1
|
Roterman I, Słupina M, Dułak D, Konieczny L. Three scenarios for amyloid transformation in the context of the funnel model. Comput Struct Biotechnol J 2025; 27:1648-1659. [PMID: 40330620 PMCID: PMC12053986 DOI: 10.1016/j.csbj.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Analysis of the structure of proteins based on the evaluation of their geometric structure (secondary and supersecondary structure) can be extended to assess the structuring of the hydrophobic region of a protein. Such analysis of amyloid protein structures leads to the identification of three scenarios for amyloid formation. One is the loss of the micelle-like ordering present in the native form (a centric hydrophobic nucleus with a polar surface) in favour of a disordered distribution of hydrophobicity in the amyloid form. The term "micelle-like" is to be understood as specific hydrophobic burial. The second scenario is the reverse process, when the highly disordered distribution of hydrophobicity in the native form is replaced by a hydrophobic burial after amyloid transformation. These two scenarios have been identified for pathological (neurodegenerative) amyloids. The third scenario is the presence of hydrophobic burial ordering in a functional amyloid fibril. In this case, this ordering is present both in the fibril and in the single chain that is the building block of the fibril. This hydrophobic burial ordering provides a means of self-control of fibril size. It prevents unrestricted fibril propagation, which in the case of pathological amyloids is the main factor that disrupts the normal functioning of organelles in the amyloid surroundings. Population analysis (including numerous polymorphic forms) was performed using a collection of structures deposited in the Amyloid Atlas database. These observations allow the construction of a kind of amyloid funnel model, in which the energy minimum depends on external, environmental conditions that may be evaluated using the fuzzy oil drop model in its modified version (FOD-M).
Collapse
Affiliation(s)
- I. Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, ul. Medyczna 7, Kraków 30-688, Poland
| | - M. Słupina
- ALSTOM ZWUS Sp. z o.o., Modelarska 12, Katowice 40-142, Poland
| | - D. Dułak
- ASSA ABLOY Opening Solutions, Magazynowa 4, Leszno, Poland
| | - L. Konieczny
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, Kraków 31-034, Poland
| |
Collapse
|
2
|
Lucas L, Tsoi PS, Quan MD, Choi KJ, Ferreon JC, Ferreon ACM. Tubulin transforms Tau and α-synuclein condensates from pathological to physiological. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640500. [PMID: 40060635 PMCID: PMC11888465 DOI: 10.1101/2025.02.27.640500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Proteins phase-separate to form condensates that partition and concentrate biomolecules into membraneless compartments. These condensates can exhibit dichotomous behaviors in biology by supporting cellular physiology or instigating pathological protein aggregation 1-3 . Tau and α- synuclein (αSyn) are neuronal proteins that form heterotypic (Tau:αSyn) condensates associated with both physiological and pathological processes. Tau and αSyn functionally regulate microtubules 8-12 , but are also known to misfold and co-deposit in aggregates linked to various neurodegenerative diseases 4,5,6,7 , which highlights the paradoxically ambivalent effect of Tau:αSyn condensation in health and disease. Here, we show that tubulin modulates Tau:αSyn condensates by promoting microtubule interactions, competitively inhibiting the formation of homotypic and heterotypic pathological oligomers. In the absence of tubulin, Tau-driven protein condensation accelerates the formation of toxic Tau:αSyn heterodimers and amyloid fibrils. However, tubulin partitioning into Tau:αSyn condensates modulates protein interactions, promotes microtubule polymerization, and prevents Tau and αSyn oligomerization and aggregation. We distinguished distinct Tau and αSyn structural states adopted in tubulin-absent (pathological) and tubulin-rich (physiological) condensates, correlating compact conformations with aggregation and extended conformations with function. Furthermore, using various neuronal cell models, we showed that loss of stable microtubules, which occurs in Alzheimer's disease and Parkinsons disease patients 13,14 , results in pathological oligomer formation and loss of neurites, and that functional condensation using an inducible optogenetic Tau construct resulted in microtubule stablization. Our results identify that tubulin is a critical modulator in switching Tau:αSyn pathological condensates to physiological, mechanistically relating the loss of stable microtubules with disease progression. Tubulin restoration strategies and Tau-mediated microtubule stabilization can be potential therapies targeting both Tau-specific and Tau/αSyn mixed pathologies.
Collapse
|
3
|
Trinh D, Israwi AR, Brar H, Villafuerte JEA, Laylo R, Patel H, Jafri S, Al Halabi L, Sinnathurai S, Reehal K, Shi A, Gnanamanogaran V, Garabedian N, Pham I, Thrasher D, Monnier PP, Volpicelli-Daley LA, Nash JE. Parkinson's disease pathology is directly correlated to SIRT3 in human subjects and animal models: Implications for AAV.SIRT3-myc as a disease-modifying therapy. Neurobiol Dis 2023; 187:106287. [PMID: 37704058 DOI: 10.1016/j.nbd.2023.106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
In Parkinson's disease (PD), post-mortem studies in affected brain regions have demonstrated a decline in mitochondrial number and function. This combined with many studies in cell and animal models suggest that mitochondrial dysfunction is central to PD pathology. We and others have shown that the mitochondrial protein deacetylase, SIRT3, has neurorestorative effects in PD models. In this study, to determine whether there is a link between PD pathology and SIRT3, we analysed SIRT3 levels in human subjects with PD, and compared to age-matched controls. In the SNc of PD subjects, SIRT3 was reduced by 56.8 ± 15.5% compared to control, regardless of age (p < 0.05, R = 0.6539). Given that age is the primary risk factor for PD, this finding suggests that reduced SIRT3 may contribute to PD pathology. Next, we measured whether there was a correlation between α-synuclein and SIRT3. In a parallel study, we assessed the disease-modifying potential of SIRT3 over-expression in a seeding model of α-synuclein. In PFF rats, infusion of rAAV1.SIRT3-myc reduced abundance of α-synuclein inclusions by 30.1 ± 18.5%. This was not observed when deacetylation deficient SIRT3H248Y was transduced, demonstrating the importance of SIRT3 deacetylation in reducing α-synuclein aggregation. These studies confirm that there is a clear difference in SIRT3 levels in subjects with PD compared to age-matched controls, suggesting a link between SIRT3 and the progression of PD. We also demonstrate that over-expression of SIRT3 reduces α-synuclein aggregation, further validating AAV.SIRT3-myc as a potential disease-modifying solution for PD.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmad R Israwi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jose E A Villafuerte
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ruella Laylo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Humaiyra Patel
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Sabika Jafri
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Shaumia Sinnathurai
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Kiran Reehal
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alyssa Shi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Natalie Garabedian
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ivy Pham
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Drake Thrasher
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Philippe P Monnier
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Joanne E Nash
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Singh BP, Morris RJ, Kunath T, MacPhee CE, Horrocks MH. Lipid-induced polymorphic amyloid fibril formation by α-synuclein. Protein Sci 2023; 32:e4736. [PMID: 37515406 PMCID: PMC10521247 DOI: 10.1002/pro.4736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between β-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.
Collapse
Affiliation(s)
- Bhanu P. Singh
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
| | - Ryan J. Morris
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Tilo Kunath
- Centre for Regenerative Medicine, School of Biological Sciences, The University of EdinburghEdinburghUK
| | - Cait E. MacPhee
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of EdinburghEdinburghUK
| |
Collapse
|
5
|
Tsoi PS, Quan MD, Ferreon JC, Ferreon ACM. Aggregation of Disordered Proteins Associated with Neurodegeneration. Int J Mol Sci 2023; 24:3380. [PMID: 36834792 PMCID: PMC9966039 DOI: 10.3390/ijms24043380] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Cellular deposition of protein aggregates, one of the hallmarks of neurodegeneration, disrupts cellular functions and leads to neuronal death. Mutations, posttranslational modifications, and truncations are common molecular underpinnings in the formation of aberrant protein conformations that seed aggregation. The major proteins involved in neurodegeneration include amyloid beta (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, and TAR DNA-binding protein (TDP-43) in amyotrophic lateral sclerosis (ALS). These proteins are described as intrinsically disordered and possess enhanced ability to partition into biomolecular condensates. In this review, we discuss the role of protein misfolding and aggregation in neurodegenerative diseases, specifically highlighting implications of changes to the primary/secondary (mutations, posttranslational modifications, and truncations) and the quaternary/supramolecular (oligomerization and condensation) structural landscapes for the four aforementioned proteins. Understanding these aggregation mechanisms provides insights into neurodegenerative diseases and their common underlying molecular pathology.
