1
|
Su C, Lu Y, Wang Z, Guo J, Hou Y, Wang X, Qin Z, Gao J, Sun Z, Dai Y, Liu Y, Liu G, Xian X, Cui X, Zhang J, Tang J. Atherosclerosis: The Involvement of Immunity, Cytokines and Cells in Pathogenesis, and Potential Novel Therapeutics. Aging Dis 2022:AD.2022.1208. [PMID: 37163428 PMCID: PMC10389830 DOI: 10.14336/ad.2022.1208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/08/2022] [Indexed: 05/12/2023] Open
Abstract
As a leading contributor to coronary artery disease (CAD) and stroke, atherosclerosis has become one of the major cardiovascular diseases (CVD) negatively impacting patients worldwide. The endothelial injury is considered to be the initial step of the development of atherosclerosis, resulting in immune cell migration and activation as well as inflammatory factor secretion, which further leads to acute and chronic inflammation. In addition, the inflammation and lipid accumulation at the lesions stimulate specific responses from different types of cells, contributing to the pathological progression of atherosclerosis. As a result, recent studies have focused on using molecular biological approaches such as gene editing and nanotechnology to mediate cellular response during atherosclerotic development for therapeutic purposes. In this review, we systematically discuss inflammatory pathogenesis during the development of atherosclerosis from a cellular level with a focus on the blood cells, including all types of immune cells, together with crucial cells within the blood vessel, such as smooth muscle cells and endothelial cells. In addition, the latest progression of molecular-cellular based therapy for atherosclerosis is also discussed. We hope this review article could be beneficial for the clinical management of atherosclerosis.
Collapse
Affiliation(s)
- Chang Su
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yongzheng Lu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zeyu Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiacheng Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yachen Hou
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Xiaofang Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhen Qin
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jiamin Gao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Zhaowei Sun
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Yichen Dai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yu Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, Peking University, Beijing, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jinying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Nanotherapeutics Containing Lithocholic Acid-Based Amphiphilic Scorpion-Like Macromolecules Reduce In Vitro Inflammation in Macrophages: Implications for Atherosclerosis. NANOMATERIALS 2018; 8:nano8020084. [PMID: 29393918 PMCID: PMC5853716 DOI: 10.3390/nano8020084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022]
Abstract
Previously-designed amphiphilic scorpion-like macromolecule (AScM) nanoparticles (NPs) showed elevated potency to counteract oxidized low-density lipoprotein (oxLDL) uptake in atherosclerotic macrophages, but failed to ameliorate oxLDL-induced inflammation. We designed a new class of composite AScMs incorporating lithocholic acid (LCA), a natural agonist for the TGR5 receptor that is known to counteract atherosclerotic inflammation, with two complementary goals: to simultaneously decrease lipid uptake and inhibit pro-inflammatory cytokine secretion by macrophages. LCA was conjugated to AScMs for favorable interaction with TGR5 and was also hydrophobically modified to enable encapsulation in the core of AScM-based NPs. Conjugates were formulated into negatively charged NPs with different core/shell combinations, inspired by the negative charge on oxLDL to enable competitive interaction with scavenger receptors (SRs). NPs with LCA-containing shells exhibited reduced sizes, and all NPs lowered oxLDL uptake to <30% of untreated, human derived macrophages in vitro, while slightly downregulating SR expression. Pro-inflammatory cytokine expression, including IL-1β, IL-8, and IL-10, is known to be modulated by TGR5, and was dependent on NP composition, with LCA-modified cores downregulating inflammation. Our studies indicate that LCA-conjugated AScM NPs offer a unique approach to minimize atherogenesis and counteract inflammation.
Collapse
|
3
|
Chmielowski RA, Abdelhamid DS, Faig JJ, Petersen LK, Gardner CR, Uhrich KE, Joseph LB, Moghe PV. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation. Acta Biomater 2017; 57:85-94. [PMID: 28522412 PMCID: PMC5546209 DOI: 10.1016/j.actbio.2017.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Enhanced bioactive anti-oxidant formulations are critical for treatment of inflammatory diseases, such as atherosclerosis. A hallmark of early atherosclerosis is the uptake of oxidized low density lipoprotein (oxLDL) by macrophages, which results in foam cell and plaque formation in the arterial wall. The hypolipidemic, anti-inflammatory, and antioxidative properties of polyphenol compounds make them attractive targets for treatment of atherosclerosis. However, high concentrations of antioxidants can reverse their anti-atheroprotective properties and cause oxidative stress within the artery. Here, we designed a new class of nanoparticles with anti-oxidant polymer cores and shells comprised of scavenger receptor targeting amphiphilic macromolecules (AMs). Specifically, we designed ferulic acid-based poly(anhydride-ester) nanoparticles to counteract the uptake of high levels of oxLDL and regulate reactive oxygen species generation (ROS) in human monocyte derived macrophages (HMDMs). Compared to all compositions examined, nanoparticles with core ferulic acid-based polymers linked by diglycolic acid (PFAG) showed the greatest inhibition of oxLDL uptake. At high oxLDL concentrations, the ferulic acid diacids and polymer nanoparticles displayed similar oxLDL uptake. Treatment with the PFAG nanoparticles downregulated the expression of macrophage scavenger receptors, CD-36, MSR-1, and LOX-1 by about 20-50%, one of the causal factors for the decrease in oxLDL uptake. The PFAG nanoparticle lowered ROS production by HMDMs, which is important for maintaining macrophage growth and prevention of apoptosis. Based on these results, we propose that ferulic acid-based poly(anhydride ester) nanoparticles may offer an integrative strategy for the localized passivation of the early stages of the atheroinflammatory cascade in cardiovascular disease. STATEMENT OF SIGNIFICANCE Future development of anti-oxidant formulations for atherosclerosis applications is essential to deliver an efficacious dose while limiting localized concentrations of pro-oxidants. In this study, we illustrate the potential of degradable ferulic acid-based polymer nanoparticles to control macrophage foam cell formation by significantly reducing oxLDL uptake through downregulation of scavenger receptors, CD-36, MSR-1, and LOX-1. Another critical finding is the ability of the degradable ferulate-based polymer nanoparticles to lower macrophage reactive oxygen species (ROS) levels, a precursor to apoptosis and plaque escalation. The degradable ferulic acid-based polymer nanoparticles hold significant promise as a means to alter the treatment and progression of atherosclerosis.
