1
|
Chen Y, Topp EM. Photolytic Labeling and Its Applications in Protein Drug Discovery and Development. J Pharm Sci 2018; 108:791-797. [PMID: 30339867 DOI: 10.1016/j.xphs.2018.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/19/2022]
Abstract
In this mini-review, the major types of photolytic labeling reagents are presented together with their reaction mechanisms. The applications of photolytic labeling in protein drug discovery and development are then discussed; these have expanded from studies of protein-protein interactions in vivo to protein-matrix interactions in lyophilized solids. The mini-review concludes with recommendations for further development of the approach, which include the need for new and more chemically diverse photo-reactive reagents and better understanding of the mechanisms of photolytic labeling reactions in various media.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
| | - Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907.
| |
Collapse
|
2
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
3
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|
4
|
Wright JW, Kawas LH, Harding JW. A Role for the Brain RAS in Alzheimer's and Parkinson's Diseases. Front Endocrinol (Lausanne) 2013; 4:158. [PMID: 24298267 PMCID: PMC3829467 DOI: 10.3389/fendo.2013.00158] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022] Open
Abstract
The brain renin-angiotensin system (RAS) has available the necessary functional components to produce the active ligands angiotensins II (AngII), angiotensin III, angiotensins (IV), angiotensin (1-7), and angiotensin (3-7). These ligands interact with several receptor proteins including AT1, AT2, AT4, and Mas distributed within the central and peripheral nervous systems as well as local RASs in several organs. This review first describes the enzymatic pathways in place to synthesize these ligands and the binding characteristics of these angiotensin receptor subtypes. We next discuss current hypotheses to explain the disorders of Alzheimer's disease (AD) and Parkinson's disease (PD), as well as research efforts focused on the use of angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), in their treatment. ACE inhibitors and ARBs are showing promise in the treatment of several neurodegenerative pathologies; however, there is a need for the development of analogs capable of penetrating the blood-brain barrier and acting as agonists or antagonists at these receptor sites. AngII and AngIV have been shown to play opposing roles regarding memory acquisition and consolidation in animal models. We discuss the development of efficacious AngIV analogs in the treatment of animal models of AD and PD. These AngIV analogs act via the AT4 receptor subtype which may coincide with the hepatocyte growth factor/c-Met receptor system. Finally, future research directions are described concerning new approaches to the treatment of these two neurological diseases.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| | - Leen H. Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| | - Joseph W. Harding
- Departments of Psychology, Integrative Physiology and Neuroscience, Program in Biotechnology, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Focus on Brain Angiotensin III and Aminopeptidase A in the Control of Hypertension. Int J Hypertens 2012; 2012:124758. [PMID: 22792446 PMCID: PMC3389720 DOI: 10.1155/2012/124758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/26/2012] [Indexed: 01/30/2023] Open
Abstract
The classic renin-angiotensin system (RAS) was initially described as a hormone system designed to mediate cardiovascular and body water regulation. The discovery of a brain RAS composed of the necessary functional components (angiotensinogen, peptidases, angiotensins, and specific receptor proteins) independent of the peripheral system significantly expanded the possible physiological and pharmacological functions of this system. This paper first describes the enzymatic pathways resulting in active angiotensin ligands and their interaction with AT1, AT2, and mas receptor subtypes. Recent evidence points to important contributions by brain angiotensin III (AngIII) and aminopeptidases A (APA) and N (APN) in sustaining hypertension. Next, we discuss current approaches to the treatment of hypertension followed by novel strategies that focus on limiting the binding of AngII and AngIII to the AT1 receptor subtype by influencing the activity of APA and APN. We conclude with thoughts concerning future treatment approaches to controlling hypertension and hypotension.