Collapse
Affiliation(s)
| | | | - Josephine C. Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allan Chris M. Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
7
|
Sen S, Kumar H, Udgaonkar JB. Microsecond Dynamics During the Binding-induced Folding of an Intrinsically Disordered Protein. J Mol Biol 2021; 433:167254. [PMID: 34537237 DOI: 10.1016/j.jmb.2021.167254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50-200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.
Collapse
Affiliation(s)
- Sreemantee Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| | - Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India.
| |
Collapse
|
8
|
Salahuddin P, Khan RH, Furkan M, Uversky VN, Islam Z, Fatima MT. Mechanisms of amyloid proteins aggregation and their inhibition by antibodies, small molecule inhibitors, nano-particles and nano-bodies. Int J Biol Macromol 2021; 186:580-590. [PMID: 34271045 DOI: 10.1016/j.ijbiomac.2021.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation can be induced by a wide variety of factors, such as dominant disease-associated mutations, changes in the environmental conditions (pH, temperature, ionic strength, protein concentration, exposure to transition metal ions, exposure to toxins, posttranslational modifications including glycation, phosphorylation, and sulfation). Misfolded intermediates interact with similar intermediates and progressively form dimers, oligomers, protofibrils, and fibrils. In amyloidoses, fibrillar aggregates are deposited in the tissues either as intracellular inclusion or extracellular plaques (amyloid). When such proteinaceous deposit occurs in the neuronal cells, it initiates degeneration of neurons and consequently resulting in the manifestation of various neurodegenerative diseases. Several different types of molecules have been designed and tested both in vitro and in vivo to evaluate their anti-amyloidogenic efficacies. For instance, the native structure of a protein associated with amyloidosis could be stabilized by ligands, antibodies could be used to remove plaques, oligomer-specific antibody A11 could be used to remove oligomers, or prefibrillar aggregates could be removed by affibodies. Keeping the above views in mind, in this review we have discussed protein misfolding and aggregation, mechanisms of protein aggregation, factors responsible for aggregations, and strategies for aggregation inhibition.
Collapse
Affiliation(s)
- Parveen Salahuddin
- DISC, Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India.
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zeyaul Islam
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O Box 5825, Doha, Qatar
| | - Munazza Tamkeen Fatima
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
9
|
Nakasone Y, Terazima M. A Time-Resolved Diffusion Technique for Detection of the Conformational Changes and Molecular Assembly/Disassembly Processes of Biomolecules. Front Genet 2021; 12:691010. [PMID: 34276791 PMCID: PMC8278059 DOI: 10.3389/fgene.2021.691010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Biological liquid-liquid phase separation (LLPS) is driven by dynamic and multivalent interactions, which involves conformational changes and intermolecular assembly/disassembly processes of various biomolecules. To understand the molecular mechanisms of LLPS, kinetic measurements of the intra- and intermolecular reactions are essential. In this review, a time-resolved diffusion technique which has a potential to detect molecular events associated with LLPS is presented. This technique can detect changes in protein conformation and intermolecular interaction (oligomer formation, protein-DNA interaction, and protein-lipid interaction) in time domain, which are difficult to obtain by other methods. After the principle and methods for signal analyses are described in detail, studies on photoreactive molecules (intermolecular interaction between light sensor proteins and its target DNA) and a non-photoreactive molecule (binding and folding reaction of α-synuclein upon mixing with SDS micelle) are presented as typical examples of applications of this unique technique.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Tsoi PS, Quan MD, Choi KJ, Dao KM, Ferreon JC, Ferreon ACM. Electrostatic modulation of hnRNPA1 low-complexity domain liquid-liquid phase separation and aggregation. Protein Sci 2021; 30:1408-1417. [PMID: 33982369 DOI: 10.1002/pro.4108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Membrane-less organelles and RNP granules are enriched in RNA and RNA-binding proteins containing disordered regions. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a key regulating protein in RNA metabolism, localizes to cytoplasmic RNP granules including stress granules. Dysfunctional nuclear-cytoplasmic transport and dynamic phase separation of hnRNPA1 leads to abnormal amyloid aggregation and neurodegeneration. The intrinsically disordered C-terminal domain (CTD) of hnRNPA1 mediates both dynamic liquid-liquid phase separation (LLPS) and aggregation. While cellular phase separation drives the formation of membrane-less organelles, aggregation within phase-separated compartments has been linked to neurodegenerative diseases. To understand some of the underlying mechanisms behind protein phase separation and LLPS-mediated aggregation, we studied LLPS of hnRNPA1 CTD in conditions that probe protein electrostatics, modulated specifically by varying pH conditions, and protein, salt and RNA concentrations. In the conditions investigated, we observed LLPS to be favored in acidic conditions, and by high protein, salt and RNA concentrations. We also observed that conditions that favor LLPS also enhance protein aggregation and fibrillation, which suggests an aggregation pathway that is LLPS-mediated. The results reported here also suggest that LLPS can play a direct role in facilitating protein aggregation, and that changes in cellular environment that affect protein electrostatics can contribute to the pathological aggregation exhibited in neurodegeneration.
Collapse
Affiliation(s)
- Phoebe S Tsoi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - My Diem Quan
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kyoung-Jae Choi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Khoa M Dao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Josephine C Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Allan Chris M Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Takaramoto S, Nakasone Y, Sadakane K, Maruta S, Terazima M. Time-resolved detection of SDS-induced conformational changes in α-synuclein by a micro-stopped-flow system. RSC Adv 2021; 11:1086-1097. [PMID: 35423687 PMCID: PMC8693425 DOI: 10.1039/d0ra09614h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
An intrinsically disordered protein, α-synuclein (αSyn), binds to negatively charged phospholipid membranes and adopts an α-helical structure. This conformational change is also induced by interaction with sodium dodecyl sulfate (SDS), which is an anionic surfactant used in previous studies to mimic membrane binding. However, while the structure of the αSyn and SDS complex has been studied widely by various static measurements, the process of structural change from the denatured state to the folded state remains unclear. In this study, the interaction dynamics between αSyn and SDS micelles was investigated using time-resolved measurements with a micro-stopped-flow system, which has been recently developed. In particular, the time-resolved diffusion based on the transient grating technique in combination with a micro-stopped-flow system revealed the gradual change in diffusion triggered by the presence of SDS micelles. This change is induced not only by binding to SDS micelles, but also by an intramolecular conformational change. It was interesting to find that the diffusion coefficient decreased in an intermediate state and then increased to the final state in the binding reaction. We also carried out stopped-flow-kinetic measurements of circular dichroism and intramolecular fluorescence resonance energy transfer, and the D change was assigned to the formation of a compact structure derived from the helix bending on the micelle. Dynamics of conformation changes of α-synuclein induced by the presence of SDS micelles are revealed using time-resolved diffusion, CD, and FRET measurements combined with a micro-stopped flow system.![]()
Collapse
Affiliation(s)
- Shunki Takaramoto
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Yusuke Nakasone
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Kei Sadakane
- Department of Bioinformatics
- Graduate School of Engineering
- Soka University
- Hachioji
- Japan
| | - Shinsaku Maruta
- Department of Bioinformatics
- Graduate School of Engineering
- Soka University
- Hachioji
- Japan
| | - Masahide Terazima
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
12
|
Fouka M, Mavroeidi P, Tsaka G, Xilouri M. In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons. Front Cell Dev Biol 2020; 8:559791. [PMID: 33015057 PMCID: PMC7500083 DOI: 10.3389/fcell.2020.559791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD), multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB) represent pathologically similar, progressive neurodegenerative disorders characterized by the pathological aggregation of the neuronal protein α-synuclein. PD and DLB are characterized by the abnormal accumulation and aggregation of α-synuclein in proteinaceous inclusions within neurons named Lewy bodies (LBs) and Lewy neurites (LNs), whereas in MSA α-synuclein inclusions are mainly detected within oligodendrocytes named glial cytoplasmic inclusions (GCIs). The presence of pathologically aggregated α-synuclein along with components of the protein degradation machinery, such as ubiquitin and p62, in LBs and GCIs is considered to underlie the pathogenic cascade that eventually leads to the severe neurodegeneration and neuroinflammation that characterizes these diseases. Importantly, α-synuclein is proposed to undergo pathogenic misfolding and oligomerization into higher-order structures, revealing self-templating conformations, and to exert the ability of "prion-like" spreading between cells. Therefore, the manner in which the protein is produced, is modified within neural cells and is degraded, represents a major focus of current research efforts in the field. Given that α-synuclein protein load is critical to disease pathogenesis, the identification of means to limit intracellular protein burden and halt α-synuclein propagation represents an obvious therapeutic approach in synucleinopathies. However, up to date the development of effective therapeutic strategies to prevent degeneration in synucleinopathies is limited, due to the lack of knowledge regarding the precise mechanisms underlying the observed pathology. This review critically summarizes the recent developed strategies to counteract α-synuclein toxicity, including those aimed to increase protein degradation, to prevent protein aggregation and cell-to-cell propagation, or to engage antibodies against α-synuclein and discuss open questions and unknowns for future therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
