1
|
Das G, Harikrishna S, Gore KR. Investigating the Effect of Chemical Modifications on the Ribose Sugar Conformation, Watson-Crick Base Pairing, and Intrastrand Stacking Interactions: A Theoretical Approach. J Phys Chem B 2024; 128:8313-8331. [PMID: 39172066 DOI: 10.1021/acs.jpcb.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Over the last few decades, chemically modified sugars have been incorporated into nucleic acid-based therapeutics to improve their pharmacological potential. Chemical modification can influence the sugar conformation, Watson-Crick hydrogen (W-C) bonding, and nucleobase stacking interactions, which play major roles in the structural integrity and dynamic properties of nucleic acid duplexes. In this study, we categorized 33 uridine (U*) and cytidine (C*) sugar modifications and calculated their sugar conformational parameters. We also calculated the Watson-Crick hydrogen bond energies of the modified RNA-type base pairs (U*:A and C*:G) using DFT and sSAPT0 methods. The W-C base pairing energy calculations suggested that the South-type modified sugar strengthens the C*:G base pair and weakens the U*:A base pair compared to the unmodified one. In contrast, the North-type sugar modifications form weaker C*:G base pair and marginally stronger U*:A base pair compared to the South-type modified sugars. Moreover, intrastrand base stacking energies were calculated for 15 modifications incorporated at the fourth position in 7-mer non-self-complementary RNA duplexes [(GCAU*GAC)2 and (GCAC*GAC)2], utilizing molecular dynamics simulation and quantum mechanical (DFT and sSAPT0) methods. The sugar modifications were found to have minimal effect on the intrastrand base-stacking interactions. However, the glycol nucleic acid modification disturbs the intrastrand base-stacking significantly, corroborating the experimental data.
Collapse
Affiliation(s)
- Gourav Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - S Harikrishna
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Kiran R Gore
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Ding D, Fang Z, Kim SC, O’Flaherty DK, Jia X, Stone TB, Zhou L, Szostak JW. Unusual Base Pair between Two 2-Thiouridines and Its Implication for Nonenzymatic RNA Copying. J Am Chem Soc 2024; 146:3861-3871. [PMID: 38293747 PMCID: PMC10870715 DOI: 10.1021/jacs.3c11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
2-Thiouridine (s2U) is a nucleobase modification that confers enhanced efficiency and fidelity both on modern tRNA codon translation and on nonenzymatic and ribozyme-catalyzed RNA copying. We have discovered an unusual base pair between two 2-thiouridines that stabilizes an RNA duplex to a degree that is comparable to that of a native A:U base pair. High-resolution crystal structures indicate similar base-pairing geometry and stacking interactions in duplexes containing s2U:s2U compared to those with U:U pairs. Notably, the C═O···H-N hydrogen bond in the U:U pair is replaced with a C═S···H-N hydrogen bond in the s2U:s2U base pair. The thermodynamic stability of the s2U:s2U base pair suggested that this self-pairing might lead to an increased error frequency during nonenzymatic RNA copying. However, competition experiments show that s2U:s2U base-pairing induces only a low level of misincorporation during nonenzymatic RNA template copying because the correct A:s2U base pair outcompetes the slightly weaker s2U:s2U base pair. In addition, even if an s2U is incorrectly incorporated, the addition of the next base is greatly hindered. This strong stalling effect would further increase the effective fidelity of nonenzymatic RNA copying with s2U. Our findings suggest that s2U may enhance the rate and extent of nonenzymatic copying with only a minimal cost in fidelity.
Collapse
Affiliation(s)
- Dian Ding
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Ziyuan Fang
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Seohyun Chris Kim
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Derek K. O’Flaherty
- Department
of Chemistry, College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xiwen Jia
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Talbot B. Stone
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for RNA Innovation, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lijun Zhou
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for RNA Innovation, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Todkari IA, Chandrasekaran AR, Punnoose JA, Mao S, Haruehanroengra P, Beckles C, Sheng J, Halvorsen K. Resolving altered base-pairing of RNA modifications with DNA nanoswitches. Nucleic Acids Res 2023; 51:11291-11297. [PMID: 37811879 PMCID: PMC10639047 DOI: 10.1093/nar/gkad802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
There are >170 naturally occurring RNA chemical modifications, with both known and unknown biological functions. Analytical methods for detecting chemical modifications and for analyzing their effects are relatively limited and have had difficulty keeping pace with the demand for RNA chemical biology and biochemistry research. Some modifications can affect the ability of RNA to hybridize with its complementary sequence or change the selectivity of base pairing. Here, we investigate the use of affinity-based DNA nanoswitches to resolve energetic differences in hybridization. We found that a single m3C modification can sufficiently destabilize hybridization to abolish a detection signal, while an s4U modification can selectively hybridize with G over A. These results establish proof of concept for using DNA nanoswitches to detect certain RNA modifications and analyzing their effects in base pairing stability and specificity.
Collapse
Affiliation(s)
- Iranna Annappa Todkari
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | - Jibin Abraham Punnoose
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Song Mao
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Phensinee Haruehanroengra
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Camryn Beckles
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
4
|
Ye Z, Harmon J, Ni W, Li Y, Wich D, Xu Q. The mRNA Vaccine Revolution: COVID-19 Has Launched the Future of Vaccinology. ACS NANO 2023; 17:15231-15253. [PMID: 37535899 DOI: 10.1021/acsnano.2c12584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
During the COVID-19 pandemic, mRNA (mRNA) vaccines emerged as leading vaccine candidates in a record time. Nonreplicating mRNA (NRM) and self-amplifying mRNA (SAM) technologies have been developed into high-performing and clinically viable vaccines against a range of infectious agents, notably SARS-CoV-2. mRNA vaccines demonstrate efficient in vivo delivery, long-lasting stability, and nonexistent risk of infection. The stability and translational efficiency of in vitro transcription (IVT)-mRNA can be further increased by modulating its structural elements. In this review, we present a comprehensive overview of the recent advances, key applications, and future challenges in the field of mRNA-based vaccinology.
Collapse
Affiliation(s)
- Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Joseph Harmon
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Wei Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute at Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Yamin Li
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Kawamoto Y, Wu Y, Takahashi Y, Takakura Y. Development of nucleic acid medicines based on chemical technology. Adv Drug Deliv Rev 2023; 199:114872. [PMID: 37244354 DOI: 10.1016/j.addr.2023.114872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Oligonucleotide-based therapeutics have attracted attention as an emerging modality that includes the modulation of genes and their binding proteins related to diseases, allowing us to take action on previously undruggable targets. Since the late 2010s, the number of oligonucleotide medicines approved for clinical uses has dramatically increased. Various chemistry-based technologies have been developed to improve the therapeutic properties of oligonucleotides, such as chemical modification, conjugation, and nanoparticle formation, which can increase nuclease resistance, enhance affinity and selectivity to target sites, suppress off-target effects, and improve pharmacokinetic properties. Similar strategies employing modified nucleobases and lipid nanoparticles have been used for developing coronavirus disease 2019 mRNA vaccines. In this review, we provide an overview of the development of chemistry-based technologies aimed at using nucleic acids for developing therapeutics over the past several decades, with a specific emphasis on the structural design and functionality of chemical modification strategies.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - You Wu
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Zeng Y, Fair BJ, Zeng H, Krishnamohan A, Hou Y, Hall JM, Ruthenburg AJ, Li YI, Staley JP. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol Cell 2022; 82:4681-4699.e8. [PMID: 36435176 PMCID: PMC10448999 DOI: 10.1016/j.molcel.2022.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin J Fair
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Huilin Zeng
- 855 Jefferson Ave. Redwood City, CA 94063, USA
| | - Aiswarya Krishnamohan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yichen Hou
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Johnathon M Hall
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Hoy A, Zheng YY, Sheng J, Royzen M. Bio-Orthogonal Chemistry Conjugation Strategy Facilitates Investigation of N-methyladenosine and Thiouridine Guide RNA Modifications on CRISPR Activity. CRISPR J 2022; 5:787-798. [PMID: 36378256 PMCID: PMC9805849 DOI: 10.1089/crispr.2022.0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The CRISPR-Cas9 system is an important genome editing tool that holds enormous potential toward the treatment of human genetic diseases. Clinical success of CRISPR technology is dependent on the incorporation of modifications into the single-guide RNA (sgRNA). However, chemical synthesis of modified sgRNAs, which are over 100 nucleotides in length, is difficult and low-yielding. We developed a conjugation strategy that utilized bio-orthogonal chemistry to efficiently assemble functional sgRNAs containing nucleobase modifications. The described approach entails the chemical synthesis of two shorter RNA oligonucleotides: a 31-mer containing tetrazine (Tz) group and a 70-mer modified with a trans-cyclooctene (TCO) moiety. The two oligonucleotides were conjugated to form functional sgRNAs. The two-component conjugation methodology was utilized to synthesize a library of sgRNAs containing nucleobase modifications such as N1-methyladenosine (m1A), N6-methyladenosine (m6A), 2-thiouridine (s2U), and 4-thiouridine (s4U). The impact of these RNA modifications on overall CRISPR activity were investigated in vitro and in Cas9-expressing HEK293T cells.