Collapse
|
6
|
Wright JW, Harding JW. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 2012; 465:133-51. [DOI: 10.1007/s00424-012-1102-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
|
7
|
Wright JW, Harding JW. Brain renin-angiotensin—A new look at an old system. Prog Neurobiol 2011; 95:49-67. [DOI: 10.1016/j.pneurobio.2011.07.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 06/27/2011] [Accepted: 07/03/2011] [Indexed: 12/15/2022]
|
8
|
Peer WA. The role of multifunctional M1 metallopeptidases in cell cycle progression. ANNALS OF BOTANY 2011; 107:1171-81. [PMID: 21258033 PMCID: PMC3091800 DOI: 10.1093/aob/mcq265] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Metallopeptidases of the M1 family are found in all phyla (except viruses) and are important in the cell cycle and normal growth and development. M1s often have spatiotemporal expression patterns which allow for strict regulation of activity. Mutations in the genes encoding M1s result in disease and are often lethal. This family of zinc metallopeptidases all share the catalytic region containing a signature amino acid exopeptidase (GXMXN) and a zinc binding (HEXXH[18X]E) motif. In addition, M1 aminopeptidases often also contain additional membrane association and/or protein interaction motifs. These protein interaction domains may function independently of M1 enzymatic activity and can contribute to multifunctionality of the proteins. SCOPE A brief review of M1 metalloproteases in plants and animals and their roles in the cell cycle is presented. In animals, human puromycin-sensitive aminopeptidase (PSA) acts during mitosis and perhaps meiosis, while the insect homologue puromycin-sensitive aminopeptidase (PAM-1) is required for meiotic and mitotic exit; the remaining human M1 family members appear to play a direct or indirect role in mitosis/cell proliferation. In plants, meiotic prophase aminopeptidase 1 (MPA1) is essential for the first steps in meiosis, and aminopeptidase M1 (APM1) appears to be important in mitosis and cell division. CONCLUSIONS M1 metalloprotease activity in the cell cycle is conserved across phyla. The activities of the multifunctional M1s, processing small peptides and peptide hormones and contributing to protein trafficking and signal transduction processes, either directly or indirectly impact on the cell cycle. Identification of peptide substrates and interacting protein partners is required to understand M1 function in fertility and normal growth and development in plants.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907 USA.
| |
Collapse
|
9
|
Effects of des-aspartate-angiotensin I on myocardial ischemia-reperfusion injury in rats. Eur J Pharmacol 2011; 658:193-9. [PMID: 21371467 DOI: 10.1016/j.ejphar.2011.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 11/18/2022]
|
10
|
Wright JW, Harding JW. The brain angiotensin IV/AT4receptor system as a new target for the treatment of Alzheimer's disease. Drug Dev Res 2009. [DOI: 10.1002/ddr.20328] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Wright JW, Harding JW. The brain RAS and Alzheimer's disease. Exp Neurol 2009; 223:326-33. [PMID: 19782074 DOI: 10.1016/j.expneurol.2009.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) has become a major world-wide health problem with ever rising costs associated with the treatment and care of afflicted individuals. As life expectancy has increased the occurrence of dementia has also increased. Hypertension during middle adulthood is correlated with a significantly elevated risk of cognitive impairment later in life. Treatment with antihypertensive drugs, particularly angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), has been reported to reduce the likelihood and slow the progression of AD; however, the use of ACE inhibitors may be accompanied by an increase in amyloid beta protein(1-42) accumulation. This review summarizes available information regarding the brain renin-angiotensin system (RAS), and specifically the efficacy of ACE inhibitors as anti-dementia agents, and considers the recently discovered AT(4) receptor and associated agonist drugs as potential new therapeutic targets to treat memory impairments associated with AD. We conclude with a description of recent efforts by members of our laboratory to develop blood-brain barrier penetrant angiotensin IV analogue drugs that facilitate cognition in animal models of AD. These efforts have resulted in a small molecule with desirable hydrophobicity characteristics that shows promise with respect to memory facilitation when peripherally administered.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Veterinary and Comparative, Anatomy, Pharmacology and Physiology, and Programs in Neuroscience and Biotechnology, Washington State University, Pullman, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
12
|
De Bundel D, Smolders I, Vanderheyden P, Michotte Y. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 2009; 14:315-39. [PMID: 19040556 DOI: 10.1111/j.1755-5949.2008.00057.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The central angiotensin system plays a crucial role in cardiovascular regulation. More recently, angiotensin peptides have been implicated in stress, anxiety, depression, cognition, and epilepsy. Angiotensin II (Ang II) exerts its actions through AT(1) and AT(2) receptors, while most actions of its metabolite Ang IV were believed to be independent of AT(1) or AT(2) receptor activation. A specific binding site with high affinity for Ang IV was discovered and denominated "AT(4) receptor". The beneficiary effects of AT(4) ligands in animal models for cognitive impairment and epileptic seizures initiated the search for their mechanism of action. This proved to be a challenging task, and after 20 years of research, the nature of the "AT(4) receptor" remains controversial. Insulin-regulated aminopeptidase (IRAP) was first identified as the high-affinity binding site for AT(4) ligands. Recently, the hepatocyte growth factor receptor c-MET was also proposed as a receptor for AT(4) ligands. The present review focuses on the effects of Ang II and Ang IV on synaptic transmission and plasticity, learning, memory, and epileptic seizure activity. Possible interactions of Ang IV with the classical AT(1) and AT(2) receptor subtypes are evaluated, and other potential mechanisms by which AT(4) ligands may exert their effects are discussed. Identification of these mechanisms may provide a valuable target in the development in novel drugs for the treatment of cognitive disorders and epilepsy.