13
|
Kaur J, Giri A, Bhattacharya M. The protein-surfactant stoichiometry governs the conformational switching and amyloid nucleation kinetics of tau K18. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:425-434. [PMID: 32691116 DOI: 10.1007/s00249-020-01447-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/07/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Amyloids are pathological hallmarks of a number of debilitating neurodegenerative diseases. Understanding the molecular mechanism of protein amyloid assembly with an emphasis on structural characterization of early, key prefibrillar species is important for targeted drug design and clinical interventions. Tau is an intrinsically disordered, microtubule-binding protein which is also implicated in various neurodegenerative disorders such as frontotemporal dementia, Down's syndrome, Alzheimer's disease, etc. Earlier reports have demonstrated that tau aggregation in vitro is triggered by anionic inducers, presumably due to charge compensation which facilitates intermolecular association between the tau polypeptide chains. However, the molecular mechanism of tau amyloid aggregation, involving the structural characterization of amyloidogenic intermediates formed especially during early key steps, remains elusive. In this work, we have employed a spectroscopic toolbox to elucidate the mechanism of anionic surfactant-induced disorder-to-order amyloid transition of a tau segment. This study revealed that the amyloid assembly is mediated via binding-induced conformational switching into an early partially helical amyloid-competent intermediate. Additionally, protein and inducer concentration-dependent studies indicated that at the higher protein and/or inducer concentrations, competing off-pathway intermediates dampen the amyloid assembly which implies that the stoichiometry of protein and inducer plays a key regulatory role in the amyloid nucleation and fibril elongation kinetics.
Collapse
Affiliation(s)
- Jaspreet Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab, 147004, India
| | - Anjali Giri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab, 147004, India
| | - Mily Bhattacharya
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab, 147004, India.
| |
Collapse
|
14
|
Birol M, Melo AM. Untangling the Conformational Polymorphism of Disordered Proteins Associated With Neurodegeneration at the Single-Molecule Level. Front Mol Neurosci 2020; 12:309. [PMID: 31998071 PMCID: PMC6965022 DOI: 10.3389/fnmol.2019.00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
A large fraction of the human genome encodes intrinsically disordered proteins/regions (IDPs/IDRs) that are involved in diverse cellular functions/regulation and dysfunctions. Moreover, several neurodegenerative disorders are associated with the pathological self-assembly of neuronal IDPs, including tau [Alzheimer's disease (AD)], α-synuclein [Parkinson's disease (PD)], and huntingtin exon 1 [Huntington's disease (HD)]. Therefore, there is an urgent and emerging clinical interest in understanding the physical and structural features of their functional and disease states. However, their biophysical characterization is inherently challenging by traditional ensemble techniques. First, unlike globular proteins, IDPs lack stable secondary/tertiary structures under physiological conditions and may interact with multiple and distinct biological partners, subsequently folding differentially, thus contributing to the conformational polymorphism. Second, amyloidogenic IDPs display a high aggregation propensity, undergoing complex heterogeneous self-assembly mechanisms. In this review article, we discuss the advantages of employing cutting-edge single-molecule fluorescence (SMF) techniques to characterize the conformational ensemble of three selected neuronal IDPs (huntingtin exon 1, tau, and α-synuclein). Specifically, we survey the versatility of these powerful approaches to describe their monomeric conformational ensemble under functional and aggregation-prone conditions, and binding to biological partners. Together, the information gained from these studies provides unique insights into the role of gain or loss of function of these disordered proteins in neurodegeneration, which may assist the development of new therapeutic molecules to prevent and treat these devastating human disorders.
Collapse
Affiliation(s)
- Melissa Birol
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Ana M Melo
- Centro de Química-Física Molecular- IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Abstract
The past few years have resulted in an increased awareness and recognition of the prevalence and roles of intrinsically disordered proteins and protein regions (IDPs and IDRs, respectively) in synaptic vesicle trafficking and exocytosis and in overall synaptic organization. IDPs and IDRs constitute a class of proteins and protein regions that lack stable tertiary structure, but nevertheless retain biological function. Their significance in processes such as cell signaling is now well accepted, but their pervasiveness and importance in other areas of biology are not as widely appreciated. Here, we review the prevalence and functional roles of IDPs and IDRs associated with the release and recycling of synaptic vesicles at nerve terminals, as well as with the architecture of these terminals. We hope to promote awareness, especially among neuroscientists, of the importance of this class of proteins in these critical pathways and structures. The examples discussed illustrate some of the ways in which the structural flexibility conferred by intrinsic protein disorder can be functionally advantageous in the context of cellular trafficking and synaptic function.
Collapse
Affiliation(s)
- David Snead
- From the Department of Biochemistry, Weill Cornell Medicine, New York, New York 10021
| | - David Eliezer
- From the Department of Biochemistry, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
16
|
Cilento EM, Jin L, Stewart T, Shi M, Sheng L, Zhang J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. J Neurochem 2019; 151:397-416. [PMID: 30474862 DOI: 10.1111/jnc.14635] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Accurate, reliable, and objective biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and related age-associated neurodegenerative disorders are urgently needed to assist in both diagnosis, particularly at early stages, and monitoring of disease progression. Technological advancements in protein detection platforms over the last few decades have resulted in a plethora of reported molecular biomarker candidates for both AD and PD; however, very few of these candidates are developed beyond the discovery phase of the biomarker development pipeline, a reflection of the current bottleneck within the field. In this review, the expanded use of selected reaction monitoring (SRM) targeted mass spectrometry will be discussed in detail as a platform for systematic verification of large panels of protein biomarker candidates prior to costly validation testing. We also advocate for the coupling of discovery-based proteomics with modern targeted MS-based approaches (e.g., SRM) within a single study in future workflows to expedite biomarker development and validation for AD and PD. It is our hope that improving the efficiency within the biomarker development process by use of an SRM pipeline may ultimately hasten the development of biomarkers that both decrease misdiagnosis of AD and PD and ultimately lead to detection at early stages of disease and objective assessment of disease progression. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Eugene M Cilento
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lorrain Jin
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Min Shi
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA.,Department of Pathology, School of Basic Medicine, Peking University Health Science Center, Peking University Third Hospital and Peking Key Laboratory for Early Diagnosis of Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
17
|
Rovere M. Circular Dichroism and Isothermal Titration Calorimetry to Study the Interaction of α-Synuclein with Membranes. Methods Mol Biol 2019; 1948:123-143. [PMID: 30771175 DOI: 10.1007/978-1-4939-9124-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
α-Synuclein's physiology and pathology have been linked by numerous reports to its ability to bind and remodel membranes, especially at synaptic terminals. It is therefore critical for researchers investigating the determinants of these interactions to rely on methods capable of providing an accurate and complete physicochemical snapshot of the binding events. Circular dichroism (CD) and isothermal titration calorimetry (ITC) are established techniques for the study of binding equilibria in biological systems and, especially when used in combination, allow a thorough characterization of the protein-lipid interplay.Here we provide general guidelines and describe some common pitfalls of these experiments. This protocol describes the preparation of small unilamellar vesicles (SUVs), mimicking the curved bilayers α-synuclein normally interacts with, the CD-monitored titration of α-synuclein with SUVs, the ITC (lipid-into-protein) experiment, and the subsequent data analysis using an n independent binding site model.
