1
|
Amorim J, Liao K, Mandal A, Costa AFDS, Roumeli E, Sarubbo LA. Impact of Carbon Source on Bacterial Cellulose Network Architecture and Prolonged Lidocaine Release. Polymers (Basel) 2024; 16:3021. [PMID: 39518230 PMCID: PMC11548197 DOI: 10.3390/polym16213021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The biosynthesis of bacterial cellulose (BC) is significantly influenced by the type of carbon source available in the growth medium, which in turn dictates the material's final properties. This study systematically investigates the effects of five carbon sources-raffinose (C18H32O16), sucrose (C12H22O11), glucose (C6H12O6), arabinose (C5H10O5), and glycerol (C3H8O3)-on BC production by Komagataeibacter hansenii. The varying molecular weights and structural characteristics of these carbon sources provide a framework for examining their influence on BC yield, fiber morphology, and network properties. BC production was monitored through daily measurements of optical density and pH levels in the fermentation media from day 1 to day 14, providing valuable insights into bacterial growth kinetics and cellulose synthesis rates. Scanning electron microscopy (SEM) was used to elucidate fibril diameter and pore size distribution. Wide-angle X-ray scattering (WAXS) provided a detailed assessment of crystallinity. Selected BC pellicles were further processed via freeze-drying to produce a foam-like material that maximally preserves the natural three-dimensional structure of BC, facilitating the incorporation and release of lidocaine hydrochloride (5%), a widely used local anesthetic. The lidocaine-loaded BC foams exhibited a sustained and controlled release profile over 14 days in simulated body fluid, highlighting the importance of the role of carbon source selection in shaping the BC network architecture and its impact on drug release profile. These results highlight the versatility and sustainability of BC as a platform for wound healing and drug delivery applications. The tunable properties of BC networks provide opportunities for optimizing therapeutic delivery and improving wound care outcomes, positioning BC as an effective material for enhanced wound management strategies.
Collapse
Affiliation(s)
- Julia Amorim
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n—Dois Irmãos, Recife 52171-900, PE, Brazil;
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Kuotian Liao
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Aban Mandal
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, PE, Brazil;
- Centro de Design Comunicação, Campus Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), Av Marielle Franco, s/n—Nova Caruaru, Caruaru 50670-900, PE, Brazil
| | - Eleftheria Roumeli
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, PE, Brazil;
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil
| |
Collapse
|
2
|
Costa L, Carvalho AF, Fernandes AJS, Campos T, Dourado N, Costa FM, Gama M. Bacterial nanocellulose as a simple and tailorable platform for controlled drug release. Int J Pharm 2024; 663:124560. [PMID: 39127171 DOI: 10.1016/j.ijpharm.2024.124560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
In this study we present a proof of concept of a simple and straightforward approach for the development of a Bacterial Nanocellulose drug delivery system (BNC-DDS), envisioning the local delivery of immunomodulatory drugs to prevent foreign body reaction (FBR). Inspired by the self-adhesion behavior of BNC upon drying, we proposed a BNC laminate entrapping commercial crystalline drugs (dexamethasone-DEX and GW2580) in a sandwich system. The stability of the bilayer BNC-DDS was evidenced by the high interfacial energy of the bilayer films, 150 ± 11 and 88 ± 7 J/m2 respectively for 2 mm- and 10-mm thick films, corresponding to an increase of 7.5 and 4.4-fold comparatively to commercial tissue adhesives. In vitro release experiments unveiled the tunability of the bilayer BNC-DDS by showing extended drug release when thicker BNC membranes were used (from 16 to 47 days and from 35 to 132 days, for the bilayer-BNC entrapping DEX and GW2580, respectively). Mathematical modeling of the release data pointed to a diffusion-driven mechanism with non-fickian behavior. Overall, the results have demonstrated the potential of this simple approach for developing BNC-drug depots for localized and sustained release of therapeutic agents over adjustable timeframes.
Collapse
Affiliation(s)
- Lígia Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Alexandre F Carvalho
- i3N and Physics Department, University of Aveiro Campus of Santiago, 3810-193 Aveiro, Portugal
| | - António J S Fernandes
- i3N and Physics Department, University of Aveiro Campus of Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Campos
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; CMEMS-UMINHO, Universidade do Minho, 4800-058 Guimarães, Portugal
| | - Nuno Dourado
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal; CMEMS-UMINHO, Universidade do Minho, 4800-058 Guimarães, Portugal
| | - Florinda M Costa
- i3N and Physics Department, University of Aveiro Campus of Santiago, 3810-193 Aveiro, Portugal
| | - Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
3
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Ye J, Li J, Wang X, Wang Q, Wang S, Wang H, Zhu H, Xu J. Preparation of bacterial cellulose-based antibacterial membranes with prolonged release of drugs: Emphasis on the chemical structure of drugs. Carbohydr Polym 2024; 323:121379. [PMID: 37940275 DOI: 10.1016/j.carbpol.2023.121379] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 11/10/2023]
Abstract
Bacterial cellulose (BC) based antibacterial membranes were synthesized, including BC-cefoperazone (BC-CEF) and BC-cefoperazone sodium (BC-CEF/Na). To examine the various drug loading processes, the structure, morphology, and physical-chemical characteristics of membranes were evaluated. Results demonstrated that both types of medicines were successfully absorbed into membranes, and membranes displayed identical morphology and FT-IR peaks. BC-CEF showed lower crystalline of XRD, which was likely caused by the combination of carboxyl and hydroxyl. However, there were no drug peaks seen in the membranes, indicating no alteration of ribbon crystallization of BC. Two types of antibacterial membranes have significantly distinct drug-loading traits and drug-releasing profiles. The drug loading rate of CEF (46.4 mg/g) was significantly greater than CEF/Na (30.3 mg/g). The cumulative drug-releasing profiles showed that only BC-CEF continues to release drugs for a lengthy period up to 48 h and exhibited good antimicrobial activity against S. aureus and E. coli until 48 h. The cytotoxicity assay demonstrated the great biocompatibility of all membranes. Findings indicated that BC-CEF has the potential use as a prolonged biocide in the biomedical. The idea that BC membranes can naturally incorporate the carboxyl groups from antibiotics is also innovative and can be useful in developing of drug delivery systems.
Collapse
Affiliation(s)
- Jianbin Ye
- Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China; Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Jianqing Li
- Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China; Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Xiangjiang Wang
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Qiuhui Wang
- Fujian Medical University, School of Pharmacy, Fuzhou City, Fujian Province 350004, China; Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Shouan Wang
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China
| | - Honglin Wang
- Department of Orthopedic Surgery, Dazu Hospital of Chongqing Medical University, Chongqing 402360, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Jia Xu
- Putian University, School of Basic Medicine Science, Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian City, Fujian Province 351100, China.
| |
Collapse
|
5
|
Leong MY, Kong YL, Burgess K, Wong WF, Sethi G, Looi CY. Recent Development of Nanomaterials for Transdermal Drug Delivery. Biomedicines 2023; 11:biomedicines11041124. [PMID: 37189742 DOI: 10.3390/biomedicines11041124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Nano-engineered medical products first appeared in the last decade. The current research in this area focuses on developing safe drugs with minimal adverse effects associated with the pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration, offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport mechanisms involved. This article reviews the recent research trends in transdermal drug delivery and emphasizes the mechanisms and nano-formulations currently in vogue.
