial, high-yield transformation products of such reactions may represent a greater concern for consumer exposure because they remain bound within the biopolymers in food and would be liberated during digestion. Using protein-bound tyrosine as an example precursor, the concentrations of the initial 3-chlorotyrosine and 3,5-dichlorotyrosine transformation products from this one precursor in the leaf phase were comparable to, and, in the case of some lettuces, exceeded, the aggregate aqueous concentration of volatile DBPs formed from multiple precursors. Chlorotyrosine formation increased when spinach was shredded due to the greater accessibility of chlorine to proteins in the leaf interiors. The cytotoxicity of chlorotyrosines to Chinese hamster ovary cells was higher than any of the trihalomethanes regulated in drinking water.
Collapse
Affiliation(s)
- Yukako Komaki
- Department of Civil and Environmental Engineering , Stanford University , 473 Via Ortega , Stanford , California 94305 , United States
| | - Adam M-A Simpson
- Department of Civil and Environmental Engineering , Stanford University , 473 Via Ortega , Stanford , California 94305 , United States
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Michael J Plewa
- Department of Crop Sciences and Safe Global Water Institute , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - William A Mitch
- Department of Civil and Environmental Engineering , Stanford University , 473 Via Ortega , Stanford , California 94305 , United States
| |
Collapse
|
18
|
Li XF, Mitch WA. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisciplinary Challenges and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1681-1689. [PMID: 29283253 DOI: 10.1021/acs.est.7b05440] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While drinking water disinfection has effectively prevented waterborne diseases, an unintended consequence is the generation of disinfection byproducts (DBPs). Epidemiological studies have consistently observed an association between consumption of chlorinated drinking water with an increased risk of bladder cancer. Out of the >600 DBPs identified, regulations focus on a few classes, such as trihalomethanes (THMs), whose concentrations were hypothesized to correlate with the DBPs driving the toxicity of disinfected waters. However, the DBPs responsible for the bladder cancer association remain unclear. Utilities are switching away from a reliance on chlorination of pristine drinking water supplies to the application of new disinfectant combinations to waters impaired by wastewater effluents and algal blooms. In light of these changes in disinfection practice, this article discusses new approaches being taken by analytical chemists, engineers, toxicologists and epidemiologists to characterize the DBP classes driving disinfected water toxicity, and suggests that DBP exposure should be measured using other DBP classes in addition to THMs.
Collapse
Affiliation(s)
- Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB T6G 2G3 Canada
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
19
|
Parker KM, Sander M. Environmental Fate of Insecticidal Plant-Incorporated Protectants from Genetically Modified Crops: Knowledge Gaps and Research Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12049-12057. [PMID: 28968072 DOI: 10.1021/acs.est.7b03456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant-incorporated protectants (PIPs) are biopesticides expressed in genetically modified (GM) crops and are typically macromolecular in nature. First-generation insecticidal PIPs were Cry proteins expressed in GM crops containing transgenes from the soil bacterium Bacillus thuringiensis; next-generation double-stranded ribonucleic acid (dsRNA) PIPs have been recently approved. Like conventional synthetic pesticides, the use of either Cry protein or dsRNA PIPs results in their release to receiving environments. However, as opposed to conventional low molecular weight pesticides, the environmental fate of macromolecular PIPs remains less studied and is poorly understood. This Feature highlights the knowledge gaps and challenges that have emerged while investigating the environmental fate of Cry protein PIPs and suggests new avenues to advance the state of the research necessary for the ongoing environmental fate assessment of dsRNA PIPs.
Collapse
Affiliation(s)
- Kimberly M Parker
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich , 8092 Zurich, Switzerland
- Department of Energy, Environmental and Chemical Engineering, Washington University , St. Louis, Missouri 63130, United States
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
20
|
Computational design of bio-inspired carnosine-based HOBr antioxidants. J Comput Aided Mol Des 2017; 31:905-913. [DOI: 10.1007/s10822-017-0060-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
|
21
|
Lin H, Levison BS, Buffa JA, Huang Y, Fu X, Wang Z, Gogonea V, DiDonato JA, Hazen SL. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo. Free Radic Biol Med 2017; 104:20-31. [PMID: 28069522 PMCID: PMC5353359 DOI: 10.1016/j.freeradbiomed.2017.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
Abstract
Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H2O2/Cl- system of leukocytes. At low molar ratio of oxidant to target protein Nε-lysine moiety, 2-AAA is formed via an initial Nε-monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein Nε-lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine Nε-dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl residues serves as a mechanism for producing 2-AAA and LysCN in vivo. These studies further support involvement of MPO-catalyzed oxidative processes in both the development of atherosclerosis and diabetes risk.
