1
|
Strenge JT, Smeets R, Nemati F, Fuest S, Rhode SC, Stuermer EK. Biodegradable Silk Fibroin Matrices for Wound Closure in a Human 3D Ex Vivo Approach. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3004. [PMID: 38930373 PMCID: PMC11205513 DOI: 10.3390/ma17123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
In this study, the potential of silk fibroin biomaterials for enhancing wound healing is explored, focusing on their integration into a human 3D ex vivo wound model derived from abdominoplasties. For this purpose, cast silk fibroin membranes and electrospun nonwoven matrices from Bombyx mori silk cocoons were compared to untreated controls over 20 days. Keratinocyte behavior and wound healing were analyzed qualitatively and quantitatively by histomorphometric and immune histochemical methods (HE, Ki67, TUNEL). Findings reveal rapid keratinocyte proliferation on both silk fibroin membrane and nonwoven matrices, along with enhanced infiltration in the matrix, suggesting improved early wound closure. Silk fibroin membranes exhibited a significantly improved early regeneration, followed by nonwoven matrices (p < 0.05) compared to untreated wounds, resulting in the formation of multi-layered epidermal structures with complete regeneration. Overall, the materials demonstrated excellent biocompatibility, supporting cell activity with no signs of increased apoptosis or early degradation. These results underscore silk fibroin's potential in clinical wound care, particularly in tissue integration and re-epithelialization, offering valuable insights for advanced and-as a result of the electrospinning technique-individual wound care development. Furthermore, the use of an ex vivo wound model appears to be a viable option for pre-clinical testing.
Collapse
Affiliation(s)
- Jan Tinson Strenge
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.T.S.); (R.S.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.T.S.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
| | - Fateme Nemati
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
- Institute of Bioprocess and Biosystems Engineering, Hamburg University, 21073 Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.N.); (S.F.)
| | - Sophie Charlotte Rhode
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Ewa Klara Stuermer
- Department for Vascular Medicine, Translational Wound Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Bosio VE, Rybner C, Kaplan DL. Concentric-mineralized hybrid silk-based scaffolds for bone tissue engineering in vitro models. J Mater Chem B 2023; 11:7998-8006. [PMID: 37526619 PMCID: PMC10563295 DOI: 10.1039/d3tb00717k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
There are many challenges in the development of 3D-tissue models for studying bone physiology and disease. Silk fibroin (SF), a natural fibrous protein used in biomedical applications has been studied for bone tissue engineering (TE) due to its mechanical properties, biocompatibility and biodegradability. However, low osteogenic capacity as well as the necessity to reinforce the protein mechanically for some orthopedic applications prompts the need for further designs for SF-based materials for TE bone. Concentric mineralized porous SF-based scaffolds were developed to improve mechanics and mineralization towards osteoregeneration. Hybrid SF silica microparticles (MP) or calcium carbonate nano-structured microparticles (NMP) were seeded with hMSCs co-cultured under osteogenic and osteoclastic conditions with THP-1 human monocytes up to 10 weeks to simulate and recapitulate bone regeneration. Scaffolds with appropriate pore size for cell infiltration, resulted in improved compressive strength, increased cell attachment and higher levels of expression of osteogenic markers and mineralization after adding the NMPs, compared to controls systems without these particles. These hybrid SF-based 3D-structures can provide improved scaffold designs for in vitro bone TE.
Collapse
Affiliation(s)
- Valeria E Bosio
- BIOMIT Lab (Biomaterials in Tissue Engineering Lab) Institute of Physics La Plata (IFLP), University of La Plata & CONICET, Diag. 113 e/63 y 64, CP 1900, La Plata, Buenos Aires, Argentina.
- Department of Biomaterials, Celll Institute, Ciudad de Buenos Aires, Argentina
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Christofer Rybner
- BIOMIT Lab (Biomaterials in Tissue Engineering Lab) Institute of Physics La Plata (IFLP), University of La Plata & CONICET, Diag. 113 e/63 y 64, CP 1900, La Plata, Buenos Aires, Argentina.
- Department of Biomaterials, Celll Institute, Ciudad de Buenos Aires, Argentina
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
3
|
A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24032660. [PMID: 36768980 PMCID: PMC9917095 DOI: 10.3390/ijms24032660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Bone tissue engineering (BTE) utilizes a special mix of scaffolds, cells, and bioactive factors to regulate the microenvironment of bone regeneration and form a three-dimensional bone simulation structure to regenerate bone tissue. Silk fibroin (SF) is perhaps the most encouraging material for BTE given its tunable mechanical properties, controllable biodegradability, and excellent biocompatibility. Numerous studies have confirmed the significance of SF for stimulating bone formation. In this review, we start by introducing the structure and characteristics of SF. After that, the immunological mechanism of SF for osteogenesis is summarized, and various forms of SF biomaterials and the latest development prospects of SF in BTE are emphatically introduced. Biomaterials based on SF have great potential in bone tissue engineering, and this review will serve as a resource for future design and research.
Collapse
|
4
|
Mitra K, Chadha A, Muthuvijayan V, Doble M. Self-Assembled Inhalable Immunomodulatory Silk Fibroin Nanocarriers for Enhanced Drug Loading and Intracellular Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:708-721. [DOI: 10.1021/acsbiomaterials.1c01357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kartik Mitra
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences& National Center for Catalysis Research (NCCR), Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- Tissue Engineering and Biomaterials Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences& National Center for Catalysis Research (NCCR), Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Kambe Y, Yamaoka T. Initial immune response to a FRET-based MMP sensor-immobilized silk fibroin hydrogel in vivo. Acta Biomater 2021; 130:199-210. [PMID: 34087439 DOI: 10.1016/j.actbio.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022]
Abstract
To investigate the initial immune response to biodegradable silk fibroin (SF) hydrogels in vivo, a Förster/fluorescence resonance energy transfer (FRET)-based sensor was developed to detect matrix metalloproteinase (MMP) activity (FRET-MMPS) and immobilized to SF hydrogel. FRET-MMPS immobilized to SF hydrogel in vitro displayed intra-molecular FRET more than inter-molecular FRET, and MMP activity was detected through a decrease in FRET signal intensity. Then, the SF hydrogel modified with FRET-MMPS was implanted into mice subcutaneously, and it was observed that the FRET signal intensity decreased significantly soon (< 3 h) after implantation. Although the intensity exhibited a sharp decrease toward 24 h post-implantation, histological evaluation proved that bulk-level hydrogel degradation, such as breakdown, was mainly caused by macrophages and foreign body giant cells on a timescale of weeks. These results indicated that, immediately upon implantation, active MMPs reached the SF hydrogel and began cleaving SF networks, which might result in the loosening of the networks and then enabled immune cells, such as macrophages, to start the bulk-level hydrogel degradation. The sensor clarified the initial immune response to SF hydrogels and will provide clues for designing the biodegradation behaviors of scaffolds for regenerative medicine. STATEMENT OF SIGNIFICANCE: Silk fibroin (SF) materials are degraded gradually by the immune response. Immune cells, such as macrophages, break down implanted SF materials on a timescale of weeks or months, but the initial (< 24 h) immune response to SF materials remains unclear. In this study, SF hydrogels modified with Förster/fluorescence resonance energy transfer (FRET)-based matrix metalloproteinase (MMP) sensors were implanted in mice and within 3 h post-implantation, the SF hydrogels were degraded by MMPs. Although this molecular-level biodegradation was not correlated with the hydrogel breakdown, the MMPs were likely to loosen the SF networks to enable immune cells to infiltrate and degrade the hydrogel. This is the first study to unveil the initial stage of immune response to biomaterials.