Collapse
Affiliation(s)
- Moong Yan Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Science, America Degree Program, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
6
|
Silva ACQ, Silvestre AJD, Vilela C, Freire CSR. Cellulose and protein nanofibrils: Singular biobased nanostructures for the design of sustainable advanced materials. Front Bioeng Biotechnol 2022; 10:1059097. [PMID: 36582838 PMCID: PMC9793328 DOI: 10.3389/fbioe.2022.1059097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Polysaccharides and proteins are extensively used for the design of advanced sustainable materials. Owing to the high aspect ratio and specific surface area, ease of modification, high mechanical strength and thermal stability, renewability, and biodegradability, biopolymeric nanofibrils are gaining growing popularity amongst the catalog of nanostructures exploited in a panoply of fields. These include the nanocomposites, paper and packaging, environmental remediation, electronics, energy, and biomedical applications. In this review, recent trends on the use of cellulose and protein nanofibrils as versatile substrates for the design of high-performance nanomaterials are assessed. A concise description of the preparation methodologies and characteristics of cellulosic nanofibrils, namely nanofibrillated cellulose (NFC), bacterial nanocellulose (BNC), and protein nanofibrils is presented. Furthermore, the use of these nanofibrils in the production of sustainable materials, such as membranes, films, and patches, amongst others, as well as their major domains of application, are briefly described, with focus on the works carried out at the BioPol4Fun Research Group (Innovation in BioPolymer based Functional Materials and Bioactive Compounds) from the Portuguese associate laboratory CICECO-Aveiro Institute of Materials (University of Aveiro). The potential for partnership between both types of nanofibrils in advanced material development is also reviewed. Finally, the critical challenges and opportunities for these biobased nanostructures for the development of functional materials are addressed.
Collapse
|
7
|
Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review. Int J Biol Macromol 2022; 222:830-843. [PMID: 36179866 DOI: 10.1016/j.ijbiomac.2022.09.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022]
Abstract
Hydrogels designed with nanocellulose (i.e. cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial cellulose (BC)) have significant advantages as drug carriers due to their environmentally-benign features and excellent properties. Nanocellulose hydrogels have been demonstrated to sustainably deliver various kinds of drugs via different routes of administration, in which nanocellulose significantly improves the hydrogel properties and tunes the drug releasing profile. This article comprehensively summarizes the recent research progress on nanocellulose hydrogels in drug delivery. We carefully assessed the gelation methods for nanocellulose hydrogel design and highlighted the influence of nanocellulose on hydrogel properties and drug release behaviors. In particular, it is the first time to summarize the research on nanocellulose hydrogel-based drug carriers regarding specific routes of administration. This work provides a critical review of nanocellulose-based hydrogels as drug delivery vehicles, and also underlines the outlook in this field, with the objective to inspire/prompt future work, especially the practical applications of nanocellulose hydrogels in designing controlled drug delivery systems.
Collapse
|
8
|
Argel S, Castaño M, Jimenez DE, Rodríguez S, Vallejo MJ, Castro CI, Osorio MA. Assessment of Bacterial Nanocellulose Loaded with Acetylsalicylic Acid or Povidone-Iodine as Bioactive Dressings for Skin and Soft Tissue Infections. Pharmaceutics 2022; 14:1661. [PMID: 36015286 PMCID: PMC9412879 DOI: 10.3390/pharmaceutics14081661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial nanocellulose (BNC) is a novel nanomaterial known for its large surface area, biocompatibility, and non-toxicity. BNC contributes to regenerative processes in the skin but lacks antimicrobial and anti-inflammatory properties. Herein, the development of bioactive wound dressings by loading antibacterial povidone-iodine (PVI) or anti-inflammatory acetylsalicylic acid (ASA) into bacterial cellulose is presented. BNC is produced using Hestrin-Schramm culture media and loaded via immersion in PVI and ASA. Through scanning electron microscopy, BNC reveals open porosity where the bioactive compounds are loaded; the mechanical tests show that the dressing prevents mechanical wear. The loading kinetic and release assays (using the Franz cell method) under simulated fluids present a maximum loading of 589.36 mg PVI/g BNC and 38.61 mg ASA/g BNC, and both systems present a slow release profile at 24 h. Through histology, the complete diffusion of the bioactive compounds is observed across the layers of porcine skin. Finally, in the antimicrobial experiment, BNC/PVI produced an inhibition halo for Gram-positive and Gram-negative bacteria, confirming the antibacterial activity. Meanwhile, the protein denaturation test shows effective anti-inflammatory activity in BNC/ASA dressings. Accordingly, BNC is a suitable platform for the development of bioactive wound dressings, particularly those with antibacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Shaydier Argel
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Melissa Castaño
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Daiver Estiven Jimenez
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Sebastian Rodríguez
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Maria Jose Vallejo
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Cristina Isabel Castro
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- New Materials Research Group, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Marlon Andres Osorio
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- New Materials Research Group, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- Biology Systems Research Group, School of Health Science, Universidad Pontificia Bolivariana, Cl. 78b #72a-159, Medellin 050034, Colombia
| |
Collapse
|
9
|
Peng F, Liu J, Zhang Y, Fan J, Gong D, He L, Zhang W, Qiu F. Designer self-assembling peptide nanofibers induce biomineralization of lidocaine for slow-release and prolonged analgesia. Acta Biomater 2022; 146:66-79. [PMID: 35545185 DOI: 10.1016/j.actbio.2022.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
The burst release of small molecular water-soluble drugs is a major problem when pursuing their long-acting formulations. Although various types of carrier materials have been developed for tackling this problem, it is still a big challenge to prevent water-soluble small molecules from fast release and diffusion. In this study, a biomineralization strategy based upon a self-assembling peptide is proposed for the slow release of lidocaine, a classic anesthetic with high solubility and a very small molecular weight. A bolaamphiphilic peptide was designed to self-assemble and produce negatively charged nanofibers, which were used as the template to absorb positively charged lidocaine molecules through an electrostatic interaction. The biomineralization of lidocaine was then induced by adjusting the pH, which lead to the formation of lidocaine microcrystals with a homogenous size. The microcrystals were incorporated into a hyaluronic acid hydrogel to form an injectable formulation. This formulation slowly released lidocaine and generate a prolonged anesthetic and analgesic effect in rodent models. Due to the constrained local and plasma lidocaine concentration, as well as the biocompatibility and biodegradability of the peptide materials, this formulation also showed considerable safety. These results suggest that nanofiber assisted biomineralization can provide a potential strategy for the fabrication of long-acting formulations for small molecular water-soluble drugs. STATEMENT OF SIGNIFICANCE: Long-acting formulations are highly pursued to achieve stronger therapeutic effect, or to avoid repeated administration of drugs, especially through painful injection. Using carrier materials to slow down the release of bioactive molecules is a common strategy to reach this goal. However, for many water-soluble small molecular drugs currently used in clinic, it is notoriously difficult to slow down their release and diffusion. This study proposes a novel strategy based on a controllable mineralization process using self-assembling peptide nanofibers as the template. Taking lidocaine as an example, we showed how peptide-drug microcrystals with well-controlled size and shape could be obtained, which exhibit significantly prolonged anesthetic and analgesic effect. As a proof-of-concept study, this work proposes a promising strategy to control the release of water-soluble small molecular drugs.
Collapse
Affiliation(s)
- Fei Peng
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Jing Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Yujun Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Jing Fan
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Deying Gong
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Liu He
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China.
| | - Feng Qiu
- Department of Anesthesiology, West China Hospital, Sichuan University, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China.
