1
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024; 13:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
2
|
Hao JF, Qi CH, Yu BY, Wang HY, Gao RY, Yamano N, Ma F, Wang P, Xin YY, Zhang CF, Yu LJ, Zhang JP. Light-Quality-Adapted Carotenoid Photoprotection in the Photosystem of Roseiflexus castenholzii. J Phys Chem Lett 2024:3470-3477. [PMID: 38512331 DOI: 10.1021/acs.jpclett.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.
Collapse
Affiliation(s)
- Jin-Fang Hao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Bu-Yang Yu
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
| | - Hao-Yi Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Yue-Yong Xin
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou 311121, Zhejiang, China
| | - Chun-Feng Zhang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
3
|
Hao JF, Yamano N, Qi CH, Zhang Y, Ma F, Wang P, Yu LJ, Zhang JP. Carotenoid-Mediated Long-Range Energy Transfer in the Light Harvesting-Reaction Center Complex from Photosynthetic Bacterium Roseiflexus castenholzii. J Phys Chem B 2023; 127:10360-10369. [PMID: 37983555 DOI: 10.1021/acs.jpcb.3c07087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The light harvesting-reaction center complex (LH-RC) of Roseiflexus castenholzii binds bacteriochlorophylls a (BChls a), B800 and B880, absorbing around 800 and 880 nm, respectively. We comparatively investigated the interband excitation energy transfer (EET) dynamics of the wild-type LH-RC (wt-LH-RC) of Rfl. castenholzii and its carotenoid (Car)-less mutant (m-LH-RC) and found that Car can boost the B800 → B880 EET rate from (2.43 ps)-1 to (1.75 ps)-1, accounting for 38% acceleration of the EET process. Interestingly, photoexcitation of wt-LH-RC at 800 nm induced pronounced excitation dynamics of Car despite the insufficient photon energy for direct Car excitation, a phenomenon which is attributed to the BChl-Car exciplex 1[B800(↑↑)···Car(↓↓)]*. Such an exciplex is suggested to play an essential role in promoting the B800 → B880 EET process, as corroborated by the recently reported cryo-EM structures of wt-LH-RC and m-LH-RC. The mechanism of Car-mediated EET will be helpful to deepen the understanding of the role of Car in bacterial photosynthesis.
Collapse
Affiliation(s)
- Jin-Fang Hao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
4
|
Liu XL, Hu YY, Li K, Chen MQ, Wang P. Reconstituted LH2 in multilayer membranes induced by poly-L-lysine: structure of supramolecular and electronic states. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
5
|
Khmelnitskiy A, Williams JC, Allen JP, Jankowiak R. Influence of Hydrogen Bonds on the Electron-Phonon Coupling Strength/Marker Mode Structure and Charge Separation Rates in Reaction Centers from Rhodobacter sphaeroides. J Phys Chem B 2019; 123:8717-8726. [PMID: 31539255 DOI: 10.1021/acs.jpcb.9b08388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-temperature persistent and transient hole-burning (HB) spectra are presented for the triple hydrogen-bonded L131LH + M160LH + M197FH mutant of Rhodobacter sphaeroides. These spectra expose the heterogeneous nature of the P-, B-, and H-bands, consistent with a distribution of electron transfer (ET) times and excitation energy transfer (EET) rates. Transient P+QA- holes are observed for fast (tens of picoseconds or faster) ET times and reveal strong coupling to phonons and marker mode(s), while the persistent holes are bleached in a fraction of reaction centers with long-lived excited states characterized by much weaker electron-phonon coupling. Exposed differences in electron-phonon coupling strength, as well as a different coupling to the marker mode(s), appear to affect the ET times. Both resonantly and nonresonantly burned persistent HB spectra show weak blue- (∼150 cm-1) and large, red-shifted (∼300 cm-1) antiholes of the P band. Slower EET times from the H- and B-bands to the special pair dimer provide new insight on the influence of hydrogen bonds on mutation-induced heterogeneity.