Collapse
Affiliation(s)
- Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
13
|
Wright JW, Yamamoto BJ, Harding JW. Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets. Prog Neurobiol 2008; 84:157-81. [PMID: 18160199 PMCID: PMC2276843 DOI: 10.1016/j.pneurobio.2007.10.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/17/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
The renin-angiotensin system (RAS) mediates several classic physiologies including body water and electrolyte homeostasis, blood pressure, cyclicity of reproductive hormones and sexual behaviors, and the regulation of pituitary gland hormones. These functions appear to be mediated by the angiotensin II (AngII)/AT(1) receptor subtype system. More recently, the angiotensin IV (AngIV)/AT(4) receptor subtype system has been implicated in cognitive processing, cerebroprotection, local blood flow, stress, anxiety and depression. There is accumulating evidence to suggest an inhibitory influence by AngII acting at the AT(1) subtype, and a facilitory role by AngIV acting at the AT(4) subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning, and memory. This review initially describes the biochemical pathways that permit synthesis and degradation of active angiotensin peptides and three receptor subtypes (AT(1), AT(2) and AT(4)) thus far characterized. There is vigorous debate concerning the identity of the most recently discovered receptor subtype, AT(4). Descriptions of classic and novel physiologies and behaviors controlled by the RAS are presented. This review concludes with a consideration of the emerging therapeutic applications suggested by these newly discovered functions of the RAS.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | | | |
Collapse
|
14
|
Involvement of insulin-regulated aminopeptidase in the effects of the renin–angiotensin fragment angiotensin IV: a review. Heart Fail Rev 2007; 13:321-37. [DOI: 10.1007/s10741-007-9062-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
15
|
Munzenmaier DH, Greene AS. Chronic angiotensin II AT1 receptor blockade increases cerebral cortical microvessel density. Am J Physiol Heart Circ Physiol 2006; 290:H512-6. [PMID: 16199473 DOI: 10.1152/ajpheart.01136.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II is known to stimulate angiogenesis in the peripheral circulation through activation of the angiotensin II type 1 (AT1) receptor. This study investigated the effect of angiotensin receptor blockade on cerebral cortical microvessel density. Rats (6–7 wk old, n = 5–17) were instrumented with femoral arterial and venous indwelling catheters for arterial blood pressure measurement and drug administration. Rats were treated for 3 or 14 days with the AT1 receptor blocker losartan (50 mg/day in drinking water) or vehicle. Brains were sectioned and immunostained for CD31, and microvessel density was measured. Treatment with losartan for 3 or 14 days resulted in a slight decrease in mean arterial blood pressure (3 days, 92 ± 1 mmHg; and 14 days, 99 ± 2 mmHg) compared with vehicle (109 ± 3 and 125 ± 4 mmHg, respectively). A furosemide + captopril 14-day treatment group was added to control for the blood pressure change (96 ± 3 mmHg). Microvessel density increased in groups treated with losartan for 14 days (429 ± 13 vessels/mm2) compared with vehicle (383 ± 11 vessels/mm2) but did not change with furosemide + captopril (364 ± 7 vessels/mm2). Thus AT1 receptor blockade for 14 days resulted in increased cerebral microvessel density in a blood pressure-independent manner.
Collapse
Affiliation(s)
- Diane H Munzenmaier
- Dept. of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | |
Collapse
|
16
|
Faure S, Javellaud J, Achard JM, Oudart N. Vasoconstrictive effect of angiotensin IV in isolated rat basilar artery independent of AT1 and AT2 receptors. J Vasc Res 2005; 43:19-26. [PMID: 16254439 DOI: 10.1159/000089186] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 08/25/2005] [Indexed: 11/19/2022] Open
Abstract
The effect of angiotensin IV (AngIV) was studied in freshly isolated rat basilar arteries (BAs) perfused at a constant rate. AngIV had no effect on basal BA perfusion pressure, but induced a marked concentration-dependent contraction in vessels precontracted by a 50-mM KCl solution (EC50=44.5+/-16 nM). This contraction was unaffected by the angiotensin AT1 receptor antagonist candesartan or the angiotensin AT2 receptor blocker PD123319, but was markedly inhibited by two different specific AT4 receptor antagonists, Nle1-Leu3 yen(CH2-NH2)3-4-AngIV and divalinal-AngIV. Removal of the endothelium abolished the contractile response to AngIV, and pretreatment of endothelium-intact arteries with the endothelin ETA/ETB receptors inhibitor PD142893 blocked the AngIV-induced contraction to the same extent. In BA pretreated with endothelin-1 (ET-1; 0.01 microM), AngIV-induced a concentration-dependent contraction, shifted to the left, compared with that observed with KCl precontraction, unaffected by candesartan but completely abolished by Nle1-Leu3 yen(CH2-NH2)3-4-AngIV. The contractile effect was not affected by endothelium removal in the presence of exogenous ET-1, in contrast to KCl pretreated BA, suggesting that endothelium was mandatory to unmask the effect of AngIV as a source of endogenous ET-1 release. Taken together, these results indicate that low (nanomolar) concentrations of AngIV exert a constrictive effect mediated by its specific binding site AT4 in the rat BA, and that this vasoactive effect is indirect and involves endogenous endothelin(s).