Collapse
Affiliation(s)
- Rebecca A Chmielowski
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, USA
| | - Dalia S Abdelhamid
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA; Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Jonathan J Faig
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA
| | - Latrisha K Petersen
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, USA
| | - Carol R Gardner
- Department of Pharmacology and Toxicology, 160 Frelinghuysen Road, Rutgers University, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, 160 Frelinghuysen Road, Rutgers University, NJ, USA.
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, USA; Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, USA.
| |
Collapse
|
4
|
Bennett NK, Chmielowski R, Abdelhamid DS, Faig JJ, Francis N, Baum J, Pang ZP, Uhrich KE, Moghe PV. Polymer brain-nanotherapeutics for multipronged inhibition of microglial α-synuclein aggregation, activation, and neurotoxicity. Biomaterials 2016; 111:179-189. [PMID: 27736702 DOI: 10.1016/j.biomaterials.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022]
Abstract
Neuroinflammation, a common neuropathologic feature of neurodegenerative disorders including Parkinson disease (PD), is frequently exacerbated by microglial activation. The extracellular protein α-synuclein (ASYN), whose aggregation is characteristic of PD, remains a key therapeutic target, but the control of synuclein trafficking and aggregation within microglia has been challenging. First, we established that microglial internalization of monomeric ASYN was mediated by scavenger receptors (SR), CD36 and SRA1, and was rapidly accompanied by the formation of ASYN oligomers. Next, we designed a nanotechnology approach to regulate SR-mediated intracellular ASYN trafficking within microglia. We synthesized mucic acid-derivatized sugar-based amphiphilic molecules (AM) with optimal stereochemistry, rigidity, and charge for enhanced dual binding affinity to SRs and fabricated serum-stable nanoparticles via flash nanoprecipitation comprising hydrophobe cores and amphiphile shells. Treatment of microglia with AM nanoparticles decreased monomeric ASYN internalization and intracellular ASYN oligomer formation. We then engineered composite deactivating NPs with dual character, namely shell-based SR-binding amphiphiles, and core-based antioxidant poly (ferrulic acid), to investigate concerted inhibition of oxidative activation. In ASYN-challenged microglia treated with NPs, we observed decreased ASYN-mediated acute microglial activation and diminished microglial neurotoxicity caused by exposure to aggregated ASYN. When the composite NPs were administered in vivo within the substantia nigra of fibrillar ASYN-challenged wild type mice, there was marked attenuation of activated microglia. Overall, SR-targeting AM nanotechnology represents a novel paradigm in alleviating microglial activation in the context of synucleinopathies like PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA
| | - Rebecca Chmielowski
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA
| | - Dalia S Abdelhamid
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA; Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Jonathan J Faig
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Nicola Francis
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA; Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Chemistry & Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA; Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
5
|
Zhang Y, Li Q, Welsh WJ, Moghe PV, Uhrich KE. Micellar and structural stability of nanoscale amphiphilic polymers: Implications for anti-atherosclerotic bioactivity. Biomaterials 2016; 84:230-240. [PMID: 26828687 DOI: 10.1016/j.biomaterials.2015.12.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/06/2015] [Accepted: 12/25/2015] [Indexed: 11/29/2022]
Abstract
Atherosclerosis, a leading cause of mortality in developed countries, is characterized by the buildup of oxidized low-density lipoprotein (oxLDL) within the vascular intima, unregulated oxLDL uptake by macrophages, and ensuing formation of arterial plaque. Amphiphilic polymers (AMPs) comprised of a branched hydrophobic domain and a hydrophilic poly(ethylene glycol) (PEG) tail have shown promising anti-atherogenic effects through direct inhibition of oxLDL uptake by macrophages. In this study, five AMPs with controlled variations were evaluated for their micellar and structural stability in the presence of serum and lipase, respectively, to develop underlying structure-atheroprotective activity relations. In parallel, molecular dynamics simulations were performed to explore the AMP conformational preferences within an aqueous environment. Notably, AMPs with ether linkages between the hydrophobic arms and sugar backbones demonstrated enhanced degradation stability and storage stability, and also elicited enhanced anti-atherogenic bioactivity. Additionally, AMPs with increased hydrophobicity elicited increased atheroprotective bioactivity in the presence of serum. These studies provide key insights for designing more serum-stable polymeric micelles as prospective cardiovascular nanotherapies.
Collapse
Affiliation(s)
- Yingyue Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Qi Li
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick 08901, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Chan JW, Lewis DR, Petersen LK, Moghe PV, Uhrich KE. Amphiphilic macromolecule nanoassemblies suppress smooth muscle cell proliferation and platelet adhesion. Biomaterials 2016; 84:219-229. [PMID: 26828686 DOI: 10.1016/j.biomaterials.2015.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 12/19/2022]
Abstract
While the development of second- and third-generation drug-eluting stents (DES) have significantly improved patient outcomes by reducing smooth muscle cell (SMC) proliferation, DES have also been associated with an increased risk of late-stent thrombosis due to delayed re-endothelialization and hypersensitivity reactions from the drug-polymer coating. Furthermore, DES anti-proliferative agents do not counteract the upstream oxidative stress that triggers the SMC proliferation cascade. In this study, we investigate biocompatible amphiphilic macromolecules (AMs) that address high oxidative lipoprotein microenvironments by competitively binding oxidized lipid receptors and suppressing SMC proliferation with minimal cytotoxicity. To determine the influence of nanoscale assembly on proliferation, micelles and nanoparticles were fabricated from AM unimers containing a phosphonate or carboxylate end-group, a sugar-based hydrophobic domain, and a hydrophilic poly(ethylene glycol) domain. The results indicate that when SMCs are exposed to high levels of oxidized lipid stimuli, nanotherapeutics inhibit lipid uptake, downregulate scavenger receptor expression, and attenuate scavenger receptor gene transcription in SMCs, and thus significantly suppress proliferation. Although both functional end-groups were similarly efficacious, nanoparticles suppressed oxidized lipid uptake and scavenger receptor expression more effectively compared to micelles, indicating the relative importance of formulation characteristics (e.g., higher localized AM concentrations and nanotherapeutic stability) in scavenger receptor binding as compared to AM end-group functionality. Furthermore, AM coatings significantly prevented platelet adhesion to metal, demonstrating its potential as an anti-platelet therapy to treat thrombosis. Thus, AM micelles and NPs can effectively repress early stage SMC proliferation and thrombosis through non-cytotoxic mechanisms, highlighting the promise of nanomedicine for next-generation cardiovascular therapeutics.
