1
|
Allgöwer F, Pöverlein MC, Rutherford AW, Kaila VRI. Mechanism of proton release during water oxidation in Photosystem II. Proc Natl Acad Sci U S A 2024; 121:e2413396121. [PMID: 39700151 DOI: 10.1073/pnas.2413396121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidation that releases dioxygen into our atmosphere and provides the electrons needed for the synthesis of biomass. The catalysis occurs in the oxygen-evolving oxo-manganese-calcium (Mn4O5Ca) cluster that drives the oxidation and deprotonation of substrate water molecules leading to the O2 formation. However, despite recent advances, the mechanism of these reactions remains unclear and much debated. Here, we show that the light-driven Tyr161D1 (Yz) oxidation adjacent to the Mn4O5Ca cluster, decreases the barrier for proton transfer from the putative substrate water molecule (W3/Wx) to Glu310D2, accessible to the luminal bulk. By combining hybrid quantum/classical (QM/MM) free energy calculations with atomistic molecular dynamics simulations, we probe the energetics of the proton transfer along the Cl1 pathway. We demonstrate that the proton transfer occurs via water molecules and a cluster of conserved carboxylates, driven by redox-triggered electric fields directed along the pathway. Glu65D1 establishes a local molecular gate that controls the proton transfer to the luminal bulk, while Glu312D2 acts as a local proton storage site. The identified gating region could be important in preventing backflow of protons to the Mn4O5Ca cluster. The structural changes, derived here based on the dark-state PSII structure, strongly support recent time-resolved X-ray free electron laser data of the S3 → S4 transition (Bhowmick et al. Nature 617, 2023) and reveal the mechanistic basis underlying deprotonation of the substrate water molecules. Our findings provide insight into the water oxidation mechanism of PSII and show how the interplay between redox-triggered electric fields, ion-pairs, and hydration effects control proton transport reactions.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
2
|
Flesher DA, Liu J, Wang J, Gisriel CJ, Yang KR, Batista VS, Debus RJ, Brudvig GW. Mutation-induced shift of the photosystem II active site reveals insight into conserved water channels. J Biol Chem 2024; 300:107475. [PMID: 38879008 PMCID: PMC11294709 DOI: 10.1016/j.jbc.2024.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Photosystem II (PSII) is the water-plastoquinone photo-oxidoreductase central to oxygenic photosynthesis. PSII has been extensively studied for its ability to catalyze light-driven water oxidation at a Mn4CaO5 cluster called the oxygen-evolving complex (OEC). Despite these efforts, the complete reaction mechanism for water oxidation by PSII is still heavily debated. Previous mutagenesis studies have investigated the roles of conserved amino acids, but these studies have lacked a direct structural basis that would allow for a more meaningful interpretation. Here, we report a 2.14-Å resolution cryo-EM structure of a PSII complex containing the substitution Asp170Glu on the D1 subunit. This mutation directly perturbs a bridging carboxylate ligand of the OEC, which alters the spectroscopic properties of the OEC without fully abolishing water oxidation. The structure reveals that the mutation shifts the position of the OEC within the active site without markedly distorting the Mn4CaO5 cluster metal-metal geometry, instead shifting the OEC as a rigid body. This shift disturbs the hydrogen-bonding network of structured waters near the OEC, causing disorder in the conserved water channels. This mutation-induced disorder appears consistent with previous FTIR spectroscopic data. We further show using quantum mechanics/molecular mechanics methods that the mutation-induced structural changes can affect the magnetic properties of the OEC by altering the axes of the Jahn-Teller distortion of the Mn(III) ion coordinated to D1-170. These results offer new perspectives on the conserved water channels, the rigid body property of the OEC, and the role of D1-Asp170 in the enzymatic water oxidation mechanism.
Collapse
Affiliation(s)
- David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | - Ke R Yang
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, California, USA.
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
3
|
Drosou M, Pantazis DA. Comprehensive Evaluation of Models for Ammonia Binding to the Oxygen Evolving Complex of Photosystem II. J Phys Chem B 2024; 128:1333-1349. [PMID: 38299511 PMCID: PMC10875651 DOI: 10.1021/acs.jpcb.3c06304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The identity and insertion pathway of the substrate oxygen atoms that are coupled to dioxygen by the oxygen-evolving complex (OEC) remains a central question toward understanding Nature's water oxidation mechanism. In several studies, ammonia has been used as a small "water analogue" to elucidate the pathway of substrate access to the OEC and to aid in determining which of the oxygen ligands of the tetramanganese cluster are substrates for O-O bond formation. On the basis of structural and spectroscopic investigations, five first-sphere binding modes of ammonia have been suggested, involving either substitution of an existing H2O/OH-/O2- group or addition as an extra ligand to a metal ion of the Mn4CaO5 cluster. Some of these modes, specifically the ones involving substitution, have already been subject to spectroscopy-oriented quantum chemical investigations, whereas more recent suggestions that postulate the addition of ammonia have not been examined so far with quantum chemistry for their agreement with spectroscopic data. Herein, we use a common structural framework and theoretical methodology to evaluate structural models of the OEC that represent all proposed modes of first-sphere ammonia interaction with the OEC in its S2 state. Criteria include energetic, magnetic, kinetic, and spectroscopic properties compared against available experimental EPR, ENDOR, ESEEM, and EDNMR data. Our results show that models featuring ammonia replacing one of the two terminal water ligands on Mn4 align best with experimental data, while they definitively exclude substitution of a bridging μ-oxo ligand as well as incorporation of ammonia as a sixth ligand on Mn1 or Mn4.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Inorganic
Chemistry Laboratory, National and Kapodistrian
University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
4
|
Russell BP, Vinyard DJ. Conformational changes in a Photosystem II hydrogen bond network stabilize the oxygen-evolving complex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149020. [PMID: 37956939 DOI: 10.1016/j.bbabio.2023.149020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The Mn4CaO5 oxygen-evolving complex (OEC) in Photosystem II (PSII) is assembled in situ and catalyzes water oxidation. After OEC assembly, the PsbO extrinsic subunit docks to the lumenal face of PSII and both stabilizes the OEC and facilitates efficient proton transfer to the lumen. D1 residue R334 is part of a hydrogen bond network involved in proton release during catalysis and interacts directly with PsbO. D1-R334 has recently been observed in different conformations in apo- and holo-OEC PSII structures. We generated a D1-R334G point mutant in Synechocystis sp. PCC 6803 to better understand this residue's function. D1-R334G PSII is active under continuous light, but the OEC is unstable in darkness. Isolated D1-R334G core complexes have little bound PsbO and less manganese as the wild type control. The S2 intermediate is stabilized in D1-R334G indicating that the local environment around the OEC has been altered. These results suggest that the hydrogen bond network that includes D1-R334 exists in a different functional conformation during PSII biogenesis in the absence of PsbO.