Collapse
|
6
|
Kochhar D, DeBari MK, Abbott RD. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Front Bioeng Biotechnol 2021; 9:697981. [PMID: 34239865 PMCID: PMC8259510 DOI: 10.3389/fbioe.2021.697981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biophysical properties of the extracellular environment dynamically regulate cellular fates. In this review, we highlight silk, an indispensable polymeric biomaterial, owing to its unique mechanical properties, bioactive component sequestration, degradability, well-defined architectures, and biocompatibility that can regulate temporospatial biochemical and biophysical responses. We explore how the materiobiology of silks, both mulberry and non-mulberry based, affect cell behaviors including cell adhesion, cell proliferation, cell migration, and cell differentiation. Keeping in mind the novel biophysical properties of silk in film, fiber, or sponge forms, coupled with facile chemical decoration, and its ability to match functional requirements for specific tissues, we survey the influence of composition, mechanical properties, topography, and 3D geometry in unlocking the body's inherent regenerative potential.
Collapse
Affiliation(s)
- Dakshi Kochhar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Sun MG, Luo Y, Teng T, Guaiquil V, Zhou Q, McGinn L, Nazzal O, Walsh M, Lee J, Rosenblatt MI. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. MACROMOL CHEM PHYS 2021; 222:2170013. [PMID: 34149247 PMCID: PMC8208642 DOI: 10.1002/macp.202170013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Silk fibroin films are excellent candidate biomaterials for corneal tissue engineering due to their optical transparency, biocompatibility, and mechanical strength. Their tunable chemical and mechanical properties open the possibility of engineering cellular microenvironments that can both mimic native corneal tissue and provide stimuli to actively promote wound regeneration. While silk film mechanical properties, such as surface topography, have demonstrated the ability to control corneal epithelial cell wound regenerating behavior, few studies have explored the stiffness tunability of these films and its cellular effects. Cells are known actively sense the stiffness of their surroundings and processes such as cell adhesion, migration, proliferation, and expression of stem markers can be strongly influenced by matrix stiffness. This study develops technical solutions that allow for both the fabrication of films with stiffnesses similar to corneal tissue and also for their characterization in an aqueous, native-like environment at a scale relevant to cellular forces. Physiological evidence demonstrates that corneal epithelial cells are mechanosensitive to films of different stiffnesses and show that cell spreading, cytoskeletal tension, and molecular mechanotransducer localization are associated with film stiffness. These results indicate that silk film stiffness can be used to regulate cell behavior for the purposes of ocular surface repair.
Collapse
Affiliation(s)
- M G Sun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - Y Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - T Teng
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - V Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - Q Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - L McGinn
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - O Nazzal
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, Chicago, IL 60612
| | - M Walsh
- Department of Material Sciences and Engineering, University of Wisconsin - Eau Claire, 101 Roosevelt Ave., Eau Claire, WI 54701
| | - J Lee
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - M I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| |
Collapse
|
8
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
9
|
Sun MG, Luo Y, Teng T, Guaiquil V, Zhou Q, McGinn L, Nazzal O, Walsh M, Lee J, Rosenblatt MI. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael G. Sun
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Tao Teng
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Victor Guaiquil
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Lander McGinn
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Osayd Nazzal
- Department of Pathology University of Illinois at Chicago 840 S. Wood St., Suite 130 CSN Chicago IL 60612 USA
| | - Michael Walsh
- Department of Material Sciences and Engineering University of Wisconsin – Eau Claire 101 Roosevelt Ave Eau Claire WI 54701 USA
| | - James Lee
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| |
Collapse
|
10
|
Long Y, Cheng X, Jansen JA, Leeuwenburgh SGC, Mao J, Yang F, Chen L. The molecular conformation of silk fibroin regulates osteogenic cell behavior by modulating the stability of the adsorbed protein-material interface. Bone Res 2021; 9:13. [PMID: 33574222 PMCID: PMC7878842 DOI: 10.1038/s41413-020-00130-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/27/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Silk fibroin (SF) can be used to construct various stiff material interfaces to support bone formation. An essential preparatory step is to partially transform SF molecules from random coils to β-sheets to render the material water insoluble. However, the influence of the SF conformation on osteogenic cell behavior at the material interface remains unknown. Herein, three stiff SF substrates were prepared by varying the β-sheet content (high, medium, and low). The substrates had a comparable chemical composition, surface topography, and wettability. When adsorbed fibronectin was used as a model cellular adhesive protein, the stability of the adsorbed protein-material interface, in terms of the surface stability of the SF substrates and the accompanying fibronectin detachment resistance, increased with the increasing β-sheet content of the SF substrates. Furthermore, (i) larger areas of cytoskeleton-associated focal adhesions, (ii) higher orders of cytoskeletal organization and (iii) more elongated cell spreading were observed for bone marrow-derived mesenchymal stromal cells (BMSCs) cultured on SF substrates with high vs. low β-sheet contents, along with enhanced nuclear translocation and activation of YAP/TAZ and RUNX2. Consequently, osteogenic differentiation of BMSCs was stimulated on high β-sheet substrates. These results indicated that the β-sheet content influences osteogenic differentiation of BMSCs on SF materials in vitro by modulating the stability of the adsorbed protein-material interface, which proceeds via protein-focal adhesion-cytoskeleton links and subsequent intracellular mechanotransduction. Our findings emphasize the role of the stability of the adsorbed protein-material interface in cellular mechanotransduction and the perception of stiff SF substrates with different β-sheet contents, which should not be overlooked when engineering stiff biomaterials.
Collapse
Affiliation(s)
- Yanlin Long
- grid.33199.310000 0004 0368 7223Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022 China
| | - Xian Cheng
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - John A. Jansen
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Sander G. C. Leeuwenburgh
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Jing Mao
- grid.33199.310000 0004 0368 7223Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Fang Yang
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Lili Chen
- grid.33199.310000 0004 0368 7223Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022 China
| |
Collapse
|
11
|
Yang XJ, Wang FQ, Lu CB, Zou JW, Hu JB, Yang Z, Sang HX, Zhang Y. Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: an in vitro and in vivo study. ACTA ACUST UNITED AC 2020; 15:055013. [PMID: 32252046 DOI: 10.1088/1748-605x/ab8720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoporotic bone defects are a major challenge in clinics for bone regeneration. With the condition of osteoporosis, excessive bone absorption and impaired osteogenesis result in unexpectedly long healing procedures for defects. In order to simultaneously enhance bone formation and reduce bone resorption, a polydopamine-coated porous titanium scaffold was designed, to be integrated with anti-catabolic drug zoledronic acid nanoparticles (ZOL loaded gelatin NPs), which was able to achieve a local sustained release of ZOL as expected. The in vitro study demonstrated that extracts of the composite scaffolds would stimulate osteoblast differentiation; they also inhibited osteoclastogenesis at a ZOL loading concentration of 50 μmol l-1. In the subsequent in vivo study, the composite scaffolds were implanted into ovariectomy-induced osteoporotic rabbits suffering from femoral condyles defects. The results indicated that the composite scaffolds without ZOL loaded gelatin NPs only induced callus formation, mainly at the interface margin between the implant and bone, whereas the composite scaffolds with ZOL loaded gelatin NPs were capable of further enhancing osteogenesis and bone growth into the scaffolds. Moreover, the research proved that the promoting effect was optimal at a ZOL loading concentration of 50 μmol l-1. In summary, the present research indicated that a new type of porous titanium scaffold integrated with ZOL loaded gelatin NPs inherited a superior biocompatibility and bone regeneration capability. It would be an optimal alternative for the reconstruction of osteoporosis-related defects compared to a traditional porous titanium implant; in other words, the new type of scaffold offers a new effective and practical procedure option for patients suffering from osteoporotic bone defects.
