1
|
Stadnichuk IN, Krasilnikov PM. Relationship between non-photochemical quenching efficiency and the energy transfer rate from phycobilisomes to photosystem II. PHOTOSYNTHESIS RESEARCH 2024; 159:177-189. [PMID: 37328680 DOI: 10.1007/s11120-023-01031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The chromophorylated PBLcm domain of the ApcE linker protein in the cyanobacterial phycobilisome (PBS) serves as a bottleneck for Förster resonance energy transfer (FRET) from the PBS to the antennal chlorophyll of photosystem II (PS II) and as a redirection point for energy distribution to the orange protein ketocarotenoid (OCP), which is excitonically coupled to the PBLcm chromophore in the process of non-photochemical quenching (NPQ) under high light conditions. The involvement of PBLcm in the quenching process was first directly demonstrated by measuring steady-state fluorescence spectra of cyanobacterial cells at different stages of NPQ development. The time required to transfer energy from the PBLcm to the OCP is several times shorter than the time it takes to transfer energy from the PBLcm to the PS II, ensuring quenching efficiency. The data obtained provide an explanation for the different rates of PBS quenching in vivo and in vitro according to the half ratio of OCP/PBS in the cyanobacterial cell, which is tens of times lower than that realized for an effective NPQ process in solution.
Collapse
Affiliation(s)
- Igor N Stadnichuk
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya 35, 127726, Moscow, Russia.
| | - Pavel M Krasilnikov
- Biological Faculty of M.V., Lomonosov State University, Lenin Hills 12, 119991, Moscow, Russia
| |
Collapse
|
2
|
Morelli L, Havurinne V, Madeira D, Martins P, Cartaxana P, Cruz S. Photoprotective mechanisms in Elysia species hosting Acetabularia chloroplasts shed light on host-donor compatibility in photosynthetic sea slugs. PHYSIOLOGIA PLANTARUM 2024; 176:e14273. [PMID: 38566156 DOI: 10.1111/ppl.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Sacoglossa sea slugs have garnered attention due to their ability to retain intracellular functional chloroplasts from algae, while degrading other algal cell components. While protective mechanisms that limit oxidative damage under excessive light are well documented in plants and algae, the photoprotective strategies employed by these photosynthetic sea slugs remain unresolved. Species within the genus Elysia are known to retain chloroplasts from various algal sources, but the extent to which the metabolic processes from the donor algae can be sustained by the sea slugs is unclear. By comparing responses to high-light conditions through kinetic analyses, molecular techniques, and biochemical assays, this study shows significant differences between two photosynthetic Elysia species with chloroplasts derived from the green alga Acetabularia acetabulum. Notably, Elysia timida displayed remarkable tolerance to high-light stress and sophisticated photoprotective mechanisms such as an active xanthophyll cycle, efficient D1 protein recycling, accumulation of heat-shock proteins and α-tocopherol. In contrast, Elysia crispata exhibited absence or limitations in these photoprotective strategies. Our findings emphasize the intricate relationship between the host animal and the stolen chloroplasts, highlighting different capacities to protect the photosynthetic organelle from oxidative damage.
Collapse
Affiliation(s)
- Luca Morelli
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Vesa Havurinne
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Patrícia Martins
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paulo Cartaxana
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 2. Chlorophyll b is a B Band Excitation Trap. ACS OMEGA 2023; 8:40015-40023. [PMID: 37929150 PMCID: PMC10620878 DOI: 10.1021/acsomega.3c05896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat-the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so-far undescribed roles for carotenoids (Crts, cf. previous article in this series) and Chl b (this article) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). The focus of the study is on the role of Chl b for EET in the Q and B bands. Further, the initial excited pigment distribution in the B band is computed for relevant solar irradiation and wavelength-centered laser pulses. It is found that both accessory pigment classes compete efficiently with Chl a absorption in the B band, leaving only 40% of B band excitations for Chl a. B state population is preferentially relocated to Chl b after excitation of any Chls, due to a near-perfect match of Chl b B band absorption with Chl a B state emission spectra. This results in an efficient depletion of the Chl a population (0.66 per IC/EET step, as compared to 0.21 in a Chl a-only system). Since Chl b only occurs in the peripheral antenna complexes of plants and algae, and RCs contain only Chl a, this would automatically trap potentially dangerous B state population in the antennae, preventing forwarding to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague
2, Czech Republic
| |
Collapse
|
4
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS OMEGA 2023; 8:40005-40014. [PMID: 37929138 PMCID: PMC10620780 DOI: 10.1021/acsomega.3c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue-absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat: the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so far undescribed roles for carotenoids (Crts, this article) and Chl b (next article in this series) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). Here, we show that the B → Q IC is assisted by the optically allowed Crt state (S2): The sequence is B → S2 (Crt, unrelaxed) → S2 (Crt, relaxed) → Q. This sequence has the advantage of preventing ∼39% of Chl-Chl B-B EET since the Crt S2 state is a highly efficient FRET acceptor. The B-B EET range and thus the likelihood of CP29 to forward potentially harmful B excitations toward the RC are thus reduced. In contrast to the B band of Chls, most Crt energy donation is energetically located near the Q band, which allows for 74/80% backdonation (from lutein/violaxanthin) to Chls. Neoxanthin, on the other hand, likely donates in the B band region of Chl b, with 76% efficiency. Crts thus act not only in their currently proposed photoprotective roles but also as a crucial building block for any system that could otherwise deliver harmful "blue" excitations to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague, Czech Republic
| |
Collapse
|
5
|
Kuznetsova V, Fuciman M, Polívka T. Relaxation dynamics of high-energy excited states of carotenoids studied by UV excitation and pump-repump-probe transient absorption spectroscopy. Phys Chem Chem Phys 2023; 25:22336-22344. [PMID: 37580966 DOI: 10.1039/d3cp02485g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The excited states of carotenoids have been a subject of numerous studies. While a majority of these reports target the excited state dynamics initiated by the excitation of the S2 state, the upper excited state(s) absorbing in the UV spectral region (denoted as SUV) has been only scarcely studied. Moreover, the relation between the SUV and Sn, the final state of the well-known S1-Sn transition of carotenoids, remains unknown. To address this yet-unresolved issue, we compared the excited state dynamics of two carotenoids, namely, β-carotene and astaxanthin, after excitation of either the SUV or Sn state. The SUV state was excited directly by UV light, and the excitation of the Sn state was achieved via re-pumping the S1-Sn transition. The results indicated that direct SUV excitation produces an S1-Sn band that is significantly broader than that obtained after S2 excitation, most probably due to the generation of multiple S1 conformations produced by excess energy. No such broadening is observed if the Sn state is excited by the re-pump pulse. This shows that the Sn and SUV states are different, each initializing a specific relaxation pathway. We propose that the Sn state retains the coupled triplet pair character of the S1 state, while the SUV state is the higher state of Bu+ symmetry accessible by one-photon transition.