Collapse
Affiliation(s)
- Brandon P Russell
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, United States of America
| | - David J Vinyard
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
5
|
Chen M, Sawicki A, Wang F. Modeling the Characteristic Residues of Chlorophyll f Synthase (ChlF) from Halomicronema hongdechloris to Determine Its Reaction Mechanism. Microorganisms 2023; 11:2305. [PMID: 37764149 PMCID: PMC10535343 DOI: 10.3390/microorganisms11092305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Photosystem II (PSII) is a quinone-utilizing photosynthetic system that converts light energy into chemical energy and catalyzes water splitting. PsbA (D1) and PsbD (D2) are the core subunits of the reaction center that provide most of the ligands to redox-active cofactors and exhibit photooxidoreductase activities that convert quinone and water into quinol and dioxygen. The performed analysis explored the putative uncoupled electron transfer pathways surrounding P680+ induced by far-red light (FRL) based on photosystem II (PSII) complexes containing substituted D1 subunits in Halomicronema hongdechloris. Chlorophyll f-synthase (ChlF) is a D1 protein paralog. Modeling PSII-ChlF complexes determined several key protein motifs of ChlF. The PSII complexes included a dysfunctional Mn4CaO5 cluster where ChlF replaced the D1 protein. We propose the mechanism of chlorophyll f synthesis from chlorophyll a via free radical chemistry in an oxygenated environment created by over-excited pheophytin a and an inactive water splitting reaction owing to an uncoupled Mn4CaO5 cluster in PSII-ChlF complexes. The role of ChlF in the formation of an inactive PSII reaction center is under debate, and putative mechanisms of chlorophyll f biosynthesis are discussed.
Collapse
Affiliation(s)
- Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
6
|
Bondar AN. Interplay between local protein interactions and water bridging of a proton antenna carboxylate cluster. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184052. [PMID: 36116514 DOI: 10.1016/j.bbamem.2022.184052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Proteins that bind protons at cell membrane interfaces often expose to the bulk clusters of carboxylate and histidine sidechains that capture protons transiently and, in proton transporters, deliver protons to an internal site. The protonation-coupled dynamics of bulk-exposed carboxylate clusters, also known as proton antennas, is poorly described. An essential open question is how water-mediated bridges between sidechains of the cluster respond to protonation change and facilitate transient proton storage. To address this question, here I studied the protonation-coupled dynamics at the proton-binding antenna of PsbO, a small extrinsinc subunit of the photosystem II complex, with atomistic molecular dynamics simulations and systematic graph-based analyses of dynamic protein and protein-water hydrogen-bond networks. The protonation of specific carboxylate groups is found to impact the dynamics of their local protein-water hydrogen-bond clusters. Regardless of the protonation state considered for PsbO, carboxylate pairs that can sample direct hydrogen bonding, or bridge via short hydrogen-bonded water chains, anchor to nearby basic or polar protein sidechains. As a result, carboxylic sidechains of the hypothesized antenna cluster are part of dynamic hydrogen bond networks that may rearrange rapidly when the protonation changes.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, Bucharest-Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, 52425 Jülich, Germany; Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
7
|
Yamaguchi K, Shoji M, Isobe H, Kawakami T, Miyagawa K, Suga M, Akita F, Shen JR. Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Shimada Y, Sugiyama A, Nagao R, Noguchi T. Role of D1-Glu65 in Proton Transfer during Photosynthetic Water Oxidation in Photosystem II. J Phys Chem B 2022; 126:8202-8213. [PMID: 36199221 DOI: 10.1021/acs.jpcb.2c05869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II (PSII) through a light-driven cycle of five intermediates called S states (S0-S4). Although the PSII structures have shown the presence of several channels around the Mn4CaO5 cluster leading to the lumen, the pathways for proton release in the individual S-state transitions remain unidentified. Here, we studied the involvement of the so-called Cl channel in proton transfer during water oxidation by examining the effect of the mutation of D1-Glu65, a key residue in this channel, to Ala using Fourier transform infrared difference and time-resolved infrared spectroscopies together with thermoluminescence and delayed luminescence measurements. It was shown that the structure and the redox property of the catalytic site were little affected by the D1-Glu65Ala mutation. In the S2 → S3 transition, the efficiency was still high and the transition rate was only moderately retarded in the D1-Glu65Ala mutant. In contrast, the S3 → S0 transition was significantly inhibited by this mutation. These results suggest that proton transfer in the S2 → S3 transition occurs through multiple pathways including the Cl channel, whereas this channel likely serves as a single pathway for proton exit in the S3 → S0 transition.
Collapse
Affiliation(s)
- Yuichiro Shimada
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Ayane Sugiyama
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Ryo Nagao
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Okayama700-8530, Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| |
Collapse
|
9
|
Zhu Q, Yang Y, Xiao Y, Han W, Li X, Wang W, Kuang T, Shen JR, Han G. Effects of mutations of D1-R323, D1-N322, D1-D319, D1-H304 on the functioning of photosystem II in Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2022; 152:193-206. [PMID: 35503495 DOI: 10.1007/s11120-022-00920-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Photosystem II (PSII) has a number of hydrogen-bonding networks connecting the manganese cluster with the lumenal bulk solution. The structure of PSII from Thermosynechococcus vulcanus (T. vulcanus) showed that D1-R323, D1-N322, D1-D319 and D1-H304 are involved in one of these hydrogen-bonding networks located in the interfaces between the D1, CP43 and PsbV subunits. In order to investigate the functions of these residues in PSII, we generated seven site-directed mutants D1-R323A, D1-R323E, D1-N322R, D1-D319L, D1-D319R, D1-D319Y and D1-H304D of T. vulcanus and examined the effects of these mutations on the growth and functions of the oxygen-evolving complex. The photoautotrophic growth rates of these mutants were similar to that of the wild type, whereas the oxygen-evolving activities of the mutant cells were decreased differently to 63-91% of that of the wild type at pH 6.5. The mutant cells showed a higher relative activity at higher pH region than the wild type cells, suggesting that higher pH facilitated proton egress in the mutants. In addition, oxygen evolution of thylakoid membranes isolated from these mutants showed an apparent decrease compared to that of the cells. This is due to the loss of PsbU during purification of the thylakoid membranes. Moreover, PsbV was also lost in the PSII core complexes purified from the mutants. Taken together, D1-R323, D1-N322, D1-D319 and D1-H304 are vital for the optimal function of oxygen evolution and functional binding of extrinsic proteins to PSII core, and may be involved in the proton egress pathway mediated by YZ.
Collapse
Affiliation(s)
- Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenhui Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, No.1 Beichen West Rd., Beijing, 100101, China.
- Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
10
|
Debus RJ. Alteration of the O 2-Producing Mn 4Ca Cluster in Photosystem II by the Mutation of a Metal Ligand. Biochemistry 2021; 60:3841-3855. [PMID: 34898175 DOI: 10.1021/acs.biochem.1c00504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The O2-evolving Mn4Ca cluster in photosystem II (PSII) is arranged as a distorted Mn3Ca cube that is linked to a fourth Mn ion (denoted as Mn4) by two oxo bridges. The Mn4 and Ca ions are bridged by residue D1-D170. This is also the only residue known to participate in the high-affinity Mn(II) site that participates in the light-driven assembly of the Mn4Ca cluster. In this study, we use Fourier transform infrared difference spectroscopy to characterize the impact of the D1-D170E mutation. On the basis of analyses of carboxylate and carbonyl stretching modes and the O-H stretching modes of hydrogen-bonded water molecules, we show that this mutation alters the extensive network of hydrogen bonds that surrounds the Mn4Ca cluster in the same manner as that of many other mutations. It also alters the equilibrium between conformers of the Mn4Ca cluster in the dark-stable S1 state so that a high-spin form of the S2 state is produced during the S1-to-S2 transition instead of the low-spin form that gives rise to the S2 state multiline electron paramagnetic resonance signal. The mutation may also change the coordination mode of the carboxylate group at position 170 to unidentate ligation of Mn4. This is the first mutation of a metal ligand in PSII that substantially impacts the spectroscopic signatures of the Mn4Ca cluster without substantially eliminating O2 evolution. The results have significant implications for our understanding of the roles of alternate active/inactive conformers of the Mn4Ca cluster in the mechanism of O2 formation.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Kaur D, Zhang Y, Reiss KM, Mandal M, Brudvig GW, Batista VS, Gunner MR. Proton exit pathways surrounding the oxygen evolving complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148446. [PMID: 33964279 DOI: 10.1016/j.bbabio.2021.148446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Photosystem II allows water to be the primary electron source for the photosynthetic electron transfer chain. Water is oxidized to dioxygen at the Oxygen Evolving Complex (OEC), a Mn4CaO5 inorganic core embedded on the lumenal side of PSII. Water-filled channels surrounding the OEC must bring in substrate water molecules, remove the product protons to the lumen, and may transport the product oxygen. Three water-filled channels, denoted large, narrow, and broad, extend from the OEC towards the aqueous surface more than 15 Å away. However, the role of each pathway in the transport in and out of the OEC is yet to be established. Here, we combine Molecular Dynamics (MD), Multi Conformation Continuum Electrostatics (MCCE) and Network Analysis to compare and contrast the three potential proton transfer paths. Hydrogen bond network analysis shows that near the OEC the waters are highly interconnected with similar free energy for hydronium at all locations. The paths diverge as they move towards the lumen. The water chain in the broad channel is better connected than in the narrow and large channels, where disruptions in the network are observed approximately 10 Å from the OEC. In addition, the barrier for hydronium translocation is lower in the broad channel. Thus, a proton released from any location on the OEC can access all paths, but the likely exit to the lumen passes through PsbO via the broad channel.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Manoj Mandal
- Department of Physics, City College of New York, NY 10031, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
12
|
Sugiura M, Taniguchi T, Tango N, Nakamura M, Sellés J, Boussac A. Probing the role of arginine 323 of the D1 protein in photosystem II function. PHYSIOLOGIA PLANTARUM 2021; 171:183-199. [PMID: 32359083 DOI: 10.1111/ppl.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The Mn4 CaO5 cluster of photosystem II (PSII) advances sequentially through five oxidation states (S0 to S4 ). Under the enzyme cycle, two water molecules are oxidized, O2 is generated and four protons are released into the lumen. Umena et al. (2011) have proposed that, with other charged amino acids, the R323 residue of the D1 protein could contribute to regulate a proton egress pathway from the Mn4 CaO5 cluster and TyrZ via a proton channel identified from the 3D structure. To test this suggestion, a PsbA3/R323E site-directed mutant has been constructed and the properties of its PSII have been compared to those of the PsbA3-PSII by using EPR spectroscopy, polarography, thermoluminescence and time-resolved UV-visible absorption spectroscopy. Neither the oscillations with a period four nor the kinetics and S-state-dependent stoichiometry of the proton release were affected. However, several differences have been found: (1) the P680 + decay in the hundreds of ns time domain was much slower in the mutant, (2) the S2 QA - /DCMU and S3 QA - /DCMU radiative charge recombination occurred at higher temperatures and (3) the S0 TyrZ • , S1 TyrZ • , S2 TyrZ • split EPR signals induced at 4.2 K by visible light from the S0 TyrZ , S1 TyrZ , S2 TyrZ , respectively, and the (S2 TyrZ • )' induced by NIR illumination at 4.2 K of the S3 TyrZ state differed. It is proposed that the R323 residue of the D1 protein interacts with TyrZ likely via the H-bond network previously proposed to be a proton channel. Therefore, rather than participating in the egress of protons to the lumen, this channel could be involved in the relaxations of the H-bonds around TyrZ by interacting with the bulk, thus tuning the driving force required for TyrZ oxidation.
Collapse
Affiliation(s)
- Miwa Sugiura
- Proteo-Science Research Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Tomonori Taniguchi
- Department of Chemistry, Graduate School of Science and Technology, Ehime University, Matsuyama, 790-8577, Japan
| | - Nanami Tango
- Department of Chemistry, Graduate School of Science and Technology, Ehime University, Matsuyama, 790-8577, Japan
| | - Makoto Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Ehime University, Matsuyama, 790-8577, Japan
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne Université, Paris, 75005, France
| | | |
Collapse
|
13
|
Zhu Q, Yang Y, Xiao Y, Wang W, Kuang T, Shen JR, Han G. Function of PsbO-Asp158 in photosystem II: effects of mutation of this residue on the binding of PsbO and function of PSII in Thermosynechococcus vulcanus. PHOTOSYNTHESIS RESEARCH 2020; 146:29-40. [PMID: 32016668 DOI: 10.1007/s11120-020-00715-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
PsbO-D158 is a highly conserved residue of the PsbO protein in photosystem II (PSII), and participates in one of the hydrogen-bonding networks connecting the manganese cluster with the lumenal surface. In order to examine the role of PsbO-D158, we mutated it to E, N or K in Thermosynechococcus vulcanus and characterized photosynthetic properties of the mutants obtained. The growth rates of these three mutants were similar to that of the wild type, whereas the oxygen-evolving activity of the three mutant cells decreased to 60-64% of the wild type. Fluorescence kinetics showed that the mutations did not affect the electron transfer from QA to QB, but slightly affected the donor side of PSII. Moreover, all of the three mutant cells were more sensitive to high light and became slower to recover from photoinhibition. In the isolated thylakoid membranes from the three mutants, the PsbU subunit was lost and the oxygen-evolving activity was reduced to a lower level compared to that in the respective cells. PSII complexes isolated from these mutants showed no oxygen-evolving activity, which was found to be due to large or complete loss of PsbO, PsbV and PsbU during the process of purification. Moreover, PSII cores purified from the three mutants contained Psb27, an assembly co-factor of PSII. These results suggest that PsbO-D158 is required for the proper binding of the three extrinsic proteins to PSII and plays an important role in maintaining the optimal oxygen-evolving activity, and its mutation caused incomplete assembly of the PSII complex.