Collapse
Affiliation(s)
- Xiao-Jiang Yang
- Department of Orthopaedic Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China. These four authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
As a biomaterial, silk presents unique features with a combination of excellent mechanical properties, biocompatibility, and biodegradability. The biodegradability aspects of silk biomaterials, especially with options to control the rate from short (days) to long (years) time frames in vivo, make this protein-based biopolymer a good candidate for developing biodegradable devices used for tissue repairs and tissue engineering, as well as medical device implants. Silk materials, including native silk fibers and a broad spectrum of regenerated silk materials, have been investigated in vitro and in vivo to demonstrate degradation by proteolytic enzymes. In this Review, we summarize the findings on these studies on the enzymatic degradation of Bombyx mori (B. mori) silk materials. We also present a discussion on the factors that dictate the degradation properties of silk materials. Finally, in future perspectives, we highlight some key challenges and potential directions toward the future study of the degradation of silk materials.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155 USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155 USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155 USA
| |
Collapse
|
13
|
Gupta P, Lorentz KL, Haskett DG, Cunnane EM, Ramaswamy AK, Weinbaum JS, Vorp DA, Mandal BB. Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis. Acta Biomater 2020; 105:146-158. [PMID: 31958596 PMCID: PMC7050402 DOI: 10.1016/j.actbio.2020.01.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/14/2023]
Abstract
The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) - which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts' viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. STATEMENT OF SIGNIFICANCE: Clinical 'off the shelf' implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Biosciences and Bioengineering, Indian Istitute of Technology Guwahati, Guwahati 781039, India; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Katherine L Lorentz
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Darren G Haskett
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Eoghan M Cunnane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland (RCSI), Dublin D02 YN77, Ireland
| | - Aneesh K Ramaswamy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Justin S Weinbaum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - David A Vorp
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Istitute of Technology Guwahati, Guwahati 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
14
|
Umuhoza D, Yang F, Long D, Hao Z, Dai J, Zhao A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:1290-1310. [DOI: 10.1021/acsbiomaterials.9b01781] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diane Umuhoza
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
- Commercial Insect Program, Sericulture, Rwanda Agricultural Board, 5016 Kigali, Rwanda
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Zhanzhang Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Jing Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| |
Collapse
|
15
|
|
16
|
Chouhan D, Mandal BB. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater 2020; 103:24-51. [PMID: 31805409 DOI: 10.1016/j.actbio.2019.11.050] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Silk biomaterials are known for biomedical and tissue engineering applications including drug delivery and implantable devices owing to their biocompatible and a wide range of ideal physico-chemical properties. Herein, we present a critical overview of the progress of silk-based matrices in skin regeneration therapeutics with an emphasis on recent innovations and scientific findings. Beginning with a brief description of numerous varieties of silks, the review summarizes our current understanding of the biological properties of silk that help in the wound healing process. Various silk varieties such as silkworm silk fibroin, silk sericin, native spider silk and recombinant silk materials have been explored for cutaneous wound healing applications from the past few decades. With an aim to harness the regenerative properties of silk, numerous strategies have been applied to develop functional bioactive wound dressings and viable bio-artificial skin grafts in recent times. The review examines multiple inherent properties of silk that aid in the critical events of the healing process such as cell migration, cell proliferation, angiogenesis, and re-epithelialization. A detailed insight into the progress of silk-based cellular skin grafts is also provided that discusses various co-culture strategies and development of bilayer and tri-layer human skin equivalent under in vitro conditions. In addition, functionalized silk matrices loaded with bioactive molecules and antibacterial compounds are discussed, which have shown great potential in treating hard-to-heal wounds. Finally, clinical studies performed using silk-based translational products are reviewed that validate their regenerative properties and future applications in this area. STATEMENT OF SIGNIFICANCE: The review article discusses the recent advances in silk-based technologies for wound healing applications, covering various types of silk biomaterials and their properties suitable for wound repair and regeneration. The article demonstrates the progress of silk-based matrices with an update on the patented technologies and clinical advancements over the years. The rationale behind this review is to highlight numerous properties of silk biomaterials that aid in all the critical events of the wound healing process towards skin regeneration. Functionalization strategies to fabricate silk dressings containing bioactive molecules and antimicrobial compounds for drug delivery to the wound bed are discussed. In addition, a separate section describes the approaches taken to generate living human skin equivalent that have recently contributed in the field of skin tissue engineering.
Collapse
|
17
|
Wang H, Shen Y. MicroRNA‑20a negatively regulates the growth and osteoclastogenesis of THP‑1 cells by downregulating PPARγ. Mol Med Rep 2019; 20:4271-4276. [PMID: 31545439 DOI: 10.3892/mmr.2019.10676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/09/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to explore the mechanisms through which microRNA (miR)‑20a may be involved in the differentiation of THP‑1 human acute monocytic leukemia cells into osteoclasts. THP‑1 cells were differentiated into macrophages (osteoclast precursors) and subsequently into osteoclast cells. The expression levels of miR‑20a in THP‑1 cells were significantly reduced in a time‑dependent manner during phorbol‑12‑myristate‑13‑acetate (PMA), macrophage colony‑stimulating factor (M‑CSF) and receptor activator of nuclear factor‑κB ligand RANKL‑induced osteoclastogenesis. Following transfection with a miR‑20a mimics, the levels of miR‑20a in PMA‑treated THP‑1 cells increased more than 40‑fold as compared with expression in the control cells. In addition, the overexpression of miR‑20a inhibited proliferation, initiated S phase cell cycle arrest and induced apoptosis of PMA‑treated THP‑1 cells. Additionally, miR‑20a mimics treatment notably decreased the levels of tartrate‑resistant acid phosphatase, nuclear factor of activated T‑cells, cytoplasmic 1 and peroxisome proliferator‑activated receptor γ (PPARγ) during THP‑1 cell further differentiation progress. In summary, miR‑20a may negatively regulate the proliferation and osteoclastogenesis of THP‑1 cells during its osteoclast differentiation progress by downregulating PPARγ.