Collapse
Affiliation(s)
- Valentyna Kuznetsova
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Marcel Fuciman
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
7
|
Lu L, Song Y, Liu W, Jiang L. Excitation-Dependence of Excited-State Dynamics and Vibrational Relaxation of Lutein Explored by Multiplex Transient Grating. ACS OMEGA 2022; 7:48250-48260. [PMID: 36591184 PMCID: PMC9798734 DOI: 10.1021/acsomega.2c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Multiplex transient grating (MTG) spectroscopy was applied to lutein in ethanol to investigate the excitation-energy dependence of the excited-state dynamics and vibrational relaxation. The transient spectra obtained upon low (480 nm) and high-energy (380 nm) excitation both recorded a strong excited-state absorption (ESA) of S1 → S n as well as a broad band in the blue wavelength that was previously proposed as the S* state. By means of Gaussian decomposition and global fitting of the ESA band, a long-time component assigned to the triplet state was derived from the kinetic trace of 480 nm excitation. Moreover, the MTG signal with a resolution of 110 fs displayed the short-time quantum beat signal. In order to unveil the vibrational coherence in the excited-state decay, the linear and non-linear simulations of the steady spectrum and dynamic signals were presented in which at least three fundamental modes standing for C-C stretching (ν1), C=C stretching (ν2), and O-H valence vibrations (ν3) were considered to analyze the experimental signals. It was identified that the vibrational coherence between ν1 and ν3 or ν2 and ν3 was responsible for quantum beat that may be associated with the triplet state. We concluded that upon low- or high-energy excitation into the S2 state, the photo-isomerization of the molecule and structural recovery on the time-scale of vibrational cooling are the key factors to form a mixed conformation in the hot-S1 state that is the precursor of a long life-time triplet.
Collapse
Affiliation(s)
- Liping Lu
- College
of Science, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yunfei Song
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Weilong Liu
- Department
of Physics, Harbin Institute of Technology, Harbin, Heilongjiang150080, China
| | - Lilin Jiang
- Office
of Academic Research, Hezhou University, Hezhou, Guangxi542899, China
| |
Collapse
|
8
|
Khokhlov D, Belov A. Low-Lying Excited States of Natural Carotenoids Viewed by Ab Initio Methods. J Phys Chem A 2022; 126:4376-4391. [PMID: 35767689 DOI: 10.1021/acs.jpca.2c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-lying excited states of carotenoids (the optically dark 2Ag- and bright 1Bu+) are deeply involved in energy transfer processes in photosynthetic antennas, such as light harvesting and non-photochemical quenching. Though any ab initio modeling of these phenomena has to rely on precise energies of the carotenoid electronic states, the accurate evaluation of these states remains a challenging problem due to their different natures. The paper aims to study the accuracy of the excitation energies of the low-lying excited states of certain open- and closed-chain carotenoids obtained by a state-of-the-art multireference approach for electronic structure calculation. Here, density matrix renormalization group SCF (DMRGSCF) and a perturbative approach based on driven similarity renormalization group second-order multireference perturbation theory (DSRG-MRPT2) were used to treat the static and dynamic correlation, respectively. Nuclear geometries of the electronic states were optimized with DFT-based approaches. It is demonstrated that spin-flip TD-DFT can replace multiconfigurational methods for the geometry optimization of the 2Ag- state but not for the calculation of the excitation energy. Adiabatic excitation energies to the 1Bu+ state were shown to be within a margin of 1000 cm-1 with an appropriate flow parameter value. Adiabatic excitation energies to the 2Ag- state for the open-chain carotenoids lie within a range of experimental values (taking into account the broad range of experimental estimates); for the closed-chain ones, the error does not exceed 2000 cm-1. Ab initio stationary (1Ag- → 1Bu+) and transient (2Ag- → 1Bu+) absorption spectra were modeled for violaxanthin and lycopene, and these spectra showed good agreement with the experimental ones both in terms of the vibronic structure and the transition energies.
Collapse
Affiliation(s)
- Daniil Khokhlov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksandr Belov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
9
|
Nowak J, Füller J, Walla PJ. Combined contributions of carotenoids and chlorophylls in two-photon spectra of photosynthetic pigment-protein complexes-A new way to quantify carotenoid dark state to chlorophyll energy transfer? J Chem Phys 2022; 156:191103. [PMID: 35597651 DOI: 10.1063/5.0089420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transitions into the first excited state of carotenoids, Car S1, are optically forbidden in conventional one-photon excitation (OPE) but are possible via two-photon excitation (TPE). This can be used to quantify the amount of Car S1 to Chlorophyll (Chl) energy transfer in pigment-protein complexes and plants by observing the chlorophyll fluorescence intensity after TPE in comparison to the intensity observed after direct chlorophyll OPE. A parameter, ΦCoupling Car S1-Chl, can be derived that directly reflects relative differences or changes in the Car S1 → Chl energy transfer of different pigment-protein complexes and even living plants. However, very careful calibrations are necessary to ensure similar OPE and TPE excitation probabilities and transition energies. In plants, the exact same sample spot must be observed at the same time. All this is experimentally quite demanding. ΦCoupling Car S1-Chl also corrects intrinsically for direct chlorophyll TPE caused by larger chlorophyll excesses in the complexes, but recently it turned out that in certain TPE wavelengths ranges, its contribution can be quite large. Fortunately, this finding opens also the possibility of determining ΦCoupling Car S1-Chl in a much easier way by directly comparing values in TPE spectra observed at wavelengths that are either more dominated by Cars or Chls. This avoids tedious comparisons of OPE and TPE experiments and potentially allows measurement at even only two TPE wavelengths. Here, we explored this new approach to determine ΦCoupling Car S1-Chl directly from single TPE spectra and present first examples using known experimental spectra from Cars, Chl a, Chl b, LHC II, and PS 1.