Collapse
Affiliation(s)
- Sebastien Faure
- Physiologie et Pharmacologie Vasculaire et Rénale, Facultés de Médecine et de Pharmacie, Université de Limoges, Limoges, France
| | | | | | | |
Collapse
|
17
|
Appel GB, Appel AS. Angiotensin II receptor antagonists: role in hypertension, cardiovascular disease, and renoprotection. Prog Cardiovasc Dis 2005; 47:105-15. [PMID: 15586351 DOI: 10.1016/j.pcad.2004.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | |
Collapse
|
18
|
Chua HL, Jois S, Sim MK, Go ML. Transport of angiotensin peptides across the Caco-2 monolayer. Peptides 2004; 25:1327-38. [PMID: 15350701 DOI: 10.1016/j.peptides.2004.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 06/09/2004] [Accepted: 06/09/2004] [Indexed: 11/25/2022]
Abstract
The bidirectional transport of the angiotensin peptides--des-Asp-angiotensin I (DAAI), angiotensins III and IV--were studied using human intestinal Caco-2 monolayers. The peptides had low permeability rates but were relatively stable to enzymatic hydrolysis. DAAI was transported by diffusion while angiotensins III and IV were transported by an energy requiring, carrier-mediated process. The physicochemical properties and solution conformations of the peptides were investigated in an attempt to establish structure-transport correlations. Among the three peptides, DAAI was the most hydrophobic, had the highest hydrogen bonding potential and was the only peptide to have a random solution conformation, as determined from circular dichroism, two-dimensional (1)H NMR and molecular modelling. On the other hand, the more hydrophilic angiotensin IV had less hydrogen bonding potential and a solution conformation characterized by a beta turn. These factors may influence the transport characteristics of DAAI and angiotensin IV.
Collapse
Affiliation(s)
- Hui-Lee Chua
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
19
|
Wen Q, Sim MK, Tang FR. Reduction of infarct size by orally administered des-aspartate-angiotensin I in the ischemic reperfused rat heart. ACTA ACUST UNITED AC 2004; 120:149-53. [PMID: 15177933 DOI: 10.1016/j.regpep.2004.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/02/2004] [Accepted: 03/09/2004] [Indexed: 11/30/2022]
Abstract
Occlusion of the left main coronary artery for 45 min caused sizable infarct scarring of the left ventricular wall in the rat heart at 14 days post-reperfusion. Daily oral administration of des-aspartate-angiotensin I (DAA-I) for 14 days attenuated the area of the infarct scar and transmurality. The attenuation was dose-dependent and biphasic; maximum effective dose was 1524 nmol/kg, and doses higher than this were progressively inactive. The exact mechanism of the biphasic attenuation is not known, and receptor down-regulation by internalization, which has been implicated in a similar biphasic nature for the anticardiac hypertrophic action of DAA-I, could be a likely cause. Indomethacin (101 micromol/kg, i.p.), administered sequentially after the daily oral dose of DAA-I (1524 nmol/kg), completely inhibited the attenuation at 14 days post-reperfusion, indicating that prostaglandins may be involved in transducing the attenuation. The present findings support earlier indications that DAA-I exerts protective actions in cardiovascular pathologies in which angiotensin II is implicated. It is suggested that DAA-I exerts the cardioprotective action by acting on the same indomethacin-sensitive angiotensin AT1 receptor. Although similar array of protective actions are also seen with another endogenous angiotensin, angiotensin-(1-7), the present findings demonstrate for the first time the ability of an endogenous angiotensin to reduce the infarct size of an ischemic-reperfusion injured rat heart.
