1
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
3
|
Takata T, Haase-Pettingell C, King J. The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly. BACTERIOPHAGE 2012; 2:36-49. [PMID: 22666655 PMCID: PMC3357383 DOI: 10.4161/bact.19775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elongated trimeric adhesins are a distinct class of proteins employed by phages and viruses to recognize and bind to their host cells, and by bacteria to bind to their target cells and tissues. The tailspikes of E. coli phage K1F and Bacillus phage Ø29 exhibit auto-chaperone activity in their trimeric C-terminal domains. The P22 tailspike is structurally homologous to those adhesins. Though there are no disulfide bonds or reactive cysteines in the native P22 tailspikes, a set of C-terminal cysteines are very reactive in partially folded intermediates, implying an unusual local conformation in the domain. This is likely to be involved in the auto-chaperone function. We examined the unusual reactivity of C-terminal tailspike cysteines during folding and assembly as a potential reporter of auto-chaperone function. Reaction with IAA blocked productive refolding in vitro, but not off-pathway aggregation. Two-dimensional PAGE revealed that the predominant intermediate exhibiting reactive cysteine side chains was a partially folded monomer. Treatment with reducing reagent promoted native trimer formation from these species, consistent with transient disulfide bonds in the auto-chaperone domain. Limited enzymatic digestion and mass spectrometry of folding and assembly intermediates indicated that the C-terminal domain was compact in the protrimer species. These results indicate that the C-terminal domain of the P22 tailspike folds itself and associates prior to formation of the protrimer intermediate, and not after, as previously proposed. The C-terminal cysteines and triple β-helix domains apparently provide the staging for the correct auto-chaperone domain formation, needed for alignment of P22 tailspike native trimer.
Collapse
Affiliation(s)
- Takumi Takata
- Department of Biology; Massachusetts Institute of Technology; Cambridge, MA USA
| | | | | |
Collapse
|
4
|
Schulz EC, Ficner R. Knitting and snipping: chaperones in β-helix folding. Curr Opin Struct Biol 2011; 21:232-9. [PMID: 21330133 DOI: 10.1016/j.sbi.2011.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 01/01/2023]
Abstract
Hallmarks of proteins containing β-helices are their increased stability and rigidity and their aggregation prone folding pathways. While parallel β-helices fold independently, the folding and assembly of many triple β-helices depends on a registration signal in order to adopt the correct three-dimensional structure. In some cases this is a mere trimerization domain, in others specialized chaperones are required. Recently, the crystal structures of two classes of intramolecular chaperones of β-helical proteins have been determined. Both mediate the assembly of large tailspike proteins and release themselves after maturation; however, they differ substantially in their structure and autoproteolytic release mechanisms.
Collapse
Affiliation(s)
- Eike C Schulz
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | | |
Collapse
|
5
|
Thermodynamic and kinetic stability of a large multi-domain enzyme from the hyperthermophile Aeropyrum pernix. Extremophiles 2010; 14:213-23. [PMID: 20058042 DOI: 10.1007/s00792-009-0300-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
The multi-domain enzyme isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix was studied by denaturant-induced unfolding. At pH 7.5, changes in circular dichroism ellipticity and intrinsic fluorescence showed a complex unfolding transition, whereas at pH 3.0, an apparently two-state and highly reversible unfolding occurred. Analytical ultracentrifugation revealed the dissociation from dimer to monomer at pH 3.0. The thermodynamic and kinetic stability were studied at pH 3.0 to explore the role of inter-domain interactions independently of inter-subunit interplay on the wild type and R211M, a mutant where a seven-membered inter-domain ionic network has been disrupted. The unfolding and folding transitions occurred at slightly different denaturant concentrations even after prolonged equilibration time. The difference between the folding and the unfolding profiles was decreased in the mutant R211M. The apparent Gibbs free energy decreased approximately 2 kcal/mol and the unfolding rate increased 4.3-fold in the mutant protein, corresponding to a decrease in activation free energy of unfolding of 0.86 kcal/mol. These results suggest that the inter-domain ionic network might be responsible for additional stabilization through a significant kinetic barrier in the unfolding pathway that could also explain the larger difference observed between the folding and unfolding transitions of the wild type.
