1
|
Kutraite I, Augustiniene E, Malys N. Hydroxybenzoic acids: Microbial metabolism, pathway engineering and products. Biotechnol Adv 2025; 81:108571. [PMID: 40154763 DOI: 10.1016/j.biotechadv.2025.108571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Hydroxybenzoic acids (HBAs) are plant secondary metabolites exhibiting antioxidant, antiviral, anticancer and antibacterial activities. A high and constantly increasing demand for these compounds underlines the need for novel and efficient production methods, as commonly applied plant extraction and chemical synthesis approaches are susceptible to low yields and are environmentally hazardous. Switching to biotechnology and replacing petroleum-based chemicals has potential to improve eco-efficiency in sustainable bioeconomy. With the increased focus on the production of materials using renewable resources and bio-based feedstocks, microbial fermentation and engineering drives the development and optimization of sustainable bioproduction. This systematic review summarizes current knowledge of microbial HBAs metabolism and biosynthesis. Here, the existing challenges are highlighted and the potential strategies for improved microbial production of HBAs are identified. Key aspects of HBAs metabolism and complexity of the factors related to bacterial strain selection, titer, and bioprocess strategy are examined. The opportunities of HBAs bioproduction using engineered microbial cell factories are discussed in detail and insights for synthesis improvement are presented.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Ernesta Augustiniene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų street 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
2
|
Lee S, Jeon BW, Seong JY, Lee I, Song HM, Ryu MH, Pandey A, Kim GH, Seo SO, Sung BH, Park SJ, Ryu J, Joo JC. Efficient biological funneling of lignin into 2-pyrone-4,6-dicarboxylic acid via electrocatalytic depolymerization and genetically engineered Pseudomonas putida KT2440. Int J Biol Macromol 2025; 306:141657. [PMID: 40032124 DOI: 10.1016/j.ijbiomac.2025.141657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/04/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Lignin has been an abundant biomass resource with remarkable potential to produce value-added chemicals. The comprehensive process from lignin degradation to the biological conversion of its monomers remains a challenge for demonstrating the industrial applicability of lignin refinery. Herein, Pseudomonas putida KT-PDCV overexpressing homologous vanillate-O-methylase (VanAB) could efficiently produce 2-pyrone-4,6-dicarboxylic acid (PDC) from lignin-derived compounds (LDC), including S-unit monomers (e.g., syringate and syringaldehyde). The engineered strain efficiently consumed syringate with other types of LDCs, such as p-coumarate and ferulate, and produced PDC up to 67.2 mM from mixed model lignin with a molar yield of 98 %. The efficient electrolyzer degraded practical lignin into the S-unit-dominant mixture of LDCs with remarkable performance. In addition, P. putida KT-PDCV directly utilized the mixture of LDCs without significant susceptibility to impurities, yielding a PDC of 0.91 mM with a molar yield of 62.3 %.
Collapse
Affiliation(s)
- Siseon Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Byoung Wook Jeon
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Jeong Yeon Seong
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Inhui Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Mi Hee Ryu
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, Steve Biko Campus, Durban 4001, South Africa; Bioenergy Research Laboratory, Department of Biotechnology, AKS University, Satna, Madhya Pradesh 485001, India.
| | - Geun-Hyung Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Seung-Oh Seo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biosystems and Bioengineering, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
3
|
Chiang CC, Lu YJ, Liu JW, Lin SW, Chou CC, Lin CH, Chien IW, Hsu CH. Structural Insights into 4,5-DOPA Extradiol Dioxygenase from Beta vulgaris: Unraveling the Key Step in Versatile Betalain Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6785-6794. [PMID: 40055856 PMCID: PMC11926856 DOI: 10.1021/acs.jafc.4c09501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Betalains, a group of pigments widely distributed in various plants, are extensively applied in the food, beverage, and medicinal industries. The biosynthesis of betalains involves the enzymatic action of 4,5-DOPA-dioxygenase, which catalyzes the key ring-opening reaction of DOPA to produce betalamic acid, a crucial intermediate in the pathway. The crystal structure of a 4,5-DOPA-dioxygenase from Beta vulgaris (BvDOD) was determined in this study. The structural analysis revealed that BvDOD exhibited a structural fold similar to that of other members of the extradiol dioxygenase family. Moreover, the Fe-ligand residues His15, His53, and His229 indicated the enzyme's reliance on nonheme iron for catalyzing the ring-opening reaction. Molecular docking and mutational analysis identified two conserved residues, His119 and His175, in the active site essential for the catalytic reaction. In addition, Thr17, Asp254, and Tyr260 contributed to properly positioning the substrate in the active site. This study has provided structural insights into substrate recognition and catalytic mechanisms of BvDOD, which can be applied to develop enzymes for improved betalain production.
Collapse
Affiliation(s)
- Chih-Chia Chiang
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
| | - Yen-Ju Lu
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Jia-Wei Liu
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
| | - Sheng-Wei Lin
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - Chun-Chi Chou
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
| | - Chia-Hsin Lin
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
| | - I-Weh Chien
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
| | - Chun-Hua Hsu
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
- Institute
of Biochemical Sciences, National Taiwan
University, Taipei 10617, Taiwan
- Genome
and
Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Center for
Computational and Systems Biology, National
Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Machonkin TE, Maker MS, Ganjoloo N, Conkin DF. Characterization of the substrate specificity and regioselectivity of ring-cleavage of Pseudomonas putida DLL-E4 hydroquinone 1,2-dioxygenase (PnpC1C2). J Biol Inorg Chem 2025; 30:35-51. [PMID: 39960525 DOI: 10.1007/s00775-025-02101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 03/18/2025]
Abstract
PnpC1C2 is an enzyme from the soil bacterium Pseudomonas putida DLL-E4 that is in the pathway for the oxidative catabolism of 4-nitrophenol. PnpC1C2 oxidatively cleaves hydroquinone into γ-hydroxymuconic semialdehyde. It belongs to the type II hydroquinone dioxygenase family, a relatively uncharacterized group of mononuclear non-heme Fe(II)-dependent enzymes that catalyze oxidative ring-cleavage reactions, which includes the well-studied catechol extradiol dioxygenases as well as the structurally unrelated 2,6-dichlorohydroquinone dioxygenase (PcpA). Steady-state kinetics studies using UV/Vis spectroscopy were performed to characterize the enzyme specificity towards various substituted hydroquinones. In addition to its native substrate, PnpC1C2 was active towards a variety of monosubstituted hydroquinones. Methyl- and methoxyhydroquinone showed a moderately higher K mA app , and chloro- and bromohydroquinone showed a moderately lower k cat app , but all had ak cat app k cat app K mA app K mA app within an order of magnitude of unsubstituted hydroquinone. Likewise, only small differences in the rates of mechanism-based inactivation were observed among these substrates. Among disubstituted hydroquinones, only 2,6- and 2,5-dimethylhydroquinone showed any activity, with the latter only barely detectable. A variety of para-substituted phenols were found to be good inhibitors of PnpC1C2. NMR studies were performed to determine the regioselectivity of ring-cleavage with monosubstituted hydroquinones. All monosubstituted hydroquinones tested (methyl-, chloro-, bromo-, and methoxyhydroquinone) yielded exclusively the 1,6-cleavage product. Thus, PnpC1C2 shows notable differences in both its substrate specificity and the ring-cleavage regioselectivity compared to that of PcpA. These results provide an important basis for future comparison of structure-function correlations among the hydroquinone ring-cleaving dioxygenases.