Collapse
Affiliation(s)
| | - JoAnn C Williams
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - James P Allen
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | | |
Collapse
|
6
|
Zhu W, Gao YH, Liao PY, Chen DY, Sun NN, Nguyen Thi PA, Yan YJ, Wu XF, Chen ZL. Comparison between porphin, chlorin and bacteriochlorin derivatives for photodynamic therapy: Synthesis, photophysical properties, and biological activity. Eur J Med Chem 2018; 160:146-156. [DOI: 10.1016/j.ejmech.2018.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
|
7
|
Probing the pigment binding sites in LHCII with resonance Raman spectroscopy: The effect of mutations at S123. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1490-1496. [DOI: 10.1016/j.bbabio.2016.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/15/2022]
|
8
|
Mazzone G, Alberto ME, De Simone BC, Marino T, Russo N. Can Expanded Bacteriochlorins Act as Photosensitizers in Photodynamic Therapy? Good News from Density Functional Theory Computations. Molecules 2016; 21:288. [PMID: 26938516 PMCID: PMC6273748 DOI: 10.3390/molecules21030288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023] Open
Abstract
The main photophysical properties of a series of expanded bacteriochlorins, recently synthetized, have been investigated by means of DFT and TD-DFT methods. Absorption spectra computed with different exchange-correlation functionals, B3LYP, M06 and ωB97XD, have been compared with the experimental ones. In good agreement, all the considered systems show a maximum absorption wavelength that falls in the therapeutic window (600-800 nm). The obtained singlet-triplet energy gaps are large enough to ensure the production of cytotoxic singlet molecular oxygen. The computed spin-orbit matrix elements suggest a good probability of intersystem spin-crossing between singlet and triplet excited states, since they result to be higher than those computed for 5,10,15,20-tetrakis-(m-hydroxyphenyl)chlorin (Foscan©) already used in the photodynamic therapy (PDT) protocol. Because of the investigated properties, these expanded bacteriochlorins can be proposed as PDT agents.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Marta E Alberto
- Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris (IRCP), PSL Research University, F-75005 Paris, France.
| | - Bruna C De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy.
| |
Collapse
|
9
|
Gall A, Pascal AA, Robert B. Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:12-8. [PMID: 25268562 DOI: 10.1016/j.bbabio.2014.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Resonance Raman spectroscopy may yield precise information on the conformation of, and the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process. Selectivity is achieved via resonance with the absorption transition of the chromophore of interest. Fluorescence line-narrowing spectroscopy is a complementary technique, in that it provides the same level of information (structure, conformation, interactions), but in this case for the emitting pigment(s) only (whether isolated or in an ensemble of interacting chromophores). The selectivity provided by these vibrational techniques allows for the analysis of pigment molecules not only when they are isolated in solvents, but also when embedded in soluble or membrane proteins and even, as shown recently, in vivo. They can be used, for instance, to relate the electronic properties of these pigment molecules to their structure and/or the physical properties of their environment. These techniques are even able to follow subtle changes in chromophore conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman and fluorescence line-narrowing spectroscopies, the information content of the vibrational spectra of chlorophyll and carotenoid molecules is described in this article, together with the experiments which helped in determining which structural parameter(s) each vibrational band is sensitive to. A selection of applications is then presented, in order to illustrate how these techniques have been used in the field of photosynthesis, and what type of information has been obtained. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Andrew Gall
- Institute of Biology and Technology Saclay, CEA, UMR 8221 CNRS, 91191 Gif/Yvette, France
| | - Andrew A Pascal
- Institute of Biology and Technology Saclay, CEA, UMR 8221 CNRS, 91191 Gif/Yvette, France
| | - Bruno Robert
- Institute of Biology and Technology Saclay, CEA, UMR 8221 CNRS, 91191 Gif/Yvette, France.