Collapse
Affiliation(s)
- Alyssa Hoy
- Department of Chemistry, University at Albany, SUNY, Albany, New York, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, SUNY, Albany, New York, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, SUNY, Albany, New York, USA.,Address correspondence to: Jia Sheng, Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA,
| | - Maksim Royzen
- Department of Chemistry, University at Albany, SUNY, Albany, New York, USA.,Address correspondence to: Maksim Royzen, Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA,
| |
Collapse
|
8
|
Whitaker D, Powner MW. Prebiotic synthesis and triphosphorylation of 3'-amino-TNA nucleosides. Nat Chem 2022; 14:766-774. [PMID: 35778563 DOI: 10.1038/s41557-022-00982-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Nucleosides are essential to the emergence of life, and so their synthesis is a key challenge for prebiotic chemistry. Although amino-nucleosides have enhanced reactivity in water compared with ribonucleosides, they are assumed to be prebiotically irrelevant due to perceived difficulties with their selective formation. Here we demonstrate that 3'-amino-TNA nucleosides (TNA, threose nucleic acid) are formed diastereoselectively and regiospecifically from prebiotic feedstocks in four high-yielding steps. Phosphate provides an unexpected resolution, leading to spontaneous purification of the genetically relevant threo-isomer. Furthermore, 3'-amino-TNA nucleosides are shown to be phosphorylated directly in water, under mild conditions with cyclic trimetaphosphate, forming a nucleoside triphosphate (NTP) in a manner not feasible for canonical nucleosides. Our results suggest 3'-amino-TNA nucleosides may have been present on the early Earth, and the ease with which these NTPs form, alongside the inherent selectivity for the Watson-Crick base-pairing threo-monomer, warrants further study of the role they could play during the emergence of life.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK
| | | |
Collapse
|
9
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Szczupak P, Radzikowska-Cieciura E, Kulik K, Madaj R, Sierant M, Krakowiak A, Nawrot B. Escherichia coli tRNA 2-selenouridine synthase SelU selects its prenyl substrate to accomplish its enzymatic function. Bioorg Chem 2022; 122:105739. [DOI: 10.1016/j.bioorg.2022.105739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
|
11
|
Soszynska-Jozwiak M, Pszczola M, Piasecka J, Peterson JM, Moss WN, Taras-Goslinska K, Kierzek R, Kierzek E. Universal and strain specific structure features of segment 8 genomic RNA of influenza A virus-application of 4-thiouridine photocrosslinking. J Biol Chem 2021; 297:101245. [PMID: 34688660 PMCID: PMC8666676 DOI: 10.1016/j.jbc.2021.101245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
RNA structure in the influenza A virus (IAV) has been the focus of several studies that have shown connections between conserved secondary structure motifs and their biological function in the virus replication cycle. Questions have arisen on how to best recognize and understand the pandemic properties of IAV strains from an RNA perspective, but determination of the RNA secondary structure has been challenging. Herein, we used chemical mapping to determine the secondary structure of segment 8 viral RNA (vRNA) of the pandemic A/California/04/2009 (H1N1) strain of IAV. Additionally, this long, naturally occurring RNA served as a model to evaluate RNA mapping with 4-thiouridine (4sU) crosslinking. We explored 4-thiouridine as a probe of nucleotides in close proximity, through its incorporation into newly transcribed RNA and subsequent photoactivation. RNA secondary structural features both universal to type A strains and unique to the A/California/04/2009 (H1N1) strain were recognized. 4sU mapping confirmed and facilitated RNA structure prediction, according to several rules: 4sU photocross-linking forms efficiently in the double-stranded region of RNA with some flexibility, in the ends of helices, and across bulges and loops when their structural mobility is permitted. This method highlighted three-dimensional properties of segment 8 vRNA secondary structure motifs and allowed to propose several long-range three-dimensional interactions. 4sU mapping combined with chemical mapping and bioinformatic analysis could be used to enhance the RNA structure determination as well as recognition of target regions for antisense strategies or viral RNA detection.
Collapse
Affiliation(s)
| | - Maciej Pszczola
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Julita Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Jake M Peterson
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | | | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
12
|
Schott J, Reitter S, Lindner D, Grosser J, Bruer M, Shenoy A, Geiger T, Mathes A, Dobreva G, Stoecklin G. Nascent Ribo-Seq measures ribosomal loading time and reveals kinetic impact on ribosome density. Nat Methods 2021; 18:1068-1074. [PMID: 34480152 DOI: 10.1038/s41592-021-01250-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/23/2021] [Indexed: 01/21/2023]
Abstract
In general, mRNAs are assumed to be loaded with ribosomes instantly upon entry into the cytoplasm. To measure ribosome density (RD) on nascent mRNA, we developed nascent Ribo-Seq by combining Ribo-Seq with progressive 4-thiouridine labeling. In mouse macrophages, we determined experimentally the lag between the appearance of nascent mRNA and its association with ribosomes, which was calculated to be 20-22 min for bulk mRNA. In mouse embryonic stem cells, nRibo-Seq revealed an even stronger lag of 35-38 min in ribosome loading. After stimulation of macrophages with lipopolysaccharide, the lag between cytoplasmic and translated mRNA leads to uncoupling between input and ribosome-protected fragments, which gives rise to distorted RD measurements under conditions where mRNA amounts are far from steady-state expression. As a result, we demonstrate that transcriptional changes affect RD in a passive way.