Collapse
Affiliation(s)
- Huining Wang
- Department of Periodontics, Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yuqin Shen
- Department of Periodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Bessonov IV, Rochev YA, Arkhipova АY, Kopitsyna MN, Bagrov DV, Karpushkin EA, Bibikova TN, Moysenovich AM, Soldatenko AS, Nikishin II, Kotliarova MS, Bogush VG, Shaitan KV, Moisenovich MM. Fabrication of hydrogel scaffolds via photocrosslinking of methacrylated silk fibroin. Biomed Mater 2019; 14:034102. [DOI: 10.1088/1748-605x/ab04e0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:456-469. [DOI: 10.1016/j.msec.2018.04.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
|
21
|
Liu K, Shi Z, Zhang S, Zhou Z, Sun L, Xu T, Zhang Y, Zhang G, Li X, Chen L, Mao Y, Tao TH. A Silk Cranial Fixation System for Neurosurgery. Adv Healthc Mater 2018; 7:e1701359. [PMID: 29377631 DOI: 10.1002/adhm.201701359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/24/2017] [Indexed: 11/09/2022]
Abstract
Cranial fixation should be safe, reliable, ideally degradable, and produce no hazardous residues and no artifacts on neuroimaging. Protein-based fixation devices offer an exciting opportunity for this application. Here, the preclinical development and in vivo efficacy verification of a silk cranial fixation system in functional models are reported by addressing key challenges toward clinical use. A comprehensive study on this fixation system in rodent and canine animal models for up to 12 months is carried out. The silk fixation system shows a superb performance on the long-term stability of the internal structural support for cranial flap fixation and bone reconnection and has good magnetic resonance imaging compatibility, and tolerability to high dose radiotherapy, underscoring the favorable clinical application of this system for neurosurgery compared to the current gold standard.
Collapse
Affiliation(s)
- Keyin Liu
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Zhifeng Shi
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Shaoqing Zhang
- Department of Mechanical Engineering the University of Texas at Austin Austin TX 78712 USA
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China
| | - Long Sun
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Tao Xu
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Yeshun Zhang
- Sericultural Research Institute College of Biotechnology Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Guozheng Zhang
- Sericultural Research Institute College of Biotechnology Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 200031 China
| | - Liang Chen
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Ying Mao
- Department of Neurosurgery Huashan Hospital of Fudan University Shanghai 200040 China
| | - Tiger H. Tao
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
- Department of Mechanical Engineering the University of Texas at Austin Austin TX 78712 USA
- School of Graduate Study University of Chinese Academy of Sciences Beijing 100049 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 200031 China
| |
Collapse
|
22
|
Treatment with solubilized Silk-Derived Protein (SDP) enhances rabbit corneal epithelial wound healing. PLoS One 2017; 12:e0188154. [PMID: 29155856 PMCID: PMC5695843 DOI: 10.1371/journal.pone.0188154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/01/2017] [Indexed: 12/01/2022] Open
Abstract
There is a significant clinical need to improve current therapeutic approaches to treat ocular surface injuries and disease, which affect hundreds of millions of people annually worldwide. The work presented here demonstrates that the presence of Silk-Derived Protein (SDP) on the healing rabbit corneal surface, administered in an eye drop formulation, corresponds with an enhanced epithelial wound healing profile. Rabbit corneas were denuded of their epithelial surface, and then treated for 72-hours with either PBS or PBS containing 5 or 20 mg/mL SDP in solution four times per day. Post-injury treatment with SDP formulations was found to accelerate the acute healing phase of the injured rabbit corneal epithelium. In addition, the use of SDP corresponded with an enhanced tissue healing profile through the formation of a multi-layered epithelial surface with increased tight junction formation. Additional biological effects were also revealed that included increased epithelial proliferation, and increased focal adhesion formation with a corresponding reduction in the presence of MMP-9 enzyme. These in vivo findings demonstrate for the first time that the presence of SDP on the injured ocular surface may aid to improve various steps of rabbit corneal wound healing, and provides evidence that SDP may have applicability as an ingredient in therapeutic ophthalmic formulations.
Collapse
|
23
|
Raveendran S, Rochani AK, Maekawa T, Kumar DS. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E929. [PMID: 28796191 PMCID: PMC5578295 DOI: 10.3390/ma10080929] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are popularly being used in an increasing number of fields in the past few decades. The popularity and favorability of these materials are due to their remarkable properties, enabling a wide range of applications and market requirements to be met. Polymer biodegradable systems are a promising arena of research for targeted and site-specific controlled drug delivery, for developing artificial limbs, 3D porous scaffolds for cellular regeneration or tissue engineering and biosensing applications. Several natural polymers have been identified, blended, functionalized and applied for designing nanoscaffolds and drug carriers as a prerequisite for enumerable bionano technological applications. Apart from these, natural polymers have been well studied and are widely used in material science and industrial fields. The present review explains the prominent features of commonly used natural polymers (polysaccharides and proteins) in various nanomedical applications and reveals the current status of the polymer research in bionanotechnology and science sectors.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Ankit K Rochani
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Toru Maekawa
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - D Sakthi Kumar
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| |
Collapse
|
24
|
Beşkardeş IG, Hayden RS, Glettig DL, Kaplan DL, Gümüşderelioğlu M. Bone tissue engineering with scaffold-supported perfusion co-cultures of human stem cell-derived osteoblasts and cell line-derived osteoclasts. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Zehnder T, Boccaccini AR, Detsch R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix. Biofabrication 2017; 9:025016. [PMID: 28266351 DOI: 10.1088/1758-5090/aa64ec] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biofabrication aims to develop functional, biological constructs using automated processes (additive manufacturing, AM) involving different cell types and biomaterials (Groll et al 2016 Biofabrication 13001 1-6). As bone tissue is based on the crosstalk between osteoblasts and osteoclasts at least, evaluating cell-cell and cell-material interactions is of interest to understand bone remodeling. There is increasing interest in the role of osteoclasts not only considering bone resorption, but also their influence on the proliferation, migration and differentiation of osteoblasts. Osteoid-like, non-mineralized matrix is used here for the 3D cultivation of osteoblast and osteoclast progenitor cells to evaluate interactions in an early stage of bone formation. The AM technology bioplotting was used to tailor a 3D environment with defined properties. These results could be helpful to transfer this approach to the fabrication of bone tissue in regenerative medicine approaches. Gelatin is derived from collagen, which is the main phase of osteoid. Oxidized alginate-gelatin crosslinked hydrogel was used to immobilize osteoblastic (ST2) and osteoclastic (RAW) progenitor cells. Cell viability and number, the expression of different proteins like alkaline phosphatase (ALP), osteopontin (OPN) and tartrate resistant acid phosphatase (TRAP) were investigated. Release of vascular endothelial growth factor (VEGF) by the immobilized cells was analyzed. Microscopy techniques were used to evaluate cell morphology during an incubation period of 21 days. The biofabrication process was compatible with the cells. Cells migrated, proliferated and expressed their specific proteins indicating cell differentiation. The co-culture showed increased OPN concentration, which is a major protein of the osteoid involved in the mineralization process. TRAP activity was increased compared to single culture. ST2 single culture showed higher ALP activity compared to the co-culture. VEGF concentration of the co-culture was strongly increased. The results indicate the importance of using co-cultures to fabricate bone tissue by biofabrication. Especially the influence of the osteoblast/osteoclast crosstalk, in an early stage of bone formation, is shown here, using a 3D hydrogel based cell culture model created by biofabrication.