Collapse
Affiliation(s)
- Julia Nowak
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Janin Füller
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Peter Jomo Walla
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| |
Collapse
|
10
|
Bourgalais J, Jiang Z, Bloino J, Herbinet O, Carstensen HH, Garcia GA, Arnoux P, Tran LS, Vanhove G, Nahon L, Battin-Leclerc F, Hochlaf M. Accounting for molecular flexibility in photoionization: case of tert-butyl hydroperoxide. Phys Chem Chem Phys 2022; 24:10826-10837. [PMID: 35485277 DOI: 10.1039/d2cp00929c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
tert-Butyl hydroperoxide (tBuOOH) is a common intermediate in the oxidation of organic compounds that needs to be accurately quantified in complex gas mixtures for the development of chemical kinetic models of low temperature combustion. This work presents a combined theoretical and experimental investigation on the synchrotron-based VUV single photon ionization of gas-phase tBuOOH in the 9.0 - 11.0 eV energy range, including dissociative ionization processes. Computations consist of the determination of the structures, vibrational frequencies and the energetics of neutral and ionic tBuOOH. The Franck-Condon spectrum for the tBuOOH+ (X+) + e- ← tBuOOH (X) + hν transition is computed, where special treatment is undertaken because of the flexibility of tBuOOH, in particular regarding the OOH group. Through comparison of the experimental mass-selected threshold photoelectron spectra with explicitly correlated coupled cluster calculations and Franck-Condon simulations that account for the flexibility of the molecule, an estimation of the ionization energy is given. The appearance energy of the only fragment observed within the above-mentioned energy range, identified as the tert-butyl C4H9+, is also reported. Finally, the signal branching ratio between the parent and the fragment ions is provided as a function of photon energy, essential to quantify tBuOOH in gas-phase oxidation/combustion experiments via advanced mass spectrometry techniques.
Collapse
Affiliation(s)
| | | | - Julien Bloino
- SMART Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | - Hans-Heinrich Carstensen
- Thermochemical Processes Group (GPT), Department of Chemical and Environmental Engineering, Engineering and Architecture School, University of Zaragoza, Spain.,Fundacion Agencia Aragonesa para la Investigacion y el Desarrollo (ARAID), Zagaroza, Spain
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192 Gif-sur-Yvette Cedex, France
| | | | - Luc-Sy Tran
- PC2A, Université de Lille, CNRS, Avenue Mendeleiev, 59650 Villeneuve-d'Ascq, France
| | - Guillaume Vanhove
- PC2A, Université de Lille, CNRS, Avenue Mendeleiev, 59650 Villeneuve-d'Ascq, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192 Gif-sur-Yvette Cedex, France
| | | | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes 77454, Champs sur Marne, France.
| |
Collapse
|
11
|
Götze JP, Anders F, Petry S, Felix Witte J, Lokstein H. Spectral Characterization of the Main Pigments in the Plant Photosynthetic Apparatus by Theory and Experiment. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Zhu LB, Wang HY, Zhang TY, Chen FZ, Han DM, Zhao WW. Rational Utilization of Photoelectrochemistry of Photosystem II for Self-Powered Photocathodic Detection of MicroRNA in Cells. Anal Chem 2021; 93:15761-15767. [PMID: 34779611 DOI: 10.1021/acs.analchem.1c03900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The photoanode, photosystem II (PSII)/hierarchical inverse opal (IO) TiO2, is coupled to the complementary photocathode, PbS quantum dots (QDs)/DNA probes, which is then integrated into a two-compartment photoelectrochemical (PEC) cell to achieve a self-powered system to enable photocathodic detection of microRNA-10b from HeLa cells. In such a system, all of the PSII catalytic products, i.e., electrons, protons, and O2, were rationally utilized and could overcome the general issue of varied O2 levels in photocathodic detection. The correlation between the target-triggered formation of the DNA complexes and the catalytic reduction of the dissolved O2 makes possible the steady microRNA-10b detection with good sensitivity and selectivity. This work has unveiled the ability of PSII to construct self-powered detecting devices and shed light on its application in new arenas.
Collapse
Affiliation(s)
- Li-Bang Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng-Zao Chen
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - De-Man Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang 318000, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Welc R, Luchowski R, Kluczyk D, Zubik-Duda M, Grudzinski W, Maksim M, Reszczynska E, Sowinski K, Mazur R, Nosalewicz A, Gruszecki WI. Mechanisms shaping the synergism of zeaxanthin and PsbS in photoprotective energy dissipation in the photosynthetic apparatus of plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:418-433. [PMID: 33914375 DOI: 10.1111/tpj.15297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 05/20/2023]
Abstract
Safe operation of photosynthesis is vital to plants and is ensured by the activity of processes protecting chloroplasts against photo-damage. The harmless dissipation of excess excitation energy is considered to be the primary photoprotective mechanism and is most effective in the combined presence of PsbS protein and zeaxanthin, a xanthophyll accumulated in strong light as a result of the xanthophyll cycle. Here we address the problem of specific molecular mechanisms underlying the synergistic effect of zeaxanthin and PsbS. The experiments were conducted with Arabidopsis thaliana, using wild-type plants, mutants lacking PsbS (npq4), and mutants affected in the xanthophyll cycle (npq1), with the application of molecular spectroscopy and imaging techniques. The results lead to the conclusion that PsbS interferes with the formation of densely packed aggregates of thylakoid membrane proteins, thus allowing easy exchange and incorporation of xanthophyll cycle pigments into such structures. It was found that xanthophylls trapped within supramolecular structures, most likely in the interfacial protein region, determine their photophysical properties. The structures formed in the presence of violaxanthin are characterized by minimized dissipation of excitation energy. In contrast, the structures formed in the presence of zeaxanthin show enhanced excitation quenching, thus protecting the system against photo-damage.
Collapse
Affiliation(s)
- Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, 20-290, Poland
| | - Rafal Luchowski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
| | - Dariusz Kluczyk
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, 20-033, Poland
| | - Monika Zubik-Duda
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
| | - Wojciech Grudzinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
| | - Magdalena Maksim
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, 20-290, Poland
| | - Emilia Reszczynska
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, 20-033, Poland
| | - Karol Sowinski
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warsaw, 02-096, Poland
| | - Artur Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, 20-290, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, 20-031, Poland
| |
Collapse
|
14
|
Lokstein H, Renger G, Götze JP. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules 2021; 26:molecules26113378. [PMID: 34204994 PMCID: PMC8199901 DOI: 10.3390/molecules26113378] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Collapse
Affiliation(s)
- Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
- Correspondence:
| | - Gernot Renger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan P. Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany;
| |
Collapse
|
15
|
Mostofian B, Johnson QR, Smith JC, Cheng X. Carotenoids promote lateral packing and condensation of lipid membranes. Phys Chem Chem Phys 2020; 22:12281-12293. [PMID: 32432296 DOI: 10.1039/d0cp01031f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are pigment molecules that protect biomembranes against degradation and may be involved in the formation of functional bacterial membrane microdomains. Little is known on whether different types of carotenoids have different effects on the membrane or if there is any concentration dependence of these effects. In this work, we present results from molecular dynamics simulations of phospholipid bilayers containing different amounts of either β-carotene or zeaxanthin. Both β-carotene and zeaxanthin show the ability to laterally condense the membrane lipids and reduce their inter-leaflet interactions. With increasing concentrations, both carotenoids increase the bilayer thickness and rigidity. The results reveal that carotenoids have similar effects to cholesterol on regulating the behavior of fluid-phase membranes, suggesting that they could function as sterol substitutes and confirming their potential role in the formation of functional membrane domains.
