1
|
Kondo M, Hancock AM, Kuwabara H, Adams PG, Dewa T. Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane. J Phys Chem B 2025; 129:900-910. [PMID: 39782489 PMCID: PMC11770764 DOI: 10.1021/acs.jpcb.4c07402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics. In this study, we demonstrate amplified photocurrent generation from LHCII under green light illumination by coupling this protein to Texas Red (TR) chromophores that are coassembled into a lipid bilayer deposited onto electrodes. Absorption spectroscopy shows that LHCII and lipid-linked TR are successfully incorporated into lipid membranes and maintained on electrode surfaces. Photocurrent action spectra show that the increased absorption due to TR directly translates into a significant increase of photocurrent output from LHCII. However, the absolute magnitude of the photocurrent appears to be limited by the lipid bilayer acting as an insulator and the TR enhancement effect reaches a maximum due to protein, lipid or substrate-related quenching effects. Future work should be performed to optimize the use of extrinsic chromophores within novel biophotovoltaic devices.
Collapse
Affiliation(s)
- Masaharu Kondo
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ashley M. Hancock
- School
of Physics and Astronomy, University of
Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Hayato Kuwabara
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Peter G. Adams
- School
of Physics and Astronomy, University of
Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Takehisa Dewa
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department
of Nanopharmaceutical Sciences, Nagoya Institute
of Technology, Gokiso-cho, Showa-ku, Nagoya 4668-8555, Japan
| |
Collapse
|
2
|
Spectral Dependence of the Energy Transfer from Photosynthetic Complexes to Monolayer Graphene. Int J Mol Sci 2022; 23:ijms23073493. [PMID: 35408853 PMCID: PMC8998970 DOI: 10.3390/ijms23073493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescence excitation spectroscopy at cryogenic temperatures carried out on hybrid assemblies composed of photosynthetic complexes deposited on a monolayer graphene revealed that the efficiency of energy transfer to graphene strongly depended on the excitation wavelength. The efficiency of this energy transfer was greatly enhanced in the blue-green spectral region. We observed clear resonance-like behavior for both a simple light-harvesting antenna containing only two chlorophyll molecules (PCP) and a large photochemically active reaction center associated with the light-harvesting antenna (PSI-LHCI), which pointed towards the general character of this effect.
Collapse
|
3
|
Kuruvinashetti K, Packirisamy M. Arraying of microphotosynthetic power cells for enhanced power output. MICROSYSTEMS & NANOENGINEERING 2022; 8:29. [PMID: 35359612 PMCID: PMC8918551 DOI: 10.1038/s41378-022-00361-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Microphotosynthetic power cells (µPSCs) generate power through the exploitation of living photosynthetic microorganisms by harvesting sunlight. The thermodynamic limitations of this process restrict the power output of a single µPSC. Herein, we demonstrate µPSCs in four different array configurations to enhance power output from these power cells. To this effect, six µPSCs were arrayed in series, parallel, and combinations of series and parallel configurations. Each µPSC was injected with a 2 mL liquid culture of photosynthetic microorganisms (Chlamydomonas reinhardtii) in the anode and 2 mL of 25% (w/v) electron acceptor potassium ferricyanide (K3Fe(CN)6) in the cathode. The combinations of µPSCs connected in series and parallel generated higher power than the individual series and parallel configurations. The combinations of six µPSCs connected in series and in parallel produced a high power density of 1914 mWm-2 in the presence of white fluorescent light illumination at 20 µEm-2s-1. Furthermore, to realize the array strategy for real-time applications, a 1.7 V/2 mA rating light-emitting diode (LED) was powered by combinations of series and parallel array configurations. The results indicate the reliability of µPSCs to produce electricity from photosynthetic microorganisms for low-power applications. In addition, the results suggest that a combination of microlevel photosynthetic cells in array format represents a powerful optimal design strategy to enhance the power output from µPSCs.
Collapse
Affiliation(s)
- Kiran Kuruvinashetti
- Optical-Bio Microsystems Laboratory, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G1M8 Canada
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G1M8 Canada
| |
Collapse
|
4
|
Improving Photostability of Photosystem I-Based Nanodevice by Plasmonic Interactions with Planar Silver Nanostructures. Int J Mol Sci 2022; 23:ijms23062976. [PMID: 35328397 PMCID: PMC8950156 DOI: 10.3390/ijms23062976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
One of the crucial challenges for science is the development of alternative pollution-free and renewable energy sources. One of the most promising inexhaustible sources of energy is solar energy, and in this field, solar fuel cells employing naturally evolved solar energy converting biocomplexes—photosynthetic reaction centers, such as photosystem I—are of growing interest due to their highly efficient photo-powered operation, resulting in the production of chemical potential, enabling synthesis of simple fuels. However, application of the biomolecules in such a context is strongly limited by the progressing photobleaching thereof during illumination. In the current work, we investigated the excitation wavelength dependence of the photosystem I photodamage dynamics. Moreover, we aimed to correlate the PSI–LHCI photostability dependence on the excitation wavelength with significant (ca. 50-fold) plasmonic enhancement of fluorescence due to the utilization of planar metallic nanostructure as a substrate. Finally, we present a rational approach for the significant improvement in the photostability of PSI in anoxic conditions. We find that photobleaching rates for 5 min long blue excitation are reduced from nearly 100% to 20% and 70% for substrates of bare glass and plasmonically active substrate, respectively. Our results pave promising ways for optimization of the biomimetic solar fuel cells due to synergy of the plasmon-induced absorption enhancement together with improved photostability of the molecular machinery of the solar-to-fuel conversion.