Collapse
|
6
|
Spatara M, Roberts C, Robinson A. Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states. Biophys Chem 2009; 141:214-21. [DOI: 10.1016/j.bpc.2009.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
7
|
The C-terminus of the P22 tailspike protein acts as an independent oligomerization domain for monomeric proteins. Biochem J 2009; 419:595-602. [PMID: 19196242 DOI: 10.1042/bj20081449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TSP (P22 tailspike protein) is a well-established model system for studying the folding and assembly of oligomeric proteins, and previous studies have documented both in vivo and in vitro folding intermediates using this protein. Especially important is the C-terminus of TSP, which plays a critical role in the assembly and maturation of the protrimer intermediate to its final trimeric form. In the present study, we show that by grafting the C-terminus of TSP on to the monomeric MBP (maltose-binding protein), the resulting chimaera (MBP-537) is a trimeric protein. Moreover, Western blot studies (using an anti-TSP antibody) indicate that the TSP C-terminus in the MBP-537 chimaera has the same conformation as the native TSP. The oligomerization of the MBP-537 chimaera appears to involve hydrophobic interactions and a refolding sequence, both of which are analogous to the native TSP. These results underscore the importance of the TSP C-terminus in the assembly of the mature trimer and demonstrate its potential utility as a model to study the folding and assembly of the TSP C-terminus in isolation.
Collapse
|
8
|
Evans MS, Sander IM, Clark PL. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo. J Mol Biol 2008; 383:683-92. [PMID: 18674543 PMCID: PMC2597226 DOI: 10.1016/j.jmb.2008.07.035] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/10/2008] [Accepted: 07/12/2008] [Indexed: 11/23/2022]
Abstract
Newly synthesized proteins must form their native structures in the crowded environment of the cell, while avoiding non-native conformations that can lead to aggregation. Yet, remarkably little is known about the progressive folding of polypeptide chains during chain synthesis by the ribosome or of the influence of this folding environment on productive folding in vivo. P22 tailspike is a homotrimeric protein that is prone to aggregation via misfolding of its central beta-helix domain in vitro. We have produced stalled ribosome:tailspike nascent chain complexes of four fixed lengths in vivo, in order to assess cotranslational folding of newly synthesized tailspike chains as a function of chain length. Partially synthesized, ribosome-bound nascent tailspike chains populate stable conformations with some native-state structural features even prior to the appearance of the entire beta-helix domain, regardless of the presence of the chaperone trigger factor, yet these conformations are distinct from the conformations of released, refolded tailspike truncations. These results suggest that organization of the aggregation-prone beta-helix domain occurs cotranslationally, prior to chain release, to a conformation that is distinct from the accessible energy minimum conformation for the truncated free chain in solution.
Collapse
Affiliation(s)
- Michael S Evans
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
9
|
Müller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure 2008; 16:766-75. [PMID: 18462681 DOI: 10.1016/j.str.2008.01.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/05/2008] [Accepted: 01/31/2008] [Indexed: 12/22/2022]
Abstract
Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 A crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed beta helix. In the trimer of Sf6 TSP, the parallel beta helices form a left-handed, coiled-beta coil with a pitch of 340 A. The C-terminal domain consists of a beta sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two beta-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture.
Collapse
Affiliation(s)
- Jürgen J Müller
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R. Crystal structure ofEscherichia coliphage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol 2008; 69:303-16. [DOI: 10.1111/j.1365-2958.2008.06311.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Mishra R, Bhat R, Seckler R. Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol. Biol Chem 2007; 388:797-804. [PMID: 17655498 DOI: 10.1515/bc.2007.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolyol co-solvents such as glycerol increase the thermal stability of proteins. This has been explained by preferential hydration favoring the more compact native over the denatured state. Although polyols are also expected to favor aggregation by the same mechanism, they have been found to increase the folding yields of some large, aggregation-prone proteins. We have used the homotrimeric phage P22 tailspike protein to investigate the origin of this effect. The folding of this protein is temperature-sensitive and limited by the stability of monomeric folding intermediates. At non-permissive temperature (≥35°C), tailspike refolding yields were increased significantly in the presence of 1–4 mglycerol. At low temperature, tailspike refolding is prevented when folding intermediates are destabilized by the addition of urea. Glycerol could offset the urea effect, suggesting that the polyol acts by stabilizing crucial folding intermediates and not by increasing solvent viscosity. The stabilization effect of glycerol on tailspike folding intermediates was confirmed in experiments using a temperature-sensitive folding mutant protein, by fluorescence measurements of subunit folding kinetics, and by temperature up-shift experiments. Our results suggest that the chemical chaperone effect of polyols observed in the folding of large proteins is due to preferential hydration favoring structure formation in folding intermediates.