Collapse
Affiliation(s)
- Jennifer W Chan
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Latrisha K Petersen
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA.
| | - Kathryn E Uhrich
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Chan JW, Zhang Y, Uhrich KE. Amphiphilic Macromolecule Self-Assembled Monolayers Suppress Smooth Muscle Cell Proliferation. Bioconjug Chem 2015; 26:1359-69. [PMID: 26042535 DOI: 10.1021/acs.bioconjchem.5b00208] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A significant limitation of cardiovascular stents is restenosis, where excessive smooth muscle cell (SMC) proliferation following stent implantation causes blood vessel reocclusion. While drug-eluting stents minimize SMC proliferation through releasing cytotoxic or immunosuppressive drugs from polymer carriers, significant issues remain with delayed healing, inflammation, and hypersensitivity reactions associated with drug and polymer coatings. Amphiphilic macromolecules (AMs) comprising a sugar-based hydrophobic domain and a hydrophilic poly(ethylene glycol) tail are noncytotoxic and recently demonstrated a concentration-dependent ability to suppress SMC proliferation. In this study, we designed a series of AMs and studied their coating properties (chemical composition, thickness, grafting density, and coating uniformity) to determine the effect of headgroup chemistry on bioactive AM grafting and release properties from stainless steel substrates. One carboxyl-terminated AM (1cM) and two phosphonate- (Me-1pM and Pr-1pM) terminated AMs, with varying linker lengths preceding the hydrophobic domain, were grafted to stainless steel substrates using the tethering by aggregation and growth (T-BAG) approach. The AMs formed headgroup-dependent, yet uniform, biocompatible adlayers. Pr-1pM and 1cM demonstrated higher grafting density and an extended release from the substrate over 21 days compared to Me-1pM, which exhibited lower grafting density and complete release within 7 days. Coinciding with their release profiles, Me-1pM and 1cM coatings initially suppressed SMC proliferation in vitro, but their efficacy decreased within 7 and 14 days, respectively, while Pr-1pM coatings suppressed SMC proliferation over 21 days. Thus, AMs with phosphonate headgroups and propyl linkers are capable of sustained release from the substrate and have the ability to suppress SMC proliferation during the restenosis that occurs in the 3-4 weeks after stent implantation, demonstrating the potential for AM coatings to provide sustained delivery via desorption from coated coronary stents and other metal-based implants.
Collapse
Affiliation(s)
- Jennifer W Chan
- †Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Yingyue Zhang
- ‡Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn E Uhrich
- †Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States.,‡Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Abdelhamid DS, Zhang Y, Lewis DR, Moghe PV, Welsh WJ, Uhrich KE. Tartaric acid-based amphiphilic macromolecules with ether linkages exhibit enhanced repression of oxidized low density lipoprotein uptake. Biomaterials 2015; 53:32-9. [PMID: 25890704 DOI: 10.1016/j.biomaterials.2015.02.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 12/28/2022]
Abstract
Cardiovascular disease initiates with the atherogenic cascade of scavenger receptor- (SR-) mediated oxidized low-density lipoprotein (oxLDL) uptake. Resulting foam cell formation leads to lipid-rich lesions within arteries. We designed amphiphilic macromolecules (AMs) to inhibit these processes by competitively blocking oxLDL uptake via SRs, potentially arresting atherosclerotic development. In this study, we investigated the impact of replacing ester linkages with ether linkages in the AM hydrophobic domain. We hypothesized that ether linkages would impart flexibility for orientation to improve binding to SR binding pockets, enhancing anti-atherogenic activity. A series of tartaric acid-based AMs with varying hydrophobic chain lengths and conjugation chemistries were synthesized, characterized, and evaluated for bioactivity. 3-D conformations of AMs in aqueous conditions may have significant effects on anti-atherogenic potency and were simulated by molecular modeling. Notably, ether-linked AMs exhibited significantly higher levels of inhibition of oxLDL uptake than their corresponding ester analogues, indicating a dominant effect of linkage flexibility on pharmacological activity. The degradation stability was also enhanced for ether-linked AMs. These studies further suggested that alkyl chain length (i.e., relative hydrophobicity), conformation (i.e., orientation), and chemical stability play a critical role in modulating oxLDL uptake, and guide the design of innovative cardiovascular therapies.
Collapse
Affiliation(s)
- Dalia S Abdelhamid
- Department of Chemistry and Chemical Biology, Rutgers University, NJ, USA
| | - Yingyue Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, NJ, USA
| | - Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, NJ, USA
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, Rutgers University, NJ, USA; Department of Biomedical Engineering, Rutgers University, NJ, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, NJ, USA.