Collapse
Affiliation(s)
- Timothy E Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA.
| | - Madeleine S Maker
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| | - Nandin Ganjoloo
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| | - Drew F Conkin
- Department of Chemistry, Whitman College, 345 Boyer Ave., Walla Walla, WA, 99362, USA
| |
Collapse
|
5
|
Rodrigues AV, Moriarty NW, Kakumanu R, DeGiovanni A, Pereira JH, Gin JW, Chen Y, Baidoo EEK, Petzold CJ, Adams PD. Characterization of lignin-degrading enzyme PmdC, which catalyzes a key step in the synthesis of polymer precursor 2-pyrone-4,6-dicarboxylic acid. J Biol Chem 2024; 300:107736. [PMID: 39222681 PMCID: PMC11489326 DOI: 10.1016/j.jbc.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase, which acts on the substrate CHMS. We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP. Using a combination of structural homology, molecular docking, and quantum chemistry calculations, we have predicted the binding site of CHMS. Key histidine residues in a conserved sequence are identified as crucial for binding the hydroxyl group of CHMS and facilitating dehydrogenation with NADP. Mutating these histidine residues results in a loss of enzyme activity, leading to a proposed model for the enzyme's mechanism. These findings are expected to help guide efforts in protein and metabolic engineering to enhance PDC yields in biological routes to polymer feedstock synthesis.
Collapse
Affiliation(s)
- Andria V Rodrigues
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States.
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Andy DeGiovanni
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jennifer W Gin
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Energy Agile BioFoundry, Emeryville, California, United States
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, California, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, United States; Department of Bioengineering, University of California Berkeley, Berkeley, California, United States.
| |
Collapse
|
6
|
Campbell J, Wang Y. Observing extradiol dioxygenases in action through a crystalline lens. Methods Enzymol 2024; 704:3-25. [PMID: 39300653 DOI: 10.1016/bs.mie.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Extradiol dioxygenases are a class of non-heme iron-dependent enzymes found in eukaryotes and prokaryotes that play a vital role in the aerobic catabolism of aromatic compounds. They are generally divided into three evolutionarily independent superfamilies with different protein folds. Our recent studies have shed light on the catalytic mechanisms and structure-function relationships of two specific extradiol dioxygenases: 3-hydroxyanthranilate-3,4-dioxygenase, a Type III enzyme essential in mammals for producing a precursor for nicotinamide adenine dinucleotide, and L-3,4-dihydroxyphenylalanine dioxygenase, an uncommon form of Type I enzymes involved in natural product biosynthesis. This work details the expression and isolation methods for these extradiol dioxygenases and introduces approaches to achieve homogeneity and high occupancy of the enzyme metal centers. Techniques such as ultraviolet-visible and electron paramagnetic resonance spectroscopies, as well as oxygen electrode measurements, are discussed for probing the interaction of the non-heme iron center with ligands and characterizing enzymatic activities. Moreover, protein crystallization has been demonstrated as a powerful tool to study these enzymes. We highlight in crystallo reactions and single-crystal spectroscopic methods to further elucidate enzymatic functions and protein dynamics.
Collapse
Affiliation(s)
- Jackson Campbell
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, GA, United States.
| |
Collapse
|
7
|
Quaye JA, Wood KE, Snelgrove C, Ouedraogo D, Gadda G. An active site mutation induces oxygen reactivity in D-arginine dehydrogenase: A case of superoxide diverting protons. J Biol Chem 2024; 300:107381. [PMID: 38762175 PMCID: PMC11193025 DOI: 10.1016/j.jbc.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Enzymes are potent catalysts that increase biochemical reaction rates by several orders of magnitude. Flavoproteins are a class of enzymes whose classification relies on their ability to react with molecular oxygen (O2) during catalysis using ionizable active site residues. Pseudomonas aeruginosa D-arginine dehydrogenase (PaDADH) is a flavoprotein that oxidizes D-arginine for P. aeruginosa survival and biofilm formation. The crystal structure of PaDADH reveals the interaction of the glutamate 246 (E246) side chain with the substrate and at least three other active site residues, establishing a hydrogen bond network in the active site. Additionally, E246 likely ionizes to facilitate substrate binding during PaDADH catalysis. This study aimed to investigate how replacing the E246 residue with leucine affects PaDADH catalysis and its ability to react with O2 using steady-state kinetics coupled with pH profile studies. The data reveal a gain of O2 reactivity in the E246L variant, resulting in a reduced flavin semiquinone species and superoxide (O2•-) during substrate oxidation. The O2•- reacts with active site protons, resulting in an observed nonstoichiometric slope of 1.5 in the enzyme's log (kcat/Km) pH profile with D-arginine. Adding superoxide dismutase results in an observed correction of the slope to 1.0. This study demonstrates how O2•- can alter the slopes of limbs in the pH profiles of flavin-dependent enzymes and serves as a model for correcting nonstoichiometric slopes in elucidating reaction mechanisms of flavoproteins.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Kendall E Wood
- Biology Department, Morehouse College, Atlanta, Georgia, USA
| | - Claire Snelgrove
- The Gwinnett School of Mathematics, Science, and Technology, Lawrenceville, Georgia, USA
| | - Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; Department of the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Wu F, Wang S, Zhou D, Gao S, Song G, Liang Y, Wang Q. Metabolic engineering of Escherichia coli for high-level production of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid. Metab Eng 2024; 83:52-60. [PMID: 38521489 DOI: 10.1016/j.ymben.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudo-aromatic dicarboxylic acid, is a promising building block compound for manufacturing biodegradable polyesters. This study aimed to construct high-performance cell factories enabling the efficient production of PDC from glucose. Firstly, the effective enzymes of the PDC biosynthetic pathway were overexpressed on the chromosome of the 3-dehydroshikimate overproducing strain. Consequently, the one-step biosynthesis of PDC from glucose was achieved. Further, the PDC production was enhanced by multi-copy integration of the key gene PsligC encoding 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and co-expression of Vitreoscilla hemoglobin. Subsequently, the PDC production was substantially improved by redistributing the metabolic flux for cell growth and PDC biosynthesis based on dynamically downregulating the expression of pyruvate kinase. The resultant strain PDC50 produced 129.37 g/L PDC from glucose within 78 h under fed-batch fermentation conditions, with a yield of 0.528 mol/mol and an average productivity of 1.65 g/L/h. The findings of this study lay the foundation for the potential industrial production of PDC.
Collapse
Affiliation(s)
- Fengli Wu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Shucai Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China; College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shukai Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Guotian Song
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yanxia Liang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
9
|
Ringenbach S, Yoza R, Jones PA, Du M, Klugh KL, Peterson LW, Colabroy KL. Discovery and characterization of l-DOPA 2,3-dioxygenase from Streptomyces hygroscopicus jingganensis. Arch Biochem Biophys 2024; 755:109967. [PMID: 38556098 DOI: 10.1016/j.abb.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
The largest natural reservoir of untapped carbon can be found in the cell-wall strengthening, plant woody-tissue polymer, lignin - a polymer of catechols or 1,2-dihydroxybenzene monomers. The catecholic carbon of lignin could be valorized into feedstocks and natural products by way of catabolic and biosynthetic transformations, including the oxygen-dependent cleavage reaction of extradiol dioxygenase (EDX) enzymes. The EDX l-DOPA 2,3-dioxygenase was first discovered as part of a biosynthetic gene cluster to the natural product antibiotic, lincomycin, and also contributes to the biosyntheses of anthramycin, sibiromycin, tomaymycin, porothramycin and hormaomycin. Using these l-DOPA 2,3-dioxygenases as a starting point, we searched sequence space in order to identify new sources of dioxygenase driven natural product diversity. A "vicinal-oxygen-chelate (VOC) family protein" from Streptomyces hygroscopicus jingganensis was identified using bioinformatic methods and biochemically investigated for dioxygenase activity against a suite of natural and synthetic catechols. Steady-state oxygen consumption assays were used to screen and identify substrates, and a steady-state kinetic model of oxygen consumption was developed to evaluate activity of the S. hygroscopicus jingganensis VOC-family-protein with respect to activity of l-DOPA 2,3-dioxygenases from Streptomyces lincolnensis and Streptomyces sclerotialus. Lastly, these data were integrated with steady-state kinetic methods to observe the formation of the EDX cleavage product with UV-visible spectroscopy. The genomic context and enzymatic activity of the S. hygroscopicus jingganensis VOC family protein are consistent with a l-DOPA 2,3-dioxygenase contained within a cryptic biosynthetic pathway.