Collapse
Affiliation(s)
- Rajesh Mishra
- Department of Biochemistry and Biology, Potsdam University, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
12
|
Weigele PR, Haase-Pettingell C, Campbell PG, Gossard DC, King J. Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin. J Mol Biol 2005; 354:1103-17. [PMID: 16289113 DOI: 10.1016/j.jmb.2005.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/18/2022]
Abstract
The trimeric bacteriophage P22 tailspike adhesin exhibits a domain in which three extended strands intertwine, forming a single turn of a triple beta-helix. This domain contains a single hydrophobic core composed of residues contributed by each of the three sister polypeptide chains. The triple beta-helix functions as a molecular clamp, increasing the stability of this elongated structural protein. During folding of the tailspike protein, the last precursor before the native state is a partially folded trimeric intermediate called the protrimer. The transition from the protrimer to the native state results in a structure that is resistant to denaturation by heat, chemical denaturants, and proteases. Random mutations were made in the region encoding residues 540-548, where the sister chains begin to wrap around each other. From a set of 26 unique single amino acid substitutions, we characterized mutations at G546, N547, and I548 that retarded or blocked the protrimer to native trimer transition. In contrast, many non-conservative substitutions were tolerated at residues 540-544. Sucrose gradient analysis showed that protrimer-like mutants had reduced sedimentation, 8.0 S to 8.3 S versus 9.3 S for the native trimer. Mutants affected in the protrimer to native trimer transition were also destabilized in their native state. These data suggest that the folding of the triple beta-helix domain drives transition of the protrimer to the native state and is accompanied by a major rearrangement of polypeptide chains.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
13
|
Villafane R, Costa S, Ahmed R, Salgado C. Conservation of the N-terminus of some phage tail proteins. Arch Virol 2005; 150:2609-21. [PMID: 16096708 DOI: 10.1007/s00705-005-0597-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
To study the interaction between lipopolysaccharide and protein, a comparative approach was employed using seven Salmonella enterica serovar Typhimurium typing phages as the protein model systems. This interaction has been studied in detail in the Salmonella enterica serovar Typhimurium phage P22 system and involves only the viral tailspike protein. Similarity between these phages and phage P22 was monitored in this Report by assaying restriction endonuclease digestions, capsid size, reactivity to the P22 tailspike protein monoclonal antibody, mAb92, which reacts with the N-terminus of the P22 tail protein and the ability to produce a PCR fragment using primers made to the ends of the P22 tailspike gene. The data indicate that tailspike similarity exists between most of these phages and a scheme reclassifying them is presented and that the N-terminus of the P22 tailspike protein may be a motif for many phage systems and may serve as a aid in the taxonomy of phages. The data suggest a classification scheme in which the N-terminus of some tailspike proteins (head-binding region in some tail proteins) may play a critical element role in the classification of Salmonella viruses.
Collapse
Affiliation(s)
- R Villafane
- Department of Biochemistry Ponce School of Medicine, Ponce, Puerto Rico.
| | | | | | | |
Collapse
|
14
|
Gage MJ, Zak JL, Robinson AS. Three amino acids that are critical to formation and stability of the P22 tailspike trimer. Protein Sci 2005; 14:2333-43. [PMID: 16081648 PMCID: PMC1995594 DOI: 10.1110/ps.051394605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The P22 tailspike protein folds by forming a folding competent monomer species that forms a dimeric, then a non-native trimeric (protrimer) species by addition of folding competent monomers. We have found three residues, R549, R563, and D572, which play a critical role in both the stability of the native tailspike protein and assembly and maturation of the protrimer. King and colleagues reported previously that substitution of R563 to glutamine inhibited protrimer formation. We now show that the R549Q and R563K variants significantly delay the protrimer-to-trimer transition both in vivo and in vitro. Previously, variants that destabilize intermediates have shown wild-type chemical stability. Interestingly, both the R549Q and R563K variants destabilize the tailspike trimer in guanidine denaturation studies, indicating that they represent a new class of tailspike folding variants. R549Q has a midpoint of unfolding at 3.2M guanidine, compared to 5.6M for the wild-type tailspike protein, while R563K has a midpoint of unfolding of 1.8 M. R549Q and R563K also denature over a broader pH range than the wild-type tailspike protein and both proteins have increased sensitivity to pH during refolding, suggesting that both residues are involved in ionic interactions. Our model is that R563 and D572 interact to stabilize the adjacent turn, aiding the assembly of the dimer and protrimer species. We believe that the interaction between R563 and D572 is also critical following assembly of the protrimer to properly orient D572 in order to form a salt bridge with R549 during protrimer maturation.