Collapse
Affiliation(s)
- Hongqiao Lin
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States
| | - Bruce S Levison
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Jennifer A Buffa
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Ying Huang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Xiaoming Fu
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Valentin Gogonea
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States; Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, United States.
| |
Collapse
|
22
|
Dassanayake RS, Farhath MM, Shelley JT, Basu S, Brasch NE. Kinetic studies on the reaction of cob(II)alamin with hypochlorous acid: Evidence for one electron oxidation of the metal center and corrin ring destruction. J Inorg Biochem 2016; 163:81-87. [PMID: 27567143 DOI: 10.1016/j.jinorgbio.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/16/2023]
Abstract
Kinetic and mechanistic studies on the reaction of a major intracellular vitamin B12 form, cob(II)alamin (Cbl(II)), with hypochlorous acid/hypochlorite (HOCl/OCl-) have been carried out. Cbl(II) (Co(II)) is rapidly oxidized by HOCl to predominately aquacobalamin/hydroxycobalamin (Cbl(III), Co(III)) with a second-order rate constant of 2.4×107M-1s-1 (25.0°C). The stoichiometry of the reaction is 1:1. UHPLC/HRMS analysis of the product mixture of the reaction of Cbl(II) with 0.9mol equiv. HOCl provides support for HOCl being initially reduced to Cl and subsequent H atom abstraction from the corrin macrocycle occurring, resulting in small amounts of corrinoid species with two or four H atoms fewer than the parent cobalamin. Upon the addition of excess (H)OCl further slower reactions are observed. Finally, SDS-PAGE experiments show that HOCl-induced damage to bovine serum albumin does not occur in the presence of Cbl(II), providing support for Cbl(II) being an efficient HOCl trapping agent.
Collapse
Affiliation(s)
- Rohan S Dassanayake
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Mohamed M Farhath
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Jacob T Shelley
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicola E Brasch
- School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| |
Collapse
|
23
|
McCurry DL, Quay AN, Mitch WA. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1209-1217. [PMID: 26752338 DOI: 10.1021/acs.est.5b04282] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.
Collapse
Affiliation(s)
- Daniel L McCurry
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| | - Amanda N Quay
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
24
|
Choe JK, Richards DH, Wilson CJ, Mitch WA. Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine, Bromine, and Ozone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13331-13339. [PMID: 26488608 DOI: 10.1021/acs.est.5b03813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins are important targets of chemical disinfectants. To improve the understanding of disinfectant-protein reactions, this study characterized the disinfectant:protein molar ratios at which 50% degradation of oxidizable amino acids (i.e., Met, Tyr, Trp, His, Lys) and structure were observed during HOCl, HOBr, and O3 treatment of three well-characterized model proteins and bacteriophage MS2. A critical question is the extent to which the targeting of amino acids is driven by their disinfectant rate constants rather than their geometrical arrangement. Across the model proteins and bacteriophage MS2 (coat protein), differing widely in structure, methionine was preferentially targeted, forming predominantly methionine sulfoxide. This targeting concurs with its high disinfectant rate constants and supports its hypothesized role as a sacrificial antioxidant. Despite higher HOCl and HOBr rate constants with histidine and lysine than for tyrosine, tyrosine generally was degraded in preference to histidine, and to a lesser extent, lysine. These results concur with the prevalence of geometrical motifs featuring histidines or lysines near tyrosines, facilitating histidine and lysine regeneration upon Cl[+1] transfer from their chloramines to tyrosines. Lysine nitrile formation occurred at or above oxidant doses where 3,5-dihalotyrosine products began to degrade. For O3, which lacks a similar oxidant transfer pathway, histidine, tyrosine, and lysine degradation followed their relative O3 rate constants. Except for its low reactivity with lysine, the O3 doses required to degrade amino acids were as low as or lower than for HOCl or HOBr, indicating its oxidative efficiency. Loss of structure did not correlate with loss of particular amino acids, suggesting the need to characterize the oxidation of specific geometric motifs to understand structural degradation.