Collapse
Affiliation(s)
- Tobias Zehnder
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
26
|
Tseng P, Zhao S, Golding A, Applegate MB, Mitropoulos AN, Kaplan DL, Omenetto FG. Evaluation of Silk Inverse Opals for "Smart" Tissue Culture. ACS OMEGA 2017; 2:470-477. [PMID: 30023608 PMCID: PMC6044746 DOI: 10.1021/acsomega.6b00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/27/2016] [Indexed: 05/20/2023]
Abstract
Visually tracking the subtle aspects of biological systems in real time during tissue culture remains challenging. Herein, we demonstrate the use of bioactive, cytocompatible, and biodegradable inverse opals from silk as a multifunctional substrate to transduce both the optical information and cells during tissue culture. We show that these substrates can visually track substrate degradation in various proteases during tissue digestion and protein deposition during the growth of mesenchymal stem cells. Uniquely, these substrates can be integrated in multiple steps of tissue culture for simple-to-use, visual, and quantitative detectors of bioactivity. These substrates can also be doped, demonstrated here with gold nanoparticles, to allow additional control of cell functions.
Collapse
Affiliation(s)
- Peter Tseng
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, Massachusetts 02155, United States
| | - Siwei Zhao
- Department of Biomedical Engineering, Department of Electrical and Computer
Engineering, Department of Physics, and Department of Chemical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Annie Golding
- Department of Biomedical Engineering, Department of Electrical and Computer
Engineering, Department of Physics, and Department of Chemical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Matthew B. Applegate
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, Massachusetts 02155, United States
| | - Alexander N. Mitropoulos
- Department of Biomedical Engineering, Department of Electrical and Computer
Engineering, Department of Physics, and Department of Chemical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, Massachusetts 02155, United States
- Department of Biomedical Engineering, Department of Electrical and Computer
Engineering, Department of Physics, and Department of Chemical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G. Omenetto
- Silklab, Tufts University, 200 Boston Avenue, Suite 4875, Medford, Massachusetts 02155, United States
- Department of Biomedical Engineering, Department of Electrical and Computer
Engineering, Department of Physics, and Department of Chemical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
27
|
Establishment of 3D culture and induction of osteogenic differentiation of pre-osteoblasts using wet-collected aligned scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:222-230. [DOI: 10.1016/j.msec.2016.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/17/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
|
28
|
Osteogenic signaling on silk-based matrices. Biomaterials 2016; 97:133-53. [DOI: 10.1016/j.biomaterials.2016.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
|
29
|
Elastomers in vascular tissue engineering. Curr Opin Biotechnol 2016; 40:149-154. [PMID: 27149017 DOI: 10.1016/j.copbio.2016.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 11/23/2022]
Abstract
Elastomers are popular in vascular engineering applications, as they offer the ability to design implants that match the compliance of native tissue. By mimicking the natural tissue environment, elastic materials are able to integrate within the body to promote repair and avoid the adverse physiological responses seen in rigid alternatives that often disrupt tissue function. The design of elastomers has continued to evolve, moving from a focus on long term implants to temporary resorbable implants that support tissue regeneration. This has been achieved through designing chemistries and processing methodologies that control material behavior and bioactivity, while maintaining biocompatibility in vivo. Here we review the latest developments in synthetic and natural elastomers and their application in cardiovascular treatments.
Collapse
|
30
|
Kluge JA, Kahn BT, Brown JE, Omenetto FG, Kaplan DL. Optimizing Molecular Weight of Lyophilized Silk As a Shelf-Stable Source Material. ACS Biomater Sci Eng 2016; 2:595-605. [PMID: 33465861 DOI: 10.1021/acsbiomaterials.5b00556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Storage of silk proteins in liquid form can lead to excessive waste from premature gelation, thus an alternative storage strategy is proposed using lyophilization to generate soluble and shelf-stable powder formats for on-demand use. Initial solution stability studies highlighted instabilities of higher-molecular-weight silks that could not be resolved by solution modifications such as autoclaving, pH increases, dilution, or combinations thereof. Conversely, shelf-stable lyophilized stock powders of silk fibroin of moderate to low molecular weights were developed that could be fully constituted even after 1 year of storage at elevated temperatures. Increasing dried silk powder loading in aqueous solution facilitated increased silk solution concentrations-here up to 80 mg/mL solubility was demonstrated across a range of formulations. Powders generated from silk solutions with higher-molecular-weight distributions were less soluble than moderate or lower-molecular-weight versions, despite no differences in their solution glass-transition temperatures. Instead, the aggregation and β-sheet content of lyophilized higher molecular weight stock solutions were identified as the cause of the reduced powder solubility by circular dichroism and dynamic light scattering analyses. The solubility and molecular weight profiles of all formulations investigated were preserved after storing the lyophilized materials over 1 year, even at 37 °C. No long-term powder stability behaviors were influenced by the addition of a secondary drying step in the lyophilization procedure, suggesting that this protocol could be scaled without the burden of lengthy process times. Taken together, these findings provide a very flexible and potentially cost-saving approach to producing shelf-stable silk fibroin stock materials based on the use of moderate to lower-molecular-weight lyophilized preparations. This utility is demonstrated with the formation of silk material formats from the stored powders, including films, gels, and salt-leached porous scaffolds. In turn, a more efficient system allowing full resolubilization will enable stockpiling powder for on-demand usage and for deployment of dried silks for application demands in field settings.
Collapse
Affiliation(s)
- Jonathan A Kluge
- Vaxess Technologies, c/o Lab Central, 700 Main Street, Cambridge Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
31
|
Floren M, Bonani W, Dharmarajan A, Motta A, Migliaresi C, Tan W. Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype. Acta Biomater 2016; 31:156-166. [PMID: 26621695 PMCID: PMC4728007 DOI: 10.1016/j.actbio.2015.11.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 12/22/2022]
Abstract
Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. STATEMENT OF SIGNIFICANCE This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we demonstrate the upregulation of mature vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Moreover, we demonstrate the potential to direct specialized hMSC differentiation by modulating stiffness and growth factor using silk fibroin, a well-tolerated and -defined biomaterial with an impressive portfolio of tissue engineering applications. Altogether, our study reinforce the fact that complex differentiation protocols may be simplified by engineering the cellular microenvironment on multiple scales, i.e. matrix stiffness with growth factor.