Collapse
Affiliation(s)
- Matthew J Gage
- 259 Colburn Laboratory, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
15
|
Betts S, Haase-Pettingell C, Cook K, King J. Buried hydrophobic side-chains essential for the folding of the parallel beta-helix domains of the P22 tailspike. Protein Sci 2005; 13:2291-303. [PMID: 15322277 PMCID: PMC2280027 DOI: 10.1110/ps.04676704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The processive beta-strands and turns of a polypeptide parallel beta-helix represent one of the topologically simplest beta-sheet folds. The three subunits of the tailspike adhesin of phage P22 each contain 13 rungs of a parallel beta-helix followed by an interdigitated section of triple-stranded beta-helix. Long stacks of hydrophobic residues dominate the elongated buried core of these two beta-helix domains and extend into the core of the contiguous triple beta-prism domain. To test whether these side-chain stacks represent essential residues for driving the chain into the correct fold, each of three stacked phenylalanine residues within the buried core were substituted with less bulky amino acids. The mutant chains with alanine in place of phenylalanine were defective in intracellular folding. The chains accumulated exclusively in the aggregated inclusion body state regardless of temperature of folding. These severe folding defects indicate that the stacked phenylalanine residues are essential for correct parallel beta-helix folding. Replacement of the same phenylalanine residues with valine or leucine also impaired folding in vivo, but with less severity. Mutants were also constructed in a second buried stack that extends into the intertwined triple-stranded beta-helix and contiguous beta-prism regions of the protein. These mutants exhibited severe defects in later stages of chain folding or assembly, accumulating as misfolded but soluble multimeric species. The results indicate that the formation of the buried hydrophobic stacks is critical for the correct folding of the parallel beta-helix, triple-stranded beta-helix, and beta-prism domains in the tailspike protein.
Collapse
Affiliation(s)
- Scott Betts
- Department of Biology 68-330, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
16
|
Pope WH, Haase-Pettingell C, King J. Protein folding failure sets high-temperature limit on growth of phage P22 in Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 2004; 70:4840-7. [PMID: 15294822 PMCID: PMC492335 DOI: 10.1128/aem.70.8.4840-4847.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-temperature limit for growth of microorganisms differs greatly depending on their species and habitat. The importance of an organism's ability to manage thermal stress is reflected in the ubiquitous distribution of the heat shock chaperones. Although many chaperones function to reduce protein folding defects, it has been difficult to identify the specific protein folding pathways that set the high-temperature limit of growth for a given microorganism. We have investigated this for a simple system, phage P22 infection of Salmonella enterica serovar Typhimurium. Production of infectious particles exhibited a broad maximum of 150 phage per cell when host cells were grown at between 30 and 39 degrees C in minimal medium. Production of infectious phage declined sharply in the range of 40 to 41 degrees C, and at 42 degrees C, production had fallen to less than 1% of the maximum rate. The host cells maintained optimal division rates at these temperatures. The decrease in phage infectivity was steeper than the loss of physical particles, suggesting that noninfectious particles were formed at higher temperatures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a decrease in the tailspike adhesins assembled on phage particles purified from cultures incubated at higher temperatures. The infectivity of these particles was restored by in vitro incubation with soluble tailspike trimers. Examination of tailspike folding and assembly in lysates of phage-infected cells confirmed that the fraction of polypeptide chains able to reach the native state in vivo decreased with increasing temperature, indicating a thermal folding defect rather than a particle assembly defect. Thus, we believe that the folding pathway of the tailspike adhesin sets the high-temperature limit for P22 formation in Salmonella serovar Typhimurium.