Collapse
Affiliation(s)
- Jong Kwon Choe
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| | - David H Richards
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06520, United States
| | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University , New Haven, Connecticut 06520, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
25
|
Howell SC, Richards DH, Mitch WA, Wilson CJ. Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances. ACS Chem Biol 2015; 10:2393-404. [PMID: 26266833 DOI: 10.1021/acschembio.5b00431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Characterization of the mechanisms underlying hypohalous acid (i.e., hypochlorous acid or hypobromous acid) degradation of proteins is important for understanding how the immune system deactivates pathogens during infections and damages human tissues during inflammatory diseases. Proteins are particularly important hypohalous acid reaction targets in pathogens and in host tissues, as evidenced by the detection of chlorinated and brominated oxidizable residues. While a significant amount of work has been conducted for reactions of hypohalous acids with a range of individual amino acids and small peptides, the assessment of oxidative decay in full-length proteins has lagged in comparison. The most rigorous test of our understanding of oxidative decay of proteins is the rational redesign of proteins with conferred resistances to the decay of structure and function. Toward this end, in this study, we experimentally determined a putative mechanism of oxidative decay using adenylate kinase as the model system. In turn, we leveraged this mechanism to rationally design new proteins and experimentally test each system for oxidative resistance to loss of structure and function. From our extensive assessment of secondary structure, protein hydrodynamics, and enzyme activity upon hypochlorous acid or hypobromous acid challenge, we have identified two key strategies for conferring structural and functional resistance, namely, the design of proteins (adenylate kinase enzymes) that are resistant to oxidation requires complementary consideration of protein stability and the modification (elimination) of certain oxidizable residues proximal to catalytic sites.
Collapse
Affiliation(s)
| | | | - William A. Mitch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
26
|
Tobin PH, Richards DH, Callender RA, Wilson CJ. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab 2015; 15:743-56. [PMID: 25495737 DOI: 10.2174/1389200216666141208151524] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Protein engineering holds the potential to transform the metabolic drug landscape through the development of smart, stimulusresponsive drug systems. Protein therapeutics are a rapidly expanding segment of Food and Drug Administration approved drugs that will improve clinical outcomes over the long run. Engineering of protein therapeutics is still in its infancy, but recent general advances in protein engineering capabilities are being leveraged to yield improved control over both pharmacokinetics and pharmacodynamics. Stimulus- responsive protein therapeutics are drugs which have been designed to be metabolized under targeted conditions. Protein engineering is being utilized to develop tailored smart therapeutics with biochemical logic. This review focuses on applications of targeted drug neutralization, stimulus-responsive engineered protein prodrugs, and emerging multicomponent smart drug systems (e.g., antibody-drug conjugates, responsive engineered zymogens, prospective biochemical logic smart drug systems, drug buffers, and network medicine applications).
Collapse
Affiliation(s)
| | | | | | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|
27
|
Banerjee P, Suguna L, Shanthi C. Wound healing activity of a collagen-derived cryptic peptide. Amino Acids 2014; 47:317-28. [PMID: 25385312 DOI: 10.1007/s00726-014-1860-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/21/2014] [Indexed: 01/08/2023]
Abstract
Wound healing involves a well-controlled series of interactions among cells and several mediators leading to the restoration of damaged tissue. Degradation of the extracellular matrix (ECM) protein collagen during remodelling of wound tissue leads to the release of bioactive peptides that can possibly influence the healing process. The RGD-containing, antioxidative collagen peptide E1 isolated in an earlier work was screened in this study for its ability to influence multiple steps of the wound healing process. E1 was assayed for and found to be chemotactic. Excision and incision wounds were created on separate groups of rats and E1 was administered topically. The wound tissues were isolated on the 4th and 8th days post-wound and subjected to biochemical and biophysical analysis. A significant decrease in lipid peroxides in the treatment group confirmed the in vivo antioxidant capacity of E1. The treatment group also displayed significant increase in total protein, collagen and amino sugar synthesis indicating faster ECM formation. The significantly increased rate of wound contraction and reepithelialisation along with higher tensile strength of the wound tissue corroborated the results of biochemical analysis. The results confirm the significant role played by collagen peptides in accelerating the healing process and justify their possible use as a pharmaceutical agent.
Collapse
Affiliation(s)
- Pradipta Banerjee
- School of Bio Science and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | | | | |
Collapse
|
28
|
Wilson CJ. Rational protein design: developing next‐generation biological therapeutics and nanobiotechnological tools. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:330-41. [DOI: 10.1002/wnan.1310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Corey J. Wilson
- Department of Chemical and Environmental EngineeringYale UniversityNew HavenCTUSA
- Department of Molecular Biochemistry and BiophysicsYale UniversityNew HavenCTUSA
- Department of Biomedical EngineeringYale UniversityNew HavenCTUSA
| |
Collapse
|
29
|
Sadowska-Bartosz I, Ott C, Grune T, Bartosz G. Posttranslational protein modifications by reactive nitrogen and chlorine species and strategies for their prevention and elimination. Free Radic Res 2014; 48:1267-84. [PMID: 25119970 DOI: 10.3109/10715762.2014.953494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are subject to various posttranslational modifications, some of them being undesired from the point of view of metabolic efficiency. Prevention of such modifications is expected to provide new means of therapy of diseases and decelerate the process of aging. In this review, modifications of proteins by reactive nitrogen species and reactive halogen species, is briefly presented and means of prevention of these modifications and their sequelae are discussed, including the denitrase activity and inhibitors of myeloperoxidase.