Collapse
Affiliation(s)
- Johanna Schott
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany.
| | - Sonja Reitter
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Doris Lindner
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Jan Grosser
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Marius Bruer
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Anjana Shenoy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arthur Mathes
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Georg Stoecklin
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
13
|
Zheng YY, Wu Y, Begley TJ, Sheng J. Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chem Biol 2021; 2:990-1003. [PMID: 34458821 PMCID: PMC8341892 DOI: 10.1039/d1cb00038a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfur modifications have been discovered on both DNA and RNA. Sulfur substitution of oxygen atoms at nucleobase or backbone locations in the nucleic acid framework led to a wide variety of sulfur-modified nucleosides and nucleotides. While the discovery, regulation and functions of DNA phosphorothioate (PS) modification, where one of the non-bridging oxygen atoms is replaced by sulfur on the DNA backbone, are important topics, this review focuses on the sulfur modification in natural cellular RNAs and therapeutic nucleic acids. The sulfur modifications on RNAs exhibit diversity in terms of modification location and cellular function, but the various sulfur modifications share common biosynthetic strategies across RNA species, cell types and domains of life. The first section reviews the post-transcriptional sulfur modifications on nucleobases with an emphasis on thiouridine on tRNA and phosphorothioate modification on RNA backbones, as well as the functions of the sulfur modifications on different species of cellular RNAs. The second section reviews the biosynthesis of different types of sulfur modifications and summarizes the general strategy for the biosynthesis of sulfur-containing RNA residues. One of the main goals of investigating sulfur modifications is to aid the genomic drug development pipeline and enhance our understandings of the rapidly growing nucleic acid-based gene therapies. The last section of the review focuses on the current drug development strategies employing sulfur substitution of oxygen atoms in therapeutic RNAs.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Ying Wu
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Thomas J Begley
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- Department of Biological Science, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| |
Collapse
|
14
|
Reimer KA, Mimoso CA, Adelman K, Neugebauer KM. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis. Mol Cell 2021; 81:998-1012.e7. [PMID: 33440169 DOI: 10.1016/j.molcel.2020.12.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Pre-mRNA processing steps are tightly coordinated with transcription in many organisms. To determine how co-transcriptional splicing is integrated with transcription elongation and 3' end formation in mammalian cells, we performed long-read sequencing of individual nascent RNAs and precision run-on sequencing (PRO-seq) during mouse erythropoiesis. Splicing was not accompanied by transcriptional pausing and was detected when RNA polymerase II (Pol II) was within 75-300 nucleotides of 3' splice sites (3'SSs), often during transcription of the downstream exon. Interestingly, several hundred introns displayed abundant splicing intermediates, suggesting that splicing delays can take place between the two catalytic steps. Overall, splicing efficiencies were correlated among introns within the same transcript, and intron retention was associated with inefficient 3' end cleavage. Remarkably, a thalassemia patient-derived mutation introducing a cryptic 3'SS improved both splicing and 3' end cleavage of individual β-globin transcripts, demonstrating functional coupling between the two co-transcriptional processes as a determinant of productive gene output.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
15
|
Reimer K, Neugebauer K. Preparation of Mammalian Nascent RNA for Long Read Sequencing. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2020; 133:e128. [PMID: 33085989 PMCID: PMC7586757 DOI: 10.1002/cpmb.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long read sequencing technologies now allow high-quality sequencing of RNAs (or their cDNAs) that are hundreds to thousands of nucleotides long. Long read sequences of nascent RNA provide single-nucleotide-resolution information about co-transcriptional RNA processing events-e.g., splicing, folding, and base modifications. Here, we describe how to isolate nascent RNA from mammalian cells through subcellular fractionation of chromatin-associated RNA, as well as how to deplete poly(A)+ RNA and rRNA, and, finally, how to generate a full-length cDNA library for use on long read sequencing platforms. This approach allows for an understanding of coordinated splicing status across multi-intron transcripts by revealing patterns of splicing or other RNA processing events that cannot be gained from traditional short read RNA sequencing. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Subcellular fractionation Basic Protocol 2: Nascent RNA isolation and adapter ligation Basic Protocol 3: cDNA amplicon preparation.
Collapse
Affiliation(s)
- Kirsten Reimer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven CT, 06520, 203-785-2358
| | - Karla Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven CT, 06520, 203-785-2358
| |
Collapse
|
16
|
Clip for studying protein-RNA interactions that regulate virus replication. Methods 2020; 183:84-92. [PMID: 31765715 DOI: 10.1016/j.ymeth.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
Viral and cellular RNA-binding proteins regulate numerous key steps in the replication of diverse virus genera. Viruses efficiently co-opt the host cell machinery for purposes such as transcription, splicing and subcellular localization of viral genomes. Though viral RNAs often need to resemble cellular RNAs to effectively utilize the cellular machinery, they still retain unique sequence and structural features for recognition by viral proteins for processes such as RNA polymerization, RNA export and selective packaging into virus particles. While beneficial for virus replication, distinct features of viral nucleic acids can also be recognized as foreign by several host defense proteins. Development of the crosslinking immunoprecipitation coupled with sequencing (CLIP) approach has allowed the study of viral and cellular RNA binding proteins that regulate critical aspects of viral replication in unprecedented detail. By combining immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, CLIP provides a global account of RNA sequences bound by RNA-binding proteins of interest in physiological settings and at near-nucleotide resolution. Here, we describe the step-by-step application of the CLIP methodology within the context of two cellular splicing regulatory proteins, hnRNP A1 and hnRNP H1 that regulate HIV-1 splicing. In principle, this versatile protocol can be applied to many other viral and cellular RNA-binding proteins.
Collapse
|
17
|
C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3' Synonymous mRNA Codons. Int J Mol Sci 2020; 21:ijms21082882. [PMID: 32326096 PMCID: PMC7216251 DOI: 10.3390/ijms21082882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
5-Substituted 2-selenouridines (R5Se2U) are post-transcriptional modifications present in the first anticodon position of transfer RNA. Their functional role in the regulation of gene expression is elusive. Here, we present efficient syntheses of 5-methylaminomethyl-2-selenouridine (1, mnm5Se2U), 5-carboxymethylaminomethyl-2-selenouridine (2, cmnm5Se2U), and Se2U (3) alongside the crystal structure of the latter nucleoside. By using pH-dependent potentiometric titration, pKa values for the N3H groups of 1–3 were assessed to be significantly lower compared to their 2-thio- and 2-oxo-congeners. At physiological conditions (pH 7.4), Se2-uridines 1 and 2 preferentially adopted the zwitterionic form (ZI, ca. 90%), with the positive charge located at the amino alkyl side chain and the negative charge at the Se2-N3-O4 edge. As shown by density functional theory (DFT) calculations, this ZI form efficiently bound to guanine, forming the so-called “new wobble base pair”, which was accepted by the ribosome architecture. These data suggest that the tRNA anticodons with wobble R5Se2Us may preferentially read the 5′-NNG-3′ synonymous codons, unlike their 2-thio- and 2-oxo-precursors, which preferentially read the 5′-NNA-3′ codons. Thus, the interplay between the levels of U-, S2U- and Se2U-tRNA may have a dominant role in the epitranscriptomic regulation of gene expression via reading of the synonymous 3′-A- and 3′-G-ending codons.