Collapse
|
5
|
Jun D, Zhang S, Grzędowski AJ, Mahey A, Beatty JT, Bizzotto D. Correlating structural assemblies of photosynthetic reaction centers on a gold electrode and the photocurrent - potential response. iScience 2021; 24:102500. [PMID: 34113832 PMCID: PMC8170006 DOI: 10.1016/j.isci.2021.102500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
The use of biomacromolecules is a nascent development in clean alternative energies. In applications of biosensors and biophotovoltaic devices, the bacterial photosynthetic reaction center (RC) is a protein-pigment complex that has been commonly interfaced with electrodes, in large part to take advantage of the long-lived and high efficiency of charge separation. We investigated assemblies of RCs on an electrode that range from monolayer to multilayers by measuring the photocurrent produced when illuminated by an intensity-modulated excitation light source. In addition, atomic force microscopy and modeling of the photocurrent with the Marcus-Hush-Chidsey theory detailed the reorganization energy for the electron transfer process, which also revealed changes in the RC local environment due to the adsorbed conformations. The local environment in which the RCs are embedded significantly influenced photocurrent generation, which has implications for electron transfer of other biomacromolecules deposited on a surface in sensor and photovoltaic applications employing a redox electrolyte.
Collapse
Affiliation(s)
- Daniel Jun
- Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Sylvester Zhang
- Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Adrian Jan Grzędowski
- Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Amita Mahey
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Dan Bizzotto
- Advanced Materials and Process Engineering Laboratory, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
6
|
Silver Island Film for Enhancing Light Harvesting in Natural Photosynthetic Proteins. Int J Mol Sci 2020; 21:ijms21072451. [PMID: 32244795 PMCID: PMC7177865 DOI: 10.3390/ijms21072451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
Abstract
The effects of combining naturally evolved photosynthetic pigment–protein complexes with inorganic functional materials, especially plasmonically active metallic nanostructures, have been a widely studied topic in the last few decades. Besides other applications, it seems to be reasonable using such hybrid systems for designing future biomimetic solar cells. In this paper, we describe selected results that point out to various aspects of the interactions between photosynthetic complexes and plasmonic excitations in Silver Island Films (SIFs). In addition to simple light-harvesting complexes, like peridinin-chlorophyll-protein (PCP) or the Fenna–Matthews–Olson (FMO) complex, we also discuss the properties of large, photosynthetic reaction centers (RCs) and Photosystem I (PSI)—both prokaryotic PSI core complexes and eukaryotic PSI supercomplexes with attached antenna clusters (PSI-LHCI)—deposited on SIF substrates.
Collapse
|
7
|
Saga Y, Yamashita M, Imanishi M, Kimura Y, Masaoka Y, Hidaka T, Nagasawa Y. Reconstitution of 3-Acetyl Chlorophyll a into Light-Harvesting Complex 2 from the Purple Photosynthetic Bacterium Phaeospirillum molischianum. ACS OMEGA 2020; 5:6817-6825. [PMID: 32258917 PMCID: PMC7114761 DOI: 10.1021/acsomega.0c00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
The manipulation of B800 bacteriochlorophyll (BChl) a in light-harvesting complex 2 (LH2) from the purple photosynthetic bacterium Phaeospirillum molischianum (molischianum-LH2) provides insight for understanding the energy transfer mechanism and the binding of cyclic tetrapyrroles in LH2 proteins since molischianum-LH2 is one of the two LH2 proteins whose atomic-resolution structures have been determined and is a representative of type-2 LH2 proteins. However, there is no report on the substitution of B800 BChl a in molischianum-LH2. We report the reconstitution of 3-acetyl chlorophyll (AcChl) a, which has a 17,18-dihydroporphyrin skeleton, to the B800 site in molischianum-LH2. The 3-acetyl group in AcChl a formed a hydrogen bond with β'-Thr23 in essentially the same manner as native B800 BChl a, but this hydrogen bond was weaker than that of B800 BChl a. This change can be rationalized by invoking a small distortion in the orientation of the 3-acetyl group in the B800 cavity by dehydrogenation in the B-ring from BChl a. The energy transfer from AcChl a in the B800 site to B850 BChl a was about 5-fold slower than that from native B800 BChl a by a decrease of the spectral overlap between energy-donating AcChl a and energy-accepting B850 BChl a.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Madoka Yamashita
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Michie Imanishi
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Graduate
School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuto Masaoka
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Tsubasa Hidaka
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yutaka Nagasawa
- Graduate
School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
8
|
Ortiz-Torres MI, Fernández-Niño M, Cruz JC, Capasso A, Matteocci F, Patiño EJ, Hernández Y, González Barrios AF. Rational Design of Photo-Electrochemical Hybrid Devices Based on Graphene and Chlamydomonas reinhardtii Light-Harvesting Proteins. Sci Rep 2020; 10:3376. [PMID: 32099058 PMCID: PMC7042359 DOI: 10.1038/s41598-020-60408-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
Dye-sensitized solar cells (DSSCs) have been highlighted as the promising alternative to generate clean energy based on low pay-back time materials. These devices have been designed to mimic solar energy conversion processes from photosynthetic organisms (the most efficient energy transduction phenomenon observed in nature) with the aid of low-cost materials. Recently, light-harvesting complexes (LHC) have been proposed as potential dyes in DSSCs based on their higher light-absorption efficiencies as compared to synthetic dyes. In this work, photo-electrochemical hybrid devices were rationally designed by adding for the first time Leu and Lys tags to heterologously expressed light-harvesting proteins from Chlamydomonas reinhardtii, thus allowing their proper orientation and immobilization on graphene electrodes. The light-harvesting complex 4 from C. reinhardtii (LHC4) was initially expressed in Escherichia coli, purified via affinity chromatography and subsequently immobilized on plasma-treated thin-film graphene electrodes. A photocurrent density of 40.30 ± 9.26 μA/cm2 was measured on devices using liquid electrolytes supplemented with a phosphonated viologen to facilitate charge transfer. Our results suggest that a new family of graphene-based thin-film photovoltaic devices can be manufactured from rationally tagged LHC proteins and opens the possibility to further explore fundamental processes of energy transfer for biological components interfaced with synthetic materials.
Collapse
Affiliation(s)
- Martha I Ortiz-Torres
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
- Nanomaterials Laboratory, Physics Department, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - Miguel Fernández-Niño
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Juan C Cruz
- GINIB Research Group, Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Fabio Matteocci
- C.H.O.S.E - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome Tor Vergata, Via del politecnico 1, Rome, 00133, Italy
| | - Edgar J Patiño
- Superconductivity and Nanodevices Laboratory, Physics Department, Universidad de Los Andes, Bogotá, 111711, Colombia
| | - Yenny Hernández
- Nanomaterials Laboratory, Physics Department, Universidad de Los Andes, Bogotá, 111711, Colombia.