Collapse
Affiliation(s)
- Matteo Rovere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Moosa MM, Ferreon JC, Ferreon ACM. Single-Molecule FRET Detection of Early-Stage Conformations in α-Synuclein Aggregation. Methods Mol Biol 2019; 1948:221-233. [PMID: 30771181 DOI: 10.1007/978-1-4939-9124-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Misfolding and aggregation of α-synuclein are linked to many neurodegenerative disorders, including Parkinson's and Alzheimer's disease. Despite intense research efforts, detailed structural characterization of early conformational transitions that initiate and drive α-synuclein aggregation remains elusive often due to the low sensitivity and ensemble averaging of commonly used techniques. Single-molecule Förster resonance energy transfer (smFRET) provides unique advantages in detecting minor conformations that initiate protein pathologic aggregation. In this chapter, we describe an smFRET-based method for characterizing early conformational conversions that are responsible for α-synuclein self-assembly and aggregation.
Collapse
Affiliation(s)
- Mahdi Muhammad Moosa
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Josephine C Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Allan Chris M Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Snead D, Eliezer D. Spectroscopic Characterization of Structure-Function Relationships in the Intrinsically Disordered Protein Complexin. Methods Enzymol 2018; 611:227-286. [PMID: 30471689 DOI: 10.1016/bs.mie.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexins play a critical role in the regulation of neurotransmission by regulating SNARE-mediated exocytosis of synaptic vesicles. Complexins can exert either a facilitatory or an inhibitory effect on neurotransmitter release, depending on the context, and different complexin domains contribute differently to these opposing roles. Structural characterization of the central helix domain of complexin bound to the assembled SNARE bundle provided key insights into the functional mechanism of this domain of complexin, which is critical for both complexin activities, but many questions remain, particularly regarding the roles and mechanisms of other complexin domains. Recent progress has clarified the structural properties of these additional domains, and has led to various proposals regarding how they contribute to complexin function. This chapter describes spectroscopic approaches used in our laboratory and others, primarily involving circular dichroism and solution-state NMR spectroscopy, to characterize structure within complexins when isolated or when bound to interaction partners. The ability to characterize complexin structure enables structure/function studies employing in vitro or in vivo assays of complexin function. More generally, these types of approaches can be used to study the binding of other intrinsically disordered proteins or protein regions to membrane surfaces or for that matter to other large physiological binding partners.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
20
|
Moosa MM, Ferreon JC, Ferreon ACM. Ligand interactions and the protein order-disorder energetic continuum. Semin Cell Dev Biol 2018; 99:78-85. [PMID: 29753880 DOI: 10.1016/j.semcdb.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/05/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins as computationally predicted account for ∼1/3 of eukaryotic proteomes, are involved in a plethora of biological functions, and have been linked to several human diseases as a result of their dysfunctions. Here, we present a picture wherein an energetic continuum describes protein structural and conformational propensities, ranging from the hyperstable folded proteins on one end to the hyperdestabilized and sometimes functionally disordered proteins on the other. We distinguish between proteins that are folding-competent but disordered because of marginal stability and those that are disordered due mainly to the absence of folding code-completing structure-determining interactions, and postulate that disordered proteins that are unstructured by way of partial population of protein denatured states represent a sizable proportion of the proteome.
Collapse
Affiliation(s)
- Mahdi Muhammad Moosa
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Josephine C Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| | - Allan Chris M Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
21
|
Tsoi PS, Choi K, Leonard PG, Sizovs A, Moosa MM, MacKenzie KR, Ferreon JC, Ferreon ACM. The N‐Terminal Domain of ALS‐Linked TDP‐43 Assembles without Misfolding. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Phoebe S. Tsoi
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
| | - Kyoung‐Jae Choi
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
| | - Paul G. Leonard
- Department of Genomic Medicine and Core for Biomolecular Structure and Function University of Texas MD Anderson Cancer Center Houston TX USA
| | - Antons Sizovs
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
| | - Mahdi Muhammad Moosa
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
| | - Kevin R. MacKenzie
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
- Department of Pathology and Immunology Baylor College of Medicine Houston TX USA
| | - Josephine C. Ferreon
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
| | - Allan Chris M. Ferreon
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
| |
Collapse
|
22
|
Tsoi PS, Choi KJ, Leonard PG, Sizovs A, Moosa MM, MacKenzie KR, Ferreon JC, Ferreon ACM. The N-Terminal Domain of ALS-Linked TDP-43 Assembles without Misfolding. Angew Chem Int Ed Engl 2017; 56:12590-12593. [PMID: 28833982 DOI: 10.1002/anie.201706769] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Indexed: 12/28/2022]
Abstract
Transactivation response element (TAR) DNA-binding protein 43 (TDP-43) misfolding is implicated in several neurodegenerative diseases characterized by aggregated protein inclusions. Misfolding is believed to be mediated by both the N- and C-terminus of TDP-43; however, the mechanistic basis of the contribution of individual domains in the process remained elusive. Here, using single-molecule fluorescence and ensemble biophysical techniques, and a wide range of pH and temperature conditions, we show that TDP-43NTD is thermodynamically stable, well-folded and undergoes reversible oligomerization. We propose that, in full-length TDP-43, association between folded N-terminal domains enhances the propensity of the intrinsically unfolded C-terminal domains to drive pathological aggregation.
Collapse
Affiliation(s)
- Phoebe S Tsoi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kyoung-Jae Choi
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Paul G Leonard
- Department of Genomic Medicine and Core for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antons Sizovs
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mahdi Muhammad Moosa
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin R MacKenzie
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Josephine C Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Allan Chris M Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Heller GT, Aprile FA, Vendruscolo M. Methods of probing the interactions between small molecules and disordered proteins. Cell Mol Life Sci 2017; 74:3225-3243. [PMID: 28631009 PMCID: PMC5533867 DOI: 10.1007/s00018-017-2563-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022]
Abstract
It is generally recognized that a large fraction of the human proteome is made up of proteins that remain disordered in their native states. Despite the fact that such proteins play key biological roles and are involved in many major human diseases, they still represent challenging targets for drug discovery. A major bottleneck for the identification of compounds capable of interacting with these proteins and modulating their disease-promoting behaviour is the development of effective techniques to probe such interactions. The difficulties in carrying out binding measurements have resulted in a poor understanding of the mechanisms underlying these interactions. In order to facilitate further methodological advances, here we review the most commonly used techniques to probe three types of interactions involving small molecules: (1) those that disrupt functional interactions between disordered proteins; (2) those that inhibit the aberrant aggregation of disordered proteins, and (3) those that lead to binding disordered proteins in their monomeric states. In discussing these techniques, we also point out directions for future developments.