Collapse
|
18
|
Zhou Y, Routh A. Mapping RNA-capsid interactions and RNA secondary structure within virus particles using next-generation sequencing. Nucleic Acids Res 2020; 48:e12. [PMID: 31799606 PMCID: PMC6954446 DOI: 10.1093/nar/gkz1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 01/24/2023] Open
Abstract
To characterize RNA-capsid binding sites genome-wide within mature RNA virus particles, we have developed a Next-Generation Sequencing (NGS) platform: viral Photo-Activatable Ribonucleoside CrossLinking (vPAR-CL). In vPAR-CL, 4-thiouridine is incorporated into the encapsidated genomes of virus particles and subsequently UV-crosslinked to adjacent capsid proteins. We demonstrate that vPAR-CL can readily and reliably identify capsid binding sites in genomic viral RNA by detecting crosslink-specific uridine to cytidine transitions in NGS data. Using Flock House virus (FHV) as a model system, we identified highly consistent and significant vPAR-CL signals across virus RNA genome, indicating a clear tropism of the encapsidated RNA genome. Certain interaction sites coincide with previously identified functional RNA motifs. We additionally performed dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) to generate a high-resolution profile of single-stranded genomic RNA inside viral particles. Combining vPAR-CL and DMS-MaPseq reveals that the predominant RNA-capsid interaction sites favored double-stranded RNA regions. We disrupted secondary structures associated with vPAR-CL sites using synonymous mutations, resulting in varied effects to virus replication, propagation and packaging. Certain mutations showed substantial deficiency in virus replication, suggesting these RNA-capsid sites are multifunctional. These provide further evidence to support that FHV packaging and replication are highly coordinated and inter-dependent events.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
- To whom correspondence should be address. Tel: +1 409 772 3663;
| |
Collapse
|
19
|
Kim SC, Zhou L, Zhang W, O'Flaherty DK, Rondo-Brovetto V, Szostak JW. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2'-Deoxynucleotides. J Am Chem Soc 2020; 142:2317-2326. [PMID: 31913615 PMCID: PMC7577264 DOI: 10.1021/jacs.9b11239] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The abiotic synthesis of ribonucleotides
is thought to have been
an essential step toward the emergence of the RNA world. However,
it is likely that the prebiotic synthesis of ribonucleotides was accompanied
by the simultaneous synthesis of arabinonucleotides, 2′-deoxyribonucleotides,
and other variations on the canonical nucleotides. In order to understand
how relatively homogeneous RNA could have emerged from such complex
mixtures, we have examined the properties of arabinonucleotides and
2′-deoxyribonucleotides in nonenzymatic template-directed primer
extension reactions. We show that nonenzymatic primer extension with
activated arabinonucleotides is much less efficient than with activated
ribonucleotides, and furthermore that once an arabinonucleotide is
incorporated, continued primer extension is strongly inhibited. As
previously shown, 2′-deoxyribonucleotides are also less efficiently
incorporated in primer extension reactions, but the difference is
more modest. Experiments with mixtures of nucleotides suggest that
the coexistence of ribo- and arabinonucleotides does not impede the
copying of RNA templates. Moreover, chimeric oligoribonucleotides
containing 2′-deoxy- or arabinonucleotides are effective templates
for RNA synthesis. We propose that the initial genetic polymers were
random sequence chimeric oligonucleotides formed by untemplated polymerization,
but that template copying chemistry favored RNA synthesis; multiple
rounds of replication may have led to pools of oligomers composed
mainly of RNA.
Collapse
Affiliation(s)
- Seohyun Chris Kim
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Wen Zhang
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Valeria Rondo-Brovetto
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology , Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| |
Collapse
|
20
|
A Structural Basis for Restricted Codon Recognition Mediated by 2-thiocytidine in tRNA Containing a Wobble Position Inosine. J Mol Biol 2020; 432:913-929. [PMID: 31945376 DOI: 10.1016/j.jmb.2019.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022]
Abstract
Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.
Collapse
|
21
|
Ong AAL, Toh DFK, Krishna MS, Patil KM, Okamura K, Chen G. Incorporating 2-Thiouracil into Short Double-Stranded RNA-Binding Peptide Nucleic Acids for Enhanced Recognition of A-U Pairs and for Targeting a MicroRNA Hairpin Precursor. Biochemistry 2019; 58:3444-3453. [PMID: 31318532 DOI: 10.1021/acs.biochem.9b00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemically modified short peptide nucleic acids (PNAs) recognize RNA duplexes under near physiological conditions by major-groove PNA·RNA-RNA triplex formation and show great promise for the development of RNA-targeting probes and therapeutics. Thymine (T) and uracil (U) are often incorporated into PNAs to recognize A-U pairs through major-groove T·A-U and U·A-U base triple formation. Incorporation of a modified nucleobase, 2-thiouracil (s2U), into triplex-forming oligonucleotides stabilizes both DNA and RNA triplexes. Thiolation of uracil causes a decrease in the dehydration energy penalty for triplex formation as well as a decrease in the pKa of the N3 atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions, similar to the previously reported thiolation effect of pseudoisocytosine (J to L substitution). Here, we incorporated s2U into short PNAs, followed by binding studies of a series of s2U-modified PNAs. We demonstrated by nondenaturing polyacrylamide gel electrophoresis and thermal melting experiments that s2U and L incorporated into dsRNA-binding PNAs (dbPNAs) enhance the recognition of A-U and G-C pairs, respectively, in RNA duplexes in a position-independent manner, with no appreciable binding to the DNA duplex. Combining s2U and L modifications in dbPNAs facilitates enhanced recognition of dsRNAs and maintains selective binding to dsRNAs over ssRNAs. We further demonstrated through a cell-free assay the application of the s2U- and L-modified dbPNAs (8-mer, with a molecular mass of ∼2.3 kDa) in the inhibition of the pre-microRNA-198 maturation in a substrate-specific manner. Thus, s2U-modified dbPNAs may be generally useful for the enhanced and selective recognition of RNA duplexes and for the regulation of RNA functions.
Collapse
Affiliation(s)
- Alan Ann Lerk Ong
- NTU Institute for Health Technologies (HeathTech NTU), Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , Singapore 637553.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Katsutomo Okamura
- Division of Biological Sciences , Nara Institute of Science and Technology , 8916-5 Takayama , Ikoma , Nara 630-0192 , Japan
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
22
|
Alcolea Palafox M, Franklin Benial AM, K Rastogi V. Biomolecules of 2-Thiouracil, 4-Thiouracil and 2,4-Dithiouracil: A DFT Study of the Hydration, Molecular Docking and Effect in DNA:RNAMicrohelixes. Int J Mol Sci 2019; 20:E3477. [PMID: 31311161 PMCID: PMC6678171 DOI: 10.3390/ijms20143477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The molecular structure of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil was analyzed under the effect of the first and second hydration shell by using the B3LYP density functional (DFT) method, and the results were compared to those obtained for the uracil molecule. A slight difference in the water distribution appears in these molecules. On the hydration of these molecules several trends in bond lengths and atomic charges were established. The ring in uracil molecule appears easier to be deformed and adapted to different environments as compared to that when it is thio-substituted. Molecular docking calculations of 2-thiouracil against three different pathogens: Bacillus subtilis, Escherichia coli and Candida albicans were carried out. Docking calculations of 2,4-dithiouracil ligand with various targeted proteins were also performed. Different DNA: RNA hybrid microhelixes with uridine, 2-thiouridine, 4-thiouridine and 2,4-dithiouridine nucleosides were optimized in a simple model with three nucleotide base pairs. Two main types of microhelixes were analyzed in detail depending on the intramolecular H-bond of the 2'-OH group. The weaker Watson-Crick (WC) base pair formed with thio-substituted uracil than with unsubstituted ones slightly deforms the helical and backbone parameters, especially with 2,4-dithiouridine. However, the thio-substitution significantly increases the dipole moment of the A-type microhelixes, as well as the rise and propeller twist parameters.
Collapse
Affiliation(s)
- M Alcolea Palafox
- Departamento de Química-Física, Facultad de CienciasQuímicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | - V K Rastogi
- Indian Spectroscopy Society, KC 68/1, Old Kavinagar, Ghaziabad 201002, India
| |
Collapse
|
23
|
Krishna MS, Toh DFK, Meng Z, Ong AAL, Wang Z, Lu Y, Xia K, Prabakaran M, Chen G. Sequence- And Structure-Specific Probing of RNAs by Short Nucleobase-Modified dsRNA-Binding PNAs Incorporating a Fluorescent Light-up Uracil Analog. Anal Chem 2019; 91:5331-5338. [PMID: 30873827 DOI: 10.1021/acs.analchem.9b00280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. The strategy of directly targeting double-stranded RNA (dsRNA) by triplex-formation is relatively underexplored mainly due to the weak binding at physiological conditions for the traditional triplex-forming oligonucleotides (TFOs). Compared to DNA and RNA, peptide nucleic acids (PNAs) are chemically stable and have a neutral peptide-like backbone, and thus, they show significantly enhanced binding to natural nucleic acids. We have successfully developed nucleobase-modified dsRNA-binding PNAs (dbPNAs) to facilitate structure-specific and selective recognition of dsRNA over single-stranded RNA (ssRNA) and dsDNA regions at near-physiological conditions. The triplex formation strategy facilitates the targeting of not only the sequence but also the secondary structure of RNA. Here, we report the development of novel dbPNA-based fluorescent light-up probes through the incorporation of A-U pair-recognizing 5-benzothiophene uracil (btU). The incorporation of btU into dbPNAs does not affect the binding affinity toward dsRNAs significantly, in most cases, as evidenced by our nondenaturing gel shift assay data. The blue fluorescence emission intensity of btU-modified dbPNAs is sequence- and structure-specifically enhanced by dsRNAs, including the influenza viral RNA panhandle duplex and HIV-1-1 ribosomal frameshift-inducing RNA hairpin, but not ssRNAs or DNAs, at 200 mM NaCl, pH 7.5. Thus, dbPNAs incorporating btU-modified and other further modified fluorescent nucleobases will be useful biochemical tools for probing and detecting RNA structures, interactions, and functions.