Collapse
Affiliation(s)
- Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 3-1-1, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
14
|
Kuroda H, Kawashima K, Ueda K, Ikeda T, Saito K, Ninomiya R, Hida C, Takahashi Y, Ishikita H. Proton transfer pathway from the oxygen-evolving complex in photosystem II substantiated by extensive mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148329. [PMID: 33069681 DOI: 10.1016/j.bbabio.2020.148329] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
We report a structure-based biological approach to identify the proton-transfer pathway in photosystem II. First, molecular dynamics (MD) simulations were conducted to analyze the H-bond network that may serve as a Grotthuss-like proton conduit. MD simulations show that D1-Asp61, the H-bond acceptor of H2O at the Mn4CaO5 cluster (W1), forms an H-bond via one water molecule with D1-Glu65 but not with D2-Glu312. Then, D1-Asp61, D1-Glu65, D2-Glu312, and the adjacent residues, D1-Arg334, D2-Glu302, and D2-Glu323, were thoroughly mutated to the other 19 residues, i.e., 114 Chlamydomonas chloroplast mutant cells were generated. Mutation of D1-Asp61 was most crucial. Only the D61E and D61C cells grew photoautotrophically and exhibit O2-evolving activity. Mutations of D2-Glu312 were less crucial to photosynthetic growth than mutations of D1-Glu65. Quantum mechanical/molecular mechanical calculations indicated that in the PSII crystal structure, the proton is predominantly localized at D1-Glu65 along the H-bond with D2-Glu312, i.e., pKa(D1-Glu65) > pKa(D2-Glu312). The potential-energy profile shows that the release of the proton from D1-Glu65 leads to the formation of the two short H-bonds between D1-Asp61 and D1-Glu65, which facilitates downhill proton transfer along the Grotthuss-like proton conduit in the S2 to S3 transition. It seems possible that D1-Glu65 is involved in the dominant pathway that proceeds from W1 via D1-Asp61 toward the thylakoid lumen, whereas D2-Glu312 and D1-Arg334 may be involved in alternative pathways in some mutants.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Kawashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Kazuyo Ueda
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takuya Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ryo Ninomiya
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Chisato Hida
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| |
Collapse
|
15
|
Kim CJ, Debus RJ. Roles of D1-Glu189 and D1-Glu329 in O2 Formation by the Water-Splitting Mn4Ca Cluster in Photosystem II. Biochemistry 2020; 59:3902-3917. [DOI: 10.1021/acs.biochem.0c00541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
16
|
Shimada Y, Kitajima-Ihara T, Nagao R, Noguchi T. Role of the O4 Channel in Photosynthetic Water Oxidation as Revealed by Fourier Transform Infrared Difference and Time-Resolved Infrared Analysis of the D1-S169A Mutant. J Phys Chem B 2020; 124:1470-1480. [DOI: 10.1021/acs.jpcb.9b11946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yuichiro Shimada
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomomi Kitajima-Ihara
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
17
|
Fourier transform infrared and mass spectrometry analyses of a site-directed mutant of D1-Asp170 as a ligand to the water-oxidizing Mn4CaO5 cluster in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148086. [DOI: 10.1016/j.bbabio.2019.148086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 01/02/2023]
|
18
|
Yamamoto M, Nakamura S, Noguchi T. Protonation structure of the photosynthetic water oxidizing complex in the S0 state as revealed by normal mode analysis using quantum mechanics/molecular mechanics calculations. Phys Chem Chem Phys 2020; 22:24213-24225. [DOI: 10.1039/d0cp04079g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protonation structure of the first intermediate of the water oxidizing complex was determined by QM/MM calculations of molecular vibrations.
Collapse
Affiliation(s)
- Masao Yamamoto
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Shin Nakamura
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Takumi Noguchi
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| |
Collapse
|
19
|
Lubitz W, Chrysina M, Cox N. Water oxidation in photosystem II. PHOTOSYNTHESIS RESEARCH 2019; 142:105-125. [PMID: 31187340 PMCID: PMC6763417 DOI: 10.1007/s11120-019-00648-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
Biological water oxidation, performed by a single enzyme, photosystem II, is a central research topic not only in understanding the photosynthetic apparatus but also for the development of water splitting catalysts for technological applications. Great progress has been made in this endeavor following the report of a high-resolution X-ray crystallographic structure in 2011 resolving the cofactor site (Umena et al. in Nature 473:55-60, 2011), a tetra-manganese calcium complex. The electronic properties of the protein-bound water oxidizing Mn4OxCa complex are crucial to understand its catalytic activity. These properties include: its redox state(s) which are tuned by the protein matrix, the distribution of the manganese valence and spin states and the complex interactions that exist between the four manganese ions. In this short review we describe how magnetic resonance techniques, particularly EPR, complemented by quantum chemical calculations, have played an important role in understanding the electronic structure of the cofactor. Together with isotope labeling, these techniques have also been instrumental in deciphering the binding of the two substrate water molecules to the cluster. These results are briefly described in the context of the history of biological water oxidation with special emphasis on recent work using time resolved X-ray diffraction with free electron lasers. It is shown that these data are instrumental for developing a model of the biological water oxidation cycle.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Maria Chrysina
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra, Australia
| |
Collapse
|
20
|
Chrysina M, de Mendonça Silva JC, Zahariou G, Pantazis DA, Ioannidis N. Proton Translocation via Tautomerization of Asn298 During the S 2-S 3 State Transition in the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2019; 123:3068-3078. [PMID: 30888175 PMCID: PMC6727346 DOI: 10.1021/acs.jpcb.9b02317] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
In biological water oxidation, a
redox-active tyrosine residue
(D1-Tyr161 or YZ) mediates electron transfer between the
Mn4CaO5 cluster of the oxygen-evolving complex
and the charge-separation site of photosystem II (PSII), driving the
cluster through progressively higher oxidation states Si (i = 0–4). In contrast to
lower S-states (S0, S1), in higher S-states
(S2, S3) of the Mn4CaO5 cluster, YZ cannot be oxidized at cryogenic temperatures
due to the accumulation of positive charge in the S1 →
S2 transition. However, oxidation of YZ by illumination
of S2 at 77–190 K followed by rapid freezing and
charge recombination between YZ• and
the plastoquinone radical QA•– allows trapping of an S2 variant, the so-called S2trapped state (S2t), that
is capable of forming YZ• at cryogenic
temperature. To identify the differences between the S2 and S2t states, we used the S2tYZ• intermediate as a probe for
the S2t state and followed the S2tYZ•/QA•– recombination kinetics at 10 K using time-resolved electron paramagnetic
resonance spectroscopy in H2O and D2O. The results
show that while S2tYZ•/QA•– recombination can be described
as pure electron transfer occurring in the Marcus inverted region,
the S2t → S2 reversion depends
on proton rearrangement and exhibits a strong kinetic isotope effect.