| |
Collapse
|
9
|
Gu L, Faig A, Abdelhamid D, Uhrich K. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Acc Chem Res 2014; 47:2867-77. [PMID: 25141069 DOI: 10.1021/ar4003009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Various therapeutics exhibit unfavorable physicochemical properties or stability issues that reduce their in vivo efficacy. Therefore, carriers able to overcome such challenges and deliver therapeutics to specific in vivo target sites are critically needed. For instance, anticancer drugs are hydrophobic and require carriers to solubilize them in aqueous environments, and gene-based therapies (e.g., siRNA or pDNA) require carriers to protect the anionic genes from enzymatic degradation during systemic circulation. Polymeric micelles, which are self-assemblies of amphiphilic polymers (APs), constitute one delivery vehicle class that has been investigated for many biomedical applications. Having a hydrophobic core and a hydrophilic shell, polymeric micelles have been used as drug carriers. While traditional APs are typically comprised of nondegradable block copolymers, sugar-based amphiphilic polymers (SBAPs) synthesized by us are comprised of branched, sugar-based hydrophobic segments and a hydrophilic poly(ethylene glycol) chain. Similar to many amphiphilic polymers, SBAPs self-assemble into polymeric micelles. These nanoscale micelles have extremely low critical micelle concentrations offering stability against dilution, which occurs with systemic administration. In this Account, we illustrate applications of SBAPs for anticancer drug delivery via physical encapsulation within SBAP micelles and chemical conjugation to form SBAP prodrugs capable of micellization. Additionally, we show that SBAPs are excellent at stabilizing liposomal delivery systems. These SBAP-lipid complexes were developed to deliver hydrophobic anticancer therapeutics, achieving preferential uptake in cancer cells over normal cells. Furthermore, these complexes can be designed to electrostatically complex with gene therapies capable of transfection. Aside from serving as a nanocarrier, SBAPs have also demonstrated unique bioactivity in managing atherosclerosis, a major cause of cardiovascular disease. The atherosclerotic cascade is usually triggered by the unregulated uptake of oxidized low-density lipoprotein, a cholesterol carrier, in macrophages of the blood vessel wall; SBAPs can significantly inhibit oxidized low-density lipoprotein uptake in macrophages and abrogate the atherosclerotic cascade. By modification of various functionalities (e.g., branching, stereochemistry, hydrophobicity, and charge) in the SBAP chemical structure, SBAP bioactivity was optimized, and influential structural components were identified. Despite the potential of SBAPs as atherosclerotic therapies, blood stability of the SBAP micelles was not ideal for in vivo applications, and means to stabilize them were pursued. Using kinetic entrapment via flash nanoprecipitation, SBAPs were formulated into nanoparticles with a hydrophobic solute core and SBAP shell. SBAP nanoparticles exhibited excellent physiological stability and enhanced bioactivity compared with SBAP micelles. Further, this method enables encapsulation of additional hydrophobic drugs (e.g., vitamin E) to yield a stable formulation that releases two bioactives. Both as nanoscale carriers and as polymer therapeutics, SBAPs are promising biomaterials for medical applications.
Collapse
Affiliation(s)
- Li Gu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Allison Faig
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Dalia Abdelhamid
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn Uhrich
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Petersen L, York AW, Lewis DR, Ahuja S, Uhrich KE, Prud’homme RK, Moghe PV. Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm 2014; 11:2815-24. [PMID: 24972372 PMCID: PMC4144725 DOI: 10.1021/mp500188g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 02/08/2023]
Abstract
Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and fabricate a new class of nanoparticles (NPs) based on hydrophobic mucic acid cores and amphiphilic shells with the ability to inhibit the uncontrolled uptake of modified lipids in human macrophages. Our results indicate that tailored NP core and shell formulations repress oxLDL internalization via dual complementary mechanisms. Specifically, the most atheroprotective molecules in the NP cores competitively reduced NP-mediated uptake to scavenger receptor A (SRA) and also down-regulated the surface expression of SRA and CD36. Thus, nanoparticles can be designed to switch activated, lipid-scavenging macrophages to antiatherogenic phenotypes, which could be the basis for future antiatherosclerotic therapeutics.
Collapse
Affiliation(s)
- Latrisha
K. Petersen
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Adam W. York
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Daniel R. Lewis
- Department
of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Sonali Ahuja
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn E. Uhrich
- Department
of Chemistry and Chemical Biology, Rutgers
University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Prabhas V. Moghe
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
- Department
of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
11
|
Westein E, Flierl U, Hagemeyer CE, Peter K. Destination Known: Targeted Drug Delivery in Atherosclerosis and Thrombosis. Drug Dev Res 2013. [DOI: 10.1002/ddr.21103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Erik Westein
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Ulrike Flierl
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Christoph E. Hagemeyer
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| | - Karlheinz Peter
- Department of Atherothrombosis and Vascular Biology; Baker IDI Heart and Diabetes Institute; PO Box 6492; St Kilda Road Central; Melbourne; Victoria; 8008; Australia
| |
Collapse
|
12
|
Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J 2013; 4:20. [PMID: 23889805 PMCID: PMC3751918 DOI: 10.1186/1878-5085-4-20] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/01/2013] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Nanoscale gold particles (AuNPs) have wide perspectives for biomedical applications because of their unique biological properties, as antioxidative activity and potentials for drug delivery. AIMS AND OBJECTIVES The aim was to test effects of AuNPs using suggested heart failure rat model to compare with proved medication Simdax, to test gold nanoparticle for drug delivery, and to test sonoporation effect to increase nanoparticles delivery into myocardial cells. MATERIAL AND METHODS We performed biosafety and biocompatibility tests for AuNPs and conjugate with Simdax. For in vivo tests, we included Wistar rats weighing 180-200 g (n = 54), received doxorubicin in cumulative dose of 12.0 mg/kg to model advance heart failure, registered by ultrasonography. We formed six groups: the first three groups of animals received, respectively, 0.06 ml Simdax, AuNPs, and conjugate (AuNPs-Simdax), intrapleurally, and the second three received them intravenously. The seventh group was control (saline). We performed dynamic assessment of heart failure regression in vivo measuring hydrothorax. Sonoporation of gold nanoparticles to cardiomyocytes was tested. RESULTS We designed and constructed colloidal, spherical gold nanoparticles, AuNPs-Simdax conjugate, both founded biosafety (in cytotoxicity, genotoxicity, and immunoreactivity). In all animals of the six groups after the third day post-medication injection, no ascites and liver enlargement were registered (P < 0.001 vs controls). Conjugate injection showed significantly higher hydrothorax reduction than Simdax injection only (P < 0.01); gold nanoparticle injection showed significantly higher results than Simdax injection (P < 0.05). AuNPs and conjugate showed no significant difference for rat recovery. Difference in rat life continuity was significant between Simdax vs AuNPs (P < 0.05) and Simdax vs conjugate (P < 0.05). Sonoporation enhances AuNP transfer into the cell and mitochondria that were highly localized, superior to controls (P < 0.01 for both). CONCLUSIONS Gold nanoparticles of 30 nm and its AuNPs-Simdax conjugate gave positive results in biosafety and biocompatibility in vitro and in vivo. AuNPs-Simdax and AuNPs have similar significant cardioprotective effects in rats with doxorubicin-induced heart failure, higher than that of Simdax. Intrapleural (local) delivery is preferred over intravenous (systemic) delivery according to all tested parameters. Sonoporation is able to enhance gold nanoparticle delivery to myocardial cells in vivo.