Collapse
Affiliation(s)
- Barmak Mostofian
- Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, TN 37830, USA.
| | | | | | | |
Collapse
|
16
|
Zhou J, Sekatskii S, Welc R, Dietler G, Gruszecki WI. The role of xanthophylls in the supramolecular organization of the photosynthetic complex LHCII in lipid membranes studied by high-resolution imaging and nanospectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148117. [PMID: 31734197 DOI: 10.1016/j.bbabio.2019.148117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/01/2022]
Abstract
The xanthophyll cycle is a regulatory mechanism operating in the photosynthetic apparatus of plants. It consists of the conversion of the xanthophyll pigment violaxanthin to zeaxanthin, and vice versa, in response to light intensity. According to the current understanding, one of the modes of regulatory activity of the cycle is associated with the influence on a molecular organization of pigment-protein complexes. In the present work, we analyzed the effect of violaxanthin and zeaxanthin on the molecular organization of the LHCII complex, in the environment of membranes formed with chloroplast lipids. Nanoscale imaging based on atomic force microscopy (AFM) showed that the presence of exogenous xanthophylls promotes the formation of the protein supramolecular structures. Nanoscale infrared (IR) absorption analysis based on AFM-IR nanospectroscopy suggests that zeaxanthin promotes the formation of LHCII supramolecular structures by forming inter-molecular β-structures. Meanwhile, the molecules of violaxanthin act as "molecular spacers" preventing self-aggregation of the protein, potentially leading to uncontrolled dissipation of excitation energy in the complex. This latter mechanism was demonstrated with the application of fluorescence lifetime imaging microscopy. The intensity-averaged chlorophyll a fluorescence lifetime determined in the LHCII samples without exogenous xanthophylls at the level of 0.72 ns was longer in the samples containing exogenous violaxanthin (2.14 ns), but shorter under the presence of zeaxanthin (0.49 ns) thus suggesting a role of this xanthophyll in promotion of the formation of structures characterized by effective excitation quenching. This mechanism can be considered as a representation of the overall photoprotective activity of the xanthophyll cycle.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sergey Sekatskii
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Renata Welc
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| |
Collapse
|
17
|
Götze JP. Vibrational Relaxation in Carotenoids as an Explanation for Their Rapid Optical Properties. J Phys Chem B 2019; 123:2203-2209. [PMID: 30779570 DOI: 10.1021/acs.jpcb.8b09841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose the ultrafast S2 (1Bu) to S1 (2Ag) "electronic internal conversion" observed in carotenoids to be a vibrational relaxation of the 1Bu state. This suggestion arises from comparing excited-state geometries computed with the CAM-B3LYP density functional to the ground states; it is found that each conjugated atom moves less than 5 pm in, for example, violaxanthin. However, the changes of excitation energies are large, ranging from 0.4 to 1.2 eV. This is connected to the size of the conjugated system: while each atom contributes only 0.02-0.06 eV, the sum amounts to the observed shift. Additional analysis of computational data is provided from new or already published calculations. As the mechanism may be valid for all linear polyenes, the model has implications that go beyond the presented case of carotenoids. Finally, four sets of experimental data on carotenoids published elsewhere are reinterpreted. The model predicts near-infrared (IR) absorptions and transient femtosecond IR spectra within 0.1 eV accuracy.
Collapse
Affiliation(s)
- Jan P Götze
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie , Freie Universität Berlin , Takustr. 3 14195 Berlin , Germany
| |
Collapse
|
18
|
Lee J, Song J, Lee D, Pang Y. Metal-enhanced fluorescence and excited state dynamics of carotenoids in thin polymer films. Sci Rep 2019; 9:3551. [PMID: 30837679 PMCID: PMC6401168 DOI: 10.1038/s41598-019-40446-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/14/2019] [Indexed: 11/09/2022] Open
Abstract
Metal-enhanced fluorescence of carotenoids, all-trans-β-carotene and 8'-apo-β-carotene-8'-al dispersed in thin layers of polystyrene and polyethylene glycol were investigated by time-resolved fluorescence spectroscopy. The weak emission signals of carotenoids in polymer films were increased by 4-40 times in the presence of a silver island film and the emission lifetimes of both carotenoids were measured as significantly shortened. The energy transfer from the intermediate states of carotenoids to the silver islands and the subsequent surface plasmon coupled emission were proposed for the mechanisms of metal-enhanced fluorescence. The fluorescence enhancements of carotenoids in the polymer films were also investigated statistically over a wide area of the silver island films.
Collapse
Affiliation(s)
- Jaebeom Lee
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Junghyun Song
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Daedu Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
19
|
Nakano M. Open-Shell-Character-Based Molecular Design Principles: Applications to Nonlinear Optics and Singlet Fission. CHEM REC 2016; 17:27-62. [DOI: 10.1002/tcr.201600094] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Masayoshi Nakano
- Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
20
|
Hamada F, Murakami A, Akimoto S. Comparative Analysis of Ultrafast Excitation Energy-Transfer Pathways in Three Strains of Divinyl Chlorophyll a/b-Containing Cyanobacterium, Prochlorococcus marinus. J Phys Chem B 2015; 119:15593-600. [DOI: 10.1021/acs.jpcb.5b10073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fumiya Hamada
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
| | - Akio Murakami
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
- Kobe University Research Center for Inland Seas, Awaji 656-2401, Japan
| | - Seiji Akimoto
- Graduate
School of Science, Kobe University, Kobe 657-8501, Japan
- Molecular
Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
21
|
Duffy CD, Ruban AV. Dissipative pathways in the photosystem-II antenna in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:215-26. [DOI: 10.1016/j.jphotobiol.2015.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
22
|
Nozue S, Mukuno A, Tsuda Y, Shiina T, Terazima M, Kumazaki S. Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:46-59. [PMID: 26474523 DOI: 10.1016/j.bbabio.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 12/01/2022]
Abstract
Fluorescence Lifetime Imaging Microscopy (FLIM) has been applied to plants, algae and cyanobacteria, in which excitation laser conditions affect the chlorophyll fluorescence lifetime due to several mechanisms. However, the dependence of FLIM data on input laser power has not been quantitatively explained by absolute excitation probabilities under actual imaging conditions. In an effort to distinguish between photosystem I and photosystem II (PSI and PSII) in microscopic images, we have obtained dependence of FLIM data on input laser power from a filamentous cyanobacterium Anabaena variabilis and single cellular green alga Parachlorella kessleri. Nitrogen-fixing cells in A. variabilis, heterocysts, are mostly visualized as cells in which short-lived fluorescence (≤0.1 ns) characteristic of PSI is predominant. The other cells in A. variabilis (vegetative cells) and P. kessleri cells show a transition in the status of PSII from an open state with the maximal charge separation rate at a weak excitation limit to a closed state in which charge separation is temporarily prohibited by previous excitation(s) at a relatively high laser power. This transition is successfully reproduced by a computer simulation with a high fidelity to the actual imaging conditions. More details in the fluorescence from heterocysts were examined to assess possible functions of PSII in the anaerobic environment inside the heterocysts for the nitrogen-fixing enzyme, nitrogenase. Photochemically active PSII:PSI ratio in heterocysts is tentatively estimated to be typically below our detection limit or at most about 5% in limited heterocysts in comparison with that in vegetative cells.