Collapse
Affiliation(s)
- Michael Floren
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Walter Bonani
- Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Anirudh Dharmarajan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Antonella Motta
- Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Claudio Migliaresi
- Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
32
|
Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages. J Tissue Eng Regen Med 2015; 11:2046-2059. [PMID: 26549403 DOI: 10.1002/term.2100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/02/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Abstract
Type I collagen is a major structural and functional protein in connective tissues. However, collagen gels exhibit unstable geometrical properties, arising from extensive cell-mediated contraction. In an effort to stabilize collagen-based hydrogels, plastic compression was used to hybridize dense collagen (DC) with electrospun silk fibroin (SF) mats, generating multilayered DC-SF-DC constructs. Seeded mesenchymal stem cell (MSC)-mediated DC-SF-DC contraction, as well as growth and differentiation under chondrogenic and osteogenic supplements, were compared to those seeded in DC and on SF alone. The incorporation of SF within DC prevented extensive cell-mediated collagen gel contraction. The effect of the multilayered hybrid on MSC remodelling capacity was also evident at the transcription level, where the expression of matrix metalloproteinases and their inhibitor (MMP1, MMP2, MMP3, MMP13 and Timp1) by MSCs within DC-SF-DC were comparable to those on SF and significantly downregulated in comparison to DC, except for Timp1. Chondrogenic supplements stimulated extracellular matrix production within the construct, stabilizing its multilayered structure and promoting MSC chondrogenic differentiation, as indicated by the upregulation of the genes Col2a1 and Agg and the production of collagen type II. In osteogenic medium there was an upregulation in ALP and OP along with the presence of an apatitic phase, indicating MSC osteoblastic differentiation and matrix mineralization. In sum, these results have implications on the modulation of three-dimensional collagen-based gel structural stability and on the stimulation and maintenance of the MSC committed phenotype inherent to the in vitro formation of chondral tissue and bone, as well as on potential multilayered complex tissues. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Benedetto Marelli
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Ilaria Donelli
- Innovhub-Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Antonio Alessandrino
- Innovhub-Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Giuliano Freddi
- Innovhub-Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Hardy JG, Khaing ZZ, Xin S, Tien LW, Ghezzi CE, Mouser DJ, Sukhavasi RC, Preda RC, Gil ES, Kaplan DL, Schmidt CE. Into the groove: instructive silk-polypyrrole films with topographical guidance cues direct DRG neurite outgrowth. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1327-42. [DOI: 10.1080/09205063.2015.1090181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
In vivo bioresponses to silk proteins. Biomaterials 2015; 71:145-157. [PMID: 26322725 DOI: 10.1016/j.biomaterials.2015.08.039] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
Abstract
Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials including proteins, synthetic polymers, and ceramics to enhance its characteristics for a particular function. Overall, the diverse array of silk materials shows excellent bioresponses in vivo with low immunogenicity and the ability to be remodeled and replaced by native tissue making it suitable for numerous clinical applications.
Collapse
|
35
|
Numata K. Poly(amino acid)s/polypeptides as potential functional and structural materials. Polym J 2015. [DOI: 10.1038/pj.2015.35] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Liu B, Song YW, Jin L, Wang ZJ, Pu DY, Lin SQ, Zhou C, You HJ, Ma Y, Li JM, Yang L, Sung KLP, Zhang YG. Silk structure and degradation. Colloids Surf B Biointerfaces 2015; 131:122-8. [PMID: 25982316 DOI: 10.1016/j.colsurfb.2015.04.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
To investigate the structure of silk and its degradation properties, we have monitored the structure of silk using scanning electron microscopy and frozen sections. Raw silk and degummed raw silk were immersed in four types of degradation solutions for 156 d to observe their degradation properties. The subcutaneous implants in rats were removed after 7, 14, 56, 84, 129, and 145 d for frozen sectioning and subsequent staining with hematoxylin and eosin (H.E.), DAPI, Beta-actin and Collagen I immunofluorescence staining. The in vitro weight loss ratio of raw silk and degummed raw silk in water, PBS, DMEM and DMEM containing 10% FBS (F-DMEM) were, respectively, 14%/11%, 12.5%/12.9%, 11.1%/14.3%, 8.8%/11.6%. Silk began to degrade after 7 d subcutaneous implantation and after 145 d non-degraded silk was still observed. These findings suggest the immunogenicity of fibroin and sericin had no essential difference. In the process of in vitro degradation of silk, the role of the enzyme is not significant. The in vivo degradation of silk is related to phagocytotic activity and fibroblasts may be involved in this process to secrete collagen. This study also shows the developing process of cocoons and raw silk.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Yu-wei Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Zhi-jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - De-yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Shao-qiang Lin
- Core Laboratory of the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chan Zhou
- Chongqing Academy of Animal Science, Chongqing 400015, China
| | - Hua-jian You
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Yan Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China
| | - Jin-min Li
- Department of Obstetrics, the Ninth People's Hospital of Chongqing, 400700, China
| | - Li Yang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - K L Paul Sung
- College of Bioengineering, Chongqing University, Chongqing 400044, China; Department of Orthopaedics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Yao-guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Southwest University), Ministry of Education, Chongqing 400715, China; School of Life Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
37
|
Vallés G, Bensiamar F, Crespo L, Arruebo M, Vilaboa N, Saldaña L. Topographical cues regulate the crosstalk between MSCs and macrophages. Biomaterials 2014; 37:124-33. [PMID: 25453943 PMCID: PMC4245715 DOI: 10.1016/j.biomaterials.2014.10.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
Implantation of scaffolds may elicit a host foreign body response triggered by monocyte/macrophage lineage cells. Growing evidence suggests that topographical cues of scaffolds play an important role in MSC functionality. In this work, we examined whether surface topographical features can regulate paracrine interactions that MSCs establish with macrophages. Three-dimensional (3D) topography sensing drives MSCs into a spatial arrangement that stimulates the production of the anti-inflammatory proteins PGE2 and TSG-6. Compared to two-dimensional (2D) settings, 3D arrangement of MSCs co-cultured with macrophages leads to an important decrease in the secretion of soluble factors related with inflammation and chemotaxis including IL-6 and MCP-1. Attenuation of MCP-1 secretion in 3D co-cultures correlates with a decrease in the accumulation of its mRNA levels in MSCs and macrophages. Using neutralizing antibodies, we identified that the interplay between PGE2, IL-6, TSG-6 and MCP-1 in the co-cultures is strongly influenced by the micro-architecture that supports MSCs. Local inflammatory milieu provided by 3D-arranged MSCs in co-cultures induces a decrease in monocyte migration as compared to monolayer cells. This effect is partially mediated by reduced levels of IL-6 and MCP-1, proteins that up-regulate each other's secretion. Our findings highlight the importance of topographical cues in the soluble factor-guided communication between MSCs and macrophages.