Collapse
Affiliation(s)
- Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenyu Meng
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Zhenzhang Wang
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory , 1 Research Link, National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| |
Collapse
|
24
|
Gładysz M, Andrałojć W, Czapik T, Gdaniec Z, Kierzek R. Thermodynamic and structural contributions of the 6-thioguanosine residue to helical properties of RNA. Sci Rep 2019; 9:4385. [PMID: 30867505 PMCID: PMC6416399 DOI: 10.1038/s41598-019-40715-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Thionucleotides, especially 4-thiouridine and 6-thioguanosine, are photosensitive molecules that photocrosslink to both proteins and nucleic acids, and this feature is a major reason for their application in various investigations. To get insight into the thermodynamic and structural contributions of 6-thioguanosine to the properties of RNA duplexes a systematic study was performed. In a series of RNA duplexes, selected guanosine residues located in G-C base pairs, mismatches (G-G, G-U, and G-A), or 5' and 3'-dangling ends were replaced with 6-thioguanosine. Generally, the presence of 6-thioguanosine diminishes the thermodynamic stability of RNA duplexes. This effect depends on its position within duplexes and the sequence of adjacent base pairs. However, when placed at a dangling end a 6-thioguanosine residue actually exerts a weak stabilizing effect. Furthermore, the structural effect of 6-thioguanosine substitution appears to be minimal based on NMR and Circular Dichroism (CD) data.
Collapse
Affiliation(s)
- Michał Gładysz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Tomasz Czapik
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland.
| |
Collapse
|
25
|
Lisowiec-Wąchnicka J, Bartyś N, Pasternak A. A systematic study on the influence of thermodynamic asymmetry of 5'-ends of siRNA duplexes in relation to their silencing potency. Sci Rep 2019; 9:2477. [PMID: 30792489 PMCID: PMC6385221 DOI: 10.1038/s41598-018-36620-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023] Open
Abstract
siRNA molecules possess high potential as molecular tools and can be used as effective therapeutics in humans. One of the key steps in the action of these molecules is the choice of antisense strand by the RNA-induced silencing complex (RISC). To explain this process, we verified the theory which states that antisense strand selection is based on the thermodynamically less stable 5′ end of siRNA. Based on the studies presented herein, we observed that for the tested siRNA duplexes, the difference in the thermodynamic stability of the terminal, penultimate and pre-penultimate pairs in the duplex siRNA is not the dominant factor in antisense strand selection. We found that both strands in each tested siRNA molecule are used as an antisense strand. The introduction of modified nucleotides, whose impact on the thermodynamic stability of siRNA duplexes was studied, results in changes in antisense strand selection by the RISC complex. The presence of a modified residue often caused predominant selection of only one antisense strand which is at variance with the theory of siRNA strand bias.
Collapse
Affiliation(s)
- Jolanta Lisowiec-Wąchnicka
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Natalia Bartyś
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
26
|
Alcolea Palafox M. Effect of the sulfur atom on S2 and S4 positions of the uracil ring in different DNA:RNA hybrid microhelixes with three nucleotide base pairs. Biopolymers 2019; 110:e23247. [PMID: 30676643 DOI: 10.1002/bip.23247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
The effect of the sulphur atom on the uracil ring was analyzed in different DNA:RNA microhelixes with three nucleotide base-pairs, including uridine, 2-thiouridine, 4-thiouridine, 2,4-dithiouridine, cytidine, adenosine and guanosine. Distinct backbone and helical parameters were optimized at different density functional (DFT) levels. The Watson-Crick pair with 2-thiouridine appears weaker than with uridine, but its interaction with water molecules appears easier. Two types of microhelixes were found, depending on the H-bond of H2' hydroxyl atom: A-type appears with the ribose ring in 3 E-envelope C3' -endo, and B-type in 2 E-envelope C2' -endo. B-type is less common but it is more stable and with higher dipole-moment. The sulphur atoms significantly increase the dipole-moment of the microhelix, as well as the rise and propeller twist parameters. Simulations with four Na atoms H-bonded to the phosphate groups, and further hydration with explicit water molecules were carried out. A re-definition of the numerical value calculation of several base-pair and base-stacking parameters is suggested.
Collapse
Affiliation(s)
- Mauricio Alcolea Palafox
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
27
|
The emerging impact of tRNA modifications in the brain and nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:412-428. [PMID: 30529455 DOI: 10.1016/j.bbagrm.2018.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
Abstract
A remarkable number of neurodevelopmental disorders have been linked to defects in tRNA modifications. These discoveries place tRNA modifications in the spotlight as critical modulators of gene expression pathways that are required for proper organismal growth and development. Here, we discuss the emerging molecular and cellular functions of the diverse tRNA modifications linked to cognitive and neurological disorders. In particular, we describe how the structure and location of a tRNA modification influences tRNA folding, stability, and function. We then highlight how modifications in tRNA can impact multiple aspects of protein translation that are instrumental for maintaining proper cellular proteostasis. Importantly, we describe how perturbations in tRNA modification lead to a spectrum of deleterious biological outcomes that can disturb neurodevelopment and neurological function. Finally, we summarize the biological themes shared by the different tRNA modifications linked to cognitive disorders and offer insight into the future questions that remain to decipher the role of tRNA modifications. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
|
28
|
Joshi K, Bhatt MJ, Farabaugh PJ. Codon-specific effects of tRNA anticodon loop modifications on translational misreading errors in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 2018; 46:10331-10339. [PMID: 30060218 PMCID: PMC6212777 DOI: 10.1093/nar/gky664] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 01/10/2023] Open
Abstract
Protein synthesis requires both high speed and accuracy to ensure a healthy cellular environment. Estimates of errors during protein synthesis in Saccharomyces cerevisiae have varied from 10-3 to 10-4 errors per codon. Here, we show that errors made by ${\rm{tRNA}}^{\rm Glu}_{\rm UUC}$ in yeast can vary 100-fold, from 10-6 to 10-4 errors per codon. The most frequent errors require a G•U mismatch at the second position for the near cognate codon GGA (Gly). We also show, contrary to our previous results, that yeast tRNAs can make errors involving mismatches at the wobble position but with low efficiency. We have also assessed the effect on misreading frequency of post-transcriptional modifications of tRNAs, which are known to regulate cognate codon decoding in yeast. We tested the roles of mcm5s2U34 and t6A37 and show that their effects depend on details of the codon anticodon interaction including the position of the modification with respect to the base mismatch and the nature of that mismatch. Both mcm5 and s2 modification of wobble uridine strongly stabilizes G2•U35 mismatches when ${\rm{tRNA}}^{\rm Glu}_{\rm UUC}$ misreads the GGA Gly codon but has weaker effects on other mismatches. By contrast, t6A37 destabilizes U1•U36 mismatches when ${\rm{tRNA}}^{\rm Lys}_{\rm UUU}$ misreads UAA or UAG but stabilizes mismatches at the second and wobble positions.