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, 111711, Colombia.
| |
Collapse
|
9
|
Yoneda Y, Kato D, Kondo M, Nagashima KVP, Miyasaka H, Nagasawa Y, Dewa T. Sequential energy transfer driven by monoexponential dynamics in a biohybrid light-harvesting complex 2 (LH2). PHOTOSYNTHESIS RESEARCH 2020; 143:115-128. [PMID: 31620983 DOI: 10.1007/s11120-019-00677-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Enhancing the light-harvesting potential of antenna components in a system of solar energy conversion is an important topic in the field of artificial photosynthesis. We constructed a biohybrid light-harvesting complex 2 (LH2) engineered from Rhodobacter sphaeroides IL106 strain. An artificial fluorophore Alexa Fluor 647 maleimide (A647) was attached to the LH2 bearing cysteine residue at the N-terminal region (LH2-NC) near B800 bacteriochlorophyll a (BChl) assembly. The A647-attached LH2-NC conjugate (LH2-NC-A647) preserved the integrity of the intrinsic chromophores, B800- and B850-BChls, and carotenoids. Femtosecond transient absorption spectroscopy revealed that the sequential energy transfer A647 → B800 → B850 occurs at time scale of 9-10 ps with monoexponential dynamics in micellar and lipid bilayer systems. A B800-removed conjugate (LH2-NC[B800(-)]-A647) exhibited a significant decrease in energy transfer efficiency in the micellar system; however, surprisingly, direct energy transfer from A647 to B850 was observed at a rate comparable to that for LH2-NC-A647. This result implies that the energy transfer pathway is modified after B800 removal. The results obtained suggested that a LH2 complex is a potential platform for construction of biohybrid light-harvesting materials with simple energy transfer dynamics through the site-selective attachment of the external antennae and the modifiable energy-funnelling pathway.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Daiji Kato
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Masaharu Kondo
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Kenji V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, 259-1293, Japan
| | - Hiroshi Miyasaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Yutaka Nagasawa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
| |
Collapse
|
10
|
Jun D, Beatty JT, Bizzotto D. Highly Sensitive Method to Isolate Photocurrent Signals from Large Background Redox Currents on Protein‐Modified Electrodes. ChemElectroChem 2019. [DOI: 10.1002/celc.201900249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Daniel Jun
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver BC V6T 1Z3 Canada
| | - J. Thomas Beatty
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver BC V6T 1Z3 Canada
| | - Dan Bizzotto
- Department of Chemistry Advanced Materials and Process Engineering LaboratoryUniversity of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
11
|
Photosynthetic apparatus of Rhodobacter sphaeroides exhibits prolonged charge storage. Nat Commun 2019; 10:902. [PMID: 30796237 PMCID: PMC6385238 DOI: 10.1038/s41467-019-08817-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Photosynthetic proteins have been extensively researched for solar energy harvesting. Though the light-harvesting and charge-separation functions of these proteins have been studied in depth, their potential as charge storage systems has not been investigated to the best of our knowledge. Here, we report prolonged storage of electrical charge in multilayers of photoproteins isolated from Rhodobacter sphaeroides. Direct evidence for charge build-up within protein multilayers upon photoexcitation and external injection is obtained by Kelvin-probe and scanning-capacitance microscopies. Use of these proteins is key to realizing a 'self-charging biophotonic device' that not only harvests light and photo-generates charges but also stores them. In strong correlation with the microscopic evidence, the phenomenon of prolonged charge storage is also observed in primitive power cells constructed from the purple bacterial photoproteins. The proof-of-concept power cells generated a photovoltage as high as 0.45 V, and stored charge effectively for tens of minutes with a capacitance ranging from 0.1 to 0.2 F m-2.
Collapse
|
12
|
Design and modelling of a photo-electrochemical transduction system based on solubilized photosynthetic reaction centres. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.09.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Kowalska D, Szalkowski M, Ashraf K, Grzelak J, Lokstein H, Niedziolka-Jonsson J, Cogdell R, Mackowski S. Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires. PHOTOSYNTHESIS RESEARCH 2018; 135:329-336. [PMID: 29090426 PMCID: PMC5784008 DOI: 10.1007/s11120-017-0455-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
A polyhistidine tag (His-tag) present on Chlorobaculum tepidum reaction centers (RCs) was used to immobilize photosynthetic complexes on a silver nanowire (AgNW) modified with nickel-chelating nitrilo-triacetic acid (Ni-NTA). The optical properties of conjugated nanostructures were studied using wide-field and confocal fluorescence microscopy. Plasmonic enhancement of RCs conjugated to AgNWs was observed as their fluorescence intensity dependence on the excitation wavelength does not follow the excitation spectrum of RC complexes in solution. The strongest effect of plasmonic interactions on the emission intensity of RCs coincides with the absorption spectrum of AgNWs and is observed for excitation into the carotenoid absorption. From the absence of fluorescence decay shortening, we attribute the emission enhancement to increase of absorption in RC complexes.
Collapse
Affiliation(s)
- Dorota Kowalska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Torun, Poland.
| | - Marcin Szalkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Torun, Poland
| | - Khuram Ashraf
- Institute of Molecular, Cell & Systems Biology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
- Department of Physiology and Cellular Biophysics, Columbia University, Russ Berrie Pavilion, 1150 St. Nicholas Avenue, New York, NY, 10025, USA
| | - Justyna Grzelak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Torun, Poland
| | - Heiko Lokstein
- Institute of Molecular, Cell & Systems Biology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, Prague, Czech Republic
| | - Joanna Niedziolka-Jonsson
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
- Baltic Institute of Technology, Al. Zwycięstwa 96/98, Gdynia, Poland
| | - Richard Cogdell
- Institute of Molecular, Cell & Systems Biology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sebastian Mackowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, Torun, Poland.