| |
Collapse
|
10
|
Kimura Y, Inada Y, Numata T, Arikawa T, Li Y, Zhang JP, Wang ZY, Ohno T. Metal cations modulate the bacteriochlorophyll–protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1022-9. [DOI: 10.1016/j.bbabio.2012.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/07/2012] [Accepted: 03/11/2012] [Indexed: 11/16/2022]
|
11
|
Abstract
Conformationally designed, non-planar porphyrins afford new classes of structurally distinct chromophores with significantly altered optical, redox, magnetic, radical and excited state properties. The synthetic, non-planar porphyrins model and illustrate the consequences of the skeletal deformations and plasticity increasingly observed in crystal structures of protein complexes comprising porphyrinic chromophores and prosthetic groups. Conformational variations thus offer attractively simple mechanisms for modulating the physicochemical properties of porphyrins in vivo and in vitro.
Collapse
Affiliation(s)
- JACK FAJER
- Department of Applied Science, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
12
|
König C, Neugebauer J. Quantum chemical description of absorption properties and excited-state processes in photosynthetic systems. Chemphyschem 2011; 13:386-425. [PMID: 22287108 DOI: 10.1002/cphc.201100408] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Indexed: 11/07/2022]
Abstract
The theoretical description of the initial steps in photosynthesis has gained increasing importance over the past few years. This is caused by more and more structural data becoming available for light-harvesting complexes and reaction centers which form the basis for atomistic calculations and by the progress made in the development of first-principles methods for excited electronic states of large molecules. In this Review, we discuss the advantages and pitfalls of theoretical methods applicable to photosynthetic pigments. Besides methodological aspects of excited-state electronic-structure methods, studies on chlorophyll-type and carotenoid-like molecules are discussed. We also address the concepts of exciton coupling and excitation-energy transfer (EET) and compare the different theoretical methods for the calculation of EET coupling constants. Applications to photosynthetic light-harvesting complexes and reaction centers based on such models are also analyzed.
Collapse
Affiliation(s)
- Carolin König
- Institute for Physical and Theoretical Chemistry, Technical University Braunschweig, Braunschweig, Germany
| | | |
Collapse
|
13
|
Duquesne K, Blanchard C, Sturgis JN. Molecular origins and consequences of High-800 LH2 in Roseobacter denitrificans. Biochemistry 2011; 50:6723-9. [PMID: 21739946 DOI: 10.1021/bi200538j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Roseobacter denitrificans is a marine bacterium capable of using a wide variety of different metabolic schemes and in particular is an anoxygenic aerobic photosynthetic bacterium. In the work reported here we use a deletion mutant that we have constructed to investigate the structural origin of the unusual High-800 light-harvesting complex absorption in this bacterium. We suggest that the structure is essentially unaltered when compared to the usual nonameric complexes but that a change in the environment of the C(13:1) carbonyl group is responsible for the change in spectrum. We tentatively relate this change to the presence of a serine residue in the α-polypeptide. Surprisingly, the low spectral overlap between the peripheral and core light-harvesting systems appears not to compromise energy collection efficiency too severely. We suggest that this may be at the expense of maintaining a low antenna size.