Collapse
Affiliation(s)
- Welkin H Pope
- Massachusetts Institute of Technology, 77 Massachusetts Ave. 68-330, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
17
|
Gage MJ, Robinson AS. C-terminal hydrophobic interactions play a critical role in oligomeric assembly of the P22 tailspike trimer. Protein Sci 2003; 12:2732-47. [PMID: 14627734 PMCID: PMC2366982 DOI: 10.1110/ps.03150303] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Revised: 09/08/2003] [Accepted: 09/08/2003] [Indexed: 10/26/2022]
Abstract
The tailspike protein from the bacteriophage P22 is a well characterized model system for folding and assembly of multimeric proteins. Folding intermediates from both the in vivo and in vitro pathways have been identified, and both the initial folding steps and the protrimer-to-trimer transition have been well studied. In contrast, there has been little experimental evidence to describe the assembly of the protrimer. Previous results indicated that the C terminus plays a critical role in the overall stability of the P22 tailspike protein. Here, we present evidence that the C terminus is also the critical assembly point for trimer assembly. Three truncations of the full-length tailspike protein, TSPDeltaN, TSPDeltaC, and TSPDeltaNC, were generated and tested for their ability to form mixed trimer species. TSPDeltaN forms mixed trimers with full-length P22 tailspike, but TSPDeltaC and TSPDeltaNC are incapable of forming similar mixed trimer species. In addition, mutations in the hydrophobic core of the C terminus were unable to form trimer in vivo. Finally, the hydrophobic-binding dye ANS inhibits the formation of trimer by inhibiting progression through the folding pathway. Taken together, these results suggest that hydrophobic interactions between C-terminal regions of P22 tailspike monomers play a critical role in the assembly of the P22 tailspike trimer.
Collapse
Affiliation(s)
- Matthew J Gage
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
18
|
Kreisberg JF, Betts SD, Haase-Pettingell C, King J. The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization. Protein Sci 2002; 11:820-30. [PMID: 11910025 PMCID: PMC2373520 DOI: 10.1110/ps.3440102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The P22 tailspike adhesin is an elongated thermostable trimer resistant to protease digestion and to denaturation in sodium dodecyl sulfate. Monomeric, dimeric, and protrimeric folding and assembly intermediates lack this stability and are thermolabile. In the native trimer, three right-handed parallel beta-helices (residues 143-540), pack side-by-side around the three-fold axis. After residue 540, these single chain beta-helices terminate and residues 541-567 of the three polypeptide chains wrap around each other to form a three-stranded interdigitated beta-helix. Three mutants located in this region -- G546D, R563Q, and A575T -- blocked formation of native tailspike trimers, and accumulated soluble forms of the mutant polypeptide chains within cells. The substitutions R563Q and A575T appeared to prevent stable association of partially folded monomers. G546D, in the interdigitated region of the chain, blocked tailspike folding at the transition from the partially-folded protrimer to the native trimer. The protrimer-like species accumulating in the G546D mutant melted out at 42 degrees C and was trypsin and SDS sensitive. The G546D defect was not corrected by introduction of global suppressor mutations, which correct kinetic defects in beta-helix folding. The simplest interpretation of these results is that the very high thermostability (T(m) = 88 degrees C), protease and detergent resistance of the native tailspike acquired in the protrimer-to-trimer transition, depends on the formation of the three-stranded interdigitated region. This interdigitated beta-helix appears to function as a molecular clamp insuring thermostable subunit association in the native trimer.
Collapse
Affiliation(s)
- Jason F Kreisberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
19
|
Jenkins J, Pickersgill R. The architecture of parallel beta-helices and related folds. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 77:111-75. [PMID: 11747907 DOI: 10.1016/s0079-6107(01)00013-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three-dimensional structures have been determined of a large number of proteins characterized by a repetitive fold where each of the repeats (coils) supplies a strand to one or more parallel beta-sheets. Some of these proteins form superfamilies of proteins, which have probably arisen by divergent evolution from a common ancestor. The classical example is the family including four families of pectinases without obviously related primary sequences, the phage P22 tailspike endorhamnosidase, chrondroitinase B and possibly pertactin from Bordetella pertusis. These show extensive stacking of similar residues to give aliphatic, aromatic and polar stacks such as the asparagine ladder. This suggests that coils can be added or removed by duplication or deletion of the DNA corresponding to one or more coils and explains how homologous proteins can have different numbers of coils. This process can also account for the evolution of other families of proteins such as the beta-rolls, the leucine-rich repeat proteins, the hexapeptide repeat family, two separate families of beta-helical antifreeze proteins and the spiral folds. These families need not be related to each other but will share features such as relative untwisted beta-sheets, stacking of similar residues and turns between beta-strands of approximately 90 degrees often stabilized by hydrogen bonding along the direction of the parallel beta-helix.Repetitive folds present special problems in the comparison of structures but offer attractive targets for structure prediction. The stacking of similar residues on a flat parallel beta-sheet may account for the formation of amyloid with beta-strands at right-angles to the fibril axis from many unrelated peptides.