- Baltic Institute of Technology, Al. Zwycięstwa 96/98, Gdynia, Poland.
| |
Collapse
|
14
|
Ravi SK, Swainsbury DJK, Singh VK, Ngeow YK, Jones MR, Tan SC. A Mechanoresponsive Phase-Changing Electrolyte Enables Fabrication of High-Output Solid-State Photobioelectrochemical Devices from Pigment-Protein Multilayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704073. [PMID: 29250868 DOI: 10.1002/adma.201704073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Exploitation of natural photovoltaic reaction center pigment proteins in biohybrid architectures for solar energy harvesting is attractive due to their global abundance, environmental compatibility, and near-unity quantum efficiencies. However, it is challenging to achieve high photocurrents in a device setup due to limitations imposed by low light absorbance by protein monolayers and/or slow long-range diffusion of liquid-phase charge carriers. In an attempt to enhance the photocurrent density achievable by pigment proteins, here, an alternative solid-state device architecture enabled by a mechanoresponsive gel electrolyte that can be applied under nondenaturing conditions is demonstrated. The phase-changing electrolyte gel provides a pervading biocompatible interface for charge conduction through highly absorbing protein multilayers that are fabricated in a simple fashion. Assembled devices exhibit enhanced current stability and a maximal photoresponse of ≈860 µA cm-2 , a fivefold improvement over the best previous comparable devices under standard illumination conditions. Photocurrent generation is enhanced by directional energy transfer through extended layers of light-harvesting complexes, mimicking the modular antenna/transducer architecture of natural photosystems, and by metastable radical pair formation when photovoltaic reaction centers are embedded throughout light-harvesting regions of the device.
Collapse
Affiliation(s)
- Sai Kishore Ravi
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - David J K Swainsbury
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Varun Kumar Singh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yoke Keng Ngeow
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
15
|
Noji T, Matsuo M, Takeda N, Sumino A, Kondo M, Nango M, Itoh S, Dewa T. Lipid-Controlled Stabilization of Charge-Separated States (P+QB–) and Photocurrent Generation Activity of a Light-Harvesting–Reaction Center Core Complex (LH1-RC) from Rhodopseudomonas palustris. J Phys Chem B 2018; 122:1066-1080. [DOI: 10.1021/acs.jpcb.7b09973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tomoyasu Noji
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, Sugimoto-cho, Sumiyoshi-ku, Osaka 558−8585, Japan
| | - Mikano Matsuo
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Nobutaka Takeda
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ayumi Sumino
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masaharu Kondo
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mamoru Nango
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, Sugimoto-cho, Sumiyoshi-ku, Osaka 558−8585, Japan
| | - Shigeru Itoh
- Division
of Material Sciences (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464−8602, Japan
| | - Takehisa Dewa
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
16
|
Probing structure-function relationships in early events in photosynthesis using a chimeric photocomplex. Proc Natl Acad Sci U S A 2017; 114:10906-10911. [PMID: 28935692 DOI: 10.1073/pnas.1703584114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The native core light-harvesting complex (LH1) from the thermophilic purple phototrophic bacterium Thermochromatium tepidum requires Ca2+ for its thermal stability and characteristic absorption maximum at 915 nm. To explore the role of specific amino acid residues of the LH1 polypeptides in Ca-binding behavior, we constructed a genetic system for heterologously expressing the Tch. tepidum LH1 complex in an engineered Rhodobacter sphaeroides mutant strain. This system contained a chimeric pufBALM gene cluster (pufBA from Tch. tepidum and pufLM from Rba. sphaeroides) and was subsequently deployed for introducing site-directed mutations on the LH1 polypeptides. All mutant strains were capable of phototrophic (anoxic/light) growth. The heterologously expressed Tch. tepidum wild-type LH1 complex was isolated in a reaction center (RC)-associated form and displayed the characteristic absorption properties of this thermophilic phototroph. Spheroidene (the major carotenoid in Rba. sphaeroides) was incorporated into the Tch. tepidum LH1 complex in place of its native spirilloxanthins with one carotenoid molecule present per αβ-subunit. The hybrid LH1-RC complexes expressed in Rba. sphaeroides were characterized using absorption, fluorescence excitation, and resonance Raman spectroscopy. Site-specific mutagenesis combined with spectroscopic measurements revealed that α-D49, β-L46, and a deletion at position 43 of the α-polypeptide play critical roles in Ca binding in the Tch. tepidum LH1 complex; in contrast, α-N50 does not participate in Ca2+ coordination. These findings build on recent structural data obtained from a high-resolution crystallographic structure of the membrane integrated Tch. tepidum LH1-RC complex and have unambiguously identified the location of Ca2+ within this key antenna complex.
Collapse
|
17
|
Friebe VM, Millo D, Swainsbury DJK, Jones MR, Frese RN. Cytochrome c Provides an Electron-Funneling Antenna for Efficient Photocurrent Generation in a Reaction Center Biophotocathode. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23379-23388. [PMID: 28635267 PMCID: PMC5520101 DOI: 10.1021/acsami.7b03278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/21/2017] [Indexed: 05/25/2023]
Abstract
The high quantum efficiency of photosynthetic reaction centers (RCs) makes them attractive for bioelectronic and biophotovoltaic applications. However, much of the native RC efficiency is lost in communication between surface-bound RCs and electrode materials. The state-of-the-art biophotoelectrodes utilizing cytochrome c (cyt c) as a biological wiring agent have at best approached 32% retained RC quantum efficiency. However, bottlenecks in cyt c-mediated electron transfer have not yet been fully elucidated. In this work, protein film voltammetry in conjunction with photoelectrochemistry is used to show that cyt c acts as an electron-funneling antennae that shuttle electrons from a functionalized rough silver electrode to surface-immobilized RCs. The arrangement of the two proteins on the electrode surface is characterized, revealing that RCs attached directly to the electrode via hydrophobic interactions and that a film of six cyt c per RC electrostatically bound to the electrode. We show that the additional electrical connectivity within a film of cyt c improves the high turnover demands of surface-bound RCs. This results in larger photocurrent onset potentials, positively shifted half-wave reduction potentials, and higher photocurrent densities reaching 100 μA cm-2. These findings are fundamental for the optimization of bioelectronics that utilize the ubiquitous cyt c redox proteins as biological wires to exploit electrode-bound enzymes.