| |
Collapse
|
10
|
Hsu CY, Lin SC, Wu YH, Hu CY, Chen YT, Chen YC. The Antimicrobial Effects of Bacterial Cellulose Produced by Komagataeibacter intermedius in Promoting Wound Healing in Diabetic Mice. Int J Mol Sci 2022; 23:5456. [PMID: 35628265 PMCID: PMC9142012 DOI: 10.3390/ijms23105456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
As a conventional medical dressing, medical gauze does not adequately protect complex and hard-to-heal diabetic wounds and is likely to permit bacterial entry and infections. Therefore, it is necessary to develop novel dressings to promote wound healing in diabetic patients. Komagataeibacter intermedius was used to produce unmodified bacterial cellulose, which is rarely applied directly to diabetic wounds. The produced cellulose was evaluated for wound recovery rate, level of inflammation, epidermal histopathology, and antimicrobial activities in treated wounds. Diabetic mices' wounds treated with bacterial cellulose healed 1.63 times faster than those treated with gauze; the values for the skin indicators in bacterial cellulose treated wounds were more significant than those treated with gauze. Bacterial cellulose was more effective than gauze in promoting tissue proliferation with more complete epidermal layers and the formation of compact collagen in the histological examination. Moreover, wounds treated with bacterial cellulose alone had less water and glucose content than those treated with gauze; this led to an increase of 6.82 times in antimicrobial protection, lower levels of TNF-α and IL-6 (39.6% and 83.2%), and higher levels of IL-10 (2.07 times) than in mice wounds treated with gauze. The results show that bacterial cellulose produced using K. intermedius beneficially affects diabetic wound healing and creates a hygienic microenvironment by preventing inflammation. We suggest that bacterial cellulose can replace medical gauze as a wound dressing for diabetic patients.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Sheng-Che Lin
- Department of Surgery, Tainan Municipal An-Nan Hospital, China Medical University, Tainan 709204, Taiwan;
| | - Yi-Hsuan Wu
- Department of Cardiovascular Surgery, Chi Mei Medical Center, Tainan 710402, Taiwan;
| | - Chun-Yi Hu
- Department of Food Science and Nutrition, Meiho University, Pingtung 912009, Taiwan;
| | - Yung-Tsung Chen
- Department of Food Science, National Taiwan Ocean University, Keelung City 202301, Taiwan;
| | - Yo-Chia Chen
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
11
|
Mao Y, Xu Z, He Z, Wang J, Zhu Z. Wet-adhesive materials of oral and maxillofacial region: From design to application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Falcón-González JM, Cantú-Cárdenas LG, García-González A, Carrillo-Tripp M. Differences in the local anaesthesia effect by lidocaine and bupivacaine based on free energy analysis. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2053118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- José Marcos Falcón-González
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional, Silao de la Victoria, Guanajuato, México
| | - Lucía Guadalupe Cantú-Cárdenas
- Facultad de Ciencias Químicas, Laboratorio de Fisicoquímica de Interfases, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Alcione García-González
- Facultad de Ciencias Químicas, Laboratorio de Fisicoquímica de Interfases, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, México
| | - Mauricio Carrillo-Tripp
- Biomolecular Diversity Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, México
| |
Collapse
|
13
|
Bacterial Cellulose-A Remarkable Polymer as a Source for Biomaterials Tailoring. MATERIALS 2022; 15:ma15031054. [PMID: 35160997 PMCID: PMC8839122 DOI: 10.3390/ma15031054] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Nowadays, the development of new eco-friendly and biocompatible materials using ‘green’ technologies represents a significant challenge for the biomedical and pharmaceutical fields to reduce the destructive actions of scientific research on the human body and the environment. Thus, bacterial cellulose (BC) has a central place among these novel tailored biomaterials. BC is a non-pathogenic bacteria-produced polysaccharide with a 3D nanofibrous structure, chemically identical to plant cellulose, but exhibiting greater purity and crystallinity. Bacterial cellulose possesses excellent physicochemical and mechanical properties, adequate capacity to absorb a large quantity of water, non-toxicity, chemical inertness, biocompatibility, biodegradability, proper capacity to form films and to stabilize emulsions, high porosity, and a large surface area. Due to its suitable characteristics, this ecological material can combine with multiple polymers and diverse bioactive agents to develop new materials and composites. Bacterial cellulose alone, and with its mixtures, exhibits numerous applications, including in the food and electronic industries and in the biotechnological and biomedical areas (such as in wound dressing, tissue engineering, dental implants, drug delivery systems, and cell culture). This review presents an overview of the main properties and uses of bacterial cellulose and the latest promising future applications, such as in biological diagnosis, biosensors, personalized regenerative medicine, and nerve and ocular tissue engineering.
Collapse
|
14
|
An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose. MATERIALS 2022; 15:ma15020676. [PMID: 35057394 PMCID: PMC8779708 DOI: 10.3390/ma15020676] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023]
Abstract
Cellulose is the most widely used biopolymer, accounting for about 1.5 trillion tons of annual production on Earth. Bacterial cellulose (BC) is a form produced by different species of bacteria, representing a purified form of cellulose. The structure of bacterial cellulose consists of glucose monomers that give it excellent properties for different medical applications (unique nanostructure, high water holding capacity, high degree of polymerization, high mechanical strength, and high crystallinity). These properties differ depending on the cellulose-producing bacteria. The most discussed topic is related to the use of bacterial cellulose as a versatile biopolymer for wound dressing applications. The aim of this review is to present the microbial aspects of BC production and potential applications in development of value-added products, especially for biomedical applications.
Collapse
|
15
|
Singh J, Steele TWJ, Lim S. Fibrillated bacterial cellulose liquid carbene bioadhesives for mimicking and bonding oral cavity surfaces. J Mater Chem B 2022; 10:2570-2583. [PMID: 34981107 DOI: 10.1039/d1tb02044g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Topical treatments for oral wounds and infections exhibit weak adhesion to wet surfaces which results in short retention duration (6-8 hours), frequent dosing requirement and patient incompatibility. To address these limitations, aqueous composites made of fibrillated bacterial cellulose and photoactive bioadhesives are designed for soft epithelial surfaces. The aqueous composites crosslink upon photocuring within a minute and exhibit a transition from viscous to elastic adhesive hydrogels. The light-cured composites have shear moduli mimicking oral mucosa and other soft tissues. The tunable adhesion strength ranges from 3 to 35 kPa on hydrated tissue-mimicking surfaces (collagen film). The results support the application of bacterial cellulose hydrogel systems for potential treatment of mucosal wounds.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, 637457, Singapore.
| |
Collapse
|
16
|
Natural Polymers-Based Materials: A Contribution to a Greener Future. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010094. [PMID: 35011326 PMCID: PMC8747056 DOI: 10.3390/molecules27010094] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/19/2023]
Abstract
Natural polymers have emerged as promising candidates for the sustainable development of materials in areas ranging from food packaging and biomedicine to energy storage and electronics. In tandem, there is a growing interest in the design of advanced materials devised from naturally abundant and renewable feedstocks, in alignment with the principles of Green Chemistry and the 2030 Agenda for Sustainable Development. This review aims to highlight some examples of the research efforts conducted at the Research Team BioPol4fun, Innovation in BioPolymer-based Functional Materials and Bioactive Compounds, from the Portuguese Associate Laboratory CICECO–Aveiro Institute of Materials at the University of Aveiro, regarding the exploitation of natural polymers (and derivatives thereof) for the development of distinct sustainable biobased materials. In particular, focus will be given to the use of polysaccharides (cellulose, chitosan, pullulan, hyaluronic acid, fucoidan, alginate, and agar) and proteins (lysozyme and gelatin) for the assembly of composites, coatings, films, membranes, patches, nanosystems, and microneedles using environmentally friendly strategies, and to address their main domains of application.
Collapse
|
17
|
Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr Polym 2021; 273:118565. [PMID: 34560976 DOI: 10.1016/j.carbpol.2021.118565] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Bacterial cellulose (BC) is a promising unique material for various biomedical and cosmetic applications due to its morphology, mechanical strength, high purity, high water uptake, non-toxicity, chemical controllability, and biocompatibility. Today, extensive investigation is into the manufacturing of BC-based composites with other components such as nanoparticles, synthetic polymers, natural polymers, carbon materials, and biomolecules, which will allow the development of a wide range of biomedical and cosmetic products. Moreover, the addition of different reinforcement substances into BC and the organized arrangement of BC nano-fibers have proven a promising improvement in their properties for biomedical applications. This review paper highlights the progress in synthesizing BC-based composites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering, and cancer treatment. It emphasizes high-performance BC-based materials and cosmetic applications. Furthermore, it presents challenges yet to be defeated and future possibilities for BC-based composites for biomedical and cosmetic applications.