Collapse
Affiliation(s)
- Gema Vallés
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - Fátima Bensiamar
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - Lara Crespo
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - Manuel Arruebo
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Departamento de Ingenieria Química, Instituto de Nanociencia de Aragón (INA), Edificio I+D, Universidad de Zaragoza, C/Mariano Esquillor, 50018 Zaragoza, Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - Laura Saldaña
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| |
Collapse
|
38
|
Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen-silk fibroin construct. Biomaterials 2014; 35:6236-47. [PMID: 24818890 DOI: 10.1016/j.biomaterials.2014.04.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
Airway tracts serve as a conduit of transport in the respiratory system. Architecturally, these are composed of cartilage rings that offer flexibility and prevent collapse during normal breathing. To this end, the successful regeneration of an airway tract requires the presence of differentiated chondrocytes and airway smooth muscle cells. This study investigated the role of physiological dynamic mechanical stimulation, in vitro, on the differentiation of mesenchymal stem cells (MSCs), three-dimensionally seeded within a tubular dense collagen matrix construct-reinforced with rings of electrospun silk fibroin mat (TDC-SFC). In particular, the role of either shear stress supplied by laminar fluid flow or cyclic shear stress in combination with circumferential strain, provided by pulsatile flow, on the chondrogenic differentiation, and contractile lineage of MSCs, and their effects on TDC-SFC morphology and mechanical properties were analysed. Chondrogenic differentiation of MSCs was observed in the presence of chondrogenic supplements under both static and laminar flow cultures. In contrast, physiological pulsatile flow resulted in preferential cellular orientation within TDC-SFC, as dictated by dynamic circumferential strain, and induced MSC contractile phenotype expression. In addition, pulsatile flow decreased MSC-mediated collagen matrix remodelling and increased construct circumferential strength. Therefore, TDC-SFC demonstrated the central role of a matrix in the delivery of mechanical stimuli over chemical factors, by providing an in vitro niche to control MSC differentiation, alignment and its capacity to remodel the matrix.
Collapse
Affiliation(s)
- Chiara E Ghezzi
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| | - Benedetto Marelli
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| | - Ilaria Donelli
- Innovhub - Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Antonio Alessandrino
- Innovhub - Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Giuliano Freddi
- Innovhub - Stazioni Sperimentali per l'Industria, Div. Stazione Sperimentale per la Seta, Milan, Italy
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2.
| |
Collapse
|
39
|
Hayden RS, Quinn KP, Alonzo CA, Georgakoudi I, Kaplan DL. Quantitative characterization of mineralized silk film remodeling during long-term osteoblast-osteoclast co-culture. Biomaterials 2014; 35:3794-802. [PMID: 24484674 DOI: 10.1016/j.biomaterials.2014.01.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/13/2014] [Indexed: 12/12/2022]
Abstract
The goal of this study was to explore quantitative assessments of mineralized silk protein biomaterial films by co-cultures of human mesenchymal stem cell-derived osteoblasts and human acute monocytic leukemia cell line-derived osteoclasts during long-term culture (8-32 weeks). The remodeled films were quantitatively assessed using three different techniques during this extended cultivation to provide more comprehensive insight into the impact of co-cultures on surface remodeling. Scanning electron microscopy (SEM) with three dimensional surface reconstructions was used to quantitatively determine various surface morphological features and measures of roughness indicative of remodeling by the cells. Additionally, reconstructed surfaces were converted to depth images for Fourier analysis to quantify the potential fractal organization of biomineralization. The long-term remodeled films were also imaged using confocal reflectance microscopy and micro-computed tomography (micro-CT) to further quantify morphological changes. Films remodeled in co-culture demonstrated increased roughness parameters, fractal organization, and volume compared to films remodeled by osteoblasts alone. The combination of these techniques to quantify remodeling of mineralized protein films shows promise for quantifying processes related to mineralized surfaces.
Collapse
Affiliation(s)
- Rebecca S Hayden
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Carlo A Alonzo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
40
|
Hayden RS, Fortin JP, Harwood B, Subramanian B, Quinn KP, Georgakoudi I, Kopin AS, Kaplan DL. Cell-tethered ligands modulate bone remodeling by osteoblasts and osteoclasts. ADVANCED FUNCTIONAL MATERIALS 2014; 24:472-479. [PMID: 25419210 PMCID: PMC4235974 DOI: 10.1002/adfm.201302210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The goals of the present study are to establish an in vitro co-culture model of osteoblast and osteoclast function and to quantify the resulting bone remodeling. The bone is tissue engineered using well-defined silk protein biomaterials in 2D and 3D formats in combination with human cells expressing tethered agonists for selected G protein-coupled receptors (GPCRs). The tethered constructs are introduced with the objective of triggering sustained and localized GPCR signaling. The cell-modified biomaterial surfaces are reconstructed from SEM images into 3D models using image processing for quantitative measurement of surface characteristics. Parathyroid hormone (PTH) and glucose-dependent insulinotropic peptide (GIP) are selected because of their roles in bone remodeling for expression in tethered format on bone marrow derived human mesenchymal stem cells (hMSCs). Increased calcium deposition and increased surface roughness are found in 3D digital surface models constructed from SEM images of silk protein films remodeled by the co-cultures containing the tethered PTH, and decreased surface roughness is found for the films remodeled by the tethered GIP co-cultures. Increased surface roughness is not found in monocultures of hMSCs expressing tethered PTH, suggesting that osteoclast-osteoblast interactions in the presence of PTH signaling are responsible for the increased mineralization. These data point towards the design of in vitro bone models in which osteoblast-osteoclast interactions are mimicked for a better understanding of bone remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alan S. Kopin
- 800 Washington Street, Box 7703, Boston, MA 02111 (USA)
| | | |
Collapse
|
41
|
Neffe AT, Wischke C, Racheva M, Lendlein A. Progress in biopolymer-based biomaterials and their application in controlled drug delivery. Expert Rev Med Devices 2014; 10:813-33. [DOI: 10.1586/17434440.2013.839209] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Hayden RS, Vollrath M, Kaplan DL. Effects of clodronate and alendronate on osteoclast and osteoblast co-cultures on silk-hydroxyapatite films. Acta Biomater 2014; 10:486-93. [PMID: 24096150 DOI: 10.1016/j.actbio.2013.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 01/06/2023]
Abstract
The goal of this study was to explore the effects of osteoporosis-related therapeutics on bone remodeling in vitro. A previously established bone-tissue mimetic system consisting of silk protein biomaterials in combination with hydroxyapatite and human cells was used for the study. Silk-hydroxyapatite films were pre-complexed with the non-nitrogenous bisphosphonate clodronate or the nitrogenous bisphosphonate alendronate and cultured with THP-1 human acute monocytic leukemia cell line-derived osteoclasts, human mesenchymal stem cell derived osteoblasts or a direct co-culture of the two cell types. Metabolic activity, calcium deposition and alkaline phosphatase activity were assessed over 12 weeks, and reconstructed remodeled biomaterial surfaces were also evaluated for quantitative morphological changes. Increased metabolic activity and increased roughness were found on the clodronate-complexed biomaterial substrates remodeled by osteoblasts and co-cultures of osteoblasts with osteoclasts, even at doses high enough to cause a 90% decrease in osteoclast metabolic activity. Films complexed with low doses of alendronate resulted in increased metabolic activity and calcium deposition by osteoblasts, while higher doses were similarly toxic among osteoclasts, osteoblasts and co-cultures. These results point to the utility of these well-defined bone-mimetic in vitro cultures as useful screens for therapeutics for bone-related diseases, particularly with the ability to conduct studies for extended duration (here for 12 weeks) and with pre-complexed drugs to mimic conditions found in vivo.