Collapse
Affiliation(s)
- Vincent M. Friebe
- Department of Physics
and Astronomy, LaserLaB Amsterdam, VU University
Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Diego Millo
- Department of Physics
and Astronomy, LaserLaB Amsterdam, VU University
Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - David J. K. Swainsbury
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K.
| | - Michael R. Jones
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K.
| | - Raoul N. Frese
- Department of Physics
and Astronomy, LaserLaB Amsterdam, VU University
Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
18
|
Tahara K, Mohamed A, Kawahara K, Nagao R, Kato Y, Fukumura H, Shibata Y, Noguchi T. Fluorescence property of photosystem II protein complexes bound to a gold nanoparticle. Faraday Discuss 2017; 198:121-134. [PMID: 28272621 DOI: 10.1039/c6fd00188b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of an efficient photo-anode system for water oxidation is key to the success of artificial photosynthesis. We previously assembled photosystem II (PSII) proteins, which are an efficient natural photocatalyst for water oxidation, on a gold nanoparticle (GNP) to prepare a PSII-GNP conjugate as an anode system in a light-driven water-splitting nano-device (Noji et al., J. Phys. Chem. Lett., 2011, 2, 2448-2452). In the current study, we characterized the fluorescence property of the PSII-GNP conjugate by static and time-resolved fluorescence measurements, and compared with that of free PSII proteins. It was shown that in a static fluorescence spectrum measured at 77 K, the amplitude of a major peak at 683 nm was significantly reduced and a red shoulder at 693 nm disappeared in PSII-GNP. Time-resolved fluorescence measurements showed that picosecond components at 683 nm decayed faster by factors of 1.4-2.1 in PSII-GNP than in free PSII, explaining the observed quenching of the major fluorescence peak. In addition, a nanosecond-decay component arising from a 'red chlorophyll' at 693 nm was lost in time-resolved fluorescence of PSII-GNP, probably due to a structural perturbation of this chlorophyll by interaction with GNP. Consistently with these fluorescence properties, degradation of PSII during strong-light illumination was two times slower in PSII-GNP than in free PSII. The enhanced durability of PSII is an advantageous property of the PSII-GNP conjugate in the development of an artificial photosynthesis device.
Collapse
Affiliation(s)
- Kazuki Tahara
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Electrochemical Field-Effect Transistor Utilization to Study the Coupling Success Rate of Photosynthetic Protein Complexes to Cytochrome c. BIOSENSORS-BASEL 2017; 7:bios7020016. [PMID: 28358305 PMCID: PMC5487958 DOI: 10.3390/bios7020016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/17/2022]
Abstract
Due to the high internal quantum efficiency, reaction center (RC) proteins from photosynthetic organisms have been studied in various bio-photoelectrochemical devices for solar energy harvesting. In vivo, RC and cytochrome c (cyt c; a component of the biological electron transport chain) can form a cocomplex via interprotein docking. This mechanism can be used in vitro for efficient electron transfer from an electrode to the RC in a bio-photoelectrochemical device. Hence, the success rate in coupling RCs to cyt c is of great importance for practical applications in the future. In this work, we use an electrochemical transistor to study the binding of the RC to cytochrome. The shift in the transistor threshold voltage was measured in the dark and under illumination to estimate the density of cytochrome and coupled RCs on the gate of the transistor. The results show that ~33% of the cyt cs on the transistor gate were able to effectively couple with RCs. Due to the high sensitivity of the transistor, the approach can be used to make photosensors for detecting low light intensities.
Collapse
|
20
|
Yaghoubi H, Schaefer M, Yaghoubi S, Jun D, Schlaf R, Beatty JT, Takshi A. A ZnO nanowire bio-hybrid solar cell. NANOTECHNOLOGY 2017; 28:054006. [PMID: 28029108 DOI: 10.1088/1361-6528/28/5/054006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Harvesting solar energy as a carbon free source can be a promising solution to the energy crisis and environmental pollution. Biophotovoltaics seek to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. In the current study, we report on a combination of zinc oxide (ZnO) nanowires with monolayers of photosynthetic reaction centers which are self-assembled, via a cytochrome c linker, as photoactive electrode. In a three-probe biophotovoltaics cell, a photocurrent density of 5.5 μA cm-2 and photovoltage of 36 mV was achieved, using methyl viologen as a redox mediator in the electrolyte. Using ferrocene as a redox mediator a transient photocurrent density of 8.0 μA cm-2 was obtained, which stabilized at 6.4 μA cm-2 after 20 s. In-depth electronic structure characterization using photoemission spectroscopy in conjunction with electrochemical analysis suggests that the fabricated photoactive electrode can provide a proper electronic path for electron transport all the way from the conduction band of the ZnO nanowires, through the protein linker to the RC, and ultimately via redox mediator to the counter electrode.
Collapse
Affiliation(s)
- Houman Yaghoubi
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Swainsbury DJK, Harniman RL, Di Bartolo ND, Liu J, Harper WFM, Corrie AS, Jones MR. Directed assembly of defined oligomeric photosynthetic reaction centres through adaptation with programmable extra-membrane coiled-coil interfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1829-1839. [PMID: 27614060 PMCID: PMC5084686 DOI: 10.1016/j.bbabio.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022]
Abstract
A challenge associated with the utilisation of bioenergetic proteins in new, synthetic energy transducing systems is achieving efficient and predictable self-assembly of individual components, both natural and man-made, into a functioning macromolecular system. Despite progress with water-soluble proteins, the challenge of programming self-assembly of integral membrane proteins into non-native macromolecular architectures remains largely unexplored. In this work it is shown that the assembly of dimers, trimers or tetramers of the naturally monomeric purple bacterial reaction centre can be directed by augmentation with an α-helical peptide that self-associates into extra-membrane coiled-coil bundle. Despite this induced oligomerisation the assembled reaction centres displayed normal spectroscopic properties, implying preserved structural and functional integrity. Mixing of two reaction centres modified with mutually complementary α-helical peptides enabled the assembly of heterodimers in vitro, pointing to a generic strategy for assembling hetero-oligomeric complexes from diverse modified or synthetic components. Addition of two coiled-coil peptides per reaction centre monomer was also tolerated despite the challenge presented to the pigment-protein assembly machinery of introducing multiple self-associating sequences. These findings point to a generalised approach where oligomers or longer range assemblies of multiple light harvesting and/or redox proteins can be constructed in a manner that can be genetically-encoded, enabling the construction of new, designed bioenergetic systems in vivo or in vitro. Reaction centre monomers are engineered to assemble as oligomers in vivo. A fused coiled coil bundle programs dimer, trimer and tetramer formation. Assembled oligomeric reaction centres are structurally and functionally intact. Coiled coils can be used to assemble reaction centre hetero-oligomers in vitro. Addition of two coiled-coil peptides per reaction centre monomer is tolerated.