Collapse
|
18
|
Singh J, Tan NCS, Mahadevaswamy UR, Chanchareonsook N, Steele TWJ, Lim S. Bacterial cellulose adhesive composites for oral cavity applications. Carbohydr Polym 2021; 274:118403. [PMID: 34702445 DOI: 10.1016/j.carbpol.2021.118403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
Topical approaches to oral diseases require frequent dosing due to limited retention time. A mucoadhesive drug delivery platform with extended soft tissue adhesion capability of up to 7 days is proposed for on-site management of oral wound. Bacterial cellulose (BC) and photoactivated carbene-based bioadhesives (PDz) are combined to yield flexible film platform for interfacing soft tissues in dynamic, wet environments. Structure-activity relationships evaluate UV dose and hydration state with respect to adhesive strength on soft tissue mimics. The bioadhesive composite has an adhesion strength ranging from 7 to 17 kPa and duration exceeding 48 h in wet conditions under sustained shear forces, while other mucoadhesives based on hydrophilic macromolecules exhibit adhesion strength of 0.5-5 kPa and last only a few hours. The work highlights the first evaluation of BC composites for mucoadhesive treatments in the buccal cavity.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| | - Nigel C S Tan
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798, Singapore.
| | - Usha Rani Mahadevaswamy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| | - Nattharee Chanchareonsook
- Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore (NDCS), 5 Second Hospital Avenue, Singapore 16893, Singapore
| | - Terry W J Steele
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, 50 Nanyang Avenue, Block N4.1, Singapore 639798, Singapore.
| | - Sierin Lim
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Block N1.3, Singapore 637457, Singapore.
| |
Collapse
|
19
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
20
|
Cellulose nanofibrils composite hydrogel with polydopamine@zeolitic imidazolate framework-8 encapsulated in used as efficient vehicles for controlled drug release. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Bacterial cellulose/glycolic acid/glycerol composite membrane as a system to deliver glycolic acid for anti-aging treatment. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep 2021; 73:806-819. [PMID: 33826133 DOI: 10.1007/s43440-021-00220-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The objective of the present study was co-delivery of venlafaxin (VEN) and doxycycline (DOX), a matrix metalloproteinase inhibitor drug, for alleviating inflammation and neuropathy in diabetic foot ulcer (DFU). METHODS Bacterial cellulose nanofiber sheets (BCNS) were loaded with DOX and VEN and categorized by their loading efficiency, release profiles and ex vivo permeation throughrat skin. The optimized nanofibers were used in patients with DFU to compare with the standard wound care regimen during a 12-week trial. Wound area was measured every 2 weeks. Biochemical parameters and microscopic studies of the skin were examined prior and at the end of the treatment. The Michigan Neuropathy Screening Instrument (MNSI) questionnaire was utilized to assess diabetic neuropathy. RESULTS The optimum formulation showed loading efficiency of 37.8 ± 1.6% for DOX and 48 ± 1.9% for VEN. Rat skin permeation was 40% for DOX after 7-29 h and 83% for VEN during 105 h. Patients treated with BCNS showed no significant difference in their biochemical parameters before and after intervention. The ulcer size showed faster reduction after 12 weeks in the treatment group compared to the control group. The abnormal responses in the MNSI questionnaire decreased and pain-free walking distance increased significantly in the treatment group compared with the control group (p < 0.001). Microscopic studies of the skin after using nanofibers showed a large number of polymorphonuclear chronic inflammatory cells and formation of new capillary beds. CONCLUSIONS The BCNS loaded with DOX and VEN may expedite healing and reduce neuropathy in the DFU of diabetic patients.
Collapse
Affiliation(s)
| | - Sana Chegini
- Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Masoud Amini
- Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
23
|
Khojastehfar A, Mahjoub S. Application of Nanocellulose Derivatives as Drug Carriers; A Novel Approach in Drug Delivery. Anticancer Agents Med Chem 2021; 21:692-702. [PMID: 32781969 DOI: 10.2174/1871520620666200811111547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/23/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The production of nanocellulose for drug delivery systems has achieved increased attention in the past decade. High capacity for swelling and absorption of the liquid phase, high flexibility in creating different derivatives, economical cost, and ease of access to the primary source, all of these properties have encouraged researchers to use nanocellulose and its derivatives as a high-performance drug carrier. OBJECTIVE The recent progress summary of cellulose-based nanocarriers designing and practical approaches in drug delivery. METHODS We conducted a literature review on the development of the nanocellulose and its derivatives as a high-performance drug carrier. RESULTS In this review, we have attempted to present the latest advances in cellulose modifications for the design of pharmaceutical nanocarriers. At first, cellulose properties and structural classification of nanocellulose were introduced. Then, focusing on medical applications, some efforts and laboratory trials in cellulose-based nano designing were also discussed. The findings demonstrate the benefits of nanocellulose in drug delivery and its potential for modifying by adding functional groups to enhance drug delivery efficiency. Due to the physical and chemical properties of cellulose and its high flexibility to interact with other compounds, a broad perspective can be imagined in the diverse research and novel forms of nanocarriers. CONCLUSION The cellulose nanocarriers can be considered as an attractive platform for researchers to design new structures of pharmaceutical carriers and increase the efficiency of these nanocarriers in drug delivery for the treatment of diseases such as cancer.
Collapse
Affiliation(s)
- Ali Khojastehfar
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Soleiman Mahjoub
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
24
|
Bacterial Nanocellulose in Dentistry: Perspectives and Challenges. Molecules 2020; 26:molecules26010049. [PMID: 33374301 PMCID: PMC7796422 DOI: 10.3390/molecules26010049] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer that has fascinating attributes, such as biocompatibility, low cost, and ease of processing, being considered a very interesting biomaterial due to its options for moldability and combination. Thus, BC-based compounds (for example, BC/collagen, BC/gelatin, BC/fibroin, BC/chitosan, etc.) have improved properties and/or functionality, allowing for various biomedical applications, such as artificial blood vessels and microvessels, artificial skin, and wounds dressing among others. Despite the wide applicability in biomedicine and tissue engineering, there is a lack of updated scientific reports on applications related to dentistry, since BC has great potential for this. It has been used mainly in the regeneration of periodontal tissue, surgical dressings, intraoral wounds, and also in the regeneration of pulp tissue. This review describes the properties and advantages of some BC studies focused on dental and oral applications, including the design of implants, scaffolds, and wound-dressing materials, as well as carriers for drug delivery in dentistry. Aligned to the current trends and biotechnology evolutions, BC-based nanocomposites offer a great field to be explored and other novel features can be expected in relation to oral and bone tissue repair in the near future.
Collapse
|
25
|
Liu Y, Fan Q, Huo Y, Liu C, Li B, Li Y. Construction of a Mesoporous Polydopamine@GO/Cellulose Nanofibril Composite Hydrogel with an Encapsulation Structure for Controllable Drug Release and Toxicity Shielding. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57410-57420. [PMID: 33289538 DOI: 10.1021/acsami.0c15465] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of intelligent and multifunctional hydrogels having photothermal properties, good mechanical properties, sustained drug release abilities with low burst release, antibacterial properties, and biocompatibility is highly desirable in the biomaterial field. Herein, mesoporous polydopamine (MPDA) nanoparticles wrapped with graphene oxide (GO) were physically cross-linked in cellulose nanofibril (CNF) hydrogel to obtain a novel MPDA@GO/CNF composite hydrogel for controllable drug release. MPDA nanoparticles exhibited a high drug loading ratio (up to 35 wt %) for tetracycline hydrochloride (TH). GO was used to encapsulate MPDA nanoparticles for extending the drug release time and reinforcing the physical strength of the obtained hydrogel. The mechanical strength of the as-fabricated MPDA@GO/CNF composite hydrogel was five times greater compared to that of the pure CNF hydrogel. Drug release experiments demonstrated that burst release behavior was significantly reduced by adding MPDA@GO. The drug release time of the MPDA@GO/CNF composite hydrogel was 3 times and 7.2 times longer than that of the polydopamine/CNF hydrogel and pure CNF hydrogel, respectively. The sustained and controlled drug release behaviors of the composite hydrogel were highly dependent on the proportion of MPDA and GO. Moreover, the rate of drug release could be accelerated by near-infrared (NIR) light irradiation and pH value change. The drug release kinetics of the as-prepared composite hydrogel was well described by the Korsmeyer-Peppas model, and the drug release mechanism of TH from the composite hydrogel was anomalous transport. Importantly, this carefully designed MPDA@GO/CNF composite hydrogel showed good biocompatibility through an in vitro cytotoxicity test. In particular, the toxicity of GO was well shielded by the CNF hydrogel. Therefore, this novel MPDA@GO/CNF composite hydrogel with an encapsulation structure for controllable drug release and toxicity shielding of GO could be used as a very promising controlled drug delivery carrier, which may have potential applications for chemical and physical therapies.