Collapse
Affiliation(s)
- Sara Ringenbach
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Riri Yoza
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Paige A Jones
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Muxue Du
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Kameron L Klugh
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Keri L Colabroy
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA.
| |
Collapse
|
10
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
11
|
Zhou D, Wu F, Peng Y, Qazi MA, Li R, Wang Y, Wang Q. Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:92. [PMID: 37264438 DOI: 10.1186/s13068-023-02350-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND 2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudoaromatic dicarboxylic acid, represents a promising building block for the manufacture of biodegradable polyesters. Microbial production of PDC has been extensively investigated, but low titers and yields have limited industrial applications. RESULTS In this study, a multi-step biosynthesis strategy for the microbial production of PDC was demonstrated using engineered Escherichia coli whole-cell biocatalysts. The PDC biosynthetic pathway was first divided into three synthetic modules, namely the 3-dehydroshikimic acid (DHS) module, the protocatechuic acid (PCA) module and the PDC module. Several effective enzymes, including 3-dehydroshikimate dehydratase for the PCA module as well as protocatechuate 4,5-dioxygenase and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase for the PDC module were isolated and characterized. Then, the highly efficient whole-cell bioconversion systems for producing PCA and PDC were constructed and optimized, respectively. Finally, the efficient multi-step biosynthesis of PDC from glucose was achieved by smoothly integrating the above three biosynthetic modules, resulting in a final titer of 49.18 g/L with an overall 27.2% molar yield, which represented the highest titer for PDC production from glucose reported to date. CONCLUSIONS This study lays the foundation for the microbial production of PDC, including one-step de novo biosynthesis from glucose as well as the microbial transformation of monoaromatics.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Fengli Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Yanfeng Peng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Muneer Ahmed Qazi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, 66020, Sindh, Pakistan
| | - Ruosong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
12
|
Li YX, Lin W, Han YH, Wang YQ, Wang T, Zhang H, Zhang Y, Wang SS. Biodegradation of p-hydroxybenzoic acid in Herbaspirillum aquaticum KLS-1 isolated from tailing soil: Characterization and molecular mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131669. [PMID: 37236108 DOI: 10.1016/j.jhazmat.2023.131669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The wide distribution of p-hydroxybenzoic acid (PHBA) in the environments has attracted great concerns due to its potential risks to organisms. Bioremediation is considered a green way to remove PHBA from environment. Here, a new PHBA-degrading bacterium Herbaspirillum aquaticum KLS-1was isolated and its PHBA degradation mechanisms were fully evaluated. Results showed that strain KLS-1 could utilize PHBA as the sole carbon source and completely degrade 500 mg/L PHBA within 18 h. The optimal conditions for bacterial growth and PHBA degradation were pH values of 6.0-8.0, temperatures of 30 °C-35 °C, shaking speed of 180 rpm, Mg2+ concentration of 2.0 mM and Fe2+ concentration of 1.0 mM. Draft genome sequencing and functional gene annotations identified three operons (i.e., pobRA, pcaRHGBD and pcaRIJ) and several free genes possibly participating in PHBA degradation. The key genes pobA, ubiA, fadA, ligK and ubiG involved in the regulation of protocatechuate and ubiquinone (UQ) metabolisms were successfully amplified in strain KLS-1 at mRNA level. Our data suggested that PHBA could be degraded by strain KLS-1 via the protocatechuate ortho-/meta-cleavage pathway and UQ biosynthesis pathway. This study has provided a new PHBA-degrading bacterium for potential bioremediation of PHBA pollution.
Collapse
Affiliation(s)
- Yi-Xi Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Wei Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yong-He Han
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China.
| | - Yao-Qiang Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Tao Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Hong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Yong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Shan-Shan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
13
|
Rafalowski A, Hassan BA, Lou K, Nguyen MC, Taylor EA. How Single Amino Acid Substitutions Can Disrupt a Protein Hetero-Dimer Interface: Computational and Experimental Studies of the LigAB Dioxygenase from Sphingobium sp. Strain SYK-6. Int J Mol Sci 2023; 24:ijms24076319. [PMID: 37047291 PMCID: PMC10094722 DOI: 10.3390/ijms24076319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Protocatechuate 4,5-dioxygenase (LigAB) is a heterodimeric enzyme that catalyzes the dioxygenation of multiple lignin derived aromatic compounds. The active site of LigAB is at the heterodimeric interface, with specificity conferred by the alpha subunit and catalytic residues contributed by the beta subunit. Previous research has indicated that the phenylalanine at the 103 position of the alpha subunit (F103α) controls selectivity for the C5 position of the aromatic substrates, and mutations of this residue can enhance the rate of catalysis for substrates with larger functional groups at this position. While several of the mutations to this position (Valine, V; Threonine, T; Leucine, L; and Histidine, H) were catalytically active, other mutations (Alanine, A; and Serine, S) were found to have reduced dimer interface affinity, leading to challenges in copurifing the catalytically active enzyme complex under high salt conditions. In this study, we aimed to experimentally and computationally interrogate residues at the dimer interface to discern the importance of position 103α for maintaining the integrity of the heterodimer. Molecular dynamic simulations and electrophoretic mobility assays revealed a preference for nonpolar/aromatic amino acids in this position, suggesting that while substitutions to polar amino acids may produce a dioxygenase with a useful substrate utilization profile, those considerations may be off-set by potential destabilization of the catalytically active oligomer. Understanding the dimerization of LigAB provides insight into the multimeric proteins within the largely uncharacterized superfamily and characteristics to consider when engineering proteins that can degrade lignin efficiently. These results shed light on the challenges associated with engineering proteins for broader substrate specificity.
Collapse
|
14
|
Tao J, Chen Q, Chen S, Lu P, Chen Y, Jin J, Li J, Xu Y, He W, Long T, Deng X, Yin H, Li Z, Fan J, Cao P. Metagenomic insight into the microbial degradation of organic compounds in fermented plant leaves. ENVIRONMENTAL RESEARCH 2022; 214:113902. [PMID: 35839908 DOI: 10.1016/j.envres.2022.113902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 05/23/2023]
Abstract
Microbial degradation of organic compounds is an environmentally benign and energy efficient part in product processing. Fermentation of plant leaves involves enzymatic actions of many microorganisms. However, microbes and enzymes discovered from natural degradation communities were still limited by cultural methods. In this study, we used a metagenomics sequence-guided strategy to identify the microbes and enzymes involved in compound degradation and explore the potential synergy among community members in fermented tobacco leaves. The results showed that contents of protein, starch, pectin, lignin, and cellulose varied in fermented leaves from different growing sites. The different compound contents were closely related to taxonomic composition and functional profiles of foliar microbial communities. Microbial communities showed significant correlations with protein, lignin, and cellulose. Vital species for degradations of protein (Bacillus cereus and Terribacillus aidingensis), lignin (Klebsiella pneumoniae and Pantoea ananatis) and cellulose (Pseudomonas putida and Sphingomonas sp. Leaf20) were identified and relating hydrolytic enzymes were annotated. Further, twenty-two metagenome-assembled genomes (MAGs) were assembled from metagenomes and six potential cellulolytic genomes were used to reconstruct the cellulose-degrading process, revealing the potential metabolic cooperation related to cellulose degradation. Our work should deepen the understanding of microbial roles in plant fermentation and provide a new viewpoint for applying microbial consortia to convert plant organic components to small molecules.
Collapse
Affiliation(s)
- Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shanyi Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Yiqiang Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jingjing Li
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei He
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Teng Long
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Xiaohua Deng
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361000, China.