Collapse
Affiliation(s)
- Mykola Ya Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv 03680, Ukraine
- LCL “DIAPROF”, Svitlycky str., 35, Kyiv 04123, Ukraine
| | - Rostyslav V Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv 03680, Ukraine
- Centre of Ultrasound Diagnostics and Interventional Sonography, Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny str., 21, Kyiv 03680, Ukraine
| | - Ilya M Yemets
- Scientific-Practical Centre of Pediatric Cardiology and Cardiac Health of Ukraine, Chornovil str., 28/1, Kyiv 01135, Ukraine
| | - Liudmyla M Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv 03680, Ukraine
| | - Natalia O Tymoshok
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny str., 154, Kyiv 03680, Ukraine
| | - Zoia R Ulberg
- Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, Acad. Vernadsky blvd, 42, Kyiv 03142, Ukraine
| |
Collapse
|
13
|
Lewis DR, Kholodovych V, Tomasini MD, Abdelhamid D, Petersen LK, Welsh WJ, Uhrich KE, Moghe PV. In silico design of anti-atherogenic biomaterials. Biomaterials 2013; 34:7950-9. [PMID: 23891521 DOI: 10.1016/j.biomaterials.2013.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/01/2013] [Indexed: 01/10/2023]
Abstract
Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Gold nanoparticles - the theranostic challenge for PPPM: nanocardiology application. EPMA J 2013; 4:18. [PMID: 23800174 PMCID: PMC3702527 DOI: 10.1186/1878-5085-4-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/13/2013] [Indexed: 12/18/2022]
Abstract
The article overviews the potential biomedical applications of nanoscale gold particles for predictive, preventive and personalised nanomedicine in cardiology. The review demonstrates the wide opportunities for gold nanoparticles due to their unique biological properties. The use of gold nanoparticles in cardiology is promising to develop fundamentally new methods of diagnosis and treatment. The nanotheranostics in cardiovascular diseases allows the non-invasive imaging associated with simultaneous therapeutic intervention and predicting treatment outcomes. Imaging may reflect the effectiveness of treatment and has become a fundamental optimisation setting for therapeutic protocol. Combining the application of biomolecular and cellular therapies with nanotechnologies foresees the development of complex integrated nanodevices. Nanocardiology may challenge existing healthcare system and economic benefits as cardiovascular diseases are the leading cause of morbidity and mortality at present.
Collapse
Affiliation(s)
- Mykola Ya Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv 03680, Ukraine
- LCL “DIAPROF”, Svitlycky Str., 35, Kyiv 04123, Ukraine
| | - Rostyslav V Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv 03680, Ukraine
- Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny Str., 21, Kyiv 03680, Ukraine
| | - Ilya M Yemets
- Scientific-Practical Centre of Pediatric Cardiology and Cardiac Health of Ukraine, Chornovil Str., 28/1, Kyiv 01135, Ukraine
| | - Liudmyla M Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv 03680, Ukraine
| | - Natalia O Tymoshok
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv 03680, Ukraine
| | - Zoia R Ulberg
- Ovcharenko Institute of Biocolloidal Chemistry, National Academy of Sciences of Ukraine, Acad. Vernadsky Blvd, 42, Kyiv 03142, Ukraine
| |
Collapse
|
15
|
Abstract
Stenosed segments of arteries significantly alter the blood flow known from healthy vessels. In particular, the wall shear stress at critically stenosed arteries is at least an order of magnitude higher than in healthy situations. This alteration represents a change in physical force and might be used as a trigger signal for drug delivery. Mechano-sensitive drug delivery systems that preferentially release their payload under increased shear stress are discussed. Therefore, besides biological or chemical markers, physical triggers are a further principle approach for targeted drug delivery. We hypothesize that such a physical trigger is much more powerful to release drugs for vasodilation, plaque stabilization, or clot lysis at stenosed arteries than any known biological or chemical ones.
Collapse
Affiliation(s)
- Till Saxer
- Cardiology, University Hospitals of Geneva, Rue Gabrielle Perret-Gentil 4, Geneva, Switzerland.
| | | | | |
Collapse
|
16
|
Hehir S, Plourde NM, Gu L, Poree DE, Welsh WJ, Moghe PV, Uhrich KE. Carbohydrate composition of amphiphilic macromolecules influences physicochemical properties and binding to atherogenic scavenger receptor A. Acta Biomater 2012; 8:3956-62. [PMID: 22835678 DOI: 10.1016/j.actbio.2012.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/09/2023]
Abstract
Amphiphilic macromolecules (AMs) based on carbohydrate domains functionalized with poly(ethylene glycol) can inhibit the uptake of oxidized low density lipoprotein (oxLDL) mediated by scavenger receptor A (SR-A) and counteract foam cell formation, the characteristic "atherosclerotic" phenotype. A series of AMs was prepared by altering the carbohydrate chemistry to evaluate the influence of backbone architecture on the physicochemical and biological properties. Upon evaluating the degree of polymer-based inhibition of oxLDL uptake in human embryonic kidney cells expressing SR-A, two AMs (2a and 2c) were found to have the most efficacy. Molecular modeling and docking studies show that these same AMs have the most favorable binding energies and most close interactions with the molecular model of the SR-A collagen-like domain. Thus, minor changes in the AMs' architecture can significantly affect the physicochemical properties and inhibition of oxLDL uptake. These insights can be critical for designing optimal AM-based therapeutics for the management of cardiovascular disease.