Collapse
Affiliation(s)
- Shuho Nozue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akira Mukuno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumi Tsuda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeichi Kumazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
23
|
Xu DQ, Chen Y, Chen GY. Light-harvesting regulation from leaf to molecule with the emphasis on rapid changes in antenna size. PHOTOSYNTHESIS RESEARCH 2015; 124:137-158. [PMID: 25773873 DOI: 10.1007/s11120-015-0115-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
In the sunlight-fluctuating environment, plants often encounter both light-deficiency and light-excess cases. Therefore, regulation of light harvesting is absolutely essential for photosynthesis in order to maximize light utilization at low light and avoid photodamage of the photosynthetic apparatus at high light. Plants have developed a series of strategies of light-harvesting regulation during evolution. These strategies include rapid responses such as leaf movement and chloroplast movement, state transitions, and reversible dissociation of some light-harvesting complex of the photosystem II (LHCIIs) from PSII core complexes, and slow acclimation strategies such as changes in the protein abundance of light-harvesting antenna and modifications of leaf morphology, structure, and compositions. This review discusses successively these strategies and focuses on the rapid change in antenna size, namely reversible dissociation of some peripheral light-harvesting antennas (LHCIIs) from PSII core complex. It is involved in protective role and species dependence of the dissociation, differences between the dissociation and state transitions, relationship between the dissociation and thylakoid protein phosphorylation, and possible mechanism for thermal dissipation by the dissociated LHCIIs.
Collapse
Affiliation(s)
- Da-Quan Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | |
Collapse
|
24
|
Caffarri S, Tibiletti T, Jennings RC, Santabarbara S. A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 2015; 15:296-331. [PMID: 24678674 PMCID: PMC4030627 DOI: 10.2174/1389203715666140327102218] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/31/2023]
Abstract
Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting
light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter
process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low
levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem
II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to
catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are
highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron
transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity
regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure
are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of
the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as
obtained by structural, biochemical and spectroscopic investigations.
Collapse
Affiliation(s)
| | | | | | - Stefano Santabarbara
- Laboratoire de Génétique et de Biophysique des Plantes (LGBP), Aix-Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
25
|
Götze JP, Kröner D, Banerjee S, Karasulu B, Thiel W. Carotenoids as a shortcut for chlorophyll Soret-to-Q band energy flow. Chemphyschem 2014; 15:3392-401. [PMID: 25179982 DOI: 10.1002/cphc.201402233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 11/11/2022]
Abstract
It is proposed that xanthophylls, and carotenoids in general, may assist in energy transfer from the chlorophyll Soret band to the Q band. Ground-state (1Ag ) and excited-state (1Bu ) optimizations of violaxanthin (Vx) and zeaxanthin (Zx) are performed in an environment mimicking the light-harvesting complex II (LHCII), including the closest chlorophyll b molecule (Chl). Time-dependent density functional theory (TD-DFT, CAM-B3LYP functional) is used in combination with a semi-empirical description to obtain the excited-state geometries, supported by additional DFT/multireference configuration interaction calculations, with and without point charges representing LHCII. In the ground state, Vx and Zx show similar properties. At the 1Bu minimum, the energy of the Zx 1Bu state is below the Chl Q band, in contrast to Vx. Both Vx and Zx may act as acceptors of Soret-state energy; transfer to the Q band seems to be favored for Vx. These findings suggest that carotenoids may generally mediate Soret-to-Q energy flow in LHCII.
Collapse
Affiliation(s)
- Jan P Götze
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany).
| | | | | | | | | |
Collapse
|
26
|
Wang W, Chen J, Li C, Tian W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat Commun 2014; 5:4647. [DOI: 10.1038/ncomms5647] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
|
27
|
Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Non-Photochemical Quenching Mechanisms in Intact Organisms as Derived from Ultrafast-Fluorescence Kinetic Studies. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Cerezo J, Zúñiga J, Requena A, Ávila Ferrer FJ, Santoro F. Harmonic Models in Cartesian and Internal Coordinates to Simulate the Absorption Spectra of Carotenoids at Finite Temperatures. J Chem Theory Comput 2013; 9:4947-58. [DOI: 10.1021/ct4005849] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Javier Cerezo
- Departamento de Química
Física, Universidad de Murcia, 30100 Murcia, Spain
| | - José Zúñiga
- Departamento de Química
Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Alberto Requena
- Departamento de Química
Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Francisco J. Ávila Ferrer
- CNR−Consiglio Nazionale
delle Ricerche, Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy and
- Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Fabrizio Santoro
- CNR−Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
30
|
Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 2013; 52:539-61. [PMID: 23896007 DOI: 10.1016/j.plipres.2013.07.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022]
Abstract
Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions.
Collapse
Affiliation(s)
- Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre of Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
31
|
Demmig-Adams B, Adams RB. Eye nutrition in context: mechanisms, implementation, and future directions. Nutrients 2013; 5:2483-501. [PMID: 23857222 PMCID: PMC3738983 DOI: 10.3390/nu5072483] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/04/2013] [Accepted: 06/21/2013] [Indexed: 12/12/2022] Open
Abstract
Carotenoid-based visual cues and roles of carotenoids in human vision are reviewed, with an emphasis on protection by zeaxanthin and lutein against vision loss, and dietary sources of zeaxanthin and lutein are summarized. In addition, attention is given to synergistic interactions of zeaxanthin and lutein with other dietary factors affecting human vision (such as antioxidant vitamins, phenolics, and poly-unsaturated fatty acids) and the emerging mechanisms of these interactions. Emphasis is given to lipid oxidation products serving as messengers with functions in gene regulation. Lastly, the photo-physics of light collection and photoprotection in photosynthesis and vision are compared and their common principles identified as possible targets of future research.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | |
Collapse
|
32
|
Götze JP, Thiel W. TD-DFT and DFT/MRCI study of electronic excitations in Violaxanthin and Zeaxanthin. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Yamamoto Y, Hori H, Kai S, Ishikawa T, Ohnishi A, Tsumura N, Morita N. Quality control of Photosystem II: reversible and irreversible protein aggregation decides the fate of Photosystem II under excessive illumination. FRONTIERS IN PLANT SCIENCE 2013; 4:433. [PMID: 24194743 PMCID: PMC3810940 DOI: 10.3389/fpls.2013.00433] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/11/2013] [Indexed: 05/20/2023]
Abstract
In response to excessive light, the thylakoid membranes of higher plant chloroplasts show dynamic changes including the degradation and reassembly of proteins, a change in the distribution of proteins, and large-scale structural changes such as unstacking of the grana. Here, we examined the aggregation of light-harvesting chlorophyll-protein complexes and Photosystem II core subunits of spinach thylakoid membranes under light stress with 77K chlorophyll fluorescence; aggregation of these proteins was found to proceed with increasing light intensity. Measurement of changes in the fluidity of thylakoid membranes with fluorescence polarization of diphenylhexatriene showed that membrane fluidity increased at a light intensity of 500-1,000 μmol photons m(-) (2) s(-) (1), and decreased at very high light intensity (1,500 μmol photons m(-) (2) s(-) (1)). The aggregation of light-harvesting complexes at moderately high light intensity is known to be reversible, while that of Photosystem II core subunits at extremely high light intensity is irreversible. It is likely that the reversibility of protein aggregation is closely related to membrane fluidity: increases in fluidity should stimulate reversible protein aggregation, whereas irreversible protein aggregation might decrease membrane fluidity. When spinach leaves were pre-illuminated with moderately high light intensity, the qE component of non-photochemical quenching and the optimum quantum yield of Photosystem II increased, indicating that Photosystem II/light-harvesting complexes rearranged in the thylakoid membranes to optimize Photosystem II activity. Transmission electron microscopy revealed that the thylakoids underwent partial unstacking under these light stress conditions. Thus, protein aggregation is involved in thylakoid dynamics and regulates photochemical reactions, thereby deciding the fate of Photosystem II.