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Liu H, Liu ZH, Zhang RK, Yuan JS, Li BZ, Yuan YJ. Bacterial conversion routes for lignin valorization. Biotechnol Adv 2022; 60:108000. [DOI: 10.1016/j.biotechadv.2022.108000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
|
16
|
McKay LJ, Smith HJ, Barnhart EP, Schweitzer HD, Malmstrom RR, Goudeau D, Fields MW. Activity-based, genome-resolved metagenomics uncovers key populations and pathways involved in subsurface conversions of coal to methane. THE ISME JOURNAL 2022; 16:915-926. [PMID: 34689183 PMCID: PMC8941128 DOI: 10.1038/s41396-021-01139-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Microbial metabolisms and interactions that facilitate subsurface conversions of recalcitrant carbon to methane are poorly understood. We deployed an in situ enrichment device in a subsurface coal seam in the Powder River Basin (PRB), USA, and used BONCAT-FACS-Metagenomics to identify translationally active populations involved in methane generation from a variety of coal-derived aromatic hydrocarbons. From the active fraction, high-quality metagenome-assembled genomes (MAGs) were recovered for the acetoclastic methanogen, Methanothrix paradoxum, and a novel member of the Chlorobi with the potential to generate acetate via the Pta-Ack pathway. Members of the Bacteroides and Geobacter also encoded Pta-Ack and together, all four populations had the putative ability to degrade ethylbenzene, phenylphosphate, phenylethanol, toluene, xylene, and phenol. Metabolic reconstructions, gene analyses, and environmental parameters also indicated that redox fluctuations likely promote facultative energy metabolisms in the coal seam. The active "Chlorobi PRB" MAG encoded enzymes for fermentation, nitrate reduction, and multiple oxygenases with varying binding affinities for oxygen. "M. paradoxum PRB" encoded an extradiol dioxygenase for aerobic phenylacetate degradation, which was also present in previously published Methanothrix genomes. These observations outline underlying processes for bio-methane from subbituminous coal by translationally active populations and demonstrate activity-based metagenomics as a powerful strategy in next generation physiology to understand ecologically relevant microbial populations.
Collapse
Affiliation(s)
- Luke J McKay
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Elliott P Barnhart
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, 59601, USA
| | - Hannah D Schweitzer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA
- Arctic University of Norway, Tromsø, Norway
| | | | | | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
17
|
Zhu D, Qaria MA, Zhu B, Sun J, Yang B. Extremophiles and extremozymes in lignin bioprocessing. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 157:112069. [DOI: 10.1016/j.rser.2021.112069] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Gómez-Álvarez H, Iturbe P, Rivero-Buceta V, Mines P, Bugg TDH, Nogales J, Díaz E. Bioconversion of lignin-derived aromatics into the building block pyridine 2,4-dicarboxylic acid by engineering recombinant Pseudomonas putida strains. BIORESOURCE TECHNOLOGY 2022; 346:126638. [PMID: 34971782 DOI: 10.1016/j.biortech.2021.126638] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
2,4 pyridine dicarboxylic acid (2,4 PDCA) is an analogue of terephthalate, and hence a target chemical in the field of bio-based plastics. Here, Pseudomonas putida KT2440 strains were engineered to efficiently drive the metabolism of lignin-derived monoaromatics towards 2,4 PDCA in a resting cells-based bioprocess that alleviates growth-coupled limitations and allows biocatalysts recycling. Native β-ketoadipate pathway was blocked by replacing protocatechuate 3,4-dioxygenase by the exogenous LigAB extradiol dioxygenase. Overexpression of pcaK encoding a transporter increased 8-fold 2,4 PDCA productivity from protocatechuate, reaching the highest value reported so far (0.58 g L-1h-1). Overexpression of the 4-hydroxybenzoate monooxygenase (pobA) speed up drastically the production of 2,4 PDCA from 4-hydroxybenzoate (0.056 g L-1h-1) or p-coumarate (0.012 g L-1h-1) achieving values 15-fold higher than those reported with Rhodococcus jostii biocatalysts. 2,4 PDCA was also bioproduced by using soda lignin as feedstock, paving the way for future polymeric lignin valorization approaches.
Collapse
Affiliation(s)
- Helena Gómez-Álvarez
- Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Iturbe
- Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain; Navarrabiomed, University of Navarra, Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Rivero-Buceta
- Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Paul Mines
- Biome Bioplastics Ltd, North Road, Marchwood, Southampton SO40 4BL, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Juan Nogales
- National Centre for Biotechnology, Spanish National Research Council, Darwin 3, 28049 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Eduardo Díaz
- Margarita Salas Center for Biological Research, Spanish National Research Council, Ramiro de Maeztu 9, 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
19
|
Characterization of Gentisate 1,2-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and Its Stabilization by Immobilization on Nickel-Functionalized Magnetic Nanoparticles. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was the biochemical and kinetic characterization of the gentisate 1,2-dioxygenase (GDO) from Pseudarthrobacter phenanthrenivorans Sphe3 and the development of a nanobiocatalyst by its immobilization on Ni2+-functionalized Fe3O4-polydopamine magnetic nanoparticles (Ni2+-PDA-MNPs). This is the first GDO to be immobilized. The gene encoding the GDO was cloned with an N-terminal His-tag and overexpressed in E. coli. The nanoparticles showed a high purification efficiency of GDO from crude cell lysates with a maximum activity recovery of 97%. The immobilized enzyme was characterized by Fourier transform infrared spectroscopy (FTIR). The reaction product was identified by 1H NMR. Both free and immobilized GDO exhibited Michaelis–Menten kinetics with Km values of 25.9 ± 4.4 and 82.5 ± 14.2 μM and Vmax values of 1.2 ± 0.1 and 0.03 ± 0.002 mM*s−1, respectively. The thermal stability of the immobilized GDO was enhanced at 30 °C, 40 °C, and 50 °C, compared to the free GDO. Stored at −20 °C, immobilized GDO retained more than 60% of its initial activity after 30 d, while the free enzyme completely lost its activity after 10 d. Furthermore, the immobilized nanoparticle–enzyme conjugate retained more than 50% enzyme activity up to the fifth cycle.
Collapse
|
20
|
Tsagogiannis E, Vandera E, Primikyri A, Asimakoula S, Tzakos AG, Gerothanassis IP, Koukkou AI. Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and In Situ Reaction Monitoring in the NMR Tube. Int J Mol Sci 2021; 22:9647. [PMID: 34502555 PMCID: PMC8431788 DOI: 10.3390/ijms22179647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis-Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg-1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Elpiniki Vandera
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Alexandra Primikyri
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Andreas G. Tzakos
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| |
Collapse
|
21
|
Goldberg AM, Robinson MK, Starr ES, Marasco RN, Alana AC, Cochrane CS, Klugh KL, Strzeminski DJ, Du M, Colabroy KL, Peterson LW. L-DOPA Dioxygenase Activity on 6-Substituted Dopamine Analogues. Biochemistry 2021; 60:2492-2507. [PMID: 34324302 DOI: 10.1021/acs.biochem.1c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dioxygenase enzymes are essential protein catalysts for the breakdown of catecholic rings, structural components of plant woody tissue. This powerful chemistry is used in nature to make antibiotics and other bioactive materials or degrade plant material, but we have a limited understanding of the breadth and depth of substrate space for these potent catalysts. Here we report steady-state and pre-steady-state kinetic analysis of dopamine derivatives substituted at the 6-position as substrates of L-DOPA dioxygenase, and an analysis of that activity as a function of the electron-withdrawing nature of the substituent. Steady-state and pre-steady-state kinetic data demonstrate the dopamines are impaired in binding and catalysis with respect to the cosubstrate molecular oxygen, which likely afforded spectroscopic observation of an early reaction intermediate, the semiquinone of dopamine. The reaction pathway of dopamine in the pre-steady state is consistent with a nonproductive mode of binding of oxygen at the active site. Despite these limitations, L-DOPA dioxygenase is capable of binding all of the dopamine derivatives and catalyzing multiple turnovers of ring cleavage for dopamine, 6-bromodopamine, 6-carboxydopamine, and 6-cyanodopamine. 6-Nitrodopamine was a single-turnover substrate. The variety of substrates accepted by the enzyme is consistent with an interplay of factors, including the capacity of the active site to bind large, negatively charged groups at the 6-position and the overall oxidizability of each catecholamine, and is indicative of the utility of extradiol cleavage in semisynthetic and bioremediation applications.