Collapse
Affiliation(s)
- David J K Swainsbury
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Robert L Harniman
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Natalie D Di Bartolo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Juntai Liu
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - William F M Harper
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Alexander S Corrie
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
22
|
Maćkowski S, Czechowski N, Ashraf KU, Szalkowski M, Lokstein H, Cogdell RJ, Kowalska D. Origin of bimodal fluorescence enhancement factors ofChlorobaculum tepidumreaction centers on silver island films. FEBS Lett 2016; 590:2558-65. [DOI: 10.1002/1873-3468.12292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Sebastian Maćkowski
- Optics of Hybrid Nanostructures Group; Faculty of Physics, Astronomy and Informatics; Nicolaus Copernicus University; Torun Poland
| | - Nikodem Czechowski
- Optics of Hybrid Nanostructures Group; Faculty of Physics, Astronomy and Informatics; Nicolaus Copernicus University; Torun Poland
| | - Khuram U. Ashraf
- Institute of Molecular, Cell & Systems Biology; Glasgow Biomedical Research Centre; University of Glasgow; UK
| | - Marcin Szalkowski
- Optics of Hybrid Nanostructures Group; Faculty of Physics, Astronomy and Informatics; Nicolaus Copernicus University; Torun Poland
| | - Heiko Lokstein
- Institute of Molecular, Cell & Systems Biology; Glasgow Biomedical Research Centre; University of Glasgow; UK
| | - Richard J. Cogdell
- Institute of Molecular, Cell & Systems Biology; Glasgow Biomedical Research Centre; University of Glasgow; UK
| | - Dorota Kowalska
- Optics of Hybrid Nanostructures Group; Faculty of Physics, Astronomy and Informatics; Nicolaus Copernicus University; Torun Poland
| |
Collapse
|
23
|
Chatzipetrou M, Milano F, Giotta L, Chirizzi D, Trotta M, Massaouti M, Guascito M, Zergioti I. Functionalization of gold screen printed electrodes with bacterial photosynthetic reaction centers by laser printing technology for mediatorless herbicide biosensing. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Beam JC, LeBlanc G, Gizzie EA, Ivanov BL, Needell DR, Shearer MJ, Jennings GK, Lukehart CM, Cliffel DE. Construction of a Semiconductor-Biological Interface for Solar Energy Conversion: p-Doped Silicon/Photosystem I/Zinc Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10002-10007. [PMID: 26318861 DOI: 10.1021/acs.langmuir.5b02334] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interface between photoactive biological materials with two distinct semiconducting electrodes is challenging both to develop and analyze. Building off of our previous work using films of photosystem I (PSI) on p-doped silicon, we have deposited a crystalline zinc oxide (ZnO) anode using confined-plume chemical deposition (CPCD). We demonstrate the ability of CPCD to deposit crystalline ZnO without damage to the PSI biomaterial. Using electrochemical techniques, we were able to probe this complex semiconductor-biological interface. Finally, as a proof of concept, a solid-state photovoltaic device consisting of p-doped silicon, PSI, ZnO, and ITO was constructed and evaluated.
Collapse
Affiliation(s)
- Jeremiah C Beam
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Gabriel LeBlanc
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Evan A Gizzie
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Borislav L Ivanov
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - David R Needell
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Melinda J Shearer
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - G Kane Jennings
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Charles M Lukehart
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - David E Cliffel
- Department of Chemistry, ‡Department of Physics and Astronomy, and §Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
25
|
Patole S, Vasilev C, El-Zubir O, Wang L, Johnson MP, Cadby AJ, Leggett GJ, Hunter CN. Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates. Interface Focus 2015; 5:20150005. [PMID: 26464784 PMCID: PMC4590419 DOI: 10.1098/rsfs.2015.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We describe a facile approach for nanopatterning of photosynthetic light-harvesting complexes over macroscopic areas, and use optical spectroscopy to demonstrate retention of native properties by both site-specifically and non-specifically attached photosynthetic membrane proteins. A Lloyd's mirror dual-beam interferometer was used to expose self-assembled monolayers of amine-terminated alkylthiolates on gold to laser irradiation. Following exposure, photo-oxidized adsorbates were replaced by oligo(ethylene glycol) terminated thiols, and the remaining intact amine-functionalized regions were used for attachment of the major light-harvesting chlorophyll-protein complex from plants, LHCII. These amine patterns could be derivatized with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochlorophyll-protein complexes from phototrophic bacteria could be attached with a defined surface orientation. By varying parameters such as the angle between the interfering beams and the laser irradiation dose, it was possible to vary the period and widths of NTA and amine-functionalized lines on the surfaces; periods varied from 1200 to 240 nm and linewidths as small as 60 nm (λ/4) were achieved. This level of control over the surface chemistry was reflected in the surface topology of the protein nanostructures imaged by atomic force microscopy; fluorescence imaging and spectral measurements demonstrated that the surface-attached proteins had retained their native functionality.