Collapse
Affiliation(s)
- Gabriella T Heller
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Francesco A Aprile
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
24
|
Ruzafa D, Hernandez-Gomez YS, Bisello G, Broersen K, Morel B, Conejero-Lara F. The influence of N-terminal acetylation on micelle-induced conformational changes and aggregation of α-Synuclein. PLoS One 2017; 12:e0178576. [PMID: 28562630 PMCID: PMC5451137 DOI: 10.1371/journal.pone.0178576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022] Open
Abstract
The biological function of α-Synuclein has been related to binding to lipids and membranes but these interactions can also mediate α-Synuclein aggregation, which is associated to Parkinson’s disease and other neuropathologies. In brain tissue α-Synuclein is constitutively N-acetylated, a modification that plays an important role in its conformational propensity, lipid and membrane binding, and aggregation propensity. We studied the interactions of the lipid-mimetic SDS with N-acetylated and non-acetylated α-Synuclein, as well as their early-onset Parkinson’s disease variants A30P, E46K and A53T. At low SDS/protein ratios α-Synuclein forms oligomeric complexes with SDS micelles with relatively low α-helical structure. These micellar oligomers can efficiently nucleate aggregation of monomeric α-Synuclein, with successive formation of oligomers, protofibrils, curly fibrils and mature amyloid fibrils. N-acetylation reduces considerably the rate of aggregation of WT α-Synuclein. However, in presence of any of the early-onset Parkinson’s disease mutations the protective effect of N-acetylation against micelle-induced aggregation becomes impaired. At higher SDS/protein ratios, N-acetylation favors another conformational transition, in which a second type of α-helix-rich, non-aggregating oligomers become stabilized. Once again, the Parkinson’s disease mutations disconnect the influence of N-acetylation in promoting this transition. These results suggest a cooperative link between the N-terminus and the region of the mutations that may be important for α-Synuclein function.
Collapse
Affiliation(s)
- David Ruzafa
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Yuriko S. Hernandez-Gomez
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Giovanni Bisello
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Kerensa Broersen
- Nanobiophysics Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, Universiteit Twente, Enschede, The Netherlands
| | - Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
25
|
Robotta M, Cattani J, Martins JC, Subramaniam V, Drescher M. Alpha-Synuclein Disease Mutations Are Structurally Defective and Locally Affect Membrane Binding. J Am Chem Soc 2017; 139:4254-4257. [PMID: 28298083 DOI: 10.1021/jacs.6b05335] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intrinsically disordered human protein alpha-Synuclein (αS) has a prominent role in Parkinson's disease (PD) pathology. Several familial variants of αS are correlated with inherited PD. Disease mutations have been shown to have an impact on lipid membrane binding. Here, using electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling, we show that familial PD-associated variants are structurally defective in membrane binding and alter the local binding properties of the protein.
Collapse
Affiliation(s)
- Marta Robotta
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz , 78457 Konstanz, Germany
| | - Julia Cattani
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz , 78457 Konstanz, Germany
| | - Juliana Cristina Martins
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz , 78457 Konstanz, Germany.,Department of Physics, State University of Londrina , 86057-970 Londrina, Brazil
| | - Vinod Subramaniam
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz , 78457 Konstanz, Germany.,Vrije Universiteit Amsterdam , De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Malte Drescher
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
26
|
α-Lactalbumin and sodium dodecyl sulfate aggregates: Denaturation, complex formation and time stability. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Khan JM, Sharma P, Arora K, Kishor N, Kaila P, Guptasarma P. The Achilles’ Heel of “Ultrastable” Hyperthermophile Proteins: Submillimolar Concentrations of SDS Stimulate Rapid Conformational Change, Aggregation, and Amyloid Formation in Proteins Carrying Overall Positive Charge. Biochemistry 2016; 55:3920-36. [DOI: 10.1021/acs.biochem.5b01343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javed M. Khan
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Prerna Sharma
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Kanika Arora
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Nitin Kishor
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Pallavi Kaila
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Purnananda Guptasarma
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| |
Collapse
|
28
|
Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation. Sci Rep 2015; 5:9228. [PMID: 25784353 PMCID: PMC4363886 DOI: 10.1038/srep09228] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Mechanistic understanding of nucleation dependent polymerization by α-synuclein (α-Syn) into toxic oligomers and amyloids is important for the drug development against Parkinson's disease. However the structural and morphological characterization during nucleation and subsequent fibrillation process of α-Syn is not clearly understood. Using a variety of complementary biophysical techniques monitoring entire pathway of nine different synucleins, we found that transition of unstructured conformation into β-sheet rich fibril formation involves helix-rich intermediates. These intermediates are common for all aggregating synucleins, contain high solvent-exposed hydrophobic surfaces, are cytotoxic to SHSY-5Y cells and accelerate α-Syn aggregation efficiently. A multidimensional NMR study characterizing the intermediate accompanied with site-specific fluorescence study suggests that the N-terminal and central portions mainly participate in the helix-rich intermediate formation while the C-terminus remained in an extended conformation. However, significant conformational transitions occur at the middle and at the C-terminus during helix to β-sheet transition as evident from Trp fluorescence study. Since partial helix-rich intermediates were also observed for other amyloidogenic proteins such as Aβ and IAPP, we hypothesize that this class of intermediates may be one of the important intermediates for amyloid formation pathway by many natively unstructured protein/peptides and represent a potential target for drug development against amyloid diseases.
Collapse
|
29
|
Basak S, Prasad GVRK, Varkey J, Chattopadhyay K. Early sodium dodecyl sulfate induced collapse of α-synuclein correlates with its amyloid formation. ACS Chem Neurosci 2015; 6:239-46. [PMID: 25369246 DOI: 10.1021/cn500168x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aggregation of α-synuclein (A-syn) has been implicated strongly in Parkinson's disease (PD). In vitro studies established A-syn to be a member of the intrinsically disordered protein (IDP) family. This protein undergoes structural interconversion between an extended and a compact state, and this equilibrium influences the mechanism of its aggregation. A combination of fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) has been used to study the membrane induced conformational reorganization and aggregation of A-syn. Different structural and conformational events, including the early collapse, the formation of the secondary structure, and aggregation have been identified and characterized using FCS and other biophysical methods. In addition, the concentrations of glycerol and urea have been varied to study the effect of solution conditions on the above conformational events. Further, we have extended this study on a number of A-syn mutants, namely, A30P, A53T, and E46K. These mutants are chosen because of their known implications in the disease pathology. The variation of solution conditions and mutational analyses suggest a strong correlation between the extent of early collapse and the onset of aggregation in PD.
Collapse
Affiliation(s)
- Sujit Basak
- Protein
Folding and Dynamics Laboratory Structural Biology and Bioinformatics
Division CSIR-Indian Institute of Chemical Biology (IICB) 4, Raja
S.C. Mullick Road, Kolkata-700032, India
| | - G. V. R Krishna Prasad
- Department
of Biological Sciences, Indian Institute of Science Education and Research, Sec 81, SAS Nagar, Mohali, Punjab-140306, India
| | - Jobin Varkey
- Centre
for Converging Technologies, University of Rajasthan, Jaipur-3002004, India
| | - Krishnananda Chattopadhyay
- Protein
Folding and Dynamics Laboratory Structural Biology and Bioinformatics
Division CSIR-Indian Institute of Chemical Biology (IICB) 4, Raja
S.C. Mullick Road, Kolkata-700032, India
| |
Collapse
|
30
|
Phillips AS, Gomes AF, Kalapothakis JMD, Gillam JE, Gasparavicius J, Gozzo FC, Kunath T, MacPhee C, Barran PE. Conformational dynamics of α-synuclein: insights from mass spectrometry. Analyst 2015; 140:3070-81. [DOI: 10.1039/c4an02306d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Different mass spectrometry approaches are combined to investigate the conformational flexibility of α-synuclein.