Collapse
Affiliation(s)
- Alexander M Goldberg
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Miranda K Robinson
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Erykah S Starr
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Ryan N Marasco
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Alexa C Alana
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - C Skyler Cochrane
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - Kameron L Klugh
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| | - David J Strzeminski
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Muxue Du
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Keri L Colabroy
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, Tennessee 38112, United States
| |
Collapse
|
22
|
Stravoravdis S, Shipway JR, Goodell B. How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes. Front Microbiol 2021; 12:665001. [PMID: 34322098 PMCID: PMC8312274 DOI: 10.3389/fmicb.2021.665001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Shipworms are ecologically and economically important mollusks that feed on woody plant material (lignocellulosic biomass) in marine environments. Digestion occurs in a specialized cecum, reported to be virtually sterile and lacking resident gut microbiota. Wood-degrading CAZymes are produced both endogenously and by gill endosymbiotic bacteria, with extracellular enzymes from the latter being transported to the gut. Previous research has predominantly focused on how these animals process the cellulose component of woody plant material, neglecting the breakdown of lignin – a tough, aromatic polymer which blocks access to the holocellulose components of wood. Enzymatic or non-enzymatic modification and depolymerization of lignin has been shown to be required in other wood-degrading biological systems as a precursor to cellulose deconstruction. We investigated the genomes of five shipworm gill bacterial symbionts obtained from the Joint Genome Institute Integrated Microbial Genomes and Microbiomes Expert Review for the production of lignin-modifying enzymes, or ligninases. The genomes were searched for putative ligninases using the Joint Genome Institute’s Function Profile tool and blastp analyses. The resulting proteins were then modeled using SWISS-MODEL. Although each bacterial genome possessed at least four predicted ligninases, the percent identities and protein models were of low quality and were unreliable. Prior research demonstrates limited endogenous ability of shipworms to modify lignin at the chemical/molecular level. Similarly, our results reveal that shipworm bacterial gill-symbiont enzymes are unlikely to play a role in lignin modification during lignocellulose digestion in the shipworm gut. This suggests that our understanding of how these keystone organisms digest and process lignocellulose is incomplete, and further research into non-enzymatic and/or other unknown mechanisms for lignin modification is required.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - J Reuben Shipway
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Barry Goodell
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
23
|
Redundancy in aromatic O-demethylation and ring opening reactions in Novosphingobium aromaticivorans and their impact in the metabolism of plant derived phenolics. Appl Environ Microbiol 2021; 87:AEM.02794-20. [PMID: 33579679 PMCID: PMC8091115 DOI: 10.1128/aem.02794-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lignin is a plant heteropolymer composed of phenolic subunits. Because of its heterogeneity and recalcitrance, the development of efficient methods for its valorization still remains an open challenge. One approach to utilize lignin is its chemical deconstruction into mixtures of monomeric phenolic compounds followed by biological funneling into a single product. Novosphingobium aromaticivorans DSM12444 has been previously engineered to produce 2-pyrone-4,6-dicarboxylic acid (PDC) from depolymerized lignin by simultaneously metabolizing multiple aromatics through convergent routes involving the intermediates 3-methoxygallic acid (3-MGA) and protocatechuic acid (PCA). We investigated enzymes predicted to be responsible for O-demethylation and oxidative aromatic ring opening, two critical reactions involved in the metabolism of phenolics compounds by N. aromaticivorans The results showed the involvement of DesA in O-demethylation of syringic and vanillic acids, LigM in O-demethylation of vanillic acid and 3-MGA, and a new O-demethylase, DmtS, in the conversion of 3-MGA into gallic acid (GA). In addition, we found that LigAB was the main aromatic ring opening dioxygenase involved in 3-MGA, PCA, and GA metabolism, and that a previously uncharacterized dioxygenase, LigAB2, had high activity with GA. Our results indicate a metabolic route not previously identified in N. aromaticivorans that involves O-demethylation of 3-MGA to GA. We predict this pathway channels ∼15% of the carbon flow from syringic acid, with the rest following ring opening of 3-MGA. The new knowledge obtained in this study allowed for the creation of an improved engineered strain for the funneling of aromatic compounds that exhibits stoichiometric conversion of syringic acid into PDC.IMPORTANCE For lignocellulosic biorefineries to effectively contribute to reduction of fossil fuel use, they need to become efficient at producing chemicals from all major components of plant biomass. Making products from lignin will require engineering microorganisms to funnel multiple phenolic compounds to the chemicals of interest, and N. aromaticivorans is a promising chassis for this technology. The ability of N. aromaticivorans to efficiently and simultaneously degrade many phenolic compounds may be linked to having functionally redundant aromatic degradation pathways and enzymes with broad substrate specificity. A detailed knowledge of aromatic degradation pathways is thus essential to identify genetic engineering targets to maximize product yields. Furthermore, knowledge of enzyme substrate specificity is critical to redirect flow of carbon to desired pathways. This study described an uncharacterized pathway in N. aromaticivorans and the enzymes that participate in this pathway, allowing the engineering of an improved strain for production of PDC from lignin.
Collapse
|
24
|
Notonier S, Werner AZ, Kuatsjah E, Dumalo L, Abraham PE, Hatmaker EA, Hoyt CB, Amore A, Ramirez KJ, Woodworth SP, Klingeman DM, Giannone RJ, Guss AM, Hettich RL, Eltis LD, Johnson CW, Beckham GT. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metab Eng 2021; 65:111-122. [PMID: 33741529 DOI: 10.1016/j.ymben.2021.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Valorization of lignin, an abundant component of plant cell walls, is critical to enabling the lignocellulosic bioeconomy. Biological funneling using microbial biocatalysts has emerged as an attractive approach to convert complex mixtures of lignin depolymerization products to value-added compounds. Ideally, biocatalysts would convert aromatic compounds derived from the three canonical types of lignin: syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H). Pseudomonas putida KT2440 (hereafter KT2440) has been developed as a biocatalyst owing in part to its native catabolic capabilities but is not known to catabolize S-type lignin-derived compounds. Here, we demonstrate that syringate, a common S-type lignin-derived compound, is utilized by KT2440 only in the presence of another energy source or when vanAB was overexpressed, as syringate was found to be O-demethylated to gallate by VanAB, a two-component monooxygenase, and further catabolized via extradiol cleavage. Unexpectedly, the specificity (kcat/KM) of VanAB for syringate was within 25% that for vanillate and O-demethylation of both substrates was well-coupled to O2 consumption. However, the native KT2440 gallate-cleaving dioxygenase, GalA, was potently inactivated by 3-O-methylgallate. To engineer a biocatalyst to simultaneously convert S-, G-, and H-type monomers, we therefore employed VanAB from Pseudomonas sp. HR199, which has lower activity for 3MGA, and LigAB, an extradiol dioxygenase able to cleave protocatechuate and 3-O-methylgallate. This strain converted 93% of a mixture of lignin monomers to 2-pyrone-4,6-dicarboxylate, a promising bio-based chemical. Overall, this study elucidates a native pathway in KT2440 for catabolizing S-type lignin-derived compounds and demonstrates the potential of this robust chassis for lignin valorization.