Collapse
Affiliation(s)
- Kartikeya Joshi
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Monika J Bhatt
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
29
|
Kotkowiak W, Czapik T, Pasternak A. Novel isoguanine derivative of unlocked nucleic acid-Investigations of thermodynamics and biological potential of modified thrombin binding aptamer. PLoS One 2018; 13:e0197835. [PMID: 29795635 PMCID: PMC5967839 DOI: 10.1371/journal.pone.0197835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/09/2018] [Indexed: 11/18/2022] Open
Abstract
Thrombin binding aptamer (TBA), is a short DNA 15-mer that forms G-quadruplex structure and possesses anticoagulant properties. Some chemical modifications, including unlocked nucleic acids (UNA), 2'-deoxy-isoguanosine and 2'-deoxy-4-thiouridine were previously found to enhance the biological activity of TBA. In this paper, we present thermodynamic and biological characteristics of TBA variants that have been modified with novel isoguanine derivative of UNA as well as isoguanosine. Additionally, UNA-4-thiouracil and 4-thiouridine were also introduced simultaneously with isoguanine derivatives. Thermodynamic analysis indicates that the presence of isoguanosine in UNA or RNA series significantly decreases the stability of G-quadruplex structure. The highest destabilization is observed for substitution at one of the G-tetrad position. Addition of 4-thiouridine in UNA or RNA series usually decreases the unfavorable energetic cost of the presence of UNA or RNA isoguanine. Circular dichroism and thermal denaturation spectra in connection with thrombin time assay indicate that the introduction of UNA-isoguanine or isoguanosine into TBA negatively affects G-quadruplex folding and TBA anticoagulant properties. These findings demonstrate that the highly-ordered structure of TBA is essential for inhibition of thrombin activity.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | - Tomasz Czapik
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego, Poznan, Poland
- * E-mail:
| |
Collapse
|
30
|
Bieniasz PD, Kutluay SB. CLIP-related methodologies and their application to retrovirology. Retrovirology 2018; 15:35. [PMID: 29716635 PMCID: PMC5930818 DOI: 10.1186/s12977-018-0417-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023] Open
Abstract
Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.
Collapse
Affiliation(s)
- Paul D. Bieniasz
- Howard Hughes Medical Institute and Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065 USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110 USA
| |
Collapse
|
31
|
Prywes N, Michaels YS, Pal A, Oh SS, Szostak JW. Thiolated uridine substrates and templates improve the rate and fidelity of ribozyme-catalyzed RNA copying. Chem Commun (Camb) 2018; 52:6529-32. [PMID: 27109314 DOI: 10.1039/c6cc02692c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ribozyme-catalyzed RNA polymerization is inefficient and error prone. Here we demonstrate that two alternative bases, 2-thio-uridine (s(2)U) and 2-thio-ribo-thymidine (s(2)T), improve the rate and fidelity of ribozyme catalyzed nucleotide addition as NTP substrates and as template bases. We also demonstrate the functionality of s(2)U and s(2)T-containing ribozymes.
Collapse
Affiliation(s)
- Noam Prywes
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA and Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, USA
| | - Yale S Michaels
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA and Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ayan Pal
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA and Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | - Seung Soo Oh
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA and Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA and Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, USA and Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| |
Collapse
|
32
|
Sochacka E, Lodyga-Chruscinska E, Pawlak J, Cypryk M, Bartos P, Ebenryter-Olbinska K, Leszczynska G, Nawrot B. C5-substituents of uridines and 2-thiouridines present at the wobble position of tRNA determine the formation of their keto-enol or zwitterionic forms - a factor important for accuracy of reading of guanosine at the 3΄-end of the mRNA codons. Nucleic Acids Res 2017; 45:4825-4836. [PMID: 28088758 PMCID: PMC5416851 DOI: 10.1093/nar/gkw1347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022] Open
Abstract
Modified nucleosides present in the wobble position of the tRNA anticodons regulate protein translation through tuning the reading of mRNA codons. Among 40 of such nucleosides, there are modified uridines containing either a sulfur atom at the C2 position and/or a substituent at the C5 position of the nucleobase ring. It is already evidenced that tRNAs with 2-thiouridines at the wobble position preferentially read NNA codons, while the reading mode of the NNG codons by R5U/R5S2U-containing anticodons is still elusive. For a series of 18 modified uridines and 2-thiouridines, we determined the pKa values and demonstrated that both modifying elements alter the electron density of the uracil ring and modulate the acidity of their N3H proton. In aqueous solutions at physiological pH the 2-thiouridines containing aminoalkyl C5-substituents are ionized in ca. 50%. The results, confirmed also by theoretical calculations, indicate that the preferential binding of the modified units bearing non-ionizable 5-substituents to guanosine in the NNG codons may obey the alternative C-G-like (Watson–Crick) mode, while binding of those bearing aminoalkyl C5-substituents (protonated under physiological conditions) and especially those with a sulfur atom at the C2 position, adopt a zwitterionic form and interact with guanosine via a ‘new wobble’ pattern.
Collapse
Affiliation(s)
- Elzbieta Sochacka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elzbieta Lodyga-Chruscinska
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Justyna Pawlak
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Marek Cypryk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Paulina Bartos
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Katarzyna Ebenryter-Olbinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.,Department of Computer Modeling, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Barbara Nawrot
- Department of Computer Modeling, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
33
|
Alcolea Palafox M, Rastogi V, Singh S. Effect of the sulphur atom on geometry and spectra of the biomolecule 2-thiouracil and in the WC base pair 2-thiouridine-adenosine. Influence of water in the first hydration shell. J Biomol Struct Dyn 2017; 36:1225-1254. [DOI: 10.1080/07391102.2017.1318304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Alcolea Palafox
- Facultad de Ciencias Químicas, Departamento de Química-Fisica1, Universidad Complutense, Madrid 28040, Spain
| | - V.K. Rastogi
- R.D. Foundation Group of Institutions, NH-58, Kadrabad, Modinagar, Ghaziabad, India
- Indian Spectroscopy Society, KC 68/1, Old Kavinagar, Ghaziabad 201 002, India
| | - S.P. Singh
- Department of Physics, Dr B R Ambedkar Govt Degree College, Mainpuri, India
| |
Collapse
|
34
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
35
|
Uhl M, Houwaart T, Corrado G, Wright PR, Backofen R. Computational analysis of CLIP-seq data. Methods 2017; 118-119:60-72. [PMID: 28254606 DOI: 10.1016/j.ymeth.2017.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
CLIP-seq experiments are currently the most important means for determining the binding sites of RNA binding proteins on a genome-wide level. The computational analysis can be divided into three steps. In the first pre-processing stage, raw reads have to be trimmed and mapped to the genome. This step has to be specifically adapted for each CLIP-seq protocol. The next step is peak calling, which is required to remove unspecific signals and to determine bona fide protein binding sites on target RNAs. Here, both protocol-specific approaches as well as generic peak callers are available. Despite some peak callers being more widely used, each peak caller has its specific assets and drawbacks, and it might be advantageous to compare the results of several methods. Although peak calling is often the final step in many CLIP-seq publications, an important follow-up task is the determination of binding models from CLIP-seq data. This is central because CLIP-seq experiments are highly dependent on the transcriptional state of the cell in which the experiment was performed. Thus, relying solely on binding sites determined by CLIP-seq from different cells or conditions can lead to a high false negative rate. This shortcoming can, however, be circumvented by applying models that predict additional putative binding sites.