Collapse
Affiliation(s)
- Samson Patole
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Osama El-Zubir
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Lin Wang
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Matthew P. Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ashley J. Cadby
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Graham J. Leggett
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
26
|
Kamran M, Akkilic N, Luo J, Abbasi AZ. RETRACTED: Monolayers of pigment-protein complexes on a bare gold electrode: Orientation controlled deposition and comparison of electron transfer rate for two configurations. Biosens Bioelectron 2015; 69:40-5. [DOI: 10.1016/j.bios.2015.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/10/2015] [Accepted: 01/26/2015] [Indexed: 11/30/2022]
|
27
|
Caterino R, Csiki R, Lyuleeva A, Pfisterer J, Wiesinger M, Janssens SD, Haenen K, Cattani-Scholz A, Stutzmann M, Garrido JA. Photocurrent generation in diamond electrodes modified with reaction centers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8099-8107. [PMID: 25836362 DOI: 10.1021/acsami.5b00711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photoactive reaction centers (RCs) are protein complexes in bacteria able to convert sunlight into other forms of energy with a high quantum yield. The photostimulation of immobilized RCs on inorganic electrodes result in the generation of photocurrent that is of interest for biosolar cell applications. This paper reports on the use of novel electrodes based on functional conductive nanocrystalline diamond onto which bacterial RCs are immobilized. A three-dimensional conductive polymer scaffold grafted to the diamond electrodes enables efficient entrapment of photoreactive proteins. The electron transfer in these functional diamond electrodes is optimized through the use of a ferrocene-based electron mediator, which provides significant advantages such as a rapid electron transfer as well as high generated photocurrent. A detailed discussion of the generated photocurrent as a function of time, bias voltage, and mediators in solution unveils the mechanisms limiting the electron transfer in these functional electrodes. This work featuring diamond-based electrodes in biophotovoltaics offers general guidelines that can serve to improve the performance of similar devices based on different materials and geometries.
Collapse
Affiliation(s)
- Roberta Caterino
- †Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany
| | - Réka Csiki
- †Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany
| | - Alina Lyuleeva
- †Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany
| | - Jonas Pfisterer
- †Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany
| | - Markus Wiesinger
- †Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany
| | | | | | - Anna Cattani-Scholz
- †Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany
| | - Martin Stutzmann
- †Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany
| | - Jose A Garrido
- †Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4 Garching, 85748, Germany
| |
Collapse
|
28
|
Yaghoubi H, Lafalce E, Jun D, Jiang X, Beatty JT, Takshi A. Large photocurrent response and external quantum efficiency in biophotoelectrochemical cells incorporating reaction center plus light harvesting complexes. Biomacromolecules 2015; 16:1112-8. [PMID: 25798701 DOI: 10.1021/bm501772x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bacterial photosynthetic reaction centers (RCs) are promising materials for solar energy harvesting, due to their high ratio of photogenerated electrons to absorbed photons and long recombination time of generated charges. In this work, photoactive electrodes were prepared from a bacterial RC-light-harvesting 1 (LH1) core complex, where the RC is encircled by the LH1 antenna, to increase light capture. A simple immobilization method was used to prepare RC-LH1 photoactive layer. Herein, we demonstrate that the combination of pretreatment of the RC-LH1 protein complexes with quinone and the immobilization method results in biophotoelectrochemical cells with a large peak transient photocurrent density and photocurrent response of 7.1 and 3.5 μA cm(-2), respectively. The current study with monochromatic excitation showed maximum external quantum efficiency (EQE) and photocurrent density of 0.21% and 2 μA cm(-2), respectively, with illumination power of ∼6 mW cm(-2) at ∼875 nm, under ambient conditions. This work provides new directions to higher performance biophotoelectrochemical cells as well as possibly other applications of this broadly functional photoactive material.
Collapse
Affiliation(s)
- Houman Yaghoubi
- †Bio/Organic Electronics Lab, Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Evan Lafalce
- ‡Soft Semiconducting Materials and Devices Lab, Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Daniel Jun
- §Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Xiaomei Jiang
- ‡Soft Semiconducting Materials and Devices Lab, Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - J Thomas Beatty
- §Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Arash Takshi
- †Bio/Organic Electronics Lab, Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
29
|
Kamran M, Friebe VM, Delgado JD, Aartsma TJ, Frese RN, Jones MR. Demonstration of asymmetric electron conduction in pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit. Nat Commun 2015; 6:6530. [PMID: 25751412 PMCID: PMC4366537 DOI: 10.1038/ncomms7530] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
Photosynthetic reaction centres show promise for biomolecular electronics as nanoscale solar-powered batteries and molecular diodes that are amenable to atomic-level re-engineering. In this work the mechanism of electron conduction across the highly tractable Rhodobacter sphaeroides reaction centre is characterized by conductive atomic force microscopy. We find, using engineered proteins of known structure, that only one of the two cofactor wires connecting the positive and negative termini of this reaction centre is capable of conducting unidirectional current under a suitably oriented bias, irrespective of the magnitude of the bias or the applied force at the tunnelling junction. This behaviour, strong functional asymmetry in a largely symmetrical protein–cofactor matrix, recapitulates the strong functional asymmetry characteristic of natural photochemical charge separation, but it is surprising given that the stimulus for electron flow is simply an externally applied bias. Reasons for the electrical resistance displayed by the so-called B-wire of cofactors are explored. Photosynthetic reaction centres have been proposed for applications in bioelectronics. Here, the authors examine electron transport through the reaction centre from R. sphaeroides using conductive AFM, observing asymmetric conductance along only one cofactor wire under an applied bias.
Collapse
Affiliation(s)
- Muhammad Kamran
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Vincent M Friebe
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Juan D Delgado
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Thijs J Aartsma
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Raoul N Frese
- Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
30
|
LeBlanc G, Gizzie E, Yang S, Cliffel DE, Jennings GK. Photosystem I protein films at electrode surfaces for solar energy conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10990-11001. [PMID: 24576007 DOI: 10.1021/la500129q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Over the course of a few billion years, nature has developed extraordinary nanomaterials for the efficient conversion of solar energy into chemical energy. One of these materials, photosystem I (PSI), functions as a photodiode capable of generating a charge separation with nearly perfect quantum efficiency. Because of the favorable properties and natural abundance of PSI, researchers around the world have begun to study how this protein complex can be integrated into modern solar energy conversion devices. This feature article describes some of the recent materials and methods that have led to dramatic improvements (over several orders of magnitude) in the photocurrents and photovoltages of biohybrid electrodes based on PSI, with an emphasis on the research activities in our laboratory.