Collapse
Affiliation(s)
- Qiang Wen
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, Building MD2, 18 Medical Drive, Singapore 117597, Singapore
| | | | | |
Collapse
|
20
|
Wright JW, Harding JW. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 2004; 72:263-93. [PMID: 15142685 DOI: 10.1016/j.pneurobio.2004.03.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 03/18/2004] [Indexed: 01/25/2023]
Abstract
The brain renin-angiotensin system (RAS) has long been known to regulate several classic physiologies including blood pressure, sodium and water balance, cyclicity of reproductive hormones and sexual behaviors, and pituitary gland hormones. These physiologies are thought to be under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AT2 receptor subtype is expressed during fetal development and is less abundant in the adult. This receptor appears to oppose growth responses facilitated by the AT1 receptor, as well as growth factor receptors. Recent evidence points to an important contribution by the brain RAS to non-classic physiologies mediated by the newly discovered angiotensin IV (AngIV)/AT4 receptor subtype system. These physiologies include the regulation of blood flow, modulation of exploratory behavior, and a facilitory role in learning and memory acquisition. This system appears to interact with brain matrix metalloproteinases in order to modify extracellular matrix molecules thus permitting the synaptic remodeling critical to the neural plasticity presumed to underlie memory consolidation, reconsolidation, and retrieval. There is support for an inhibitory influence by AngII activation of the AT1 subtype, and a facilitory role by AngIV activation of the AT4 subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning. The discovery of the AT4 receptor subtype, and its facilitory influence upon learning and memory, suggest an important role for the brain RAS in normal cognitive processing and perhaps in the treatment of dysfunctional memory disease states.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
21
|
Caron AZ, Arguin G, Guillemette G. Angiotensin IV interacts with a juxtamembrane site on AT(4)/IRAP suggesting an allosteric mechanism of enzyme modulation. REGULATORY PEPTIDES 2003; 113:9-15. [PMID: 12686456 DOI: 10.1016/s0167-0115(02)00294-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Angiotensin IV (Ang IV), the 3-8 fragment of angiotensin II, binds to a specific receptor (AT(4)) that has recently been identified as the transmembrane aminopeptidase insulin-regulated aminopeptidase (IRAP) based on the fact that the two proteins share several pharmacological and biochemical properties. Our binding studies indicated that bovine heart expresses relatively large amounts (1.2 pmol/mg protein) of high-affinity binding sites for Ang IV (K(d)=1.8 nM). A photoaffinity-labeling approach combined with mild trypsin digestion revealed that the AT(4) receptor of bovine heart is a single transmembrane domain protein (153 kDa) with a large extracellular fragment (143 kDa). After alkaline denaturation of the AT(4) receptor, trypsin digestion produced two small membrane-associated fragments (16.9 and 6.6 kDa). These results suggest that Ang IV interacts with a juxtamembrane domain of AT(4) receptor. The location of the juxtamembrane site of contact was different from that of the active site of IRAP, suggesting that Ang IV uses an allosteric mechanism to modulate the activity of the AT(4)/IRAP.
Collapse
Affiliation(s)
- Annabelle Z Caron
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | |
Collapse
|
22
|
Vauquelin G, Michotte Y, Smolders I, Sarre S, Ebinger G, Dupont A, Vanderheyden P. Cellular targets for angiotensin II fragments: pharmacological and molecular evidence. J Renin Angiotensin Aldosterone Syst 2002; 3:195-204. [PMID: 12584663 DOI: 10.3317/jraas.2002.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although angiotensin II has long been considered to represent the end product of the renin-angiotensin system (RAS), there is accumulating evidence that it encompasses additional effector peptides with diverse functions. In this respect, angiotensin IV (Ang IV) formed by deletion of the two N terminal amino acids, has sparked great interest because of its wide range of physiological effects. Among those, its facilitatory role in memory acquisition and retrieval is of special therapeutic relevance. High affinity binding sites for this peptide have been denoted as AT(4)- receptors and, very recently, they have been proposed to correspond to the membrane-associated OTase/ IRAP aminopeptidase. This offers new opportunities for examining physiological roles of Ang IV in the fields of cognition, cardiovascular and renal metabolism and pathophysiological conditions like diabetes and hypertension. Still new recognition sites may be unveiled for this and other angiotensin fragments. Recognition sites for Ang-(1-7) (deletion of the C terminal amino acid) are still elusive and some of the actions of angiotensin III (deletion of the N terminal amino acid) in the CNS are hard to explain on the basis of their interaction with AT(1)-receptors only. A more thorough cross-talk between in vitro investigations on native and transfected cell lines and in vivo investigations on healthy, diseased and transgenic animals may prove to be essential to further unravel the molecular basis of the physiological actions of these small endogenous angiotensin fragments.