Collapse
Affiliation(s)
- Yingying Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
- CAS Key Laboratory of Bio-Based Material, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qing Fan
- Qingdao University, Qingdao 266071, Shandong Province, China
| | - Ying Huo
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chao Liu
- CAS Key Laboratory of Bio-Based Material, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Bin Li
- CAS Key Laboratory of Bio-Based Material, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Youming Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
26
|
Fonseca DFS, Carvalho JPF, Bastos V, Oliveira H, Moreirinha C, Almeida A, Silvestre AJD, Vilela C, Freire CSR. Antibacterial Multi-Layered Nanocellulose-Based Patches Loaded with Dexpanthenol for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2469. [PMID: 33317206 PMCID: PMC7764272 DOI: 10.3390/nano10122469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Antibacterial multi-layered patches composed of an oxidized bacterial cellulose (OBC) membrane loaded with dexpanthenol (DEX) and coated with several chitosan (CH) and alginate (ALG) layers were fabricated by spin-assisted layer-by-layer (LbL) assembly. Four patches with a distinct number of layers (5, 11, 17, and 21) were prepared. These nanostructured multi-layered patches reveal a thermal stability up to 200 °C, high mechanical performance (Young's modulus ≥ 4 GPa), and good moisture-uptake capacity (240-250%). Moreover, they inhibited the growth of the skin pathogen Staphylococcus aureus (3.2-log CFU mL-1 reduction) and were non-cytotoxic to human keratinocytes (HaCaT cells). The in vitro release profile of DEX was prolonged with the increasing number of layers, and the time-dependent data imply a diffusion/swelling-controlled drug release mechanism. In addition, the in vitro wound healing assay demonstrated a good cell migration capacity, headed to a complete gap closure after 24 h. These results certify the potential of these multi-layered polysaccharides-based patches toward their application in wound healing.
Collapse
Affiliation(s)
- Daniela F. S. Fonseca
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.F.S.F.); (J.P.F.C.); (C.M.); (A.J.D.S.)
| | - João P. F. Carvalho
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.F.S.F.); (J.P.F.C.); (C.M.); (A.J.D.S.)
| | - Verónica Bastos
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (V.B.); (H.O.); (A.A.)
| | - Helena Oliveira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (V.B.); (H.O.); (A.A.)
| | - Catarina Moreirinha
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.F.S.F.); (J.P.F.C.); (C.M.); (A.J.D.S.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (V.B.); (H.O.); (A.A.)
| | - Armando J. D. Silvestre
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.F.S.F.); (J.P.F.C.); (C.M.); (A.J.D.S.)
| | - Carla Vilela
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.F.S.F.); (J.P.F.C.); (C.M.); (A.J.D.S.)
| | - Carmen S. R. Freire
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.F.S.F.); (J.P.F.C.); (C.M.); (A.J.D.S.)
| |
Collapse
|
27
|
Hasan N, Rahman L, Kim SH, Cao J, Arjuna A, Lallo S, Jhun BH, Yoo JW. Recent advances of nanocellulose in drug delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00499-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Fonseca DF, Costa PC, Almeida IF, Dias-Pereira P, Correia-Sá I, Bastos V, Oliveira H, Duarte-Araújo M, Morato M, Vilela C, Silvestre AJ, Freire CS. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr Polym 2020; 241:116314. [DOI: 10.1016/j.carbpol.2020.116314] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
|
29
|
Carvalho JPF, Silva ACQ, Bastos V, Oliveira H, Pinto RJB, Silvestre AJD, Vilela C, Freire CSR. Nanocellulose-Based Patches Loaded with Hyaluronic Acid and Diclofenac towards Aphthous Stomatitis Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E628. [PMID: 32231070 PMCID: PMC7221765 DOI: 10.3390/nano10040628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/29/2022]
Abstract
Nanostructured patches composed of bacterial nanocellulose (BNC), hyaluronic acid (HA) and diclofenac (DCF) were developed, envisioning the treatment of aphthous stomatitis. Freestanding patches were prepared via diffusion of aqueous solutions of HA and DCF, with different concentrations of DCF, into the wet BNC three-dimensional porous network. The resultant dual polysaccharides-based patches with a nanostructured morphology present thermal stability up to 200 °C, as well as good dynamic mechanical properties, with a storage modulus higher than 1.0 GPa. In addition, the patches are non-cytotoxic to human keratinocytes (HaCaT cells), with a cell viability of almost 100% after 24 h. The in vitro release profile of DCF from the patches was evaluated in simulated saliva, and the data refer to a diffusion- and swelling-controlled drug-release mechanism. The attained results hint at the possibility of using these dual polysaccharides-based oral mucosal patches to target aphthous stomatitis.
Collapse
Affiliation(s)
- João P. F. Carvalho
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (R.J.B.P.); (A.J.D.S.)
| | - Ana C. Q. Silva
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (R.J.B.P.); (A.J.D.S.)
| | - Verónica Bastos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (V.B.); (H.O.)
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (V.B.); (H.O.)
| | - Ricardo J. B. Pinto
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (R.J.B.P.); (A.J.D.S.)
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (R.J.B.P.); (A.J.D.S.)
| | - Carla Vilela
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (R.J.B.P.); (A.J.D.S.)
| | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.P.F.C.); (A.C.Q.S.); (R.J.B.P.); (A.J.D.S.)
| |
Collapse
|
30
|
Chantereau G, Sharma M, Abednejad A, Vilela C, Costa E, Veiga M, Antunes F, Pintado M, Sèbe G, Coma V, Freire M, Freire C, Silvestre A. Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112547] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Silva NHCS, Mota JP, Santos de Almeida T, Carvalho JPF, Silvestre AJD, Vilela C, Rosado C, Freire CSR. Topical Drug Delivery Systems Based on Bacterial Nanocellulose: Accelerated Stability Testing. Int J Mol Sci 2020; 21:E1262. [PMID: 32070054 PMCID: PMC7072910 DOI: 10.3390/ijms21041262] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 01/06/2023] Open
Abstract
Bacterial nanocellulose (BNC) membranes have enormous potential as systems for topical drug delivery due to their intrinsic biocompatibility and three-dimensional nanoporous structure, which can house all kinds of active pharmaceutical ingredients (APIs). Thus, the present study investigated the long-term storage stability of BNC membranes loaded with both hydrophilic and lipophilic APIs, namely, caffeine, lidocaine, ibuprofen and diclofenac. The storage stability was evaluated under accelerated testing conditions at different temperatures and relative humidity (RH), i.e., 75% RH/40 °C, 60% RH/25 °C and 0% RH/40 °C. All systems were quite stable under these storage conditions with no significant structural and morphological changes or variations in the drug release profile. The only difference observed was in the moisture-uptake, which increased with RH due to the hydrophilic nature of BNC. Furthermore, the caffeine-loaded BNC membrane was selected for in vivo cutaneous compatibility studies, where patches were applied in the volar forearm of twenty volunteers for 24 h. The cutaneous responses were assessed by non-invasive measurements and the tests revealed good compatibility for caffeine-loaded BNC membranes. These results highlight the good storage stability of the API-loaded BNC membranes and their cutaneous compatibility, which confirms the real potential of these dermal delivery systems.