Collapse
Affiliation(s)
- J Jenkins
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK.
| | | |
Collapse
|
20
|
Clark PL, King J. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. J Biol Chem 2001; 276:25411-20. [PMID: 11319217 DOI: 10.1074/jbc.m008490200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the conformations of newly synthesized polypeptide chains as they emerge from the large ribosomal subunit, or how these conformations compare with those populated immediately after dilution of polypeptide chains out of denaturant in vitro. Both in vivo and in vitro, partially folded intermediates of the tailspike protein from Salmonella typhimurium phage P22 can be trapped in the cold. A subset of monoclonal antibodies raised against tailspike recognize partially folded intermediates, whereas other antibodies recognize only later intermediates and/or the native state. We have used a pair of monoclonal antibodies to probe the conformational features of full-length, newly synthesized tailspike chains recovered on ribosomes from phage-infected cells. The antibody that recognizes early intermediates in vitro also recognizes the ribosome-bound intermediates. Surprisingly, the antibody that did not recognize early in vitro intermediates did recognize ribosome-bound tailspike chains translated in vivo. Thus, the newly synthesized, ribosome-bound tailspike chains display structured epitopes not detected upon dilution of tailspike chains from denaturant. As opposed to the random ensemble first populated when polypeptide chains are diluted out of denaturant, folding in vivo from the ribosome may begin with polypeptide conformations already directed toward the productive folding and assembly pathway.
Collapse
Affiliation(s)
- P L Clark
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
21
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
22
|
Baxa U, Steinbacher S, Weintraub A, Huber R, Seckler R. Mutations improving the folding of phage P22 tailspike protein affect its receptor binding activity. J Mol Biol 1999; 293:693-701. [PMID: 10543960 DOI: 10.1006/jmbi.1999.3165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four previously isolated mutations in Salmonella phage P22 tailspike protein were used to study the relationship between protein stability, folding, and function. Tailspike protein binds and hydrolyzes the repetitive O-antigen structure in Salmonella lipopolysaccharide. Four mutations (V331G, V331A, A334V, A334I) are known to increase the folding efficiency, and two of them (at position 331) also increase the thermal stability of the protein. Octasaccharides comprising two repeating units of the O-antigens from two different Salmonella strains were employed to analyze the receptor binding function of the mutant proteins. Their endorhamnosidase enzymatic activity was assayed with the aid of a fluorescence-labeled dodecasaccharide. Both V331A and V331G were found to strongly affect O-antigen binding. Octasaccharide binding affinities of the mutant proteins are reduced tenfold and 200-fold, corresponding to a loss of 17% and 36% of the standard free energy of binding, respectively. Both mutations at position 334 affected O-antigen binding only slightly (DeltaDeltaG(0)B approximately 1 kJ/mol), but these mutations reduce the thermal stability of the protein. The observed effects on the endoglycosidase activity are fully explained by the changes in substrate binding, suggesting that neither of the mutations affect the catalytic rate. Crystal structures of all four mutants were determined to a resolution of 2.0 A. Except for the partly or completely missing side-chain, no significant changes compared to the wild-type protein structure were found for the mutants at position 331, whereas a small but significant backbone displacement around the mutation site in A334V and A334I may explain the observed thermal destabilization.