Collapse
Affiliation(s)
- Ashley S. Phillips
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Alexandre F. Gomes
- Dalton Mass Spectrometry Laboratory
- University of Campinas – UNICAMP
- Brazil
| | | | - Jay E. Gillam
- School of Physics and Astronomy
- University of Edinburgh
- Edinburgh
- UK
| | | | - Fabio C. Gozzo
- Dalton Mass Spectrometry Laboratory
- University of Campinas – UNICAMP
- Brazil
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine
- University of Edinburgh
- Edinburgh
- UK
| | - Cait MacPhee
- School of Physics and Astronomy
- University of Edinburgh
- Edinburgh
- UK
| | - Perdita E. Barran
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| |
Collapse
|
31
|
Snead D, Eliezer D. Alpha-synuclein function and dysfunction on cellular membranes. Exp Neurobiol 2014; 23:292-313. [PMID: 25548530 PMCID: PMC4276801 DOI: 10.5607/en.2014.23.4.292] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
Alpha-synuclein is a small neuronal protein that is closely associated with the etiology of Parkinson's disease. Mutations in and alterations in expression levels of alpha-synuclein cause autosomal dominant early onset heredity forms of Parkinson's disease, and sporadic Parkinson's disease is defined in part by the presence of Lewy bodies and Lewy neurites that are composed primarily of alpha-synuclein deposited in an aggregated amyloid fibril state. The normal function of alpha-synuclein is poorly understood, and the precise mechanisms by which it leads to toxicity and cell death are also unclear. Although alpha-synuclein is a highly soluble, cytoplasmic protein, it binds to a variety of cellular membranes of different properties and compositions. These interactions are considered critical for at least some normal functions of alpha-synuclein, and may well play critical roles in both the aggregation of the protein and its mechanisms of toxicity. Here we review the known features of alpha-synuclein membrane interactions in the context of both the putative functions of the protein and of its pathological roles in disease.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
32
|
Moosa MM, Ferreon ACM, Deniz AA. Forced folding of a disordered protein accesses an alternative folding landscape. Chemphyschem 2014; 16:90-4. [PMID: 25345588 DOI: 10.1002/cphc.201402661] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 11/12/2022]
Abstract
Intrinsically disordered proteins (IDPs) are involved in diverse cellular functions. Many IDPs can interact with multiple binding partners, resulting in their folding into alternative ligand-specific functional structures. For such multi-structural IDPs, a key question is whether these multiple structures are fully encoded in the protein sequence, as is the case in many globular proteins. To answer this question, here we employed a combination of single-molecule and ensemble techniques to compare ligand-induced and osmolyte-forced folding of α-synuclein. Our results reveal context-dependent modulation of the protein's folding landscape, suggesting that the codes for the protein's native folds are partially encoded in its primary sequence, and are completed only upon interaction with binding partners. Our findings suggest a critical role for cellular interactions in expanding the repertoire of folds and functions available to disordered proteins.
Collapse
Affiliation(s)
- Mahdi Muhammad Moosa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 (USA)
| | | | | |
Collapse
|
33
|
Banerjee PR, Deniz AA. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 2014; 43:1172-88. [PMID: 24336839 DOI: 10.1039/c3cs60311c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-molecule (SM) fluorescence methods have been increasingly instrumental in our current understanding of a number of key aspects of protein folding and aggregation landscapes over the past decade. With the advantage of a model free approach and the power of probing multiple subpopulations and stochastic dynamics directly in a heterogeneous structural ensemble, SM methods have emerged as a principle technique for studying complex systems such as intrinsically disordered proteins (IDPs), globular proteins in the unfolded basin and during folding, and early steps of protein aggregation in amyloidogenesis. This review highlights the application of these methods in investigating the free energy landscapes, folding properties and dynamics of individual protein molecules and their complexes, with an emphasis on inherently flexible systems such as IDPs.
Collapse
Affiliation(s)
- Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | | |
Collapse
|
34
|
The crowd you're in with: Effects of different types of crowding agents on protein aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:346-57. [DOI: 10.1016/j.bbapap.2013.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 11/21/2022]
|
35
|
Jain N, Bhasne K, Hemaswasthi M, Mukhopadhyay S. Structural and dynamical insights into the membrane-bound α-synuclein. PLoS One 2013; 8:e83752. [PMID: 24376740 PMCID: PMC3869795 DOI: 10.1371/journal.pone.0083752] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/07/2013] [Indexed: 12/31/2022] Open
Abstract
Membrane-induced disorder-to-helix transition of α-synuclein, a presynaptic protein, has been implicated in a number of important neuronal functions as well as in the etiology of Parkinson’s disease. In order to obtain structural insights of membrane-bound α-synuclein at the residue-specific resolution, we took advantage of the fact that the protein is devoid of tryptophan and incorporated single tryptophan at various residue positions along the sequence. These tryptophans were used as site-specific markers to characterize the structural and dynamical aspects of α-synuclein on the negatively charged small unilamellar lipid vesicles. An array of site-specific fluorescence readouts, such as the spectral-shift, quenching efficiency and anisotropy, allowed us to discern various features of the conformational rearrangements occurring at different locations of α-synuclein on the lipid membrane. In order to define the spatial localization of various regions of the protein near the membrane surface, we utilized a unique and sensitive indicator, namely, red-edge excitation shift (REES), which originates when a fluorophore is located in a highly ordered micro-environment. The extent of REES observed at different residue positions allowed us to directly identify the residues that are localized at the membrane-water interface comprising a thin (∼ 15 Å) layer of motionally restrained water molecules and enabled us to construct a dynamic hydration map of the protein. The combination of site-specific fluorescence readouts allowed us to unravel the intriguing molecular details of α-synuclein on the lipid membrane in a direct model-free fashion. Additionally, the combination of methodologies described here are capable of distinguishing subtle but important structural alterations of α-synuclein bound to different negatively charged lipids with varied head-group chemistry. We believe that the structural modulations of α-synuclein on the membrane could potentially be related to its physiological functions as well as to the onset of Parkinson’s diseases.
Collapse
Affiliation(s)
- Neha Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Karishma Bhasne
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - M. Hemaswasthi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Samrat Mukhopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
- * E-mail:
| |
Collapse
|
36
|
Sethi A, Anunciado D, Tian J, Vu DM, Gnanakaran S. Deducing conformational variability of intrinsically disordered proteins from infrared spectroscopy with Bayesian statistics. Chem Phys 2013; 422:10.1016/j.chemphys.2013.05.005. [PMID: 24187427 PMCID: PMC3810979 DOI: 10.1016/j.chemphys.2013.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
As it remains practically impossible to generate ergodic ensembles for large intrinsically disordered proteins (IDP) with molecular dynamics (MD) simulations, it becomes critical to compare spectroscopic characteristics of the theoretically generated ensembles to corresponding measurements. We develop a Bayesian framework to infer the ensemble properties of an IDP using a combination of conformations generated by MD simulations and its measured infrared spectrum. We performed 100 different MD simulations totaling more than 10 µs to characterize the conformational ensemble of αsynuclein, a prototypical IDP, in water. These conformations are clustered based on solvent accessibility and helical content. We compute the amide-I band for these clusters and predict the thermodynamic weights of each cluster given the measured amide-I band. Bayesian analysis produces a reproducible and non-redundant set of thermodynamic weights for each cluster, which can then be used to calculate the ensemble properties. In a rigorous validation, these weights reproduce measured chemical shifts.