Collapse
Affiliation(s)
- Nuno H. C. S. Silva
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.H.C.S.S.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| | - Joana P. Mota
- CBIOS–Research Center for Biosciences and Health Technologies, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (J.P.M.); (T.S.d.A.)
| | - Tânia Santos de Almeida
- CBIOS–Research Center for Biosciences and Health Technologies, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (J.P.M.); (T.S.d.A.)
| | - João P. F. Carvalho
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.H.C.S.S.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| | - Armando J. D. Silvestre
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.H.C.S.S.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| | - Carla Vilela
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.H.C.S.S.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| | - Catarina Rosado
- CBIOS–Research Center for Biosciences and Health Technologies, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal; (J.P.M.); (T.S.d.A.)
| | - Carmen S. R. Freire
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.H.C.S.S.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| |
Collapse
|
32
|
Vismara E, Bernardi A, Bongio C, Farè S, Pappalardo S, Serafini A, Pollegioni L, Rosini E, Torri G. Bacterial Nanocellulose and Its Surface Modification by Glycidyl Methacrylate and Ethylene Glycol Dimethacrylate. Incorporation of Vancomycin and Ciprofloxacin. NANOMATERIALS 2019; 9:nano9121668. [PMID: 31766754 PMCID: PMC6955863 DOI: 10.3390/nano9121668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 11/24/2022]
Abstract
Among nanocelluloses, bacterial nanocellulose (BNC) has proven to be a promising candidate in a range of biomedical applications, from topical wound dressings to tissue-engineering scaffolds. Chemical modifications and incorporation of bioactive molecules have been obtained, further increasing the potential of BNC. This study describes the incorporation of vancomycin and ciprofloxacin in BNC and in modified BNC to afford bioactive BNCs suitable for topical wound dressings and tissue-engineering scaffolds. BNC was modified by grafting glycidylmethacrylate (GMA) and further cross-linking with ethylene glycol dimethacrylate (EGDMA) with the formation of stable C–C bonds through a radical Fenton-type process that involves generation of cellulose carbon centred radicals scavenged by methacrylate structures. The average molar substitution degree MS (MS = methacrylate residue per glucose unit, measured by Fourier transform infrared (FT–IR) analysis) can be modulated in a large range from 0.1 up to 3. BNC-GMA, BNC-EGDMA and BNC-GMA-EGDMA maintain the hydrogel status until MS reaches the value of 1. The mechanical stress resistance increase of BNC-GMA and BNC-GMA-EGDMA of MS around 0.8 with respect to BNC suggests that they can be preferred to BNC for tissue-engineering scaffolds in cases where the resistance plays a crucial role. BNC, BNC-GMA, BNC-EGDMA and BNC-GMA-EGDMA were loaded with vancomycin (VC) and ciprofloxacin (CP) and submitted to release experiments. BNC-GMA-EGDMA of high substitution degree (0.7–1) hold up to 50 percentage of the loaded vancomycin and ciprofloxacin amount, suggesting that they can be further investigated for long-term antimicrobial activity. Furthermore, they were not colonized by Staphylococcus aureus (S.A.) and Klebsiella pneumonia (K.P.). Grafting and cross-linking BNC modification emerges from our results as a good choice to improve the BNC potential in biomedical applications like topical wound dressings and tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Elena Vismara
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy; (A.B.); (C.B.); (S.F.); (S.P.); (A.S.)
- Correspondence:
| | - Andrea Bernardi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy; (A.B.); (C.B.); (S.F.); (S.P.); (A.S.)
| | - Chiara Bongio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy; (A.B.); (C.B.); (S.F.); (S.P.); (A.S.)
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy; (A.B.); (C.B.); (S.F.); (S.P.); (A.S.)
| | - Salvatore Pappalardo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy; (A.B.); (C.B.); (S.F.); (S.P.); (A.S.)
| | - Andrea Serafini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy; (A.B.); (C.B.); (S.F.); (S.P.); (A.S.)
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, Università degli Studi dell’Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (L.P.); (E.R.)
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, Università degli Studi dell’Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (L.P.); (E.R.)
| | - Giangiacomo Torri
- Istituto Scientifico di Chimica e Biochimica “Giuliana Ronzoni”, via Giuseppe Colombo 81, 20133 Milano, Italy;
| |
Collapse
|
33
|
Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydr Polym 2019; 227:115323. [PMID: 31590841 DOI: 10.1016/j.carbpol.2019.115323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Bacterial nanocellulose (BNC) has many advantages over plant cellulose, which make it widely used in many fields, especially in the food industry. In this study, three strains including BCA263, BCC529, and P1 were selected for characteristics analysis of BNCs under static and agitated culture conditions. The BNCs produced under static culture condition were in the shape of uniform membrane, while BNCs produced under agitated culture were in form of small agglomerates and fragments. BCA263 and BCC529 strains were more suitable for static culture, while P1 strain was more suitable for agitated culture. BNCs produced under static culture condition exhibited higher crystallinity, stronger tensile strength, denser network structure, higher temperature resistance and good flame retardancy; while BNCs produced under agitated culture condition exhibited larger porous and lower crystallinity. Furthermore, BNCs produced under agitated culture condition were more suitable as a stabilizer of coffee milk beverage.
Collapse
|
34
|
Chantereau G, Brown N, Dourges MA, Freire CS, Silvestre AJ, Sebe G, Coma V. Silylation of bacterial cellulose to design membranes with intrinsic anti-bacterial properties. Carbohydr Polym 2019; 220:71-78. [DOI: 10.1016/j.carbpol.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/15/2023]
|
35
|
Naz S, Ali JS, Zia M. Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00049-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Osorio M, Cañas A, Puerta J, Díaz L, Naranjo T, Ortiz I, Castro C. Ex Vivo and In Vivo Biocompatibility Assessment (Blood and Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants. Sci Rep 2019; 9:10553. [PMID: 31332259 PMCID: PMC6646330 DOI: 10.1038/s41598-019-46918-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023] Open
Abstract
Bacterial nanocellulose (BNC) is a promising biomedical material. However, the haemocompatibility (haemolysis and thrombogenicity) and acute and sub-chronic immune responses to three-dimensional (3D) BNC biomaterials have not been evaluated. Accordingly, this manuscript focused on the effect of 3D microporosity on BNC haemocompatibility and a comparison with 2D BNC architecture, followed by the evaluation of the immune response to 3D BNC. Blood ex vivo studies indicated that compared with other 2D and 3D BNC architectures, never-dried 2D BNC presented antihemolytic and antithrombogenic effects. Nevertheless, in vivo studies indicated that 3D BNC did not interfere with wound haemostasis and elicited a mild acute inflammatory response, not a foreign body or chronic inflammatory response. Moreover, compared with the polyethylene controls, the implant design with micropores ca. 60 µm in diameter showed a high level of collagen, neovascularization and low fibrosis. Cell/tissue infiltration increased to 91% after 12 weeks and was characterized by fibroblastic, capillary and extracellular matrix infiltration. Accordingly, 3D BNC biomaterials can be considered a potential implantable biomaterial for soft tissue augmentation or replacement.
Collapse
Affiliation(s)
- M Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia
| | - A Cañas
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia
| | - J Puerta
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín, Colombia.,Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín, Colombia
| | - L Díaz
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín, Colombia
| | - T Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín, Colombia.,Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín, Colombia
| | - I Ortiz
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín, Colombia
| | - C Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia.
| |
Collapse
|
37
|
Sharma C, Bhardwaj NK. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109963. [PMID: 31499992 DOI: 10.1016/j.msec.2019.109963] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 06/29/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022]
Abstract
Bacterial nanocellulose (BNC) has emerged as a natural biopolymer of significant importance in diverse technological areas due to its incredible physicochemical and biological characteristics. However, the high capital investments, production cost and lack of well-organized scale-up processes resulting in low BNC production are the major impediments need to be resolved. This review enfolds the three different and important portions of BNC. Firstly, advancement in production technologies of BNC like cell-free extract technology, static intermittent fed batch technology and novel cost-effective substrates that might surmount the barriers associated with BNC production at industrial level. Secondly, as BNC and its composites (with other polymers/nanoparticles) represents the utmost material of preference in current regenerative and diagnostic medicine, therefore recently reported biomedical applications of BNC and functionalized BNC in drug delivery, tissue engineering, antimicrobial wound healing and biosensing are widely been focused here. The third and the most important aspect of this review is an in-depth discussion of various pitfalls associated with BNC production. Recent trends in BNC research to overcome the existing snags that might pave a way for industrial scale production of BNC thereby facilitating its feasible application in various fields are highlighted.