Collapse
Affiliation(s)
- Katia Duquesne
- LISM, CNRS - Aix-Marseille University, Marseilles, France
| | | | | |
Collapse
|
14
|
Huang YY, Mroz P, Zhiyentayev T, Sharma SK, Balasubramanian T, Ruzié C, Krayer M, Fan D, Borbas KE, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR. In vitro photodynamic therapy and quantitative structure-activity relationship studies with stable synthetic near-infrared-absorbing bacteriochlorin photosensitizers. J Med Chem 2010; 53:4018-27. [PMID: 20441223 PMCID: PMC2933425 DOI: 10.1021/jm901908s] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT) is a rapidly developing approach to treating cancer that combines harmless visible and near-infrared light with a nontoxic photoactivatable dye, which upon encounter with molecular oxygen generates the reactive oxygen species that are toxic to cancer cells. Bacteriochlorins are tetrapyrrole compounds with two reduced pyrrole rings in the macrocycle. These molecules are characterized by strong absorption features from 700 to >800 nm, which enable deep penetration into tissue. This report describes testing of 12 new stable synthetic bacteriochlorins for PDT activity. The 12 compounds possess a variety of peripheral substituents and are very potent in killing cancer cells in vitro after illumination. Quantitative structure-activity relationships were derived, and subcellular localization was determined. The most active compounds have both low dark toxicity and high phototoxicity. This combination together with near-infrared absorption gives these bacteriochlorins great potential as photosensitizers for treatment of cancer.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Aesthetic and Plastic Center of Guangxi Medical University, Nanning, P. R. China
| | - Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Timur Zhiyentayev
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sulbha K. Sharma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Christian Ruzié
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Michael Krayer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Dazhong Fan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - K. Eszter Borbas
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Eunkyung Yang
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Hooi Ling Kee
- Department of Chemistry, Washington University, St. Louis, Missouri
| | | | - James R. Diers
- Department of Chemistry, University of California—Riverside, Riverside, California
| | - David F. Bocian
- Department of Chemistry, University of California—Riverside, Riverside, California
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| |
Collapse
|
15
|
Pandit A, Buda F, van Gammeren AJ, Ganapathy S, de Groot HJM. Selective Chemical Shift Assignment of Bacteriochlorophyll a in Uniformly [13C−15N]-Labeled Light-Harvesting 1 Complexes by Solid-State NMR in Ultrahigh Magnetic Field. J Phys Chem B 2010; 114:6207-15. [DOI: 10.1021/jp100688u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjali Pandit
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan J. van Gammeren
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Swapna Ganapathy
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
16
|
Mroz P, Huang YY, Szokalska A, Zhiyentayev T, Janjua S, Nifli AP, Sherwood ME, Ruzié C, Borbas KE, Fan D, Krayer M, Balasubramanian T, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J 2010; 24:3160-70. [PMID: 20385618 DOI: 10.1096/fj.09-152587] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma remains a therapeutic challenge, and patients with advanced disease have limited survival. Photodynamic therapy (PDT) has been successfully used to treat many malignancies, and it may show promise as an antimelanoma modality. However, high melanin levels in melanomas can adversely affect PDT effectiveness. Herein the extent of melanin contribution to melanoma resistance to PDT was investigated in a set of melanoma cell lines that markedly differ in the levels of pigmentation; 3 new bacteriochlorins successfully overcame the resistance. Cell killing studies determined that bacteriochlorins are superior at (LD(50) approximately 0.1 microM) when compared with controls such as the FDA-approved Photofrin (LD(50) approximately 10 microM) and clinically tested LuTex (LD(50) approximately 1 microM). The melanin content affects PDT effectiveness, but the degree of reduction is significantly lower for bacteriochlorins than for Photofrin. Microscopy reveals that the least effective bacteriochlorin localizes predominantly in lysosomes, while the most effective one preferentially accumulates in mitochondria. Interestingly all bacteriochlorins accumulate in melanosomes, and subsequent illumination leads to melanosomal damage shown by electron microscopy. Fluorescent probes show that the most effective bacteriochlorin produces significantly higher levels of hydroxyl radicals, and this is consistent with the redox properties suggested by molecular-orbital calculations. The best in vitro performing bacteriochlorin was tested in vivo in a mouse melanoma model using spectrally resolved fluorescence imaging and provided significant survival advantage with 20% of cures (P<0.01).