This suggests that YZ oxidation in the S2t state is facilitated by favorable proton redistribution in
the vicinity of YZ, most likely within the hydrogen-bonded
YZ–His190–Asn298 triad. Computational models
show that tautomerization of Asn298 to its imidic acid form enables
proton translocation to an adjacent asparagine-rich cavity of water
molecules that functions as a proton reservoir and can further participate
in proton egress to the lumen.
Collapse
Affiliation(s)
- Maria Chrysina
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece.,Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Juliana Cecília de Mendonça Silva
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany.,Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Georgia Zahariou
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Nikolaos Ioannidis
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece
| |
Collapse
|
21
|
Das S, Das K, Kübel C, Roy S. Light Driven Water Oxidation Coupled With C-N Coupling Reaction Using a Hybrid Cu-PW12
O40
Based Soft-Oxometalate. ChemistrySelect 2019. [DOI: 10.1002/slct.201803949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Santu Das
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| | - Kousik Das
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| | - Christian Kübel
- Institute of Nanotechnology INT) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Soumyajit Roy
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| |
Collapse
|
22
|
Ghosh I, Banerjee G, Kim CJ, Reiss K, Batista VS, Debus RJ, Brudvig GW. D1-S169A Substitution of Photosystem II Perturbs Water Oxidation. Biochemistry 2019; 58:1379-1387. [DOI: 10.1021/acs.biochem.8b01184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ipsita Ghosh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gourab Banerjee
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
23
|
Probing the role of Valine 185 of the D1 protein in the Photosystem II oxygen evolution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1259-1273. [DOI: 10.1016/j.bbabio.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/03/2018] [Accepted: 10/14/2018] [Indexed: 11/23/2022]
|
24
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Yata H, Noguchi T. Mechanism of Methanol Inhibition of Photosynthetic Water Oxidation As Studied by Fourier Transform Infrared Difference and Time-Resolved Infrared Spectroscopies. Biochemistry 2018; 57:4803-4815. [DOI: 10.1021/acs.biochem.8b00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Haruna Yata
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
26
|
Kim CJ, Bao H, Burnap RL, Debus RJ. Impact of D1-V185 on the Water Molecules That Facilitate O2 Formation by the Catalytic Mn4CaO5 Cluster in Photosystem II. Biochemistry 2018; 57:4299-4311. [DOI: 10.1021/acs.biochem.8b00630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Han Bao
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Robert L. Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
27
|
Brahmachari U, Guo Z, Konecny SE, Obi ENC, Barry BA. Engineering Proton Transfer in Photosynthetic Oxygen Evolution: Chloride, Nitrate, and Trehalose Reorganize a Hydrogen-Bonding Network. J Phys Chem B 2018; 122:6702-6711. [DOI: 10.1021/acs.jpcb.8b02856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Udita Brahmachari
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhanjun Guo
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sara E. Konecny
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Emmanuela N. C. Obi
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bridgette A. Barry
- Department of Chemistry and Biochemistry, and Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
Guerra F, Siemers M, Mielack C, Bondar AN. Dynamics of Long-Distance Hydrogen-Bond Networks in Photosystem II. J Phys Chem B 2018; 122:4625-4641. [PMID: 29589763 DOI: 10.1021/acs.jpcb.8b00649] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photosystem II uses the energy of absorbed light to split water molecules, generating molecular oxygen, electrons, and protons. The four protons generated during each reaction cycle are released to the lumen via mechanisms that are poorly understood. Given the complexity of photosystem II, which consists of multiple protein subunits and cofactor molecules and hosts numerous waters, a fundamental issue is finding transient networks of hydrogen bonds that bridge potential proton donor and acceptor groups. Here, we address this issue by performing all-atom molecular dynamics simulations of wild-type and mutant photosystem II monomers, which we analyze using a new protocol designed to facilitate efficient analysis of hydrogen-bond networks. Our computations reveal that local protein/water hydrogen-bond networks can assemble transiently in photosystem II such that the reaction center connects to the lumen. The dynamics of the hydrogen-bond networks couple to the protonation state of specific carboxylate groups and are altered in a mutant with defective proton transfer. Simulations on photosystem II without its extrinsic PsbO subunit provide a molecular interpretation of the elusive functional role of this subunit.
Collapse
Affiliation(s)
- Federico Guerra
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Malte Siemers
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Christopher Mielack
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics , Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
29
|
Banerjee G, Ghosh I, Kim CJ, Debus RJ, Brudvig GW. Substitution of the D1-Asn 87 site in photosystem II of cyanobacteria mimics the chloride-binding characteristics of spinach photosystem II. J Biol Chem 2017; 293:2487-2497. [PMID: 29263091 DOI: 10.1074/jbc.m117.813170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/19/2017] [Indexed: 11/06/2022] Open
Abstract
Photoinduced water oxidation at the O2-evolving complex (OEC) of photosystem II (PSII) is a complex process involving a tetramanganese-calcium cluster that is surrounded by a hydrogen-bonded network of water molecules, chloride ions, and amino acid residues. Although the structure of the OEC has remained conserved over eons of evolution, significant differences in the chloride-binding characteristics exist between cyanobacteria and higher plants. An analysis of amino acid residues in and around the OEC has identified residue 87 in the D1 subunit as the only significant difference between PSII in cyanobacteria and higher plants. We substituted the D1-Asn87 residue in the cyanobacterium Synechocystis sp. PCC 6803 (wildtype) with alanine, present in higher plants, or with aspartic acid. We studied PSII core complexes purified from D1-N87A and D1-N87D variant strains to probe the function of the D1-Asn87 residue in the water-oxidation mechanism. EPR spectra of the S2 state and flash-induced FTIR spectra of both D1-N87A and D1-N87D PSII core complexes exhibited characteristics similar to those of wildtype Synechocystis PSII core complexes. However, flash-induced O2-evolution studies revealed a decreased cycling efficiency of the D1-N87D variant, whereas the cycling efficiency of the D1-N87A PSII variant was similar to that of wildtype PSII. Steady-state O2-evolution activity assays revealed that substitution of the D1 residue at position 87 with alanine perturbs the chloride-binding site in the proton-exit channel. These findings provide new insight into the role of the D1-Asn87 site in the water-oxidation mechanism and explain the difference in the chloride-binding properties of cyanobacterial and higher-plant PSII.