Collapse
Affiliation(s)
- Chhavi Sharma
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar 135001, Haryana, India.
| | - Nishi K Bhardwaj
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar 135001, Haryana, India
| |
Collapse
|
38
|
Kao CW, Tseng YY, Liu KS, Liu YW, Chen JC, He HL, Kau YC, Liu SJ. Anesthetics and human epidermal growth factor incorporated into anti-adhesive nanofibers provide sustained pain relief and promote healing of surgical wounds. Int J Nanomedicine 2019; 14:4007-4016. [PMID: 31213812 PMCID: PMC6549740 DOI: 10.2147/ijn.s202402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background: This study exploited sheath-core-structured lidocaine/human EGF (hEGF)-loaded anti-adhesive poly[(d,l)-lactide-co-glycolide] (PLGA) nanofibrous films for surgical wounds via a co-axial electrospinning technique. Materials and methods: After spinning, the properties of the co-axially spun membranes were characterized by scanning electron microscopy, laser-scanning confocal microscopy, Fourier Transform Infrared spectrometry, water contact angle measurements, and tensile tests. Furthermore, a HPLC analysis and an ELISA evaluated the in vitro and in vivo release curves of lidocaine and hEGF from the films. Results: PLGA anti-adhesion nanofibers eluted high levels of lidocaine and hEGF for over 32 and 27 days, respectively, in vitro. The in vivo evaluation of post-surgery recovery in a rat model demonstrated that no adhesion was noticed in tissues at 2 weeks after surgery illustrating the anti-adhesive performance of the sheath-core-structured nanofibers. Nanofibrous films effectively released lidocaine and hEGF for >2 weeks in vivo. In addition, rats implanted with the lidocaine/hEGF nanofibrous membranes exhibited greater activities than the control demonstrating the pain relief efficacy of the films. Conclusion: The empirical outcomes suggested that the anti-adhesive nanofibrous films with extended release of lidocaine and hEGF offer post-operative pain relief and wound healing.
Collapse
Affiliation(s)
- Ching-Wei Kao
- Department of Anesthesiology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Sheng Liu
- Department of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yen-Wei Liu
- Department of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Science, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Chuan Kau
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Orthopedic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
39
|
Pötzinger Y, Rahnfeld L, Kralisch D, Fischer D. Immobilization of plasmids in bacterial nanocellulose as gene activated matrix. Carbohydr Polym 2019; 209:62-73. [DOI: 10.1016/j.carbpol.2019.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 02/03/2023]
|
40
|
Morais ES, Silva NHCS, Sintra TE, Santos SAO, Neves BM, Almeida IF, Costa PC, Correia-Sá I, Ventura SPM, Silvestre AJD, Freire MG, Freire CSR. Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application. Carbohydr Polym 2019; 206:187-197. [PMID: 30553312 PMCID: PMC6441335 DOI: 10.1016/j.carbpol.2018.10.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022]
Abstract
The utilization of natural compounds, such as phenolic acids and biopolymers, in the healthcare domain is gaining increasing attention. In this study, bacterial nanocellulose (BC) membranes were loaded with ionic liquids (ILs) based on phenolic acids. These ionic compounds, with improved solubility and bioavailability, were prepared by combining the cholinium cation with anions derived from caffeic, ellagic and gallic acids. The obtained BC-ILs membranes were homogeneous, conformable and their swelling ability agreed with the solubility of each IL. These membranes revealed a controlled ILs dissolution rate in the wet state and high antioxidant activity. In vitro assays performed with Raw 264.7 macrophages and HaCaT keratinocytes revealed that these novel BC-ILs membranes are non-cytotoxic and present relevant anti-inflammatory properties. Diffusion studies with Hanson vertical diffusion cells showed a prolonged release profile of the ILs from the BC membranes. Thus, this work, successfully demonstrates the potential of BC-ILs membranes for skin treatment.
Collapse
Affiliation(s)
- Eduarda S Morais
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno H C S Silva
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia E Sintra
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia A O Santos
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel F Almeida
- UCIBIO-REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Paulo C Costa
- UCIBIO-REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Inês Correia-Sá
- Department of Plastic, Aesthetic, Reconstructive and Aesthetic Surgery, Centro Hospitalar de S. João, 4200-319 Porto, Portugal
| | - Sónia P M Ventura
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Mara G Freire
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
41
|
Sheikhi A, Hayashi J, Eichenbaum J, Gutin M, Kuntjoro N, Khorsandi D, Khademhosseini A. Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 2019; 294:53-76. [PMID: 30500355 PMCID: PMC6385607 DOI: 10.1016/j.jconrel.2018.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022]
Abstract
The recent decade has witnessed a growing demand to substitute synthetic materials with naturally-derived platforms for minimizing their undesirable footprints in biomedicine, environment, and ecosystems. Among the natural materials, cellulose, the most abundant biopolymer in the world with key properties, such as biocompatibility, biorenewability, and sustainability has drawn significant attention. The hierarchical structure of cellulose fibers, one of the main constituents of plant cell walls, has been nanoengineered and broken down to nanoscale building blocks, providing an infrastructure for nanomedicine. Microorganisms, such as certain types of bacteria, are another source of nanocelluloses known as bacterial nanocellulose (BNC), which benefit from high purity and crystallinity. Chemical and mechanical treatments of cellulose fibrils made up of alternating crystalline and amorphous regions have yielded cellulose nanocrystals (CNC), hairy CNC (HCNC), and cellulose nanofibrils (CNF) with dimensions spanning from a few nanometers up to several microns. Cellulose nanocrystals and nanofibrils may readily bind drugs, proteins, and nanoparticles through physical interactions or be chemically modified to covalently accommodate cargos. Engineering surface properties, such as chemical functionality, charge, area, crystallinity, and hydrophilicity, plays a pivotal role in controlling the cargo loading/releasing capacity and rate, stability, toxicity, immunogenicity, and biodegradation of nanocellulose-based delivery platforms. This review provides insights into the recent advances in nanoengineering cellulose crystals and fibrils to develop vehicles, encompassing colloidal nanoparticles, hydrogels, aerogels, films, coatings, capsules, and membranes, for the delivery of a broad range of bioactive cargos, such as chemotherapeutic drugs, anti-inflammatory agents, antibacterial compounds, and probiotics. SYNOPSIS: Engineering certain types of microorganisms as well as the hierarchical structure of cellulose fibers, one of the main building blocks of plant cell walls, has yielded unique families of cellulose-based nanomaterials, which have leveraged the effective delivery of bioactive molecules.
Collapse
Affiliation(s)
- Amir Sheikhi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joel Hayashi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James Eichenbaum
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Mark Gutin
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Nicole Kuntjoro
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Danial Khorsandi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
42
|
Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Brassolatti P, Kido HW, Bossini PS, Gabbai-Armelin PR, Otterço AN, Almeida-Lopes L, Zanardi LM, Napolitano MA, de Avó LRDS, Forato LA, Araújo-Moreira FM, Parizotto NA. Bacterial cellulose membrane used as biological dressings on third-degree burns in rats. Biomed Mater Eng 2018; 29:29-42. [PMID: 29254071 DOI: 10.3233/bme-171710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Burn injuries represent a high risk of morbidity and mortality. The wound healing process is complex and requires the participation of different types of cells. Therefore, new biomaterials, which innovate the wound healing process, are being investigated. OBJECTIVE The aim of this study was to investigate the use of bacterial cellulose both in its pure state and enriched with lidocaine in full-thickness burns in rats. METHODS Thirty rats (Wistar) (260 ± 20 gramas) divided into control group (CG), bacterial cellulose membrane group (MG) and bacterial cellulose membrane enriched with lidocaine group (MLG) were used. The burns were induced using a 150°C heated soldering iron, held on the animal neck for 10 seconds. The biomaterial was applied immediately after injury and skin samples were collected on the tenth day of the treatment. The level of significance of p⩽0.05 was used for the conclusion of the statistical analysis. RESULTS The groups treated with the biomaterials, a histological pattern compatible with a more advanced repair stage showing skin appendages, mild inflammatory infiltrate, better collagen fiber organization and mild immunostaining COX-2 and MMP-9 was observed, when compared to the control group that did not receive any type of treatment. CONCLUSION Thus, was concluded that the bacterial cellulose-based biomaterial both in its pure state and enriched with lidocaine optimizing the full-thickness burn wound healing in rats.