Collapse
Affiliation(s)
- Sarah Hehir
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
GAO YAN, LU XUECHUN, YANG HONGYING, LIU XIANFENG, CAO JIAN, FAN LI. The molecular mechanism of the anticancer effect of atorvastatin: DNA microarray and bioinformatic analyses. Int J Mol Med 2012; 30:765-74. [DOI: 10.3892/ijmm.2012.1054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 11/06/2022] Open
|
18
|
Gu L, Zablocki K, Lavelle L, Bodnar S, Halperin F, Harper I, Moghe PV, Uhrich KE. Impact of ionizing radiation on physicochemical and biological properties of an amphiphilic macromolecule. Polym Degrad Stab 2012; 97:1686-1689. [PMID: 23162175 DOI: 10.1016/j.polymdegradstab.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An amphiphilic macromolecule (AM) was exposed to ionizing radiation (both electron beam and gamma) at doses of 25 kGy and 50 kGy to study the impact of these sterilization methods on the physicochemical properties and bioactivity of the AM. Proton nuclear magnetic resonance and gel permeation chromatography were used to determine the chemical structure and molecular weight, respectively. Size and zeta potential of the micelles formed from AMs in aqueous media were evaluated by dynamic light scattering. Bioactivity of irradiated AMs was evaluated by measuring inhibition of oxidized low-density lipoprotein uptake in macrophages. From these studies, no significant changes in the physicochemical properties or bioactivity were observed after the irradiation, demonstrating that the AMs can withstand typical radiation doses used to sterilize materials.
Collapse
Affiliation(s)
- Li Gu
- Rutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
York AW, Zablocki KR, Lewis DR, Gu L, Uhrich KE, Prud’homme RK, Moghe PV. Kinetically assembled nanoparticles of bioactive macromolecules exhibit enhanced stability and cell-targeted biological efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:733-9. [PMID: 22223224 PMCID: PMC3495129 DOI: 10.1002/adma.201103348] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/10/2011] [Indexed: 05/30/2023]
Abstract
Kinetically assembled nanoparticles are fabricated from an advanced class of bioactive macromolecules that have potential utility in counteracting atherosclerotic plaque development via receptor-level blockage of inflammatory cells. In contrast to micellar analogs that exhibit poor potency and structural integrity under physiologic conditions, these kinetic nanoparticle assemblies maintain structural stability and demonstrate superior bioactivity in mediating oxidized low-density lipoprotein (oxLDL) uptake in inflammatory cells.
Collapse
Affiliation(s)
- Adam W. York
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Kyle R. Zablocki
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Daniel R. Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Li Gu
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA. Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Sparks SM, Waite CL, Harmon AM, Nusblat LM, Roth CM, Uhrich KE. Efficient intracellular siRNA delivery by ethyleneimine-modified amphiphilic macromolecules. Macromol Biosci 2011; 11:1192-200. [PMID: 21793212 PMCID: PMC3549469 DOI: 10.1002/mabi.201100064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/20/2011] [Indexed: 01/09/2023]
Abstract
New materials that can bind and deliver oligonucleotides such as short interfering RNA (siRNA) without toxicity are greatly needed to fulfill the promise of therapeutic gene silencing. Amphiphilic macromolecules (AMs) were functionalized with linear ethyleneimines to create cationic AMs capable of complexing with siRNA. Structurally, the parent AM is formed from a mucic acid backbone whose tetra-hydroxy groups are alkylated with 12-carbon aliphatic chains to form the hydrophobic component of the macromolecule. This alkylated mucic acid is then mono-functionalized with poly(ethylene glycol) (PEG) as a hydrophilic component. The resulting AM contains a free carboxylic acid within the hydrophobic domain. In this work, linear ethyleneimines were conjugated to the free carboxylic acid to produce an AM with one primary amine (1N) or one primary amine and four secondary amines (5N). Further, an AM with amine substitution both to the free carboxylic acid in the hydrophobic domain and also to the adjacent PEG was synthesized to produce a polymer with one primary amine and eight secondary amines (9N), four located on each side of the AM hydrophobic domain. All amine-functionalized AMs formed nanoscale micelles but only the 5N and 9N AMs had cationic zeta potentials, which increased with increasing number of amines. All AMs exhibited less inherent cytotoxicity than linear polyethyleneimine (L-PEI) at concentrations of 10 µM and above. By increasing the length of the cationic ethyleneimine chain and the total number of amines, successful siRNA complexation and cellular siRNA delivery was achieved in a malignant glioma cell line. In addition, siRNA-induced silencing of firefly luciferase was observed using complexes of siRNA with the 9N AM and comparable to L-PEI, yet showed better cell viability at higher concentrations (above 10 µM). This work highlights the promise of cationic AMs as safe and efficient synthetic vectors for siRNA delivery. Specifically, a novel polymer (9N) was identified for efficient siRNA delivery to cancer cells and will be further evaluated.
Collapse
Affiliation(s)
- Sarah M. Sparks
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Carolyn L. Waite
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Alexander M. Harmon
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Leora M. Nusblat
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Charles M. Roth
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Lewis DR, Kamisoglu K, York A, Moghe PV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:400-20. [PMID: 21523920 PMCID: PMC3268460 DOI: 10.1002/wnan.145] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the atheroinflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to atheroinflammatory lesions and atherosclerotic plaques.