Collapse
Affiliation(s)
- Michael Uhl
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Germany
| | - Torsten Houwaart
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Germany
| | - Gianluca Corrado
- Department of Information Engineering and Computer Science, University of Trento, Italy
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Toh DFK, Devi G, Patil KM, Qu Q, Maraswami M, Xiao Y, Loh TP, Zhao Y, Chen G. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex. Nucleic Acids Res 2016; 44:9071-9082. [PMID: 27596599 PMCID: PMC5100590 DOI: 10.1093/nar/gkw778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson-Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Qiuyu Qu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yunyun Xiao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Teck Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
37
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
38
|
Wang R, Luo Z, He K, Delaney MO, Chen D, Sheng J. Base pairing and structural insights into the 5-formylcytosine in RNA duplex. Nucleic Acids Res 2016; 44:4968-77. [PMID: 27079978 PMCID: PMC4889945 DOI: 10.1093/nar/gkw235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
5-Formylcytidine (f5C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m5C) through 5-hydroxymethylcytidine (hm5C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f5C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5′-GUA(f5C)GUAC-3′]2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f5C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zhipu Luo
- Synchrotron Radiation Research Section, MCL National Cancer Institute, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kaizhang He
- Dharmacon, GE Healthcare, Lafayette, CO 80026, USA
| | | | - Doris Chen
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
39
|
Weiss RJ, Gordts PLSM, Le D, Xu D, Esko JD, Tor Y. Small molecule antagonists of cell-surface heparan sulfate and heparin-protein interactions. Chem Sci 2015; 6:5984-5993. [PMID: 28133533 PMCID: PMC5267326 DOI: 10.1039/c5sc01208b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Surfen, bis-2-methyl-4-amino-quinolyl-6-carbamide, was previously reported as a small molecule antagonist of heparan sulfate (HS), a key cell-surface glycosaminoglycan found on all mammalian cells. To generate structure-activity relationships, a series of rationally designed surfen analogs was synthesized, where its dimeric structure, exocyclic amines, and urea linker region were modified to probe the role of each moiety in recognizing HS. An in vitro assay monitoring inhibition of fibroblast growth factor 2 binding to wild-type CHO cells was utilized to quantify interactions with cell surface HS. The dimeric molecular structure of surfen and its aminoquinoline ring systems was essential for its interaction with HS, and certain dimeric analogs displayed higher inhibitory potency than surfen and were also shown to block downstream FGF signaling in mouse embryonic fibroblast cells. These molecules were also able to antagonize other HS-protein interactions including the binding of soluble RAGE to HS. Importantly, selected molecules were shown to neutralize heparin and other heparinoids, including the synthetic pentasaccharide fondaparinux, in a factor Xa chromogenic assay and in vivo in mice. These results suggest that small molecule antagonists of heparan sulfate and heparin can be of therapeutic potential for the treatment of disorders involving glycosaminoglycan-protein interactions.
Collapse
Affiliation(s)
- Ryan J. Weiss
- Department of Chemistry and Biochemistry , University of California , San Diego , La Jolla , CA 92093-0358 , USA .
| | - Philip L. S. M. Gordts
- Cellular and Molecular Medicine , University of California , San Diego , La Jolla , CA 92093-0687 , USA
| | - Dzung Le
- Department of Medicine , University of California , San Diego , La Jolla , CA 92093-0612 , USA
- Glycobiology Research and Training Center , University of California , San Diego , La Jolla , CA 92093-0687 , USA
| | - Ding Xu
- Department of Oral Biology , University at Buffalo , Buffalo , NY 14260-1660 , USA
| | - Jeffrey D. Esko
- Cellular and Molecular Medicine , University of California , San Diego , La Jolla , CA 92093-0687 , USA
- Glycobiology Research and Training Center , University of California , San Diego , La Jolla , CA 92093-0687 , USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry , University of California , San Diego , La Jolla , CA 92093-0358 , USA .
- Glycobiology Research and Training Center , University of California , San Diego , La Jolla , CA 92093-0687 , USA
| |
Collapse
|
40
|
Bartos P, Ebenryter-Olbinska K, Sochacka E, Nawrot B. The influence of the C5 substituent on the 2-thiouridine desulfuration pathway and the conformational analysis of the resulting 4-pyrimidinone products. Bioorg Med Chem 2015; 23:5587-94. [DOI: 10.1016/j.bmc.2015.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022]
|
41
|
Larsen AT, Fahrenbach AC, Sheng J, Pian J, Szostak JW. Thermodynamic insights into 2-thiouridine-enhanced RNA hybridization. Nucleic Acids Res 2015; 43:7675-87. [PMID: 26240387 PMCID: PMC4652770 DOI: 10.1093/nar/gkv761] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023] Open
Abstract
Nucleobase modifications dramatically alter nucleic acid structure and thermodynamics. 2-thiouridine (s(2)U) is a modified nucleobase found in tRNAs and known to stabilize U:A base pairs and destabilize U:G wobble pairs. The recently reported crystal structures of s(2)U-containing RNA duplexes do not entirely explain the mechanisms responsible for the stabilizing effect of s(2)U or whether this effect is entropic or enthalpic in origin. We present here thermodynamic evaluations of duplex formation using ITC and UV thermal denaturation with RNA duplexes containing internal s(2)U:A and s(2)U:U pairs and their native counterparts. These results indicate that s(2)U stabilizes both duplexes. The stabilizing effect is entropic in origin and likely results from the s(2)U-induced preorganization of the single-stranded RNA prior to hybridization. The same preorganizing effect is likely responsible for structurally resolving the s(2)U:U pair-containing duplex into a single conformation with a well-defined H-bond geometry. We also evaluate the effect of s(2)U on single strand conformation using UV- and CD-monitored thermal denaturation and on nucleoside conformation using (1)H NMR spectroscopy, MD and umbrella sampling. These results provide insights into the effects that nucleobase modification has on RNA structure and thermodynamics and inform efforts toward improving both ribozyme-catalyzed and nonenzymatic RNA copying.
Collapse
Affiliation(s)
- Aaron T Larsen
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, and Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Albert C Fahrenbach
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, and Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jia Sheng
- University at Albany, State University of New York, Department of Chemistry, The RNA Institute, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Julia Pian
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, and Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, and Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
42
|
Sochacka E, Szczepanowski RH, Cypryk M, Sobczak M, Janicka M, Kraszewska K, Bartos P, Chwialkowska A, Nawrot B. 2-Thiouracil deprived of thiocarbonyl function preferentially base pairs with guanine rather than adenine in RNA and DNA duplexes. Nucleic Acids Res 2015; 43:2499-512. [PMID: 25690900 PMCID: PMC4357714 DOI: 10.1093/nar/gkv109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022] Open
Abstract
2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon-anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3'-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif.
Collapse
Affiliation(s)
- Elzbieta Sochacka
- Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Roman H Szczepanowski
- International Institute of Molecular and Cell Biology, Ks. J. Trojdena 4, 02-109 Warsaw, Poland
| | - Marek Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Milena Sobczak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Magdalena Janicka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Karina Kraszewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Paulina Bartos
- Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Anna Chwialkowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
43
|
Heuberger BD, Pal A, Del Frate F, Topkar VV, Szostak JW. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. J Am Chem Soc 2015; 137:2769-75. [PMID: 25654265 PMCID: PMC4985000 DOI: 10.1021/jacs.5b00445] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
nonenzymatic replication of RNA oligonucleotides is thought
to have played a key role in the origin of life prior to the evolution
of ribozyme-catalyzed RNA replication. Although the copying of oligo-C
templates by 2-methylimidazole-activated G monomers can be quite efficient,
the copying of mixed sequence templates, especially those containing
A and U, is particularly slow and error-prone. The greater thermodynamic
stability of the 2-thio-U(s2U):A base pair, relative to
the canonical U:A base pair, suggests that replacing U with s2U might enhance the rate and fidelity of the nonenzymatic
copying of RNA templates. Here we report that this single atom substitution
in the activated monomer improves both the kinetics and the fidelity
of nonenzymatic primer extension on mixed-sequence RNA templates.