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel (VUB), Sint-Genesius, Rode, B-1640, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Wright JW, Reichert JR, Davis CJ, Harding JW. Neural plasticity and the brain renin-angiotensin system. Neurosci Biobehav Rev 2002; 26:529-52. [PMID: 12367589 DOI: 10.1016/s0149-7634(02)00019-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The brain renin-angiotensin system mediates several classic physiologies including body water balance, maintenance of blood pressure, cyclicity of reproductive hormones and sexual behaviors, and regulation of pituitary gland hormones. In addition, angiotensin peptides have been implicated in neural plasticity and memory. The present review initially describes the extracellular matrix (ECM) and the roles of cell adhesion molecules (CAMs), matrix metalloproteinases, and tissue inhibitors of metalloproteinases in the maintenance and degradation of the ECM. It is the ECM that appears to permit synaptic remodeling and thus is critical to the plasticity that is presumed to underlie mechanisms of memory consolidation and retrieval. The interrelationship among long-term potentiation (LTP), CAMs, and synaptic strengthening is described, followed by the influence of angiotensins on LTP. There is strong support for an inhibitory influence by angiotensin II (AngII) and a facilitory role by angiotensin IV (AngIV), on LTP. Next, the influences of AngII and IV on associative and spatial memories are summarized. Finally, the impact of sleep deprivation on matrix metalloproteinases and memory function is described. Recent findings indicate that sleep deprivation-induced memory impairment is accompanied by a lack of appropriate changes in matrix metalloproteinases within the hippocampus and neocortex as compared with non-sleep deprived animals. These findings generally support an important contribution by angiotensin peptides to neural plasticity and memory consolidation.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology and Program in Neuroscience, Washington State University, PO Box 644820, Pullman, WA 99164-4820, USA.
| | | | | | | |
Collapse
|
24
|
Mustafa T, Lee JH, Chai SY, Albiston AL, McDowall SG, Mendelsohn FA. Bioactive angiotensin peptides: focus on angiotensin IV. J Renin Angiotensin Aldosterone Syst 2001; 2:205-10. [PMID: 11881124 DOI: 10.3317/jraas.2001.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- T Mustafa
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Chen JK, Zimpelmann J, Harris RC, Burns KD. Angiotensin IV induces tyrosine phosphorylation of focal adhesion kinase and paxillin in proximal tubule cells. Am J Physiol Renal Physiol 2001; 280:F980-8. [PMID: 11352837 DOI: 10.1152/ajprenal.2001.280.6.f980] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin IV (ANG IV), the COOH-terminal hexapeptide fragment of angiotensin II (ANG II), binds to specific sites in the kidney, distinct from type 1 (AT(1)) and type 2 (AT(2)) receptors and designated type 4 (AT(4)) receptors. We determined signaling pathways for ANG IV in a proximal tubular cell line, LLC-PK(1)/Cl(4). In these cells, we found no specific binding of [(125)I]-ANG II. In contrast, ANG IV dose dependently competed for [(125)I]-labeled ANG IV binding, with no displacement by either ANG II, the AT(1) receptor antagonist losartan, or the AT(2) antagonist PD-123319. Saturation binding indicated the presence of AT(4) receptors of high affinity [dissociation constant (K(d)) = 1.4 nM]. ANG IV did not affect cAMP or cGMP production and did not increase cytosolic calcium concentration in these cells. In contrast, immunoprecipitation and immunoblotting studies revealed that ANG IV caused dose-dependent tyrosine phosphorylation of p125-focal adhesion kinase (p125-FAK) and p68-paxillin within 2 min, with maximal stimulation at 30 min. ANG IV-stimulated tyrosine phosphorylation of p125-FAK and paxillin was not affected by pretreatment with either losartan or PD-123319, and ANG II (10(-7) M) did not induce protein tyrosine phosphorylation. Our results indicate that LLC-PK(1)/Cl(4) cells express ANG IV receptors, which we demonstrate for the first time are linked to tyrosine phosphorylation of focal adhesion-associated proteins. This suggests that ANG IV, a product of ANG II metabolism, may regulate function of the focal adhesion complex in proximal tubule cells.