Collapse
Affiliation(s)
- Daniel R. Lewis
- Department of Chemical & Biochemical Engineering, Rutgers University
| | - Kubra Kamisoglu
- Department of Chemical & Biochemical Engineering, Rutgers University
| | - Adam York
- Department of Biomedical Engineering, New Jersey Center for Biomaterials
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Department of Chemical and Biochemical Engineering, Rutgers University
| |
Collapse
|
22
|
Iverson N, Sparks SM, Demirdirek B, Uhrich KE, Moghe PV. Controllable inhibition of cellular uptake of oxidized low-density lipoprotein: structure-function relationships for nanoscale amphiphilic polymers. Acta Biomater 2010; 6:3081-91. [PMID: 20170758 PMCID: PMC2882988 DOI: 10.1016/j.actbio.2010.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/19/2010] [Accepted: 02/10/2010] [Indexed: 01/25/2023]
Abstract
A family of anionic nanoscale polymers based on amphiphilic macromolecules (AMs) was developed for controlled inhibition of highly oxidized low-density lipoprotein (hoxLDL) uptake by inflammatory macrophage cells, a process that triggers the escalation of a chronic arterial disease called atherosclerosis. The basic AM structure is composed of a hydrophobic portion formed from a mucic acid sugar backbone modified at the four hydroxyls with lauroyl groups conjugated to hydrophilic poly(ethylene glycol) (PEG). The AM structure-activity relationships were probed by synthesizing AMs with six key variables: length of the PEG chain, carboxylic acid location, type of anionic charge, number of anionic charges, rotational motion of the anionic group, and PEG architecture. All AM structures were confirmed by nuclear magnetic resonance spectroscopy and their ability to inhibit hoxLDL uptake in THP-1 human macrophage cells was compared in the absence and presence of serum. We report that AMs with one, rotationally restricted carboxylic acid within the hydrophobic portion of the polymer was sufficient to yield the most effective AM for inhibiting hoxLDL internalization by THP-1 human macrophage cells under serum-containing conditions. Further, increasing the number of charges and altering the PEG architecture in an effort to increase serum stabilization did not significantly impair the ability of AMs to inhibit hoxLDL internalization, suggesting that selected modifications to the AMs could potentially promote multifunctional characteristics of these nanoscale macromolecules.
Collapse
Affiliation(s)
- Nicole Iverson
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Sarah M. Sparks
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Bahar Demirdirek
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
23
|
Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RP. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 2009. [DOI: 10.1080/00222930701314932] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Plourde N, Kortagere S, Welsh W, Moghe P. Structure-activity relations of nanolipoblockers with the atherogenic domain of human macrophage scavenger receptor A. Biomacromolecules 2009; 10:1381-91. [PMID: 19405544 PMCID: PMC2716033 DOI: 10.1021/bm8014522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidized low density lipoprotein (oxLDL) uptake by macrophages is mediated by scavenger receptors and leads to unregulated cholesterol accumulation. Micellar nanolipoblockers (NLBs) consist of alkyl chains and polyethylene glycol on mucic acid. NLBs functionalized with anionic groups inhibit oxLDL uptake via the scavenger receptor A (SR-A). Molecular modeling and docking approaches were used to understand the structure-activity relationship (SAR) between NLBs and SR-A. Six NLB models were docked to the SR-A homology model to investigate charge placement and clustering. NLB models with the most favorable binding energy were also the most effective oxLDL inhibitors in THP-1 macrophages. Mutant SR-A models were generated by replacing charged residues with alanine. All charged residues in the region were necessary, with Lys60, Lys63, and Lys66 having the greatest effect on binding. We hypothesize that structural studies aided by theoretical modeling and docking can be used to design promising NLB candidates with optimal binding properties.
Collapse
Affiliation(s)
- Nicole Plourde
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129
- Department of Pharmacology, Environmental Bioinformatics & Computational Toxicology Research Center University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - William Welsh
- Department of Pharmacology, Environmental Bioinformatics & Computational Toxicology Research Center University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Prabhas Moghe
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
25
|
Maurer-Jones MA, Bantz KC, Love SA, Marquis BJ, Haynes CL. Toxicity of therapeutic nanoparticles. Nanomedicine (Lond) 2009; 4:219-41. [PMID: 19193187 DOI: 10.2217/17435889.4.2.219] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A total of six nanotherapeutic formulations are already approved for medical use and more are in the approval pipeline currently. Despite the massive research effort in nanotherapeutic materials, there is relatively little information about the toxicity of these materials or the tools needed to assess this toxicity. Recently, the scientific community has begun to respond to the paucity of information by investing in the field of nanoparticle toxicology. This review is intended to provide an overview of the techniques needed to assess toxicity of these therapeutic nanoparticles and to summarize the current state of the field. We begin with background on the toxicological assessment techniques used currently as well as considerations in nanoparticle dosing. The toxicological research overview is divided into the most common applications of therapeutic nanoparticles: drug delivery, photodynamic therapy and bioimaging. We end with a perspective section discussing the current technological gaps and promising research aimed at addressing those gaps.
Collapse
Affiliation(s)
- Melissa A Maurer-Jones
- University of Minnesota, Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
26
|
Harmon AM, Uhrich KE. In Vitro Evaluation of Amphiphilic Macromolecular Nanocarriers for Systemic Drug Delivery. J BIOACT COMPAT POL 2009. [DOI: 10.1177/0883911509101557] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amphiphilic star-like macromolecules and amphiphilic scorpion-like macromolecules are polymeric micelles capable of water-solubilizing hydrophobic molecules for intravenous injection. In this work, four different amphiphilic macromolecules (M12P5, M6P5, NC12P5, NC6P5) were evaluated using human primary cell lines of the vasculature: human umbilical endothelial cells (HUVEC), umbilical arterial smooth muscle cells (UASM), and normal dermal human fibroblasts (NDHF). The three primary cell types were incubated with culture media containing amphiphilic macromolecules at five concentrations ranging from 10-3 M to 10-7 M at 24, 48, and 72 h. All cell types treated with both amphiphilic macromolecules showed similar cell viability compared to the vehicle control at all concentrations, except at 10-3 M, which showed a substantially lower cell viability. Cells treated with amphiphilic macromolecules also exhibited similar characteristic cell morphologies at all concentrations, except for 10-3 M, which showed distressed cells. The initial screening of amphiphilic macromolecules against primary human cells associated with the vasculature exhibited good biocompatibility.