Collapse
Affiliation(s)
- Sandra Notonier
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Eugene Kuatsjah
- Department of Microbiology and Immunology, BioProducts Institute, and the Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Linda Dumalo
- Department of Microbiology and Immunology, BioProducts Institute, and the Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paul E Abraham
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - E Anne Hatmaker
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Caroline B Hoyt
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Antonella Amore
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Sean P Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Dawn M Klingeman
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Richard J Giannone
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Adam M Guss
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Robert L Hettich
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA; Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, BioProducts Institute, and the Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
25
|
Identifying metabolic pathway intermediates that modulate the gallate dioxygenase (DesB) from Sphingobium sp. strain SYK-6. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Li J, Wang P, Salam N, Li X, Ahmad M, Tian Y, Duan L, Huang L, Xiao M, Mou X, Li W. Unraveling bacteria-mediated degradation of lignin-derived aromatic compounds in a freshwater environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141236. [PMID: 32846344 DOI: 10.1016/j.scitotenv.2020.141236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Terrestrial organic carbon-lignin plays a crucial role in the global carbon balance. However, limited studies presented the functional and ecological traits of lignin decomposers population in natural aquatic ecosystem. In this study, we performed a multi-omics analysis by deploying amplicon, metagenomic, and metatranscriptomic approaches to identify the key potential degraders and pathways involved lignin-derived aromatic compounds in the later stage of lignin degradation. By establishing microcosms with model lignin-derived aromatic compound (vanillic acid, VAN), based on the estimated absolute abundance (EAA) and the metagenome-assembled genomes (MAGs), novel potential lignin-derived aromatic compounds degraders were identified in the aquatic ecosystem. Furthermore, members of the phyla Proteobacteria and Actinobacteria were the potential major lignin-derived aromatic compounds degraders in the studied ecosystem. Our study demonstrated that genomes of the class Betaproteobacteria (Proteobacteria) possess a complete enzymatic system for the degradation of diarylpropanes, vanillate and protocatechuate, besides having the capacity to degrade other lignin-derived aromatic compounds. This study provides strong evidence for the ability of aquatic bacteria to degrade lignin-derived aromatic compounds and suggest that different microbes might occupy different niches in the later stage of lignin degradation.
Collapse
Affiliation(s)
- Jialing Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Pandeng Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Nimaichand Salam
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Xin Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Manzoor Ahmad
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Ye Tian
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Li Duan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Linan Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Min Xiao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, Kent, 44242, OH, USA.
| | - Wenjun Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) and State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China.
| |
Collapse
|
27
|
Samantarrai D, Lakshman Sagar A, Gudla R, Siddavattam D. TonB-Dependent Transporters in Sphingomonads: Unraveling Their Distribution and Function in Environmental Adaptation. Microorganisms 2020; 8:microorganisms8030359. [PMID: 32138166 PMCID: PMC7142613 DOI: 10.3390/microorganisms8030359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
TonB-dependent transport system plays a critical role in the transport of nutrients across the energy-deprived outer membrane of Gram-negative bacteria. It contains a specialized outer membrane TonB-dependent transporter (TBDT) and energy generating (ExbB/ExbD) and transducing (TonB) inner membrane multi-protein complex, called TonB complex. Very few TonB complex protein-coding sequences exist in the genomes of Gram-negative bacteria. Interestingly, the TBDT coding alleles are phenomenally high, especially in the genomes of bacteria surviving in complex and stressful environments. Sphingomonads are known to survive in highly polluted environments using rare, recalcitrant, and toxic substances as their sole source of carbon. Naturally, they also contain a huge number of TBDTs in the outer membrane. Out of them, only a few align with the well-characterized TBDTs. The functions of the remaining TBDTs are not known. Predictions made based on genome context and expression pattern suggest their involvement in the transport of xenobiotic compounds across the outer membrane.
Collapse
|
28
|
Colabroy KL, Horwitz AD, Basciano VR, Fu Y, Travitz KM, Robinson MK, Shimanski BA, Hoffmann TW. A New Way of Belonging: Active-Site Investigation of L-DOPA Dioxygenase, a VOC Family Enzyme from Lincomycin Biosynthesis. Biochemistry 2019; 58:4794-4798. [DOI: 10.1021/acs.biochem.9b00456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keri L. Colabroy
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Alyssa D. Horwitz
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Victoria R. Basciano
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Yizhi Fu
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Kelly M. Travitz
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Miranda K. Robinson
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Brittany A. Shimanski
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| | - Thomas W. Hoffmann
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania 18104, United States
| |
Collapse
|
29
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
30
|
Burroughs AM, Glasner ME, Barry KP, Taylor EA, Aravind L. Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. J Biol Chem 2019; 294:10211-10235. [PMID: 31092555 PMCID: PMC6664185 DOI: 10.1074/jbc.ra119.007595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
A diverse collection of enzymes comprising the protocatechuate dioxygenases (PCADs) has been characterized in several extradiol aromatic compound degradation pathways. Structural studies have shown a relationship between PCADs and the more broadly-distributed, functionally enigmatic Memo domain linked to several human diseases. To better understand the evolution of this PCAD-Memo protein superfamily, we explored their structural and functional determinants to establish a unified evolutionary framework, identifying 15 clearly-delineable families, including a previously-underappreciated diversity in five Memo clade families. We place the superfamily's origin within the greater radiation of the nucleoside phosphorylase/hydrolase-peptide/amidohydrolase fold prior to the last universal common ancestor of all extant organisms. In addition to identifying active-site residues across the superfamily, we describe three distinct, structurally-variable regions emanating from the core scaffold often housing conserved residues specific to individual families. These were predicted to contribute to the active-site pocket, potentially in substrate specificity and allosteric regulation. We also identified several previously-undescribed conserved genome contexts, providing insight into potentially novel substrates in PCAD clade families. We extend known conserved contextual associations for the Memo clade beyond previously-described associations with the AMMECR1 domain and a radical S-adenosylmethionine family domain. These observations point to two distinct yet potentially overlapping contexts wherein the elusive molecular function of the Memo domain could be finally resolved, thereby linking it to nucleotide base and aliphatic isoprenoid modification. In total, this report throws light on the functions of large swaths of the experimentally-uncharacterized PCAD-Memo families.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- From the Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Margaret E Glasner
- the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, and
| | - Kevin P Barry
- the Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Erika A Taylor
- the Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459
| | - L Aravind
- From the Computational Biology Branch, NCBI, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894,
| |
Collapse
|
31
|
Wang Y, Shin I, Fu Y, Colabroy KL, Liu A. Crystal Structures of L-DOPA Dioxygenase from Streptomyces sclerotialus. Biochemistry 2019; 58:5339-5350. [PMID: 31180203 DOI: 10.1021/acs.biochem.9b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extradiol dioxygenases are essential biocatalysts for breaking down catechols. The vicinal oxygen chelate (VOC) superfamily contains a large number of extradiol dioxygenases, most of which are found as part of catabolic pathways degrading a variety of natural and human-made aromatic rings. The l-3,4-dihydroxyphenylalanine (L-DOPA) extradiol dioxygenases compose a multitude of pathways that produce various antibacterial or antitumor natural products. The structural features of these dioxygenases are anticipated to be distinct from those of other VOC extradiol dioxygenases. Herein, we identified a new L-DOPA dioxygenase from the thermophilic bacterium Streptomyces sclerotialus (SsDDO) through a sequence and genome context analysis. The activity of SsDDO was kinetically characterized with L-DOPA using an ultraviolet-visible spectrophotometer and an oxygen electrode. The optimal temperature of the assay was 55 °C, at which the Km and kcat of SsDDO were 110 ± 10 μM and 2.0 ± 0.1 s-1, respectively. We determined the de novo crystal structures of SsDDO in the ligand-free form and as a substrate-bound complex, refined to 1.99 and 2.31 Å resolution, respectively. These structures reveal that SsDDO possesses a form IV arrangement of βαβββ modules, the first characterization of this assembly from among the VOC/type I extradiol dioxygenase protein family. Electron paramagnetic resonance spectra of Fe-NO adducts for the resting and substrate-bound enzyme were obtained. This work contributes to our understanding of a growing class of topologically distinct VOC dioxygenases, and the obtained structural features will improve our understanding of the extradiol cleavage reaction within the VOC superfamily.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Inchul Shin
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Yizhi Fu
- Department of Chemistry , Muhlenberg College , Allentown , Pennsylvania 18104 , United States
| | - Keri L Colabroy
- Department of Chemistry , Muhlenberg College , Allentown , Pennsylvania 18104 , United States
| | - Aimin Liu
- Department of Chemistry , University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| |
Collapse
|
32
|
Abstract
Production of fuels and chemicals from renewable lignocellulosic feedstocks is a promising alternative to petroleum-derived compounds. Due to the complexity of lignocellulosic feedstocks, microbial conversion of all potential substrates will require substantial metabolic engineering. Non-model microbes offer desirable physiological traits, but also increase the difficulty of heterologous pathway engineering and optimization. The development of modular design principles that allow metabolic pathways to be used in a variety of novel microbes with minimal strain-specific optimization will enable the rapid construction of microbes for commercial production of biofuels and bioproducts. In this review, we discuss variability of lignocellulosic feedstocks, pathways for catabolism of lignocellulose-derived compounds, challenges to heterologous engineering of catabolic pathways, and opportunities to apply modular pathway design. Implementation of these approaches will simplify the process of modifying non-model microbes to convert diverse lignocellulosic feedstocks.