Collapse
Affiliation(s)
- Yasusi Yamamoto
- *Correspondence: Yasusi Yamamoto, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan e-mail:
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang C, Berg CJ, Hsu CC, Merrill BA, Tauber MJ. Characterization of Carotenoid Aggregates by Steady-State Optical Spectroscopy. J Phys Chem B 2012; 116:10617-30. [DOI: 10.1021/jp3069514] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Wang
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman
Drive MC 0314, La Jolla, California 92093, United States
| | - Christopher J. Berg
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman
Drive MC 0314, La Jolla, California 92093, United States
| | - Cheng-Chih Hsu
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman
Drive MC 0314, La Jolla, California 92093, United States
| | - Brittany A. Merrill
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman
Drive MC 0314, La Jolla, California 92093, United States
| | - Michael J. Tauber
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman
Drive MC 0314, La Jolla, California 92093, United States
| |
Collapse
|
35
|
Durchan M, Tichý J, Litvín R, Šlouf V, Gardian Z, Hříbek P, Vácha F, Polívka T. Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile. J Phys Chem B 2012; 116:8880-9. [PMID: 22764831 DOI: 10.1021/jp3042796] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromophytes are an important group of microorganisms that contribute significantly to the carbon cycle on Earth. Their photosynthetic capacity depends on efficiency of the light-harvesting system that differs in pigment composition from that of green plants and other groups of algae. Here we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the main light-harvesting complex of Xanthonema debile, denoted XLH, which contains four carotenoids--diadinoxanthin, heteroxanthin, diatoxanthin, and vaucheriaxanthin--and Chl-a. Overall carotenoid-to-chlorophyll energy transfer efficiency is about 60%, but energy transfer pathways are excitation wavelength dependent. Energy transfer from the carotenoid S(2) state is active after excitation at both 490 nm (maximum of carotenoid absorption) and 510 nm (red edge of carotenoid absorption), but this channel is significantly more efficient after 510 nm excitation. Concerning the energy transfer pathway from the S(1) state, XLH contains two groups of carotenoids: those that have the S(1) route active (~25%) and those having the S(1) pathway silent. For a fraction of carotenoids that transfer energy via the S(1) channel, energy transfer is observed after both excitation wavelengths, though energy transfer times are different, yielding 3.4 ps (490 nm excitation) and 1.5 ps (510 nm excitation). This corresponds to efficiencies of the S(1) channel of ~85% that is rather unusual for a donor-acceptor pair consisting of a noncarbonyl carotenoid and Chl-a. Moreover, major carotenoids in XLH, diadinoxanthin and diatoxanthin, have their S(1) energies in solution lower than the energy of the acceptor state, Q(y) state of Chl-a. Thus, binding of these carotenoids to XLH must tune their S(1) energy to allow for efficient energy transfer. Besides the light-harvesting function, carotenoids in XLH also have photoprotective role; they quench Chl-a triplets via triplet-triplet energy transfer from Chl-a to carotenoid.
Collapse
Affiliation(s)
- Milan Durchan
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fadeev VV, Gorbunov MY, Gostev TS. Studying photoprotective processes in the green alga Chlorella pyrenoidosa using nonlinear laser fluorimetry. JOURNAL OF BIOPHOTONICS 2012; 5:502-507. [PMID: 22308058 DOI: 10.1002/jbio.201100113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 05/31/2023]
Abstract
We use an advanced fluorescence method of Nonlinear Laser Fluorimetry in combination with Fluorescence Induction and Relaxation technique to study the influence of excess-light conditions on the physiological state of the green alga Chlorella pyrenoidosa. We demonstrate that zeaxanthin-dependent non-photochemical quenching leads to a significant increase in the rate constant of singlet-singlet annihilation of chlorophyll a excited state, which suggests profound conformational changes in the light-harvesting complexes of photosystem II.
Collapse
Affiliation(s)
- Victor V Fadeev
- Physics Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 1, Block 2, GSP-1, 119991 Moscow, Russia
| | | | | |
Collapse
|
37
|
Pan J, Lin S, Woodbury NW. Bacteriochlorophyll Excited-State Quenching Pathways in Bacterial Reaction Centers with the Primary Donor Oxidized. J Phys Chem B 2012; 116:2014-22. [DOI: 10.1021/jp212441b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie Pan
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
| | - Su Lin
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- Department of Chemistry and
Biochemistry, Arizona State University,
Tempe, Arizona 85287-1604, United States
| | - Neal W. Woodbury
- The Biodesign
Institute at Arizona
State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- Department of Chemistry and
Biochemistry, Arizona State University,
Tempe, Arizona 85287-1604, United States
| |
Collapse
|
38
|
Marin A, Passarini F, van Stokkum IHM, van Grondelle R, Croce R. Minor complexes at work: light-harvesting by carotenoids in the photosystem II antenna complexes CP24 and CP26. Biophys J 2011; 100:2829-38. [PMID: 21641329 DOI: 10.1016/j.bpj.2011.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/31/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022] Open
Abstract
Plant photosynthesis relies on the capacity of chlorophylls and carotenoids to absorb light. One of the roles of carotenoids is to harvest green-blue light and transfer the excitation energy to the chlorophylls. The corresponding dynamics were investigated here for the first time, to our knowledge, in the CP26 and CP24 minor antenna complexes. The results for the two complexes differ substantially. In CP26 fast transfer (80 fs) occurs from the carotenoid S(2) state to chlorophylls a absorbing at 675 and 678 nm, whereas transfer from the hot S(1) state to the lowest energy chlorophylls is observed in <1 ps. In CP24, energy transfer from the S(2) state leads in 80 fs to the population of chlorophylls b and high-energy chlorophylls a absorbing at 670 nm, whereas the low-energy chlorophylls a are populated only in several picoseconds. The results suggest that CP26 has a structural and functional organization similar to that of LHCII, whereas CP24 differs substantially from the other Lhc complexes, especially regarding the lutein L1 binding domain. No energy transfer from the carotenoid S(1) state to chlorophylls was observed in either complex, suggesting that this state is energetically below the chlorophyll Qy state and therefore may play a role in the quenching of chlorophyll excitations.