Collapse
Affiliation(s)
- Anurag Sethi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Divina Anunciado
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jianhui Tian
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Dung M. Vu
- Physical Chemistry and Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
37
|
Rajarathnam K, Rösgen J. Isothermal titration calorimetry of membrane proteins - progress and challenges. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:69-77. [PMID: 23747362 DOI: 10.1016/j.bbamem.2013.05.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/20/2022]
Abstract
Integral membrane proteins, including G protein-coupled receptors (GPCR) and ion channels, mediate diverse biological functions that are crucial to all aspects of life. The knowledge of the molecular mechanisms, and in particular, the thermodynamic basis of the binding interactions of the extracellular ligands and intracellular effector proteins is essential to understand the workings of these remarkable nanomachines. In this review, we describe how isothermal titration calorimetry (ITC) can be effectively used to gain valuable insights into the thermodynamic signatures (enthalpy, entropy, affinity, and stoichiometry), which would be most useful for drug discovery studies, considering that more than 30% of the current drugs target membrane proteins. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
38
|
Pivato M, De Franceschi G, Tosatto L, Frare E, Kumar D, Aioanei D, Brucale M, Tessari I, Bisaglia M, Samori B, de Laureto PP, Bubacco L. Covalent α-synuclein dimers: chemico-physical and aggregation properties. PLoS One 2012; 7:e50027. [PMID: 23272053 PMCID: PMC3521728 DOI: 10.1371/journal.pone.0050027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022] Open
Abstract
The aggregation of α-synuclein into amyloid fibrils constitutes a key step in the onset of Parkinson's disease. Amyloid fibrils of α-synuclein are the major component of Lewy bodies, histological hallmarks of the disease. Little is known about the mechanism of aggregation of α-synuclein. During this process, α-synuclein forms transient intermediates that are considered to be toxic species. The dimerization of α-synuclein could represent a rate-limiting step in the aggregation of the protein. Here, we analyzed four covalent dimers of α-synuclein, obtained by covalent link of the N-terms, C-terms, tandem cloning of two sequences and tandem juxtaposition in one protein of the 1–104 and 29–140 sequences. Their biophysical properties in solution were determined by CD, FT-IR and NMR spectroscopies. SDS-induced folding was also studied. The fibrils formation was analyzed by ThT and polarization fluorescence assays. Their morphology was investigated by TEM and AFM-based quantitative morphometric analysis. All dimers were found to be devoid of ordered secondary structure under physiological conditions and undergo α-helical transition upon interaction with SDS. All protein species are able to form amyloid-like fibrils. The reciprocal orientation of the α-synuclein monomers in the dimeric constructs affects the kinetics of the aggregation process and a scale of relative amyloidogenic propensity was determined. Structural investigations by FT IR spectroscopy, and proteolytic mapping of the fibril core did not evidence remarkable difference among the species, whereas morphological analyses showed that fibrils formed by dimers display a lower and diversified level of organization in comparison with α-synuclein fibrils. This study demonstrates that although α-synuclein dimerization does not imply the acquisition of a preferred conformation by the participating monomers, it can strongly affect the aggregation properties of the molecules. The results presented highlight a substantial role of the relative orientation of the individual monomer in the definition of the fibril higher structural levels.
Collapse
Affiliation(s)
- Micaela Pivato
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | | | - Laura Tosatto
- University of Padova, Department of Biology, Padova, Italy
| | - Erica Frare
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Dhruv Kumar
- University of Bologna, Department of Biochemistry, Bologna, Italy
| | - Daniel Aioanei
- University of Bologna, Department of Biochemistry, Bologna, Italy
| | - Marco Brucale
- CNR, Institute of Nanostructured Materials (ISMN), Montelibretti, Roma, Italy
| | | | - Marco Bisaglia
- University of Padova, Department of Biology, Padova, Italy
| | - Bruno Samori
- University of Bologna, Department of Biochemistry, Bologna, Italy
| | | | - Luigi Bubacco
- University of Padova, Department of Biology, Padova, Italy
- * E-mail: (PPDL); (LB)
| |
Collapse
|
39
|
Roodveldt C, Andersson A, De Genst EJ, Labrador-Garrido A, Buell AK, Dobson CM, Tartaglia GG, Vendruscolo M. A rationally designed six-residue swap generates comparability in the aggregation behavior of α-synuclein and β-synuclein. Biochemistry 2012; 51:8771-8. [PMID: 23003198 DOI: 10.1021/bi300558q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aggregation process of α-synuclein, a protein closely associated with Parkinson's disease, is highly sensitive to sequence variations. It is therefore of great importance to understand the factors that define the aggregation propensity of specific mutational variants as well as their toxic behavior in the cellular environment. In this context, we investigated the extent to which the aggregation behavior of α-synuclein can be altered to resemble that of β-synuclein, an aggregation-resistant homologue of α-synuclein not associated with disease, by swapping residues between the two proteins. Because of the vast number of possible swaps, we have applied a rational design procedure to single out a mutational variant, called α2β, in which two short stretches of the sequence in the NAC region have been replaced in α-synuclein from β-synuclein. We find not only that the aggregation rate of α2β is close to that of β-synuclein, being much lower than that of α-synuclein, but also that α2β effectively changes the cellular toxicity of α-synuclein to a value similar to that of β-synuclein upon exposure of SH-SY5Y cells to preformed oligomers. Remarkably, control experiments on the corresponding mutational variant of β-synuclein, called β2α, confirmed that the mutations that we have identified also shift the aggregation behavior of this protein toward that of α-synuclein. These results demonstrate that it is becoming possible to control in quantitative detail the sequence code that defines the aggregation behavior and toxicity of α-synuclein.
Collapse
Affiliation(s)
- Cintia Roodveldt
- CABIMER-Andalusian Center for Molecular Biology & Regenerative Medicine, CSIC-University of Seville-UPO-Junta de Andalucía, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Trexler AJ, Rhoades E. Function and dysfunction of α-synuclein: probing conformational changes and aggregation by single molecule fluorescence. Mol Neurobiol 2012; 47:622-31. [PMID: 22983916 DOI: 10.1007/s12035-012-8338-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/19/2012] [Indexed: 01/21/2023]
Abstract
The aggregation and deposition of the neuronal protein α-synuclein in the substantia nigra region of the brain is a key pathological feature of Parkinson's disease. α-Synuclein assembles from a monomeric state in solution, which lacks stable secondary and tertiary contacts, into highly structured fibrillar aggregates through a pathway which involves the population of multiple oligomeric species over a range of time scales. These features make α-synuclein well suited for study with single-molecule techniques, which are particularly useful for characterizing dynamic, heterogeneous samples. Here, we review the current literature featuring single-molecule fluorescence studies of α-synuclein and discuss how these studies have contributed to our understanding of both its function and its role in disease.
Collapse
Affiliation(s)
- Adam J Trexler
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, P.O. Box 208114, New Haven, CT 06511, USA
| | | |
Collapse
|
41
|
The Aggregation of Huntingtin and α-Synuclein. JOURNAL OF BIOPHYSICS 2012; 2012:606172. [PMID: 22899913 PMCID: PMC3412099 DOI: 10.1155/2012/606172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 12/23/2022]
Abstract
Huntington's and Parkinson's diseases are neurodegenerative disorders associated with unusual protein interactions. Although the origin and evolution of these diseases are completely different, characteristic deposits of protein aggregates (huntingtin and α-synuclein resp.), are a common feature in both diseases. After these observations, many studies are performed with both proteins. Some of them try to understand the nature and driving forces of the aggregation process; others try to find a correlation between the genetic and failure in protein function. Finally with the combination of both approaches, it was proposed that possible strategies deal with pathologic aggregation. Unfortunately, if protein aggregation is a cause or a consequence of the neurodegeneration observed in these pathologies, it is still debatable. This paper describes the process of aggregation of two proteins: huntingtin and α synuclein. The characteristics of the aggregation reaction of these proteins have been followed with novel methods both in vivo and in vitro; these studies include both the combination with other proteins and the presence of various chemical compounds. The ultimate goal of this study was to summarize recent findings on protein aggregation and its possible role as a therapeutic target in neurodegenerative diseases and their role in biomaterial science.
Collapse
|
42
|
Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape. Proc Natl Acad Sci U S A 2012; 109:17826-31. [PMID: 22826265 DOI: 10.1073/pnas.1201802109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.