Collapse
|
33
|
Xu Z, Lei P, Zhai R, Wen Z, Jin M. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:32. [PMID: 30815030 PMCID: PMC6376720 DOI: 10.1186/s13068-019-1376-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
Lignin is the most abundant aromatic substrate on Earth and its valorization technologies are still under developed. Depolymerization and fragmentation are the predominant preparatory strategies for valorization of lignin to chemicals and fuels. However, due to the structural heterogeneity of lignin, depolymerization and fragmentation typically result in diverse product species, which require extensive separation and purification procedures to obtain target products. For lignin valorization, bacterial-based systems have attracted increasing attention because of their diverse metabolisms, which can be used to funnel multiple lignin-based compounds into specific target products. Here, recent advances in lignin valorization using bacteria are critically reviewed, including lignin-degrading bacteria that are able to degrade lignin and use lignin-associated aromatics, various associated metabolic pathways, and application of bacterial cultures for lignin valorization. This review will provide insight into the recent breakthroughs and future trends of lignin valorization based on bacterial systems.
Collapse
Affiliation(s)
- Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Peng Lei
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 211111 China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| |
Collapse
|
34
|
Uchendu SN, Rafalowski A, Cohn EF, Davoren LW, Taylor EA. Anaerobic Protein Purification and Kinetic Analysis via Oxygen Electrode for Studying DesB Dioxygenase Activity and Inhibition. J Vis Exp 2018:58307. [PMID: 30346405 PMCID: PMC6235412 DOI: 10.3791/58307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Oxygen-sensitive proteins, including those enzymes which utilize oxygen as a substrate, can have reduced stability when purified using traditional aerobic purification methods. This manuscript illustrates the technical details involved in the anaerobic purification process, including the preparation of buffers and reagents, the methods for column chromatography in a glove box, and the desalting of the protein prior to kinetics. Also described are the methods for preparing and using an oxygen electrode to perform kinetic characterization of an oxygen-utilizing enzyme. These methods are illustrated using the dioxygenase enzyme DesB, a gallate dioxygenase from the bacterium Sphingobium sp. strain SYK-6.
Collapse
Affiliation(s)
| | | | - Erin F Cohn
- Department of Chemistry, Wesleyan University
| | | | | |
Collapse
|
35
|
Luo ZW, Kim WJ, Lee SY. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. ACS Synth Biol 2018; 7:2296-2307. [PMID: 30096230 DOI: 10.1021/acssynbio.8b00281] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
2-Pyrone-4,6-dicarboxylic acid (PDC) is a pseudoaromatic dicarboxylic acid and is a promising biobased building block chemical that can be used to make diverse polyesters with novel functionalities. In this study, Escherichia coli was metabolically engineered to produce PDC from glucose. First, an efficient biosynthetic pathway for PDC production from glucose was suggested by in silico metabolic flux simulation. This best pathway employs a single-step biosynthetic route to protocatechuic acid (PCA), a metabolic precursor for PDC biosynthesis. On the basis of the selected PDC biosynthetic pathway, a shikimate dehydrogenase (encoded by aroE)-deficient E. coli strain was engineered by introducing heterologous genes of different microbial origin encoding enzymes responsible for converting 3-dehydroshikimate (DHS) to PDC, which allowed de novo biosynthesis of PDC from glucose. Next, production of PDC was further improved by applying stepwise rational metabolic engineering strategies. These include elimination of feedback inhibition on 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (encoded by aroG) by overexpressing a feedback-resistant variant, enhancement of the precursor phosphoenolpyruvate supply by changing the native promoter of the ppsA gene with the strong trc promoter, and reducing accumulation of the major byproduct DHS by overexpression of a DHS importer (encoded by shiA). Furthermore, cofactor (NADP+/NADPH) utilization was manipulated through genetic modifications of the E. coli soluble pyridine nucleotide transhydrogenase (encoded by sthA), and the resultant impact on PDC production was investigated. Fed-batch fermentation of the final engineered E. coli strain allowed production of 16.72 g/L of PDC from glucose with the yield and productivity of 0.201 g/g and 0.172 g/L/h, respectively, representing the highest PDC production performance indices reported to date.
Collapse
Affiliation(s)
- Zi Wei Luo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Won Jun Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Colatriano D, Tran PQ, Guéguen C, Williams WJ, Lovejoy C, Walsh DA. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun Biol 2018; 1:90. [PMID: 30271971 PMCID: PMC6123686 DOI: 10.1038/s42003-018-0086-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/24/2018] [Indexed: 12/02/2022] Open
Abstract
The Arctic Ocean currently receives a large supply of global river discharge and terrestrial dissolved organic matter. Moreover, an increase in freshwater runoff and riverine transport of organic matter to the Arctic Ocean is a predicted consequence of thawing permafrost and increased precipitation. The fate of the terrestrial humic-rich organic material and its impact on the marine carbon cycle are largely unknown. Here, a metagenomic survey of the Canada Basin in the Western Arctic Ocean showed that pelagic Chloroflexi from the Arctic Ocean are replete with aromatic compound degradation genes, acquired in part by lateral transfer from terrestrial bacteria. Our results imply marine Chloroflexi have the capacity to use terrestrial organic matter and that their role in the carbon cycle may increase with the changing hydrological cycle. David Colatriano et al. analyze Chloroflexi metagenomic assemblies sampled from the Arctic Ocean to determine whether these bacteria have the ability to degrade terrestrial-derived organic matter. They identify six near-complete genomes and find that they contain genes involved in aromatic compound degradation.
Collapse
Affiliation(s)
- David Colatriano
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Patricia Q Tran
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Celine Guéguen
- Department of Chemistry and School of the Environment, Trent University, 1600 West bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - William J Williams
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, BC, V8V 4L1, Canada
| | - Connie Lovejoy
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Québec-Océan, Université Laval, Laval, QC, G1K 7P4, Canada.,Takuvik Joint International Laboratory, Centre National de la Recherche Scientifique (France, CNRS UMI 3376), Université Laval, Laval, QC, G1V 0A6, Canada
| | - David A Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
37
|
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:679-705. [PMID: 29052962 DOI: 10.1111/1758-2229.12597] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant phenolic polymer; thus, its decomposition by microorganisms is fundamental to carbon cycling on earth. Lignin breakdown is initiated by depolymerization catalysed by extracellular oxidoreductases secreted by white-rot basidiomycetous fungi. On the other hand, bacteria play a predominant role in the mineralization of lignin-derived heterogeneous low-molecular-weight aromatic compounds. The outline of bacterial catabolic pathways for lignin-derived bi- and monoaryls are typically composed of the following sequential steps: (i) funnelling of a wide variety of lignin-derived aromatics into vanillate and syringate, (ii) O demethylation of vanillate and syringate to form catecholic derivatives and (iii) aromatic ring-cleavage of the catecholic derivatives to produce tricarboxylic acid cycle intermediates. Knowledge regarding bacterial catabolic systems for lignin-derived aromatic compounds is not only important for understanding the terrestrial carbon cycle but also valuable for promoting the shift to a low-carbon economy via biological lignin valorisation. This review summarizes recent progress in bacterial catabolic systems for lignin-derived aromatic compounds, including newly identified catabolic pathways and genes for decomposition of lignin-derived biaryls, transcriptional regulation and substrate uptake systems. Recent omics approaches on catabolism of lignin-derived aromatic compounds are also described.