Collapse
Affiliation(s)
- Alexander M. Harmon
- Department of Chemistry and Chemical Biology Rutgers University, Piscataway, NJ 08854, USA
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology Rutgers University, Piscataway, NJ 08854, USA,
| |
Collapse
|
27
|
Marquis BJ, Love SA, Braun KL, Haynes CL. Analytical methods to assess nanoparticle toxicity. Analyst 2009; 134:425-39. [PMID: 19238274 DOI: 10.1039/b818082b] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During the past 20 years, improvements in nanoscale materials synthesis and characterization have given scientists great control over the fabrication of materials with features between 1 and 100 nm, unlocking many unique size-dependent properties and, thus, promising many new and/or improved technologies. Recent years have found the integration of such materials into commercial goods; a current estimate suggests there are over 800 nanoparticle-containing consumer products (The Project on Emerging Nanotechnologies Consumer Products Inventory, , accessed Oct. 2008), accounting for 147 billion USD in products in 2007 (Nanomaterials state of the market Q3 2008: stealth success, broad impact, Lux Research Inc., New York, NY, 2008). Despite this increase in the prevalence of engineered nanomaterials, there is little known about their potential impacts on environmental health and safety. The field of nanotoxicology has formed in response to this lack of information and resulted in a flurry of research studies. Nanotoxicology relies on many analytical methods for the characterization of nanomaterials as well as their impacts on in vitro and in vivo function. This review provides a critical overview of these techniques from the perspective of an analytical chemist, and is intended to be used as a reference for scientists interested in conducting nanotoxicological research as well as those interested in nanotoxicological assay development.
Collapse
Affiliation(s)
- Bryce J Marquis
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
28
|
Faunce TA, White J, Matthaei KI. Integrated research into the nanoparticle-protein corona: a new focus for safe, sustainable and equitable development of nanomedicines. Nanomedicine (Lond) 2009; 3:859-66. [PMID: 19025459 DOI: 10.2217/17435889.3.6.859] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Much contemporary nanotoxicology, nanotherapeutic and nanoregulatory research has been characterized by a focus on investigating how delivery of engineered nanoparticles (ENPs) to cells is dictated primarily by components of the ENP surface. An alternative model, some implications of which are discussed here, begins with fundamental physicochemical research into the interaction of a dynamic nanoparticle-protein corona (NPC) with biological systems. The proposed new model also requires, however, that any such fresh NPC physicochemical research approach should involve integration and targeted collaboration from the earliest stages with nanotoxicology, nanotherapeutics and nanoregulatory expertise. The justification for this integrated approach, we argue, relates not just to efficiency and promotion of innovation but to an acknowledgement that public-funded basic physicochemical research in particular should now be accepted to incorporate strong higher order public-goods elements from its inception, not merely after product development at the technology-transfer stage. Issues, such as university-research cooperation, commercialization and intellectual property protection, safety and cost-effectiveness regulatory assessment, as well as technology transfer should not be viewed as second tier considerations, even in a 'blue sky' NPC basic research agenda.
Collapse
Affiliation(s)
- Thomas Alured Faunce
- College of Medicine & Health Sciences, Australian National University, Canberra, Australia.
| | | | | |
Collapse
|
29
|
Besheer A, Vogel J, Glanz D, Kressler J, Groth T, Mäder K. Characterization of PLGA Nanospheres Stabilized with Amphiphilic Polymers: Hydrophobically Modified Hydroxyethyl Starch vs Pluronics. Mol Pharm 2009; 6:407-15. [DOI: 10.1021/mp800119h] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmed Besheer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Jürgen Vogel
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Dagobert Glanz
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Jörg Kressler
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Thomas Groth
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany, Department of Physical Chemistry, Institute of Chemistry, Martin Luther University, Halle-Wittenberg, 06099 Halle/Saale, Germany, and Institute of Physiological Chemistry, Faculty of Medicine, Martin Luther University, Halle-Wittenberg, Hollystrasse 1, 06114 Halle/Saale, Germany
| |
Collapse
|
30
|
Hsiao JK, Chu HH, Wang YH, Lai CW, Chou PT, Hsieh ST, Wang JL, Liu HM. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR IN BIOMEDICINE 2008; 21:820-9. [PMID: 18470957 DOI: 10.1002/nbm.1260] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our goal was to analyze the changes in morphology and physiological function (phagocytosis, migratory capabilities, humoral and cellular response, and nitric oxide secretion) of murine macrophages after labeling with a clinically used superparamagnetic iron oxide (SPIO), ferucarbotran. In SPIO-treated macrophages, nanoparticles were taken up in the cytoplasm and accumulated in a membrane-bound organelle. Macrophage proliferation and viability were not modified after SPIO labeling. Phagocytic function decreased after labeling with only 10 microg Fe/mL SPIO, whereas other functions including migration and production of tumor necrosis factor-alpha and nitric oxide increased at the highest SPIO concentration (100 microg Fe/mL).
Collapse
Affiliation(s)
- Jong-Kai Hsiao
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Iverson N, Plourde N, Chnari E, Nackman GB, Moghe PV. Convergence of Nanotechnology and Cardiovascular Medicine. BioDrugs 2008; 22:1-10. [DOI: 10.2165/00063030-200822010-00001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 2008; 17:89-101. [PMID: 18287791 DOI: 10.1159/000112961] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/16/2007] [Indexed: 01/06/2023] Open
Abstract
Nanomedicine is the application of nanobiotechnologies to medicine. This article starts with the basics of nanobiotechnology, followed by its applications in molecular diagnostics, nanodiagnostics, and improvements in the discovery, design and delivery of drugs, including nanopharmaceuticals. It will improve biological therapies such as vaccination, cell therapy and gene therapy. Nanobiotechnology forms the basis of many new devices being developed for medicine and surgery such as nanorobots. It has applications in practically every branch of medicine and examples are presented of those concerning cancer (nanooncology), neurological disorders (nanoneurology), cardiovascular disorders (nanocardiology), diseases of bones and joints (nanoorthopedics), diseases of the eye (nanoophthalmology), and infectious diseases. Safety issues of in vivo use of nanomaterials are also discussed. Nanobiotechnology will facilitate the integration of diagnostics with therapeutics and facilitate the development of personalized medicine, i.e. prescription of specific therapeutics best suited for an individual. Many of the developments have already started and within a decade a definite impact will be felt in the practice of medicine.
Collapse
Affiliation(s)
- K K Jain
- PharmaBiotech, Basel, Switzerland.
| |
Collapse
|