Collapse
Affiliation(s)
- J K Chen
- Division of Nephrology, Department of Medicine, Kidney Research Center, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | |
Collapse
|
26
|
Mustafa T, Chai SY, Mendelsohn FA, Moeller I, Albiston AL. Characterization of the AT(4) receptor in a human neuroblastoma cell line (SK-N-MC). J Neurochem 2001; 76:1679-87. [PMID: 11259486 DOI: 10.1046/j.1471-4159.2001.00166.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Angiotensin IV (Ang IV), the 3-8 fragment of angiotensin II (Ang II), binds to a distinct receptor designated the AT(4) receptor. The peptide elicits a range of vascular and central actions including facilitation of memory retention and retrieval in several learning paradigms. The aim of this study was to characterize the AT(4) receptor in a human cell line of neural origin. Receptor binding studies indicate that the human neuroblastoma cell line SK-N-MC cells express a high-affinity Ang IV binding site with a pharmacological profile similar to the AT(4) receptor: (125)I]-Ang IV and (125)I]-Nle(1)-Ang IV bind specifically to the SK-N-MC cell membranes (K(d) = 0.6 and 0.1 nM) in a saturable manner (B(max) = 1.2 pmol/mg of protein). AT(4) receptor ligands, Nle(1)-Ang IV, Ang IV and LVV-haemorphin 7 (LVV-H7), compete for the binding of [(125)I]-Ang IV or [(125)I]-Nle(1)-Ang IV to the SK-N-MC cell membranes with rank order potencies of Nle(1)-Ang IV > Ang IV > LVV-H7 with IC(50) values of 1.4, 8.7 and 59 nM ([(125)I]-Ang IV) and 1.8, 20 and 168 nM ([(125)I]-Nle(1)-Ang IV), respectively. The binding of [(125)I]-Ang IV or [(125)I]-Nle(1)-Ang IV to SK-N-MC cell membranes was not affected by the presence of GTP gamma S. Both Ang IV and LVV-H7 stimulated DNA synthesis in this cell line up to 72 and 81% above control levels, respectively. The AT(4) receptor in the SK-N-MC cells is a 180-kDa glycoprotein; under non-reducing conditions a 250-kDa band was also observed. In summary, the human neuroblastoma cell line, SK-N-MC, expresses functional AT(4) receptors that are responsive to Ang IV and LVV-H7, as indicated by an increase in DNA synthesis. This is the first human cell line of neural origin shown to express the AT(4) receptor.
Collapse
Affiliation(s)
- T Mustafa
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Australia
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Han Y, Bisello A, Nakamoto C, Rosenblatt M, Chorev M. 3-(3'-fluorenyl-9'-oxo)-L-alanine: a novel photoreactive conformationally constrained amino acid. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:230-9. [PMID: 10727105 DOI: 10.1034/j.1399-3011.2000.00175.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Photoaffinity scanning of the ligand-G-protein-coupled receptor bimolecular interface is a direct approach to mapping the interactions of ligands and receptors. Such studies are an important first step toward generating an experimentally based model of the ligand-receptor complex. The synthesis and spectroscopic characterization of Boc-3-(3'-fluorenyl-9'-oxo)-L-alanine and 9-fluorenone-3-carboxylic acid are described. Incorporation of these two photophores into the parathyroid hormone (PTH) molecule yields potent agonists. These photoreactive analogs cross-link specifically with the recombinant human PTH1 receptor stably expressed in human embryonic kidney cells. The availability of the 9-fluorenone (a conformationally constrained derivative of benzophenone, the abundantly used photophore) for photoaffinity scanning provides an important tool to probe the effect of conformational flexibility of the photophore on the selection of the cross-linking site in the macromolecular acceptor.
Collapse
Affiliation(s)
- Y Han
- Division of Bone and Mineral Metabolism, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
29
|
Bitan G, Scheibler L, Teng H, Rosenblatt M, Chorev M. Design and evaluation of benzophenone-containing conformationally constrained ligands as tools for photoaffinity scanning of the integrin alphaVbeta3-ligand bimolecular interaction. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:181-94. [PMID: 10727100 DOI: 10.1034/j.1399-3011.2000.00155.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Integrins are cell-surface adhesion molecules involved in mediating cell-extracellular matrix interactions. High-resolution structural data are not available for these heterodimeric receptors. In order to generate tools for photoaffinity scanning of the RGD-binding site of human integrin alphaVbeta3. new conformationally constrained ligands were designed. The ligands were based on five different cyclic peptidic or peptidomimetic scaffolds with high affinity for alphaVbeta3. A single photoreactive group (a benzophenone moiety) was introduced at different positions relative to the RGD triad. In addition, an 125I or a biotin group was introduced as a reporting tag. Twenty-four cyclic ligands were prepared and their binding affinity for alphaVbeta3 was determined. In most cases, the modifications resulted in a 5- to 500-fold decrease in affinity relative to the unmodified scaffold. Analogs representing three of the five families were screened for their cross-linking efficiency. Ligands with submicromolar affinities cross-linked efficiently and specifically to the integrin receptor, whereas ligands with weaker affinities gave specific cross-linking, but with lower efficiency. Almost all of the screened ligands cross-linked predominantly to the beta3 subunit.