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom St., Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Uyeda G, Williams JC, Roman M, Mattioli TA, Allen JP. The Influence of Hydrogen Bonds on the Electronic Structure of Light-Harvesting Complexes from Photosynthetic Bacteria. Biochemistry 2010; 49:1146-59. [DOI: 10.1021/bi901247h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Uyeda
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - J. C. Williams
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - M. Roman
- Service de Bioénergétique, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - T. A. Mattioli
- Service de Bioénergétique, Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - J. P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
18
|
Telfer A, Pascal AA, Bordes L, Barber J, Robert B. Fluorescence Line Narrowing Studies on Isolated Chlorophyll Molecules. J Phys Chem B 2010; 114:2255-60. [DOI: 10.1021/jp907537a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alison Telfer
- Division of Molecular Biosciences, Biochemistry Building, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K., and Institut de Biologie et de Technologies de Saclay, CEA, and URA 2096, CNRS, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Andrew A. Pascal
- Division of Molecular Biosciences, Biochemistry Building, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K., and Institut de Biologie et de Technologies de Saclay, CEA, and URA 2096, CNRS, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Luc Bordes
- Division of Molecular Biosciences, Biochemistry Building, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K., and Institut de Biologie et de Technologies de Saclay, CEA, and URA 2096, CNRS, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - James Barber
- Division of Molecular Biosciences, Biochemistry Building, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K., and Institut de Biologie et de Technologies de Saclay, CEA, and URA 2096, CNRS, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Bruno Robert
- Division of Molecular Biosciences, Biochemistry Building, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K., and Institut de Biologie et de Technologies de Saclay, CEA, and URA 2096, CNRS, CEA-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Robert B. Resonance Raman spectroscopy. PHOTOSYNTHESIS RESEARCH 2009; 101:147-55. [PMID: 19568956 DOI: 10.1007/s11120-009-9440-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 05/19/2009] [Indexed: 05/18/2023]
Abstract
Resonance Raman spectroscopy may yield precise information on the conformation of, and on the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process, whether isolated in solvents, embedded in soluble or membrane proteins, or, as shown recently, in vivo. By making use of this technique, it is possible, for instance, to relate the electronic properties of these molecules to their structure and/or the physical properties of their environment, or to determine subtle changes of their conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman spectroscopy, the information content of resonance Raman spectra of chlorophyll and carotenoid molecules is described in this review, together with the experiments which helped in determining which structural parameter each Raman band is sensitive to. A selection of applications of this technique is then presented, in order to give a fair and precise idea of which type of information can be obtained from its use in the field of photosynthesis.
Collapse
Affiliation(s)
- Bruno Robert
- Institute of Biology and Technology of Saclay, Commissariat à l'Energie Atomique, URA 2096 Centre National de la Recherche Scientifique, Gif sur Yvette, France.
| |
Collapse
|
20
|
Duxbury Z, Schliep M, Ritchie RJ, Larkum AWD, Chen M. Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2009; 101:69-75. [PMID: 19582591 DOI: 10.1007/s11120-009-9466-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
Chromatic photoacclimation and photosynthesis were examined in two strains of Acaryochloris marina (MBIC11017 and CCMEE5410) and in Synechococcus PCC7942. Acaryochloris contains Chl d, which has an absorption peak at ca 710 nm in vivo. Cultures were grown in one of the three wavelengths (525 nm, 625 nm and 720 nm) of light from narrow-band photodiodes to determine the effects on pigment composition, growth rate and photosynthesis: no growth occurred in 525 nm light. Synechococcus did not grow in 720 nm light because Chl a does not absorb effectively at this long wavelength. Acaryochloris did grow in 720 nm light, although strain MBIC11017 showed a decrease in phycobilins over time. Both Synechococcus and Acaryochloris MBIC11017 showed a dramatic increase in phycobilin content when grown in 625 nm light. Acaryochloris CCMEE5410, which lacks phycobilins, would not grow satisfactorily under 625 nm light. The cells adjusted their pigment composition in response to the light spectral conditions under which they were grown. Photoacclimation and the Q (y) peak of Chl d could be understood in terms of the ecological niche of Acaryochloris, i.e. habitats enriched in near infrared radiation.