Collapse
Affiliation(s)
- I Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, University of Rzeszów , Rzeszów , Poland
| | | | | | | |
Collapse
|
30
|
Zeng T, Wilson CJ, Mitch WA. Effect of chemical oxidation on the sorption tendency of dissolved organic matter to a model hydrophobic surface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5118-5126. [PMID: 24697505 DOI: 10.1021/es405257b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The application of chemical oxidants may alter the sorption properties of dissolved organic matter (DOM), such as humic and fulvic acids, proteins, polysaccharides, and lipids, affecting their fate in water treatment processes, including attachment to other organic components, activated carbon, and membranes (e.g., organic fouling). Similar reactions with chlorine (HOCl) and bromine (HOBr) produced at inflammatory sites in vivo affect the fate of biomolecules (e.g., protein aggregation). In this study, quartz crystal microbalance with dissipation monitoring (QCM-D) was used to evaluate changes in the noncovalent interactions of proteins, polysaccharides, fatty acids, and humic and fulvic acids with a model hydrophobic surface as a function of increasing doses of HOCl, HOBr, and ozone (O3). All three oxidants enhanced the sorption tendency of proteins to the hydrophobic surface at low doses but reduced their sorption tendency at high doses. All three oxidants reduced the sorption tendency of polysaccharides and fatty acids to the hydrophobic surface. HOCl and HOBr increased the sorption tendency of humic and fulvic acids to the hydrophobic surface with maxima at moderate doses, while O3 decreased their sorption tendency. The behavior observed with two water samples was similar to that observed with humic and fulvic acids, pointing to the importance of these constituents. For chlorination, the highest sorption tendency to the hydrophobic surface was observed within the range of doses typically applied during water treatment. These results suggest that ozone pretreatment would minimize membrane fouling by DOM, while chlorine pretreatment would promote DOM removal by activated carbon.
Collapse
Affiliation(s)
- Teng Zeng
- Department of Chemical and Environmental Engineering, Yale University , 9 Hillhouse Avenue, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
31
|
Role of cysteines in the stability and DNA-binding activity of the hypochlorite-specific transcription factor HypT. PLoS One 2013; 8:e75683. [PMID: 24116067 PMCID: PMC3792123 DOI: 10.1371/journal.pone.0075683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022] Open
Abstract
Reactive oxygen species are important components of the immune response. Hypochlorite (HOCl) is produced by neutrophils to kill invading microorganisms. The bactericidal activity of HOCl is due to proteome-wide unfolding and oxidation of proteins at cysteine and methionine residues. Escherichia coli cells are protected from HOCl-killing by the previously identified dodecameric transcription factor HypT (YjiE). Here, we aimed to unravel whether HOCl activates HypT directly or via a reaction product of HOCl with a cellular component. Bacterial viability assays and analysis of target gene regulation indicate that HypT is highly specific to activation by HOCl and that no reaction products of HOCl such as monochloramine, hydroxyl radicals, or methionine sulfoxide activate HypT in vivo. Surprisingly, purified HypT lost its DNA-binding activity upon incubation with HOCl or reaction products that oxidize HypT to form a disulfide-linked dimer, and regained DNA-binding activity upon reduction. Thus, we postulate that the cysteines in HypT contribute to control the DNA-binding activity of HypT in vitro. HypT contains five cysteine residues; a HypT mutant with all cysteines substituted by serine is aggregation-prone and forms tetramers in addition to the typical dodecamers. Using single and multiple cysteine-to-serine mutants, we identified Cys150 to be required for stability and Cys4 being important for oligomerization of HypT to dodecamers. Further, oxidation of Cys4 is responsible for the loss of DNA-binding of HypT upon oxidation in vitro. It appears that Cys4 oxidation upon conditions that are insufficient to stimulate the DNA-binding activity of HypT prevents unproductive interactions of HypT with DNA. Thus, Cys4 oxidation may be a check point in the activation process of HypT.
Collapse
|