Collapse
Affiliation(s)
- G Bitan
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Photoactivatable ligands are important tools used in drug discovery and drug development. These ligands enable researchers to identify the targets of drugs, to determine the affinity and selectivity of the drug-target interaction, and to identify the binding site on the target. Examples are presented from three fundamentally different approaches: (1) photoaffinity labeling of target macromolecules; (2) photoactivation and release of 'caged ligands'; and (3) photoimmobilization of ligands onto surfaces.
Collapse
Affiliation(s)
- G Dormán
- ComGenex, Budapest, 1027 Bem rkp. 33-34, Hungary.
| | | |
Collapse
|
31
|
Abstract
Recent studies have characterized a specific binding site for the C-terminal 3-8 fragment of angiotensin II (Ang IV). In the present study we looked at the internalization process of this receptor on bovine aortic endothelial cells (BAEC). Under normal culture conditions, BAEC efficiently internalized (125)I-Ang IV as assessed by acid-resistant binding. Internalization of (125)I-Ang IV was considerably decreased after pretreatment of cells with hyperosmolar sucrose or after pretreatment of BAEC with inhibitors of endosomal acidification such as monensin or NH(4)Cl. About 50% of internalized (125)I-Ang IV recycled back to the extracellular medium during a 2 h incubation at 37 degrees C. (125)I-Ang IV remained mostly intact during the whole process of internalization and recycling as assessed by thin layer chromatography. As expected, internalization of (125)I-Ang IV was completely abolished by divalinal-Ang IV, a known AT(4) receptor antagonist. Interestingly, (125)I-divalinal-Ang IV did not internalize into BAEC. These results suggest that AT(4) receptor undergoes an agonist-dependent internalization and recycling process commonly observed upon activation of functional receptors.
Collapse
Affiliation(s)
- S I Briand
- Department of Pharmacology, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
32
|
Drozdz R, Hintermann E, Tanner H, Zumsteg U, Eberle AN. (D-(p-benzoylphenylalanine)13, tyrosine19)-melanin-concentrating hormone, a potent analogue for MCH receptor crosslinking. J Pept Sci 1999; 5:234-42. [PMID: 10363906 DOI: 10.1002/(sici)1099-1387(199905)5:5<234::aid-psc202>3.0.co;2-j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A photoreactive analogue of human melanin-concentrating hormone was designed, [D-Bpa13,Tyr19-MCH, containing the D-enantiomer of photolabile p-benzoylphenylalanine (Bpa) in position 13 and tyrosine for radioiodination in position 19. The linear peptide was synthesized by the continuous-flow solid-phase methodology using Fmoc-strategy and PEG-PS resins, purified to homogeneity and cyclized by iodine oxidation. Radioiodination of [D-Bpa13,Tyr19]-MCH at its Tyr19 residue was carried out enzymatically using solid-phase bound glucose oxidase/lactoperoxidase, followed by purification on a reversed-phase mini-column and HPLC. Saturation binding analysis of [125I]-[D-Bpa13,Tyr19]-MCH with G4F-7 mouse melanoma cells gave a K(D) of 2.2+/-0.2 x 10(-10) mol/l and a B(max) of 1047+/-50 receptors/cell. Competition binding analysis showed that MCH and rANF(1-28) displace [125I]-[D-Bpa13,Tyr19]-MCH from the MCH binding sites on G4F-7 cells whereas alpha-MSH has no effect. Receptor crosslinking by UV-irradiation of G4F-7 cells in the presence of [125I]-[D-Bpa13,Tyr19]-MCH followed by SDS-polyacrylamide gel electrophoresis and autoradiography yielded a band of 45-50 kDa. Identical crosslinked bands were also detected in B16-F1 and G4F mouse melanoma cells, in RE and D10 human melanoma cells as well as in COS-7 cells. Weak staining was found in rat PC12 phaeochromocytoma and Chinese hamster ovary cells. No crosslinking was detected in human MP fibroblasts. These data demonstrate that [125I]-[D-Bpa13,Tyr19]-MCH is a versatile photocrosslinking analogue of MCH suitable to identify MCH receptors in different cells and tissues; the MCH receptor in these cells appears to have the size of a G protein-coupled receptor, most likely with a varying degree of glycosylation.
Collapse
Affiliation(s)
- R Drozdz
- Department of Research (ZLF), University Hospital and University Children's Hospital, Basel, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Vinson GP, Saridogan E, Puddefoot JR, O'Mahony OA, Mahmood T, Djahanbakhch O. Renin-angiotensin systems and reproduction. Gynecol Endocrinol 1999; 13:56-70. [PMID: 10368799 DOI: 10.1080/09513599909167532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- G P Vinson
- Division of Biomedical Sciences, St Bartholomew's, London, UK
| | | | | | | | | | | |
Collapse
|