Collapse
Affiliation(s)
- Zane Duxbury
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
21
|
Ma F, Kimura Y, Yu LJ, Wang P, Ai XC, Wang ZY, Zhang JP. Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling. FEBS J 2009; 276:1739-49. [DOI: 10.1111/j.1742-4658.2009.06905.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
|
23
|
Fiedor L, Kania A, Myśliwa-Kurdziel B, Orzeł Ł, Stochel G. Understanding chlorophylls: central magnesium ion and phytyl as structural determinants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1491-500. [PMID: 18848915 DOI: 10.1016/j.bbabio.2008.09.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/11/2008] [Accepted: 09/11/2008] [Indexed: 11/24/2022]
Abstract
Phytol, a C20 alcohol esterifying the C-17(3) propionate, and Mg2+ ion chelated in the central cavity, are conservative structural constituents of chlorophylls. To evaluate their intramolecular structural effects we prepared a series of metal- and phytyl-free derivatives of bacteriochlorophyll a and applied them as model chlorophylls. A detailed spectroscopic study on the model pigments reveals meaningful differences in the spectral characteristics of the phytylated and non-phytylated pigments. Their analysis in terms of solvatochromism and axial coordination shows how the central Mg and phytyl residue shape the properties of the pigment. Surprisingly, the presence/absence of the central Mg has no effect on the solvatochromism of (bacterio)chlorophyll pi-electron system and the hydrophobicity of phytyl does not interfere with the first solvation shell of the chromophore. However, both residues significantly influence the conformation of the pigment macrocycle and the removal of either residue increases the macrocycle flexibility. The chelation of Mg has a flattening effect on the macrocycle whereas bulky phytyl residue seems to control the conformation of the chromophore via steric interactions with ring V and its substituents. The analysis of spectroscopic properties of bacteriochlorophyllide (free acid) shows that esterification of the C-17(3) propionate is necessary in chlorophylls because the carboxyl group may act as a strong chelator of the central Mg. These observations imply that the truncated chlorophylls used in theoretical studies are not adequate as models of native chromophores, especially when fine effects are to be modeled.
Collapse
Affiliation(s)
- Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | | | | | |
Collapse
|
24
|
Zucchelli G, Brogioli D, Casazza AP, Garlaschi FM, Jennings RC. Chlorophyll ring deformation modulates Qy electronic energy in chlorophyll-protein complexes and generates spectral forms. Biophys J 2007; 93:2240-54. [PMID: 17513370 PMCID: PMC1959541 DOI: 10.1529/biophysj.107.104554] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The possibility that the chlorophyll (chl) ring distortions observed in the crystal structures of chl-protein complexes are involved in the transition energy modulation, giving rise to the spectral forms, is investigated. The out-of-plane chl-macrocycle distortions are described using an orthonormal set of deformations, defined by the displacements along the six lowest-frequency, out-of-plane normal coordinates. The total chl-ring deformation is the linear combination of these six deformations. The two higher occupied and the two lower unoccupied chl molecular orbitals, which define the Q(y) electronic transition, have the same symmetry as four of the six out-of-plane lowest frequency modes. We assume that a deformation along the normal-coordinate having the same symmetry as a given molecular orbital will perturb that orbital and modify its energy. The changes in the chl Q(y) transition energies are evaluated in the Peridinin-Chl-Protein complex and in light harvesting complex II (LHCII), using crystallographic data. The macrocycle deformations induce a distribution of the chl Q(y) electronic energy transitions which, for LHCII, is broader for chla than for chlb. This provides the physical mechanism to explain the long-held view that the chla spectral forms in LHCII are both more numerous and cover a wider energy range than those of chlb.