Collapse
Affiliation(s)
- Gourab Banerjee
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 and
| | - Ipsita Ghosh
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 and
| | - Christopher J Kim
- the Department of Biochemistry, University of California, Riverside, California 92521
| | - Richard J Debus
- the Department of Biochemistry, University of California, Riverside, California 92521
| | - Gary W Brudvig
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107 and
| |
Collapse
|
30
|
Nagao R, Ueoka-Nakanishi H, Noguchi T. D1-Asn-298 in photosystem II is involved in a hydrogen-bond network near the redox-active tyrosine Y Z for proton exit during water oxidation. J Biol Chem 2017; 292:20046-20057. [PMID: 29046348 DOI: 10.1074/jbc.m117.815183] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Indexed: 01/19/2023] Open
Abstract
In photosynthetic water oxidation, two water molecules are converted into one oxygen molecule and four protons at the Mn4CaO5 cluster in photosystem II (PSII) via the S-state cycle. Efficient proton exit from the catalytic site to the lumen is essential for this process. However, the exit pathways of individual protons through the PSII proteins remain to be identified. In this study, we examined the involvement of a hydrogen-bond network near the redox-active tyrosine YZ in proton transfer during the S-state cycle. We focused on spectroscopic analyses of a site-directed variant of D1-Asn-298, a residue involved in a hydrogen-bond network near YZ We found that the D1-N298A mutant of Synechocystis sp. PCC 6803 exhibits an O2 evolution activity of ∼10% of the wild-type. D1-N298A and the wild-type D1 had very similar features of thermoluminescence glow curves and of an FTIR difference spectrum upon YZ oxidation, suggesting that the hydrogen-bonded structure of YZ and electron transfer from the Mn4CaO5 cluster to YZ were little affected by substitution. In the D1-N298A mutant, however, the flash-number dependence of delayed luminescence showed a monotonic increase without oscillation, and FTIR difference spectra of the S-state cycle indicated partial and significant inhibition of the S2 → S3 and S3 → S0 transitions, respectively. These results suggest that the D1-N298A substitution inhibits the proton transfer processes in the S2 → S3 and S3 → S0 transitions. This in turn indicates that the hydrogen-bond network near YZ can be functional as a proton transfer pathway during photosynthetic water oxidation.
Collapse
Affiliation(s)
- Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Hanayo Ueoka-Nakanishi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
31
|
Kim CJ, Debus RJ. Evidence from FTIR Difference Spectroscopy That a Substrate H2O Molecule for O2 Formation in Photosystem II Is Provided by the Ca Ion of the Catalytic Mn4CaO5 Cluster. Biochemistry 2017; 56:2558-2570. [DOI: 10.1021/acs.biochem.6b01278] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
32
|
Nakamura S, Noguchi T. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn 4CaO 5 cluster in photosystem II. Proc Natl Acad Sci U S A 2016; 113:12727-12732. [PMID: 27729534 PMCID: PMC5111704 DOI: 10.1073/pnas.1607897113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO2, in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn4CaO5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S1 to S2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III)2Mn(IV)2, satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.
Collapse
Affiliation(s)
- Shin Nakamura
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
Identifying carboxylate ligand vibrational modes in photosystem II with QM/MM methods. Proc Natl Acad Sci U S A 2016; 113:12613-12615. [PMID: 27794121 DOI: 10.1073/pnas.1615794113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Retegan M, Pantazis DA. Interaction of methanol with the oxygen-evolving complex: atomistic models, channel identification, species dependence, and mechanistic implications. Chem Sci 2016; 7:6463-6476. [PMID: 28451104 PMCID: PMC5355959 DOI: 10.1039/c6sc02340a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Methanol has long being used as a substrate analogue to probe access pathways and investigate water delivery at the oxygen-evolving complex (OEC) of photosystem-II. In this contribution we study the interaction of methanol with the OEC by assembling available spectroscopic data into a quantum mechanical treatment that takes into account the local channel architecture of the active site. The effect on the magnetic energy levels of the Mn4Ca cluster in the S2 state of the catalytic cycle can be explained equally well by two models that involve either methanol binding to the calcium ion of the cluster, or a second-sphere interaction in the vicinity of the "dangler" Mn4 ion. However, consideration of the latest 13C hyperfine interaction data shows that only one model is fully consistent with experiment. In contrast to previous hypotheses, methanol is not a direct ligand to the OEC, but is situated at the end-point of a water channel associated with the O4 bridge. Its effect on magnetic properties of plant PS-II results from disruption of hydrogen bonding between O4 and proximal channel water molecules, thus enhancing superexchange (antiferromagnetic coupling) between the Mn3 and Mn4 ions. The same interaction mode applies to the dark-stable S1 state and possibly to all other states of the complex. Comparison of protein sequences from cyanobacteria and plants reveals a channel-altering substitution (D1-Asn87 versus D1-Ala87) in the proximity of the methanol binding pocket, explaining the species-dependence of the methanol effect. The water channel established as the methanol access pathway is the same that delivers ammonia to the Mn4 ion, supporting the notion that this is the only directly solvent-accessible manganese site of the OEC. The results support the pivot mechanism for water binding at a component of the S3 state and would be consistent with partial inhibition of water delivery by methanol. Mechanistic implications for enzymatic regulation and catalytic progression are discussed.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
35
|
Pham LV, Messinger J. Probing S-state advancements and recombination pathways in photosystem II with a global fit program for flash-induced oxygen evolution pattern. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:848-59. [PMID: 27033305 DOI: 10.1016/j.bbabio.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/30/2016] [Accepted: 03/12/2016] [Indexed: 12/22/2022]
Abstract
The oxygen-evolving complex (OEC) in photosystem II catalyzes the oxidation of water to molecular oxygen. Four decades ago, measurements of flash-induced oxygen evolution have shown that the OEC steps through oxidation states S(0), S(1), S(2), S(3) and S(4) before O(2) is released and the S(0) state is reformed. The light-induced transitions between these states involve misses and double hits. While it is widely accepted that the miss parameter is S state dependent and may be further modulated by the oxidation state of the acceptor side, the traditional way of analyzing each flash-induced oxygen evolution pattern (FIOP) individually did not allow using enough free parameters to thoroughly test this proposal. Furthermore, this approach does not allow assessing whether the presently known recombination processes in photosystem II fully explain all measured oxygen yields during Si state lifetime measurements. Here we present a global fit program that simultaneously fits all flash-induced oxygen yields of a standard FIOP (2 Hz flash frequency) and of 11-18 FIOPs each obtained while probing the S(0), S(2) and S(3) state lifetimes in spinach thylakoids at neutral pH. This comprehensive data treatment demonstrates the presence of a very slow phase of S(2) decay, in addition to the commonly discussed fast and slow reduction of S(2) by YD and QB(-), respectively. Our data support previous suggestions that the S(0)→S(1) and S(1)→S(2) transitions involve low or no misses, while high misses occur in the S(2)→S(3) or S(3)→S(0) transitions.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Johannes Messinger
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden.