Collapse
|
43
|
Shakya AK, Holmdahl R, Nandakumar KS, Kumar A. Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals. J Biomed Mater Res A 2013; 102:3409-18. [PMID: 24142798 DOI: 10.1002/jbm.a.35013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
Abstract
Biocompatibility and in vivo degradation are two important characteristics of cell scaffolds. We evaluated these properties for four different polymeric macroporous cryogels, polyvinylcaprolactam, polyvinyl alcohol-alginate-bioactive glass composite, polyhydroxyethylmethacrylate-gelatin (pHEMA-gelatin), and chitosan-agarose-gelatin in mice. All the cryogels were synthesized at subzero temperature and were implanted subcutaneously in C57Bl/10.Q inbred mice. Both local and systemic toxicities were negligible as determined by serum tumor necrosis factor α analysis and histology of surrounding tissues nearby the implants. Complete integration of cryogels into the surrounding tissues with neovascular formation was evident in all the mice. At the implantation site, massive infiltration of macrophages and few dendritic cells were observed but neutrophils and mast cells were clearly absent. Macrophage infiltrations were observed even inside the pores of cryogel implants. To ascertain whether oxidative radicals are involved in the cryogel degradation, we implanted these gels in mice deficient for reactive oxygen species (ROS) production. Rapid gel degradation was observed in the absence of ROS, and there was no significant difference in the biodegradation of these cryogels between ROS sufficient and deficient mice thereby excluding any major role for ROS in this process. Thus, we demonstrate the biocompatibility and ROS-independent biodegradable properties of cryogels that could be useful for tissue-specific tissue engineering applications.
Collapse
Affiliation(s)
- Akhilesh Kumar Shakya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Department of Biochemistry and Biophysics, Medical Inflammation Research, Karolinska Institute, Stockholm, 17177, Sweden
| | | | | | | |
Collapse
|
44
|
Shang K, Rnjak-Kovacina J, Lin Y, Hayden RS, Tao H, Kaplan DL. Accelerated In Vitro Degradation of Optically Clear Low β-Sheet Silk Films by Enzyme-Mediated Pretreatment. Transl Vis Sci Technol 2013; 2:2. [PMID: 24049717 DOI: 10.1167/tvst.2.3.2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 02/05/2013] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To design patterned, transparent silk films with fast degradation rates for the purpose of tissue engineering corneal stroma. METHODS β-sheet (crystalline) content of silk films was decreased significantly by using a short water annealing time. Additionally, a protocol combining short water annealing time with enzymatic pretreatment of silk films with protease XIV was developed. RESULTS Low β-sheet content (17%-18%) and enzymatic pretreatment provided film stability in aqueous environments and accelerated degradation of the silk films in the presence of human corneal fibroblasts in vitro. The results demonstrate a direct relationship between reduced β-sheet content and enzymatic pretreatment, and overall degradation rate of the protein films. CONCLUSIONS The novel protocol developed here provides new approaches to modulate the regeneration rate of silk biomaterials for corneal tissue regeneration needs. TRANSLATIONAL RELEVANCE Patterned silk protein films possess desirable characteristics for corneal tissue engineering, including optical transparency, biocompatibility, cell alignment, and tunable mechanical properties, but current fabrication protocols do not provide adequate degradation rates to match the regeneration properties of the human cornea. This novel processing protocol makes silk films more suitable for the construction of human corneal stroma tissue and a promising way to tune silk film degradation properties to match corneal tissue regeneration.
Collapse
Affiliation(s)
- Ke Shang
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | | | | | | | | | | |
Collapse
|
45
|
Zarbin MA. Accelerated in vitro degradation of optically clear low-β sheet silk films by enzyme-mediated pretreatment. JAMA Ophthalmol 2013; 131:676. [PMID: 23579493 DOI: 10.1001/jamaophthalmol.2013.4319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Marco A Zarbin
- New Jersey Medical School, Institute of Ophthalmology and Visual Science, Newark, NJ 07103, USA.
| |
Collapse
|
46
|
Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013; 65:457-70. [PMID: 23137786 DOI: 10.1016/j.addr.2012.09.043] [Citation(s) in RCA: 838] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/26/2012] [Accepted: 09/25/2012] [Indexed: 12/31/2022]
Abstract
Regeneration of tissues using cells, scaffolds and appropriate growth factors is a key approach in the treatments of tissue or organ failure. Silk protein fibroin can be effectively used as a scaffolding material in these treatments. Silk fibers are obtained from diverse sources such as spiders, silkworms, scorpions, mites and flies. Among them, silk of silkworms is a good source for the development of biomedical device. It possesses good biocompatibility, suitable mechanical properties and is produced in bulk in the textile sector. The unique combination of elasticity and strength along with mammalian cell compatibility makes silk fibroin an attractive material for tissue engineering. The present article discusses the processing of silk fibroin into different forms of biomaterials followed by their uses in regeneration of different tissues. Applications of silk for engineering of bone, vascular, neural, skin, cartilage, ligaments, tendons, cardiac, ocular, and bladder tissues are discussed. The advantages and limitations of silk systems as scaffolding materials in the context of biocompatibility, biodegradability and tissue specific requirements are also critically reviewed.
Collapse
Affiliation(s)
- Banani Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | | | | | | |
Collapse
|
47
|
Gupta S, T G, Basu B, Goswami S, Sinha A. Stiffness- and wettability-dependent myoblast cell compatibility of transparent poly(vinyl alcohol) hydrogels. J Biomed Mater Res B Appl Biomater 2012; 101:346-54. [DOI: 10.1002/jbm.b.32845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/18/2012] [Accepted: 09/25/2012] [Indexed: 02/01/2023]
|
48
|
Moisenovich MM, Pustovalova O, Shackelford J, Vasiljeva TV, Druzhinina TV, Kamenchuk YA, Guzeev VV, Sokolova OS, Bogush VG, Debabov VG, Kirpichnikov MP, Agapov II. Tissue regeneration in vivo within recombinant spidroin 1 scaffolds. Biomaterials 2012; 33:3887-98. [DOI: 10.1016/j.biomaterials.2012.02.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/06/2012] [Indexed: 12/01/2022]
|
49
|
Hu X, Park SH, Gil ES, Xia XX, Weiss AS, Kaplan DL. The influence of elasticity and surface roughness on myogenic and osteogenic-differentiation of cells on silk-elastin biomaterials. Biomaterials 2011; 32:8979-89. [PMID: 21872326 DOI: 10.1016/j.biomaterials.2011.08.037] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/14/2011] [Indexed: 12/22/2022]
Abstract
The interactions of C2C12 myoblasts and human bone marrow stem cells (hMSCs) with silk-tropoelastin biomaterials, and the capacity of each to promote attachment, proliferation, and either myogenic- or osteogenic-differentiation were investigated. Temperature-controlled water vapor annealing was used to control beta-sheet crystal formation to generate insoluble silk-tropoelastin biomaterial matrices at defined ratios of the two proteins. These ratios controlled surface roughness and micro/nano-scale topological patterns, and elastic modulus, stiffness, yield stress, and tensile strength. A combination of low surface roughness and high stiffness in the silk-tropoelastin materials promoted proliferation and myogenic-differentiation of C2C12 cells. In contrast, high surface roughness with micro/nano-scale surface patterns was favored by hMSCs. Increasing the content of human tropoelastin in the silk-tropoelastin materials enhanced the proliferation and osteogenic-differentiation of hMSCs. We conclude that the silk-tropoelastin composition facilitates fine tuning of the growth and differentiation of these cells.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|