Collapse
Affiliation(s)
- U Baxa
- Physikalische Biochemie, Universität Potsdam, Im Biotechnologiepark, Luckenwalde, D-14943, Germany
| | | | | | | | | |
Collapse
|
23
|
Schuler B, Rachel R, Seckler R. Formation of fibrous aggregates from a non-native intermediate: the isolated P22 tailspike beta-helix domain. J Biol Chem 1999; 274:18589-96. [PMID: 10373469 DOI: 10.1074/jbc.274.26.18589] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the assembly pathway of the trimeric P22 tailspike protein, the protein conformation critical for the partitioning between productive folding and off-pathway aggregation is a monomeric folding intermediate. The central domain of tailspike, a large right-handed parallel beta-helix, is essentially structured in this species. We used the isolated beta-helix domain (Bhx), expressed with a hexahistidine tag, to investigate the mechanism of aggregation without the two terminal domains present in the complete protein. Although Bhx has been shown to fold reversibly at low ionic strength conditions, increased ionic strength induced aggregation with a maximum at urea concentrations corresponding to the midpoint of urea-induced folding transitions. According to size exclusion chromatography, aggregation appeared to proceed via a linear polymerization mechanism. Circular dichroism indicated a secondary structure content of the aggregates similar to that of the native state, but at the same time their tryptophan fluorescence was largely quenched. Microscopic analysis of the aggregates revealed a variety of morphologies; among others, fibrils with fine structure were observed that exhibited bright green birefringence if viewed under cross-polarized light after staining with Congo red. These observations, together with the effects of folding mutations on the aggregation process, indicate the involvement of a partially structured intermediate distinct from both unfolded and native Bhx.
Collapse
Affiliation(s)
- B Schuler
- Institut für Biophysik und Physikalische Biochemie, Genetik und Mikrobiologie, Universität Regensburg, 93040 Regensburg, Germany.
| | | | | |
Collapse
|
24
|
Betts S, King J. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure 1999; 7:R131-9. [PMID: 10404587 DOI: 10.1016/s0969-2126(99)80078-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The in vivo and in vitro folding, assembly and misfolding of an elongated protein, the thermostable tailspike adhesin of phage P22, reveals important aspects of the sequence control of chain folding as well as its failure mode, inclusion body formation.
Collapse
Affiliation(s)
- S Betts
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
25
|
Seckler R. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein. J Struct Biol 1998; 122:216-22. [PMID: 9724623 DOI: 10.1006/jsbi.1998.3974] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Salmonella bacteriophage P22 recognizes its host cell receptor, lipopolysaccharide, by means of six tailspikes, thermostable homotrimers of 72-kDa polypeptides. Biophysical results on the binding reaction, together with high-resolution structural information from X-ray crystallography, have shed light on the interactions determining the viral host range. Folding and assembly of the tailspike protein in vitro have been analyzed in detail, and the data have been compared with observations on the in vivo assembly pathway. Repetitive structural elements in the tailspike protein, like a side-by-side trimer of parallel beta-helices, a parallel alpha-helical bundle, a triangular prism made up from antiparallel beta-sheets, and a short segment of a triple beta-helix can be considered building blocks for larger structural proteins, and thus, the results on P22 tailspike may have implications for fibrous protein structure and folding.
Collapse
Affiliation(s)
- R Seckler
- Institut für Biophysik und Physikalische Biochemie, Regensburg, D-93040, Germany
| |
Collapse
|
26
|
Schuler B, Seckler R. P22 tailspike folding mutants revisited: effects on the thermodynamic stability of the isolated beta-helix domain. J Mol Biol 1998; 281:227-34. [PMID: 9698543 DOI: 10.1006/jmbi.1998.1944] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The folding of the trimeric phage P22 tailspike protein is influenced by amino acid substitutions of two types, virtually all of which affect residues in the central domain, a large parallel beta-helix. Temperature sensitive folding (tsf) mutations lead to drastically decreased folding yields at elevated temperature. Their phenotype can be alleviated by global suppressor (su) mutations. Both types of mutations appeared to have no influence on the stability of the native protein at the time of their first isolation and were thus suggested to carry information needed for the folding pathway exclusively. The monomeric beta-helix of tailspike, expressed as an isolated domain, exhibits freely reversible unfolding and refolding transitions, allowing us to analyse the effects of two well-characterised tsf and all four known su mutations on its thermodynamic stability. We find a marked decrease in stability for the tsf mutants and a striking increase in stability for all su mutants. This leads to the conception that the isolated beta-helix domain, although active in receptor-binding and native-like in its spectroscopic properties, is close in conformation to a crucial monomeric folding intermediate whose thermolability is responsible for the kinetic partitioning between productive folding and irreversible aggregation during the maturation process of P22 tailspike protein.
Collapse
Affiliation(s)
- B Schuler
- Physikalische Biochemie, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | | |
Collapse
|