Collapse
|
43
|
Robotta M, Hintze C, Schildknecht S, Zijlstra N, Jüngst C, Karreman C, Huber M, Leist M, Subramaniam V, Drescher M. Locally Resolved Membrane Binding Affinity of the N-Terminus of α-Synuclein. Biochemistry 2012; 51:3960-2. [DOI: 10.1021/bi300357a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marta Robotta
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Christian Hintze
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Stefan Schildknecht
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Niels Zijlstra
- Nanobiophysics,
MESA+ Institute
for Nanotechnology and MIRA Institute for Biomedical Technology and
Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
| | - Christian Jüngst
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Christiaan Karreman
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Martina Huber
- Leiden Institute of Physics, University of Leiden, P.O. Box 9504, 2300 RA Leiden,
The Netherlands
| | - Marcel Leist
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Vinod Subramaniam
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
- Nanobiophysics,
MESA+ Institute
for Nanotechnology and MIRA Institute for Biomedical Technology and
Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
| | - Malte Drescher
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
44
|
Tian J, Sethi A, Anunciado D, Vu DM, Gnanakaran S. Characterization of a disordered protein during micellation: interactions of α-synuclein with sodium dodecyl sulfate. J Phys Chem B 2012; 116:4417-24. [PMID: 22439820 PMCID: PMC3357070 DOI: 10.1021/jp210339f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To better understand the interaction of α-synuclein (αSyn) with lipid membranes, we carried out self-assembly molecular dynamics simulations of αSyn with monomeric and micellar sodium dodecyl sulfate (SDS), a widely used membrane mimic. We find that both electrostatic and hydrophobic forces contribute to the interactions of αSyn with SDS. In the presence of αSyn, our simulations suggest that SDS aggregates along the protein chain and forms small-size micelles at very early times. Aggregation is followed by formation of a collapsed protein-SDS micelle complex, which is consistent with experimental results. Finally, interaction of αSyn with preformed micelles induces alterations in the shape of the micelle, and the N-terminal helix (residues 3 through 37) tends to associate with micelles. Overall, our simulations provide an atomistic description of the early time scale αSyn-SDS interaction during the self-assembly of SDS into micelles.
Collapse
Affiliation(s)
- Jianhui Tian
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos 87545
| | - Anurag Sethi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos 87545
| | - Divina Anunciado
- Physical Chemistry & Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos 87545
| | - Dung M. Vu
- Physical Chemistry & Applied Spectroscopy, Los Alamos National Laboratory, Los Alamos 87545
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos 87545
| |
Collapse
|
45
|
Pfefferkorn CM, Jiang Z, Lee JC. Biophysics of α-synuclein membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:162-71. [PMID: 21819966 PMCID: PMC3249522 DOI: 10.1016/j.bbamem.2011.07.032] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 12/14/2022]
Abstract
Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Candace M. Pfefferkorn
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhiping Jiang
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer C. Lee
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Ferreon ACM, Deniz AA. Osmolyte-, binding-, and temperature-induced transitions of intrinsically disordered proteins. Methods Mol Biol 2012; 896:257-66. [PMID: 22821530 DOI: 10.1007/978-1-4614-3704-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Structural studies of intrinsically disordered proteins (IDPs) entail unique experimental challenges due in part to the lack of well-defined three-dimensional structures exhibited by this class of proteins. Although IDPs can be studied in their native disordered conformations using a variety of ensemble and single-molecule biophysical techniques, one particularly informative experimental strategy is to probe protein disordered states as part of folding-unfolding transitions. In this chapter, we describe solution methods for probing conformational properties of IDPs (and unfolded proteins, in general), including the use of naturally occurring osmolytes to force protein folding, the quantification of coupled folding and ligand binding of IDPs, and the structural interrogation of solvent- and/or binding-induced folded conformations by thermal perturbations.
Collapse
|
47
|
Casares-Atienza S, Weininger U, Cámara-Artigas A, Balbach J, Garcia-Mira MM. Three-state thermal unfolding of onconase. Biophys Chem 2011; 159:267-74. [PMID: 21840114 DOI: 10.1016/j.bpc.2011.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 10/18/2022]
Abstract
Onconase is a member of the ribonuclease A superfamily currently in phase IIIb clinical trials as a treatment for malign mesothelioma due to its cytotoxic activity selective against tumor-cells. In this work, we have studied the equilibrium thermal unfolding of onconase using a combination of several structural and biophysical techniques. Our results indicate that at least one significantly populated intermediate, which implies the exposure of hydrophobic surface and significant changes in the environment around Trp3, occurs during the equilibrium unfolding process of this protein. The intermediate begins to populate at about 30° below the global unfolding temperature, reaching a maximum population of nearly 60%, 10° below the global unfolding temperature.
Collapse
Affiliation(s)
- Salvador Casares-Atienza
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada. Avda. Fuentenueva s/n. 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
48
|
Haldar S, Chattopadhyay K. Effects of arginine and other solution additives on the self-association of different surfactants: an investigation at single-molecule resolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5842-5849. [PMID: 21488688 DOI: 10.1021/la200580z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fluorescence correlation spectroscopy is used to monitor the self-association of SDS and DTAB monomers at single-molecule resolution. Tetramethylrhodamine-5-maleimide (TMR) has been chosen as a probe because rhodamine dyes have been shown to bind surfactant micelles. Correlation functions obtained by FCS experiments have been fit using conventional discrete diffusional component analysis as well as the more recent maximum entropy method (MEM). Hydrodynamic radii calculated from the diffusion time values increase with surfactant concentration as the monomers self-associate. Effects of several solution additives on the self-association property of the surfactants have been studied. Urea and glycerol inhibit self-association, and arginine shows a dual nature. With SDS, arginine favors self-association, and with DTAB, it inhibits micelle formation. We propose surfactant self-association to be a "supersimplified" model of protein aggregation.
Collapse
Affiliation(s)
- Shubhasis Haldar
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
49
|
Grupi A, Haas E. Time-resolved FRET detection of subtle temperature-induced conformational biases in ensembles of α-synuclein molecules. J Mol Biol 2011; 411:234-47. [PMID: 21570984 DOI: 10.1016/j.jmb.2011.04.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/07/2011] [Accepted: 04/21/2011] [Indexed: 12/12/2022]
Abstract
The α-synuclein (αS) molecule, a polypeptide of 140 residues, is an intrinsically disordered protein that is involved in the onset of Parkinson's disease. We applied time-resolved excitation energy transfer measurements in search of specific deviations from the disordered state in segments of the αS backbone that might be involved in the initiation of aggregation. Since at higher temperatures, the αS molecule undergoes accelerated aggregation, we studied the temperature dependence of the distributions of intramolecular segmental end-to-end distances and their fast fluctuations in eight labeled chain segments of the αS molecule. Over the temperature range of 5-40 °C, no temperature-induced unfolding or folding was detected at the N-terminal domain (residues 1-66) of the αS molecule. The intramolecular diffusion coefficient of the segments' ends relative to each other increased monotonously with temperature. A common very high upper limiting value of ∼25 A²/ns was reached at 40 °C, another indication of a fully disordered state. Three exceptions were two segments with reduced values of the diffusion coefficients (the shortest segment where the excluded volume effect is dominant and the segment labeled in the NAC domain) and a nonlinear cooperative transition in the N-terminal segment. These specific subtle deviations from the common pattern of temperature dependence reflect specific structural constraints that could be critical in controlling the stability of the soluble monomer, or for its aggregation. Such very weak effects might be dominant in determination of the fate of ensembles of disordered polypeptides either to folding or to misfolding.
Collapse
Affiliation(s)
- Asaf Grupi
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat Gan, Israel
| | | |
Collapse
|
50
|
Wang GF, Li C, Pielak GJ. 19F NMR studies of α-synuclein-membrane interactions. Protein Sci 2011; 19:1686-91. [PMID: 20629174 DOI: 10.1002/pro.449] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
α-Synuclein function is thought to be related to its membrane binding ability. Solution NMR studies have identified several α-synuclein-membrane interaction modes in small unilamellar vesicles (SUVs), but how membrane properties affect binding remains unclear. Here, we use (19)F NMR to study α-synuclein-membrane interactions by using 3-fluoro-L-tyrosine (3FY) and trifluoromethyl-L-phenylalanine (tfmF) labeled proteins. Our results indicate that the affinity is affected by both the head group and the acyl chain of the SUV. Negatively charged head groups have higher affinity, but different head groups with the same charge also affect binding. We show that the saturation of the acyl chain has a dramatic effect on the α-synuclein-membrane interactions by studying lipids with the same head group but different chains. Taken together, the data show that α-synuclein's N-terminal region is the most important determinate of SUV binding, but its C-terminal region also modulates the interactions. Our data support the existence of multiple tight phospholipid-binding modes, a result incompatible with the model that α-synuclein lies solely on the membrane surface.
Collapse
Affiliation(s)
- Gui-Fang Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|