Collapse
Affiliation(s)
- Giuseppe Zucchelli
- Consiglio Nazionale Delle Ricerche-Istituto di Biofisica, Dipartimento di Biologia, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
25
|
Rutkauskas D, Olsen J, Gall A, Cogdell RJ, Hunter CN, van Grondelle R. Comparative study of spectral flexibilities of bacterial light-harvesting complexes: structural implications. Biophys J 2006; 90:2463-74. [PMID: 16399835 PMCID: PMC1403163 DOI: 10.1529/biophysj.105.075895] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work presents a comparative study of the frequencies of spectral jumping of individual light-harvesting complexes of six different types: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum; LH1 of Rhodobacter sphaeroides; and two "domain swap mutants" of LH2 of Rhodobacter sphaeroides: PACLH1 and PACLH2mol, in which the alpha-polypeptide C-terminus is exchanged with the corresponding sequence from LH1 of Rhodobacter sphaeroides or LH2 of Rhodospirillum molischianum, respectively. The quasistable states of fluorescence peak wavelength that were previously observed for the LH2 of Rps. acidophila were confirmed for other species. We also observed occurrences of extremely blue-shifted spectra, which were associated with reversible bleaching of one of the chromophore rings. Different jumping behavior is observed for single complexes of different types investigated with the same equivalent excitation intensity. The differences in spectral diffusion are associated with subtle differences of the binding pocket of B850 pigments and the structural flexibility of the different types of complexes.
Collapse
Affiliation(s)
- Danielis Rutkauskas
- Department of Biophysics and Physics of Complex Systems, Division of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Gall A, Henry S, Takaichi S, Robert B, Cogdell RJ. Preferential incorporation of coloured-carotenoids occurs in the LH2 complexes from non-sulphur purple bacteria under carotenoid-limiting conditions. PHOTOSYNTHESIS RESEARCH 2005; 86:25-35. [PMID: 16172923 DOI: 10.1007/s11120-005-3481-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 03/09/2005] [Indexed: 05/04/2023]
Abstract
The effect of growing Rhodopseudomonas (Rps.) acidophila and Rps. palustris in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) has been investigated. Growth with sub-maximal concentrations of DPA induces Car limitation. The exact response to DPA is species dependent. However, both Rps. acidophila and Rps. palustris respond by preferentially incorporating the limiting amount of coloured Cars into their LH2 complexes at the expense of the RC-LH1 complexes. As inhibition by DPA becomes more severe there is an increase in the percentage of Cars with reduced numbers of conjugated C=C bonds. The effect of this changed Car composition on the structure and function of the antenna complexes has been investigated using absorption, fluorescence, CD and Raman spectroscopies. The results show that although the presence of Car molecules is important for the stability of the LH2 complexes that the overall native structure can be maintained by the presence of many different Cars.
Collapse
Affiliation(s)
- Andrew Gall
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
27
|
Linnanto J, Korppi-Tommola J. Structural and Spectroscopic Properties of Mg−Bacteriochlorin and Methyl Bacteriochlorophyllides a, b, g, and h Studied by Semiempirical, ab Initio, and Density Functional Molecular Orbital Methods. J Phys Chem A 2004. [DOI: 10.1021/jp0309771] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juha Linnanto
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014 Finland
| | - Jouko Korppi-Tommola
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014 Finland
| |
Collapse
|
28
|
Groot ML, Breton J, van Wilderen LJGW, Dekker JP, van Grondelle R. Femtosecond Visible/Visible and Visible/Mid-IR Pump−Probe Study of the Photosystem II Core Antenna Complex CP47. J Phys Chem B 2004. [DOI: 10.1021/jp037966s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marie Louise Groot
- Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Jacques Breton
- Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Luuk J. G. W. van Wilderen
- Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Jan P. Dekker
- Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Rienk van Grondelle
- Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
29
|
|
30
|
|
31
|
Frolov D, Gall A, Lutz M, Robert B. Structural Asymmetry of Bacterial Reaction Centers: A Qy Resonant Raman Study of the Monomer Bacteriochlorophylls. J Phys Chem A 2002. [DOI: 10.1021/jp0133586] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dmitrij Frolov