Collapse
Affiliation(s)
- Patricia Brassolatti
- Department of Physiotherapy, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil. E-mail:
| | - Hueliton Wilian Kido
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Paulo Sérgio Bossini
- Research and Education Center for Photo Therapy in Health Science (NUPEN), DMC Equipment Import and Export-Co. Ltda, São Carlos, SP, Brazil
| | - Paulo R Gabbai-Armelin
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Albaiza Nicoletti Otterço
- Department of Physiotherapy, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil. E-mail:
| | - Luciana Almeida-Lopes
- Research and Education Center for Photo Therapy in Health Science (NUPEN), DMC Equipment Import and Export-Co. Ltda, São Carlos, SP, Brazil
| | - Lisinéia Maria Zanardi
- Research and Education Center for Photo Therapy in Health Science (NUPEN), DMC Equipment Import and Export-Co. Ltda, São Carlos, SP, Brazil
| | - Marcos Aurélio Napolitano
- Research and Education Center for Photo Therapy in Health Science (NUPEN), DMC Equipment Import and Export-Co. Ltda, São Carlos, SP, Brazil
| | | | | | - Fernando M Araújo-Moreira
- Department of Physics, Post-Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Nivaldo Antonio Parizotto
- Department of Physiotherapy, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil. E-mail:
| |
Collapse
|
45
|
Zharikov AN, Lubyansky VG, Gladysheva EK, Skiba EA, Budaeva VV, Semyonova EN, Zharikov AA, Sakovich GV. Early morphological changes in tissues when replacing abdominal wall defects by bacterial nanocellulose in experimental trials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:95. [PMID: 29942982 DOI: 10.1007/s10856-018-6111-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Experimental trials were done on five dogs to explore if an anterior abdominal wall defect could be repaired using wet (99.9%), compact BNC membranes produced by the Мedusomyces gisevii Sa-12 symbiotic culture. The abdominal wall defect was simulated by middle-midline laparotomy, and a BNC membrane was then fixed to open aponeurotic edges with blanket suture (Prolene 4-0, Ethicon). A comparative study was also done to reinforce the aponeurotic defect with both the BNC membrane and polypropylene mesh (PPM) (Ultrapro, Ethicon). The materials were harvested at 14 and 60 days postoperative to visually evaluate their location in the abdominal tissues and evaluate the presence of BNC and PPM adhesions to the intestinal loops, followed by histologic examination of the tissue response to these prosthetics. The BNC exhibited good fixation to the anterior abdominal wall to form on the 14th day a capsule of loose fibrin around the BNC. Active reparative processes were observed at the BNC site at 60 days post-surgery to generate new, stable connective-tissue elements (macrophages, giant cells, fibroblasts, fibrin) and neocapillaries. Negligible intraperitoneal adhesions were detected between the BNC and the intestinal loops as compared to the case of PPM. There were no suppurative complications throughout the postsurgical period. We noticed on the 60th day after the BNC placement that collagenous elements and new capillary vessels were actively formed in the abdominal wall tissues, generating a dense postoperative cicatrix whose intraperitoneal adhesions to the intestinal loops were insignificant compared to the PPM graft.
Collapse
Affiliation(s)
- Andrey N Zharikov
- Chair of Neymark Departmental Surgery and Hospital Surgery, Altai State Medical University, Barnaul, Altai Krai, 656038, Russia.
| | - Vladimir G Lubyansky
- Chair of Neymark Departmental Surgery and Hospital Surgery, Altai State Medical University, Barnaul, Altai Krai, 656038, Russia
| | - Evgenia K Gladysheva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, Altai Krai, 659322, Russia
| | - Ekaterina A Skiba
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, Altai Krai, 659322, Russia
| | - Vera V Budaeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, Altai Krai, 659322, Russia
| | - Elena N Semyonova
- Anatomical Pathology Department, Altai Krai Clinical Hospital, Barnaul, Altai Krai, 656024, Russia
| | - Andrey A Zharikov
- Chair of Neymark Departmental Surgery and Hospital Surgery, Altai State Medical University, Barnaul, Altai Krai, 656038, Russia
| | - Gennady V Sakovich
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk, Altai Krai, 659322, Russia
| |
Collapse
|
46
|
Abstract
Although bacterial nanocellulose (BNC), a natural nanostructured biopolymer network, offers unique material characteristics, the number of drug-loaded BNC-based carriers in clinical trials or on the market is still low. This report provides an overview of aspects still limiting the broad application of BNC as drug-delivery system and the challenges for its future applications. Continuous large-scale production, storability, the loading and controlled release of critical drugs, for example, with high molar mass or highly lipophilic character as well as the formulation of long-term release systems will be highlighted. Recent achievements toward promoting the application of BNC as drug-delivery system and overcoming these obstacles will be discussed. [Formula: see text].
Collapse
|
47
|
Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J Biomed Mater Res A 2018; 106:1288-1298. [DOI: 10.1002/jbm.a.36330] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/16/2017] [Accepted: 01/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yuanjing Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei Province; Wuhan University of Technology; Wuhan 430070 China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei Province; Wuhan University of Technology; Wuhan 430070 China
| | - Jing Yang
- School of Foreign Languages; Wuhan University of Technology; Wuhan 430070 China
| | - Rong Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei Province; Wuhan University of Technology; Wuhan 430070 China
| | - Zongrui Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
- Biomedical Materials and Engineering Research Center of Hubei Province; Wuhan University of Technology; Wuhan 430070 China
| | - Yi Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom; Kowloon Hong Kong China
| |
Collapse
|
48
|
Indrianingsih AW, Rosyida VT, Jatmiko TH, Prasetyo DJ, Poeloengasih CD, Apriyana W, Nisa K, Nurhayati S, Hernawan, Darsih C, Pratiwi D, Suwanto A, Ratih D. Preliminary study on biosynthesis and characterization of bacteria cellulose films from coconut water. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1755-1315/101/1/012010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Anirudhan T, Nair SS, Sekhar. V C. Deposition of gold-cellulose hybrid nanofiller on a polyelectrolyte membrane constructed using guar gum and poly(vinyl alcohol) for transdermal drug delivery. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Pacheco G, de Mello CV, Chiari-Andréo BG, Isaac VLB, Ribeiro SJL, Pecoraro É, Trovatti E. Bacterial cellulose skin masks-Properties and sensory tests. J Cosmet Dermatol 2017; 17:840-847. [PMID: 28963772 DOI: 10.1111/jocd.12441] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bacterial cellulose (BC) is a versatile material produced by microorganisms in the form of a membranous hydrogel, totally biocompatible, and endowed with high mechanical strength. Its high water-holding capacity based on its highly porous nanofibrillar structure allows BC to incorporate and to release substances very fast, thus being suitable for the preparation of skincare masks. AIMS The preparation and characterization of cosmetic masks based on BC membranes and active cosmetics. METHODS The masks were prepared by the simple incorporation of the cosmetic actives into BC membranes, used as a swelling matrix. The masks were characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), sensory tests, and skin moisture tests on volunteers. RESULTS The results of sensory tests revealed the good performance of BC, being considered effective by the panel of volunteers, specially for adhesion to the skin (7.7 at the score scale), and improvement of the skin moisture (the hydration effect increased 76% in 75% of the volunteers that used vegetable extract mask formulation [VEM]), or a decrease in skin hydration (80% of the volunteers showed 32.6% decrease on skin hydration using propolis extract formulation [PEM] treatment), indicating the BC nanofiber membranes can be used to skincare applications. CONCLUSION The results demonstrate the BC can be used as an alternative support for cosmetic actives for skin treatment.
Collapse
Affiliation(s)
| | | | - Bruna Galdorfini Chiari-Andréo
- Universidade de Araraquara, UNIARA, Araraquara, Brazil.,Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista Julio de Mesquita Filho, UNESP, Araraquara, Brazil
| | - Vera Lucia Borges Isaac
- Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista Julio de Mesquita Filho, UNESP, Araraquara, Brazil
| | | | | | | |
Collapse
|