| |
Collapse
|
36
|
Chuah WY, Stranger R, Pace RJ, Krausz E, Frankcombe TJ. Deprotonation of Water/Hydroxo Ligands in Clusters Mimicking the Water Oxidizing Complex of PSII and Its Effect on the Vibrational Frequencies of Ligated Carboxylate Groups. J Phys Chem B 2016; 120:377-85. [PMID: 26727127 DOI: 10.1021/acs.jpcb.5b09987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The IR absorptions of several first-shell carboxylate ligands of the water oxidizing complex (WOC) have been experimentally shown to be unaffected by oxidation state changes in the WOC during its catalytic cycle. Several model clusters that mimic the Mn4O5Ca core of the WOC in the S1 state, with electronic configurations that correspond to both the so-called "high" and "low" oxidation paradigms, were investigated. Deprotonation at W2, W1, or O3 sites was found to strongly reduce carboxylate ligand frequency shifts on oxidation of the metal cluster. The frequency shifts were smallest in neutrally charged clusters where the initial mean Mn oxidation state was +3, with W2 as an hydroxide and O5 a water. Deprotonation also reduced and balanced the oxidation energy of all clusters in successive oxidations.
Collapse
Affiliation(s)
- Wooi Yee Chuah
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Rob Stranger
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Ron J Pace
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Elmars Krausz
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia
| | - Terry J Frankcombe
- Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia.,School of Physical, Environmental and Mathematical Sciences, University of New South Wales , Canberra, Australian Capital Territory 2600, Australia
| |
Collapse
|
37
|
Krewald V, Retegan M, Neese F, Lubitz W, Pantazis DA, Cox N. Spin State as a Marker for the Structural Evolution of Nature’s Water-Splitting Catalyst. Inorg Chem 2015; 55:488-501. [DOI: 10.1021/acs.inorgchem.5b02578] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstr.
34–36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
38
|
Structural rearrangements preceding dioxygen formation by the water oxidation complex of photosystem II. Proc Natl Acad Sci U S A 2015; 112:E6139-47. [PMID: 26508637 DOI: 10.1073/pnas.1512008112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. Recent studies implicate an oxo bridge atom, O5, of the Mn4CaO5 cluster, as the "slowly exchanging" substrate water molecule. The D1-V185N mutant is in close vicinity of O5 and known to extend the lag phase and retard the O2 release phase (slow phase) in this critical last [Formula: see text] transition of water oxidation. The pH dependence, hydrogen/deuterium (H/D) isotope effect, and temperature dependence on the O2 release kinetics for this mutant were studied using time-resolved O2 polarography, and comparisons were made with WT and two mutants of the putative proton gate D1-D61. Both kinetic phases in V185N are independent of pH and buffer concentration and have weaker H/D kinetic isotope effects. Each phase is characterized by a parallel or even lower activation enthalpy but a less favorable activation entropy than the WT. The results indicate new rate-determining steps for both phases. It is concluded that the lag does not represent inhibition of proton release but rather, slowing of a previously unrecognized kinetic phase involving a structural rearrangement or tautomerism of the S3 (+) ground state as it approaches a configuration conducive to dioxygen formation. The parallel impacts on both the lag and O2 formation phases suggest a common origin for the defects surmised to be perturbations of the H-bond network and the water cluster adjacent to O5.
Collapse
|
39
|
Olson TL, Espiritu E, Edwardraja S, Simmons CR, Williams JC, Ghirlanda G, Allen JP. Design of dinuclear manganese cofactors for bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:539-547. [PMID: 26392146 DOI: 10.1016/j.bbabio.2015.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022]
Abstract
A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Tien L Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eduardo Espiritu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Chad R Simmons
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - JoAnn C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
40
|
Lorch S, Capponi S, Pieront F, Bondar AN. Dynamic Carboxylate/Water Networks on the Surface of the PsbO Subunit of Photosystem II. J Phys Chem B 2015; 119:12172-81. [DOI: 10.1021/acs.jpcb.5b06594] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Lorch
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Sara Capponi
- Department
of Physiology and Biophysics, University of California at Irvine, Medical Sciences I, Irvine, California 92697, United States
| | - Florian Pieront
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical
Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
41
|
Retegan M, Cox N, Lubitz W, Neese F, Pantazis DA. The first tyrosyl radical intermediate formed in the S2-S3 transition of photosystem II. Phys Chem Chem Phys 2015; 16:11901-10. [PMID: 24760184 DOI: 10.1039/c4cp00696h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EPR "split signals" represent key intermediates of the S-state cycle where the redox active D1-Tyr161 (YZ) has been oxidized by the reaction center of the photosystem II enzyme to its tyrosyl radical form, but the successive oxidation of the Mn4CaO5 cluster has not yet occurred (SiYZ˙). Here we focus on the S2YZ˙ state, which is formed en route to the final metastable state of the catalyst, the S3 state, the state which immediately precedes O-O bond formation. Quantum chemical calculations demonstrate that both isomeric forms of the S2 state, the open and closed cubane isomers, can form states with an oxidized YZ˙ residue without prior deprotonation of the Mn4CaO5 cluster. The two forms are expected to lie close in energy and retain the electronic structure and magnetic topology of the corresponding S2 state of the inorganic core. As expected, tyrosine oxidation results in a proton shift towards His190. Analysis of the electronic rearrangements that occur upon formation of the tyrosyl radical suggests that a likely next step in the catalytic cycle is the deprotonation of a terminal water ligand (W1) of the Mn4CaO5 cluster. Diamagnetic metal ion substitution is used in our calculations to obtain the molecular g-tensor of YZ˙. It is known that the gx value is a sensitive probe not only of the extent of the proton shift between the tyrosine-histidine pair, but also of the polarization environment of the tyrosine, especially about the phenolic oxygen. It is shown for PSII that this environment is determined by the Ca(2+) ion, which locates two water molecules about the phenoxyl oxygen, indirectly modulating the oxidation potential of YZ.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
42
|
Vogt L, Vinyard DJ, Khan S, Brudvig GW. Oxygen-evolving complex of Photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Curr Opin Chem Biol 2015; 25:152-8. [DOI: 10.1016/j.cbpa.2014.12.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/20/2014] [Accepted: 12/25/2014] [Indexed: 12/22/2022]
|
43
|
Pokhrel R, Debus RJ, Brudvig GW. Probing the Effect of Mutations of Asparagine 181 in the D1 Subunit of Photosystem II. Biochemistry 2015; 54:1663-72. [DOI: 10.1021/bi501468h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ravi Pokhrel
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Richard J. Debus
- Department
of Biochemistry, University of California, Riverside, California 92521, United States
| | - Gary W. Brudvig
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
44
|
Abstract
Nature relies on a unique and intricate biochemical setup to achieve sunlight-driven water splitting. Combined experimental and computational efforts have produced significant insights into the structural and functional principles governing the operation of the water-oxidizing enzyme Photosystem II in general, and of the oxygen-evolving manganese-calcium cluster at its active site in particular. Here we review the most important aspects of biological water oxidation, emphasizing current knowledge on the organization of the enzyme, the geometric and electronic structure of the catalyst, and the role of calcium and chloride cofactors. The combination of recent experimental work on the identification of possible substrate sites with computational modeling have considerably limited the possible mechanistic pathways for the critical O-O bond formation step. Taken together, the key features and principles of natural photosynthesis may serve as inspiration for the design, development, and implementation of artificial systems.