- Service de Biophysique des Fonctions Membranaires, DBJ̇C/CEA and URA 2096/CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| | - Andrew Gall
- Service de Biophysique des Fonctions Membranaires, DBJ̇C/CEA and URA 2096/CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| | - Marc Lutz
- Service de Biophysique des Fonctions Membranaires, DBJ̇C/CEA and URA 2096/CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| | - Bruno Robert
- Service de Biophysique des Fonctions Membranaires, DBJ̇C/CEA and URA 2096/CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
32
|
Srivatsan N, Norris JR. Electron Paramagnetic Resonance Study of Oxidized B820 Complexes. J Phys Chem B 2001. [DOI: 10.1021/jp011676z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nagarajan Srivatsan
- Division of Chemistry and Chemical Engineering, Mail Stop 127-72, California Institute of Technology, Pasadena, California 91125
| | - James R. Norris
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| |
Collapse
|
33
|
Rau HK, Snigula H, Struck A, Robert B, Scheer H, Haehnel W. Design, synthesis and properties of synthetic chlorophyll proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3284-95. [PMID: 11389731 DOI: 10.1046/j.1432-1327.2001.02231.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A chemoselective method is described for coupling chlorophyll derivatives with an aldehyde group to synthetic peptides or proteins modified with an aminoxyacetyl group at the epsilon-amino group of a lysine residue. Three template-assembled antiparallel four-helix bundles were synthesized for the ligation of one or two chlorophylls. This was achieved by coupling unprotected peptides to cysteine residues of a cyclic decapeptide by thioether formation. The amphiphilic helices were designed to form a hydrophobic pocket for the chlorophyll derivatives. Chlorophyll derivatives Zn-methyl-pheophorbide b and Zn-methyl-pyropheophorbide d were used. The aldehyde group of these chlorophyll derivatives was ligated to the modified lysine group to form an oxime bond. The peptide-chlorophyll conjugates were characterized by electrospray mass spectrometry, analytical HPLC, and UV/visible spectroscopy. Two four-helix bundle chlorophyll conjugates were further characterized by size-exclusion chromatography, circular dichroism, and resonance Raman spectroscopy.
Collapse
Affiliation(s)
- H K Rau
- Institut für Biologie II/Biochemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Linnanto J, Korppi-Tommola J. Spectroscopic Properties of Mg−Chlorin, Mg−Bacteriochlorin, and Bacteriochlorophylls a, b, c, d, e, f, g, and h Studied by Semiempirical and Ab Initio MO/CI Methods. J Phys Chem A 2001. [DOI: 10.1021/jp0021547] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juha Linnanto
- Department of Chemistry, University of Jyväskylä, P.O.Box 35, FIN-40351 Jyväskylä, Finland
| | - Jouko Korppi-Tommola
- Department of Chemistry, University of Jyväskylä, P.O.Box 35, FIN-40351 Jyväskylä, Finland
| |
Collapse
|
35
|
Gall A, Ellervee A, Bellissent-Funel MC, Robert B, Freiberg A. Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R26.1. Biophys J 2001; 80:1487-97. [PMID: 11222309 PMCID: PMC1301340 DOI: 10.1016/s0006-3495(01)76121-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-pressure studies on the photochemical reaction center from the photosynthetic bacterium Rhodobacter sphaeroides, strain R26.1, shows that, up to 0.6 GPa, this carotenoid-less membrane protein does not loose its three-dimensional structure at room temperature. However, as evidenced by Fourier-transform preresonance Raman and electronic absorption spectra, between the atmospheric pressure and 0.2 GPa, the structure of the bacterial reaction center experiences a number of local reorganizations in the binding site of the primary electron donor. Above that value, the apparent compressibility of this membrane protein is inhomogeneous, being most noticeable in proximity to the bacteriopheophytin molecules. In this elevated pressure range, no more structural reorganization of the primary electron donor binding site can be observed. However, its electronic structure becomes dramatically perturbed, and the oscillator strength of its Q(y) electronic transition drops by nearly one order of magnitude. This effect is likely due to very small, pressure-induced changes in its dimeric structure.
Collapse
Affiliation(s)
- A Gall
- Laboratoire Léon Brillouin, 91191 Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|