Collapse
Affiliation(s)
- Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kosuke Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yudai Higuchi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
38
|
Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58. Appl Environ Microbiol 2017; 83:AEM.00133-17. [PMID: 28188209 DOI: 10.1128/aem.00133-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation.IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation.
Collapse
|
39
|
Kuatsjah E, Chen HM, Withers SG, Eltis LD. Characterization of an extradiol dioxygenase involved in the catabolism of lignin-derived biphenyl. FEBS Lett 2017; 591:1001-1009. [DOI: 10.1002/1873-3468.12611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Eugene Kuatsjah
- Genome Science and Technology Program; The University of British Columbia; Vancouver BC Canada
| | - Hong-Ming Chen
- Department of Chemistry; The University of British Columbia; Vancouver BC Canada
| | - Stephen G. Withers
- Genome Science and Technology Program; The University of British Columbia; Vancouver BC Canada
- Department of Chemistry; The University of British Columbia; Vancouver BC Canada
- Department of Biochemistry; Life Sciences Institute; The University of British Columbia; Vancouver BC Canada
| | - Lindsay D. Eltis
- Genome Science and Technology Program; The University of British Columbia; Vancouver BC Canada
- Department of Biochemistry; Life Sciences Institute; The University of British Columbia; Vancouver BC Canada
- Department of Microbiology and Immunology; Life Sciences Institute; The University of British Columbia; Vancouver BC Canada
| |
Collapse
|
40
|
Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 2016; 42:40-53. [DOI: 10.1016/j.copbio.2016.02.030] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023]
|
41
|
Mazurkewich S, Seah SYK. Investigation into the Mode of Phosphate Activation in the 4-Hydroxy-4-Methyl-2-Oxoglutarate/4-Carboxy-4-Hydroxy-2-Oxoadipate Aldolase from Pseudomonas putida F1. PLoS One 2016; 11:e0164556. [PMID: 27741265 PMCID: PMC5065237 DOI: 10.1371/journal.pone.0164556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/03/2016] [Indexed: 11/18/2022] Open
Abstract
The 4-hydroxy-4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase is the last enzyme of both the gallate and protocatechuate 4,5-cleavage pathways which links aromatic catabolism to central cellular metabolism. The enzyme is a class II, divalent metal dependent, aldolase which is activated in the presence of inorganic phosphate (Pi), increasing its turnover rate >10-fold. This phosphate activation is unique for a class II aldolase. The aldolase pyruvate methyl proton exchange rate, a probe of the general acid half reaction, was increased 300-fold in the presence of 1 mM Pi and the rate enhancement followed saturation kinetics giving rise to a KM of 397 ± 30 μM. Docking studies revealed a potential Pi binding site close to, or overlapping with, the proposed general acid water site. Putative Pi binding residues were substituted by site-directed mutagenesis which resulted in reductions of Pi activation. Significantly, the active site residue Arg-123, known to be critical for the catalytic mechanism of the enzyme, was also implicated in supporting Pi mediated activation.
Collapse
Affiliation(s)
- Scott Mazurkewich
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:724-737. [DOI: 10.1016/j.bbapap.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
43
|
Barry KP, Cohn EF, Ngu A, Taylor EA. Improving alternate lignin catabolite utilization of LigAB from Sphingobium sp. strain SYK-6 through site directed mutagenesis. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Kovaleva EG, Rogers MS, Lipscomb JD. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine 200. Biochemistry 2015; 54:5329-39. [PMID: 26267790 DOI: 10.1021/acs.biochem.5b00709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady-state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures determined at 1.35-1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild-type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second-sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in the steric bulk and charge of the residue at position 200 appear to be capable of altering the rate-limiting step in catalysis and, perhaps, the nature of the reactive species.
Collapse
Affiliation(s)
- Elena G Kovaleva
- Institute of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, U.K
| | - Melanie S Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Yang L, Xie L, Xue B, Goodwin PH, Quan X, Zheng C, Liu T, Lei Z, Yang X, Chao Y, Wu C. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici. PLoS One 2015; 10:e0120691. [PMID: 25875107 PMCID: PMC4397062 DOI: 10.1371/journal.pone.0120691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/25/2015] [Indexed: 12/15/2022] Open
Abstract
Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt), is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs) were identified with 2,107 (65%) being 2-fold up-regulated and 1,151 (35%) being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots.
Collapse
Affiliation(s)
- Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Lihua Xie
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Baoguo Xue
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Xin Quan
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Chuanlin Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Taiguo Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhensheng Lei
- Research Centre for Wheat, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Yueen Chao
- Research Centre for Wheat, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Chao Wu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| |
Collapse
|
46
|
Barry KP, Ngu A, Cohn EF, Cote JM, Burroughs AM, Gerbino JP, Taylor EA. Exploring allosteric activation of LigAB from Sphingobium sp. strain SYK-6 through kinetics, mutagenesis and computational studies. Arch Biochem Biophys 2015; 567:35-45. [PMID: 25562402 DOI: 10.1016/j.abb.2014.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
The protocatechuate 4,5-dioxygenase (LigAB) from Sphingobium sp. strain SYK-6 is the defining member of the Type II extradiol dioxygenase superfamily (a.k.a. PCA Dioxygenase Superfamily or PCADSF) and plays a key aromatic ring-opening role in the metabolism of several lignin derived aromatic compounds. In our search for alternate substrates and inhibitors of LigAB, we discovered allosteric rate enhancement in the presence of non-substrate protocatechuate-like aldehydes such as vanillin. LigAB has the broadest substrate utilization profile of all protocatechuate (PCA) 4,5-dioxygenase described in the literature, however, the rate enhancement is only observed with PCA, with vanillin increasing kcat for LigAB by 36%. Computational docking has identified a potential site of allosteric binding near the entrance to the active site. Examination of a multiple sequence alignment reveals that many of the residues contributing to this newly identified allosteric pocket are highly conserved within the LigB family of the PCADSF. Point mutants of Phe103α and Ala18β, two residues located in the putative allosteric pocket, display altered rate enhancement as compared to LigAB-WT, providing support for the computationally identified allosteric binding site. Further investigation of this binding site may provide insight into the mechanism of this never before observed allosteric activation in extradiol dioxygenases.
Collapse
Affiliation(s)
| | - Abraham Ngu
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Erin Frances Cohn
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Joy Marie Cote
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Erika Anne Taylor
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA.
| |
Collapse
|
47
|
Sugimoto K, Senda M, Kasai D, Fukuda M, Masai E, Senda T. Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6. PLoS One 2014; 9:e92249. [PMID: 24657997 PMCID: PMC3962378 DOI: 10.1371/journal.pone.0092249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
DesB, which is derived from Sphingobium sp. SYK-6, is a type II extradiol dioxygenase that catalyzes a ring opening reaction of gallate. While typical extradiol dioxygenases show broad substrate specificity, DesB has strict substrate specificity for gallate. The substrate specificity of DesB seems to be required for the efficient growth of S. sp. SYK-6 using lignin-derived aromatic compounds. Since direct coordination of hydroxyl groups of the substrate to the non-heme iron in the active site is a critical step for the catalytic reaction of the extradiol dioxygenases, the mechanism of the substrate recognition and coordination of DesB was analyzed by biochemical and crystallographic methods. Our study demonstrated that the direct coordination between the non-heme iron and hydroxyl groups of the substrate requires a large shift of the Fe (II) ion in the active site. Mutational analysis revealed that His124 and His192 in the active site are essential to the catalytic reaction of DesB. His124, which interacts with OH (4) of the bound gallate, seems to contribute to proper positioning of the substrate in the active site. His192, which is located close to OH (3) of the gallate, is likely to serve as the catalytic base. Glu377' interacts with OH (5) of the gallate and seems to play a critical role in the substrate specificity. Our biochemical and structural study showed the substrate recognition and catalytic mechanisms of DesB.
Collapse
Affiliation(s)
- Keisuke Sugimoto
- Department of Materials Chemistry, Asahikawa National College of Technology, Asahikawa, Hokkaido, Japan
| | - Miki Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| |
Collapse
|