In addition, the mean lengths of primer extension products obtained
with s2U is greater than those obtained with U, augmenting
the potential for nonenzymatic replication of heritable function-rich
sequences. We suggest that noncanonical nucleotides such as s2U may have played a role during the infancy of the RNA world
by facilitating the nonenzymatic replication of genomic RNA oligonucleotides.
Collapse
Affiliation(s)
- Benjamin D Heuberger
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, and Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital , Boston, Massachusetts 02114, United States
| | | | | | | | | |
Collapse
|
44
|
Kierzek R, Turner DH, Kierzek E. Microarrays for identifying binding sites and probing structure of RNAs. Nucleic Acids Res 2014; 43:1-12. [PMID: 25505162 PMCID: PMC4288193 DOI: 10.1093/nar/gku1303] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligonucleotide microarrays are widely used in various biological studies. In this review, application of oligonucleotide microarrays for identifying binding sites and probing structure of RNAs is described. Deep sequencing allows fast determination of DNA and RNA sequence. High-throughput methods for determination of secondary structures of RNAs have also been developed. Those methods, however, do not reveal binding sites for oligonucleotides. In contrast, microarrays directly determine binding sites while also providing structural insights. Microarray mapping can be used over a wide range of experimental conditions, including temperature, pH, various cations at different concentrations and the presence of other molecules. Moreover, it is possible to make universal microarrays suitable for investigations of many different RNAs, and readout of results is rapid. Thus, microarrays are used to provide insight into oligonucleotide sequences potentially able to interfere with biological function. Better understanding of structure-function relationships of RNA can be facilitated by using microarrays to find RNA regions capable to bind oligonucleotides. That information is extremely important to design optimal sequences for antisense oligonucleotides and siRNA because both bind to single-stranded regions of target RNAs.
Collapse
Affiliation(s)
- Ryszard Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Douglas H Turner
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| |
Collapse
|
45
|
Sheng J, Larsen A, Heuberger BD, Blain JC, Szostak JW. Crystal structure studies of RNA duplexes containing s(2)U:A and s(2)U:U base pairs. J Am Chem Soc 2014; 136:13916-24. [PMID: 25188906 PMCID: PMC4183603 DOI: 10.1021/ja508015a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Structural studies of modified nucleobases
in RNA duplexes are
critical for developing a full understanding of the stability and
specificity of RNA base pairing. 2-Thio-uridine (s2U) is
a modified nucleobase found in certain tRNAs. Thermodynamic studies
have evaluated the effects of s2U on base pairing in RNA,
where it has been shown to stabilize U:A pairs and destabilize U:G
wobble pairs. Surprisingly, no high-resolution crystal structures
of s2U-containing RNA duplexes have yet been reported.
We present here two high-resolution crystal structures of heptamer
RNA duplexes (5′-uagcs2Ucc-3′ paired with 3′-aucgAgg-5′ and with 3′-aucgUgg-5′) containing s2U:A and s2U:U pairs, respectively. For comparison, we also present the structures
of their native counterparts solved under identical conditions. We
found that replacing O2 with S2 stabilizes the U:A base pair without
any detectable structural perturbation. In contrast, an s2U:U base pair is strongly stabilized in one specific U:U pairing
conformation out of four observed for the native U:U base pair. This
s2U:U stabilization appears to be due at least in part
to an unexpected sulfur-mediated hydrogen bond. This work provides
additional insights into the effects of 2-thio-uridine on RNA base
pairing.
Collapse
Affiliation(s)
- Jia Sheng
- Howard Hughes Medical Institute, Center for Computational and Integrative Biology, and Department of Molecular Biology, Simches Research Center, Massachusetts General Hospital , Boston, Massachusetts 02114, United States
| | | | | | | | | |
Collapse
|
46
|
Abstract
The complexity of even the simplest known life forms makes efforts to synthesize living cells from inanimate components seem like a daunting task. However, recent progress toward the creation of synthetic cells, ranging from simple protocells to artificial cells approaching the complexity of bacteria, suggests that the synthesis of life is now a realistic goal. Protocell research, fueled by advances in the biophysics of primitive membranes and the chemistry of nucleic acid replication, is providing new insights into the origin of cellular life. Parallel efforts to construct more complex artificial cells, incorporating translational machinery and protein enzymes, are providing information about the requirements for protein-based life. We discuss recent advances and remaining challenges in the synthesis of artificial cells, the possibility of creating new forms of life distinct from existing biology, and the promise of this research for gaining a deeper understanding of the nature of living systems.
Collapse
Affiliation(s)
- J Craig Blain
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114; ,
| | | |
Collapse
|
47
|
Devi G, Yuan Z, Lu Y, Zhao Y, Chen G. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes. Nucleic Acids Res 2014; 42:4008-18. [PMID: 24423869 PMCID: PMC3973316 DOI: 10.1093/nar/gkt1367] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2–PNA triplex, without appreciable binding to single-stranded regions to form an RNA–PNA duplex or, via strand invasion, forming an RNA–PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed −1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2–PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA–PNA and DNA–PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson–Crick-like G–L pair. An RNA2–PNA triplex is significantly more stable than a DNA2–PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone–backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.
Collapse
Affiliation(s)
- Gitali Devi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | | | | | | | | |
Collapse
|
48
|
Masaki Y, Miyasaka R, Hirai K, Kanamori T, Tsunoda H, Ohkubo A, Seio K, Sekine M. Properties of 5- and/or 2-modified 2′-O-cyanoethyl uridine residue: 2′-O-cyanoethyl-5-propynyl-2-thiouridine as an efficient duplex stabilizing component. Org Biomol Chem 2014; 12:1157-62. [DOI: 10.1039/c3ob41983e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Zhang S, Blain JC, Zielinska D, Gryaznov SM, Szostak JW. Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer. Proc Natl Acad Sci U S A 2013; 110:17732-7. [PMID: 24101473 PMCID: PMC3816440 DOI: 10.1073/pnas.1312329110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with activated ribonucleotide monomers has led to the copying of short RNA templates; however, these reactions are generally slow (taking days to weeks) and highly error prone. N3'-P5'-linked phosphoramidate DNA (3'-NP-DNA) is similar to RNA in its overall duplex structure, and is attractive as an alternative to RNA because the high reactivity of its corresponding monomers allows rapid and efficient copying of all four nucleobases on homopolymeric RNA and DNA templates. Here we show that both homopolymeric and mixed-sequence 3'-NP-DNA templates can be copied into complementary 3'-NP-DNA sequences. G:T and A:C wobble pairing leads to a high error rate, but the modified nucleoside 2-thiothymidine suppresses wobble pairing. We show that the 2-thiothymidine modification increases both polymerization rate and fidelity in the copying of a 3'-NP-DNA template into a complementary strand of 3'-NP-DNA. Our results suggest that 3'-NP-DNA has the potential to serve as the genetic material of artificial biological systems.
Collapse
Affiliation(s)
- Shenglong Zhang
- Howard Hughes Medical Institute and
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114; and
| | - J. Craig Blain
- Howard Hughes Medical Institute and
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114; and
| | - Daria Zielinska
- Department of Nucleic Acid Chemistry, Geron Corporation, Menlo Park, CA 94025
| | - Sergei M. Gryaznov
- Department of Nucleic Acid Chemistry, Geron Corporation, Menlo Park, CA 94025
| | - Jack W. Szostak
- Howard Hughes Medical Institute and
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114; and
| |
Collapse
|
50
|
Østergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN, Vaid K, Villanueva EB, Swayze EE, Bennett CF, Hayden MR, Seth PP. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 2013; 41:9634-50. [PMID: 23963702 PMCID: PMC3834808 DOI: 10.1093/nar/gkt725] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autosomal dominant diseases such as Huntington’s disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs—an outcome with broad application to HD and other dominant genetic disorders.
Collapse
Affiliation(s)
- Michael E Østergaard
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|