Collapse
|
45
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Shen JR, Nakajima T, Yamaguchi K. Large-Scale QM/MM Calculations of Hydrogen Bonding Networks for Proton Transfer and Water Inlet Channels for Water Oxidation—Theoretical System Models of the Oxygen-Evolving Complex of Photosystem II. ADVANCES IN QUANTUM CHEMISTRY 2015. [DOI: 10.1016/bs.aiq.2014.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Messinger J, Debus R, Dismukes GC. Warwick Hillier: a tribute. PHOTOSYNTHESIS RESEARCH 2014; 122:1-11. [PMID: 25038923 DOI: 10.1007/s11120-014-0025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Warwick Hillier (October 18, 1967-January 10, 2014) made seminal contributions to our understanding of photosynthetic water oxidation employing membrane inlet mass spectrometry and FTIR spectroscopy. This article offers a collection of historical perspectives on the scientific impact of Warwick Hillier's work and tributes to the personal impact his life and ideas had on his collaborators and colleagues.
Collapse
Affiliation(s)
- Johannes Messinger
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 90187, Umeå, Sweden
| | | | | |
Collapse
|
47
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Shen JR, Nakajima T, Yamaguchi K. Theoretical modelling of biomolecular systems I. Large-scale QM/MM calculations of hydrogen-bonding networks of the oxygen evolving complex of photosystem II. Mol Phys 2014. [DOI: 10.1080/00268976.2014.960021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Al-Oweini R, Sartorel A, Bassil BS, Natali M, Berardi S, Scandola F, Kortz U, Bonchio M. Photocatalytic Water Oxidation by a Mixed-Valent MnIII3MnIVO3Manganese Oxo Core that Mimics the Natural Oxygen-Evolving Center. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404664] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Al-Oweini R, Sartorel A, Bassil BS, Natali M, Berardi S, Scandola F, Kortz U, Bonchio M. Photocatalytic water oxidation by a mixed-valent Mn(III)₃Mn(IV)O₃ manganese oxo core that mimics the natural oxygen-evolving center. Angew Chem Int Ed Engl 2014; 53:11182-5. [PMID: 25066304 DOI: 10.1002/anie.201404664] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/12/2014] [Indexed: 11/05/2022]
Abstract
The functional core of oxygenic photosynthesis is in charge of catalytic water oxidation by a multi-redox Mn(III)/Mn(IV) manifold that evolves through five electronic states (S(i), where i=0-4). The synthetic model system of this catalytic cycle and of its S0→S4 intermediates is the expected turning point for artificial photosynthesis. The tetramanganese-substituted tungstosilicate [Mn(III)3Mn(IV)O3(CH3COO)3(A-α-SiW9O34)](6-)(Mn4POM) offers an unprecedented mimicry of the natural system in its reduced S0 state; it features a hybrid organic-inorganic coordination sphere and is anchored on a polyoxotungstate. Evidence for its photosynthetic properties when combined with [Ru(bpy)3](2+) and S2O8(2-) is obtained by nanosecond laser flash photolysis; its S0→S1 transition within milliseconds and multiple-hole-accumulating properties were studied. Photocatalytic oxygen evolution is achieved in a buffered medium (pH 5) with a quantum efficiency of 1.7%.
Collapse
Affiliation(s)
- Rami Al-Oweini
- ITM-CNR and Dipartimento di Scienze Chimiche, Università di Padova via Marzolo 1, 35131 Padova (Italy) http://www.chimica.unipd.it/NanoMolCat
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Debus RJ. FTIR studies of metal ligands, networks of hydrogen bonds, and water molecules near the active site Mn₄CaO₅ cluster in Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:19-34. [PMID: 25038513 DOI: 10.1016/j.bbabio.2014.07.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/26/2022]
Abstract
The photosynthetic conversion of water to molecular oxygen is catalyzed by the Mn₄CaO₅ cluster in Photosystem II and provides nearly our entire supply of atmospheric oxygen. The Mn₄CaO₅ cluster accumulates oxidizing equivalents in response to light-driven photochemical events within Photosystem II and then oxidizes two molecules of water to oxygen. The Mn₄CaO₅ cluster converts water to oxygen much more efficiently than any synthetic catalyst because its protein environment carefully controls the cluster's reactivity at each step in its catalytic cycle. This control is achieved by precise choreography of the proton and electron transfer reactions associated with water oxidation and by careful management of substrate (water) access and proton egress. This review describes the FTIR studies undertaken over the past two decades to identify the amino acid residues that are responsible for this control and to determine the role of each. In particular, this review describes the FTIR studies undertaken to characterize the influence of the cluster's metal ligands on its activity, to delineate the proton egress pathways that link the Mn₄CaO₅ cluster with the thylakoid lumen, and to characterize the influence of specific residues on the water molecules that serve as substrate or as participants in the networks of hydrogen bonds that make up the water access and proton egress pathways. This information will improve our understanding of water oxidation by the Mn₄CaO₅ catalyst in Photosystem II and will provide insight into the design of new generations of synthetic catalysts that convert sunlight into useful forms of storable energy. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521-0129, USA.
| |
Collapse
|