Collapse
Affiliation(s)
- Alessandro Marin
- Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Wang C, Schlamadinger DE, Desai V, Tauber MJ. Triplet excitons of carotenoids formed by singlet fission in a membrane. Chemphyschem 2011; 12:2891-4. [PMID: 21910205 DOI: 10.1002/cphc.201100571] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Chen Wang
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | | | | | |
Collapse
|
40
|
Ilioaia C, Johnson MP, Liao PN, Pascal AA, van Grondelle R, Walla PJ, Ruban AV, Robert B. Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II. J Biol Chem 2011; 286:27247-54. [PMID: 21646360 PMCID: PMC3149318 DOI: 10.1074/jbc.m111.234617] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/13/2011] [Indexed: 11/06/2022] Open
Abstract
Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem II (LHCII) in the absence of protein-protein interactions. Spectroscopic measurements on these samples (LHCII gels) in the quenched state revealed specific alterations in the absorption and circular dichroism bands assigned to neoxanthin and lutein 1 molecules. In this work, we investigate the changes in conformation of the pigments involved in NPQ using resonance Raman spectroscopy. By selective excitation we show that, as well as the twisting of neoxanthin that has been reported previously, the lutein 1 pigment also undergoes a significant change in conformation when LHCII switches to the energy dissipative state. Selective two-photon excitation of carotenoid (Car) dark states (Car S(1)) performed on LHCII gels shows that the extent of electronic interactions between Car S(1) and chlorophyll states correlates linearly with chlorophyll fluorescence quenching, as observed previously for isolated LHCII (aggregated versus trimeric) and whole plants (with versus without NPQ).
Collapse
Affiliation(s)
- Cristian Ilioaia
- From the Commisariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay and CNRS URA 2096, F-91191 Gif sur Yvette, France
- the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Matthew P. Johnson
- the School of Biological and Chemical Sciences, Queen Mary University of London, Mile End, Bancroft Road, London E1 4NS, United Kingdom
| | - Pen-Nan Liao
- the Department of Biophysical Chemistry, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany, and
| | - Andrew A. Pascal
- From the Commisariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay and CNRS URA 2096, F-91191 Gif sur Yvette, France
| | - Rienk van Grondelle
- the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Peter J. Walla
- the Department of Biophysical Chemistry, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany, and
- the Department of Spectroscopy and Photochemical Kinetics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Alexander V. Ruban
- the School of Biological and Chemical Sciences, Queen Mary University of London, Mile End, Bancroft Road, London E1 4NS, United Kingdom
| | - Bruno Robert
- From the Commisariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay and CNRS URA 2096, F-91191 Gif sur Yvette, France
| |
Collapse
|
41
|
Ruban AV, Johnson MP, Duffy CDP. The photoprotective molecular switch in the photosystem II antenna. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:167-81. [PMID: 21569757 DOI: 10.1016/j.bbabio.2011.04.007] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
We have reviewed the current state of multidisciplinary knowledge of the photoprotective mechanism in the photosystem II antenna underlying non-photochemical chlorophyll fluorescence quenching (NPQ). The physiological need for photoprotection of photosystem II and the concept of feed-back control of excess light energy are described. The outline of the major component of nonphotochemical quenching, qE, is suggested to comprise four key elements: trigger (ΔpH), site (antenna), mechanics (antenna dynamics) and quencher(s). The current understanding of the identity and role of these qE components is presented. Existing opinions on the involvement of protons, different LHCII antenna complexes, the PsbS protein and different xanthophylls are reviewed. The evidence for LHCII aggregation and macrostructural reorganization of photosystem II and their role in qE are also discussed. The models describing the qE locus in LHCII complexes, the pigments involved and the evidence for structural dynamics within single monomeric antenna complexes are reviewed. We suggest how PsbS and xanthophylls may exert control over qE by controlling the affinity of LHCII complexes for protons with reference to the concepts of hydrophobicity, allostery and hysteresis. Finally, the physics of the proposed chlorophyll-chlorophyll and chlorophyll-xanthophyll mechanisms of energy quenching is explained and discussed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Alexander V Ruban
- Queen Mary Universityof London, School of Biological & Chemical Sciences, Mile Enf Road, London E1 4TN, UK.
| | | | | |
Collapse
|
42
|
Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:182-93. [PMID: 21565154 DOI: 10.1016/j.bbabio.2011.04.012] [Citation(s) in RCA: 627] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/31/2011] [Accepted: 04/02/2011] [Indexed: 11/18/2022]
Abstract
Photoprotection of photosystem II (PSII) is essential to avoid the light-induced damage of the photosynthetic apparatus due to the formation of reactive oxygen species (=photo-oxidative stress) under excess light. Carotenoids are known to play a crucial role in these processes based on their property to deactivate triplet chlorophyll (³Chl*) and singlet oxygen (¹O₂*). Xanthophylls are further assumed to be involved either directly or indirectly in the non-photochemical quenching (NPQ) of excess light energy in the antenna of PSII. This review gives an overview on recent progress in the understanding of the photoprotective role of the xanthophylls zeaxanthin (which is formed in the light in the so-called xanthophyll cycle) and lutein with emphasis on the NPQ processes associated with PSII of higher plants. The current knowledge supports the view that the photoprotective role of Lut is predominantly restricted to its function in the deactivation of ³Chl*, while zeaxanthin is the major player in the deactivation of excited singlet Chl (¹Chl*) and thus in NPQ (non-photochemical quenching). Additionally, zeaxanthin serves important functions as an antioxidant in the lipid phase of the membrane and is likely to act as a key component in the memory of the chloroplast with respect to preceding photo-oxidative stress. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr.1, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
43
|
Pandit A, Morosinotto T, Reus M, Holzwarth AR, Bassi R, de Groot HJ. First solid-state NMR analysis of uniformly 13C-enriched major light-harvesting complexes from Chlamydomonas reinhardtii and identification of protein and cofactor spin clusters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:437-43. [DOI: 10.1016/j.bbabio.2011.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/13/2011] [Accepted: 01/18/2011] [Indexed: 11/26/2022]
|
44
|
Liao PN, Pillai S, Gust D, Moore TA, Moore AL, Walla PJ. Two-Photon Study on the Electronic Interactions between the First Excited Singlet States in Carotenoid−Tetrapyrrole Dyads. J Phys Chem A 2011; 115:4082-91. [DOI: 10.1021/jp1122486] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pen-Nan Liao
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Smitha Pillai
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Devens Gust
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Ana L. Moore
- Department of Chemistry & Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Peter J. Walla
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
- Max Planck Institute for Biophysical Chemistry, Department of Spectroscopy and Photochemical Kinetics, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Cruz AJ, Siam K, Rillema DP. Dicyano and Pyridine Derivatives of β-Carotene: Synthesis and Vibronic, Electronic, and Photophysical Properties. J Phys Chem A 2011; 115:1108-16. [DOI: 10.1021/jp106293s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. J. Cruz
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - K. Siam
- Department of Chemistry, Pittsburgh State University, Pittsburgh, Kansas 66762, United States
| | - D. P. Rillema
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
46
|
Martiskainen J, Kananavičius R, Linnanto J, Lehtivuori H, Keränen M, Aumanen V, Tkachenko N, Korppi-Tommola J. Excitation energy transfer in the LHC-II trimer: from carotenoids to chlorophylls in space and time. PHOTOSYNTHESIS RESEARCH 2011; 107:195-207. [PMID: 21287272 DOI: 10.1007/s11120-011-9626-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
Exciton model for description of experimentally determined excitation energy transfer from carotenoids to chlorophylls in the LHC-II trimer of spinach is presented. Such an approach allows connecting the excitonic states to the spatial structure of the complex and hence descriptions of advancements of the initially created excitations in space and time. Carotenoids were excited at 490 nm and at 500 nm and induced absorbance changes probed in the Chl Q(y) region to provide kinetic data that were interpreted by using the results from exciton calculations. Calculations included the 42 chlorophylls and the 12 carotenoids of the complex, Soret, Q(x) and Q(y) states of the chlorophylls, and the main absorbing S(2) state of the carotenoids. According to the calculations excitation at 500 nm populates mostly a mixed Lut S(2) Chl a Soret state, from where excitation is transferred to the Q(x) and Q(y) states of the Chl a's on the stromal side. Internal conversion of the mixed state to a mixed Lut S(1) and Chl a Q(y) state provides a channel for Lut S(1) to Chl a Q(y) energy transfer. The results from the calculations support a picture where excitation at 490 nm populates primarily a mixed neoxanthin S(2) Chl b Soret state. From this state excitation from neoxanthin is transferred to iso-energetic Chl b Soret states or via internal conversion to S(1) Chl b Q(y) states. From the Soret states excitation proceeds via internal conversion to Q(y) states of Chl b's mostly on the lumenal side. A rapid Chl b to Chl a transfer and subsequent transfer to the stromal side Chl a's and to the final state completes the process after 490 nm excitation. The interpretation is further supported by the fact that excitation energy transfer kinetics after excitation of neoxanthin at 490 nm and the Chl b Q(y) band at 647 nm (Linnanto et al., Photosynth Res 87:267-279, 2006) are very similar.
Collapse
Affiliation(s)
- Jari Martiskainen
- Physical Chemistry Laboratory, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Arellano JB, Melø TB, Fyfe PK, Cogdell RJ, Naqvi KR. Multichannel Flash Spectroscopy of the Reaction Centers of Wild-type and Mutant Rhodobacter sphaeroides: BacteriochlorophyllB-mediated Interaction Between the Carotenoid Triplet and the Special Pair¶†. Photochem Photobiol 2011. [DOI: 10.1111/j.1751-1097.2004.tb09859.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Abstract
Six different xanthophyll cycles have been described in photosynthetic organisms. All of them protect the photosynthetic apparatus from photodamage caused by light-induced oxidative stress. Overexcitation conditions lead, in the chloroplast, to the over-reduction of the NADP pool and production of superoxide, which can subsequently be metabolized to hydrogen peroxide or a hydroxyl radical, other reactive oxygen species (ROS). On the other hand, overexcitation of photosystems leads to an increased lifetime of the chlorophyll excited state, increasing the probability of chlorophyll triplet formation which reacts with triplet oxygen forming single oxygen, another ROS. The products of the light-dependent phase of xanthophyll cycles play an important role in the protection against oxidative stress generated not only by an excess of light but also by other ROS-generating factors such as drought, chilling, heat, senescence, or salinity stress. Four, mainly hypothetical, mechanisms explaining the protective role of xanthophyll cycles in oxidative stress are presented. One of them is the direct quenching of overexcitation by products of the light phase of xanthophyll cycles and three others are based on the indirect participation of xanthophyll cycle carotenoids in the process of photoprotection. They include: (1) indirect quenching of overexcitation by aggregation-dependent light-harvesting complexes (LHCII) quenching; (2) light-driven mechanisms in LHCII; and (3) a model based on charge transfer quenching between Chl a and Zx. Moreover, results of the studies on the antioxidant properties of xanthophyll cycle pigments in model systems are also presented.
Collapse
Affiliation(s)
- Dariusz Latowski
- Department of Plant Physiology and BiochemistryFaculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paulina Kuczyńska
- Department of Plant Physiology and BiochemistryFaculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazimierz Strzałka
- Department of Plant Physiology and BiochemistryFaculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
49
|
Liao PN, Holleboom CP, Wilk L, Kühlbrandt W, Walla PJ. Correlation of Car S1 → Chl with Chl → Car S1 Energy Transfer Supports the Excitonic Model in Quenched Light Harvesting Complex II. J Phys Chem B 2010; 114:15650-5. [DOI: 10.1021/jp1034163] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pen-Nan Liao
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany, Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany, and Max Planck Institute for Biophysical Chemistry, Department of Spectroscopy and Photochemical Kinetics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christoph-Peter Holleboom
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany, Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany, and Max Planck Institute for Biophysical Chemistry, Department of Spectroscopy and Photochemical Kinetics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Laura Wilk
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany, Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany, and Max Planck Institute for Biophysical Chemistry, Department of Spectroscopy and Photochemical Kinetics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Werner Kühlbrandt
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany, Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany, and Max Planck Institute for Biophysical Chemistry, Department of Spectroscopy and Photochemical Kinetics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Peter J. Walla
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany, Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany, and Max Planck Institute for Biophysical Chemistry, Department of Spectroscopy and Photochemical Kinetics, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Janik E, Maksymiec W, Gruszecki WI. The photoprotective mechanisms in Secale cereale leaves under Cu and high light stress condition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:47-52. [DOI: 10.1016/j.jphotobiol.2010.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/13/2010] [Accepted: 06/21/2010] [Indexed: 11/29/2022]
|