Collapse
Affiliation(s)
- Gabriel LeBlanc
- Departments of †Chemistry and ‡Chemical and Biomolecular Engineering, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | | |
Collapse
|
31
|
Kamran M, Delgado JD, Friebe V, Aartsma TJ, Frese RN. Photosynthetic Protein Complexes as Bio-photovoltaic Building Blocks Retaining a High Internal Quantum Efficiency. Biomacromolecules 2014; 15:2833-8. [DOI: 10.1021/bm500585s] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Muhammad Kamran
- Leiden
Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Juan D. Delgado
- VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - Vincent Friebe
- VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| | - Thijs J. Aartsma
- Leiden
Institute of Physics, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Raoul N. Frese
- VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
32
|
Yehezkeli O, Tel-Vered R, Michaeli D, Willner I, Nechushtai R. Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. PHOTOSYNTHESIS RESEARCH 2014; 120:71-85. [PMID: 23371753 DOI: 10.1007/s11120-013-9796-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/17/2013] [Indexed: 06/01/2023]
Abstract
During the last few years, intensive research efforts have been directed toward the application of several highly efficient light-harvesting photosynthetic proteins, including reaction centers (RCs), photosystem I (PSI), and photosystem II (PSII), as key components in the light-triggered generation of fuels or electrical power. This review highlights recent advances for the nano-engineering of photo-bioelectrochemical cells through the assembly of the photosynthetic proteins on electrode surfaces. Various strategies to immobilize the photosynthetic complexes on conductive surfaces and different methodologies to electrically wire them with the electrode supports are presented. The different photoelectrochemical systems exhibit a wide range of photocurrent intensities and power outputs that sharply depend on the nano-engineering strategy and the electroactive components. Such cells are promising candidates for a future production of biologically-driven solar power.
Collapse
Affiliation(s)
- Omer Yehezkeli
- Institute of Chemistry, The Minerva Center for Biohybrid Systems, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
33
|
Jun D, Saer RG, Madden JD, Beatty JT. Use of new strains of Rhodobacter sphaeroides and a modified simple culture medium to increase yield and facilitate purification of the reaction centre. PHOTOSYNTHESIS RESEARCH 2014; 120:197-205. [PMID: 23765434 DOI: 10.1007/s11120-013-9866-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
A new gene expression system was developed in Rhodobacter sphaeroides, replacing a pRK415-based system used previously. The broad host-range IPTG-inducible plasmid pIND4 was used to create the plasmid pIND4-RC1 for expression of the puhA and pufQBALMX genes, encoding the reaction centre (RC) and light-harvesting complex 1 (LH1) proteins. The strain R. sphaeroides ΔRCLH was used to make a knockout of the rshI restriction endonuclease gene, enabling electroporation of DNA into the bacterium; a subsequent knockout of ppsR was made, creating the strain R. sphaeroides RCx lacking this oxygen-sensing repressor of the photosynthesis gene cluster. Using pIND4-RC1, LH1 levels were increased by a factor of about 8 over pRS1 per cell in cultures grown semi-aerobically. In addition, the ppsR knockout allowed for photosynthetic pigment-protein complex synthesis in the presence of high concentrations of molecular oxygen; here, LH1 levels per cell increased by 20 % when grown under high aeration conditions. A new medium (called RLB) is the E. coli medium LB supplemented with MgCl2 and CaCl2, which was found to increase growth rates and final cell culture densities, with an increase of 30 % of LH1 per cell detected in R. sphaeroides RCx(pIND4-RC1) grown in RLB versus LB medium. Furthermore, cell density was about three times greater in RLB compared to semi-aerobic conditions. The combination of all the modifications resulted in an increase of LH1 and RC per mL of culture volume by approximately 35-fold, and a decrease in the length of culture incubation time from about 5 days to ~36 h.
Collapse
Affiliation(s)
- D Jun
- Department of Microbiology and Immunology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
34
|
Harrold JW, Woronowicz K, Lamptey JL, Awong J, Baird J, Moshar A, Vittadello M, Falkowski PG, Niederman RA. Functional Interfacing of Rhodospirillum rubrum Chromatophores to a Conducting Support for Capture and Conversion of Solar Energy. J Phys Chem B 2013; 117:11249-59. [DOI: 10.1021/jp402108s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John W. Harrold
- Department of Chemistry and Chemical
Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey
08854, United States
| | - Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison
Road, Piscataway, New Jersey 08854-8082, United States
| | - Joana L. Lamptey
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison
Road, Piscataway, New Jersey 08854-8082, United States
| | - John Awong
- Energy Nanotechnology and Materials
Chemistry Lab, Medgar Evers College of the City University of New York, 1638 Bedford Avenue, Brooklyn, New York 11225, United States
| | - James Baird
- Energy Nanotechnology and Materials
Chemistry Lab, Medgar Evers College of the City University of New York, 1638 Bedford Avenue, Brooklyn, New York 11225, United States
| | - Amir Moshar
- Asylum Research, 6310 Hollister Avenue, Santa Barbara, California 93117, United
States
| | - Michele Vittadello
- Energy Nanotechnology and Materials
Chemistry Lab, Medgar Evers College of the City University of New York, 1638 Bedford Avenue, Brooklyn, New York 11225, United States
| | - Paul G. Falkowski
- Department of Chemistry and Chemical
Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey
08854, United States
- Institute for Marine
and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, New Jersey
08901, United States
| | - Robert A. Niederman
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison
Road, Piscataway, New Jersey 08854-8082, United States
| |
Collapse
|
35
|
Yaghoubi H, Jun D, Beatty JT, Takshi A. Photosynthetic Reaction Center Immobilization through Carboxylic Acid Terminated\Cytochrome C Linker for Applications in Photoprotein-based Bio-photovoltaic Devices. ACTA ACUST UNITED AC 2013. [DOI: 10.1557/opl.2013.682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ABSTRACTBacterial photosynthetic reaction centers (RCs) are promising materials for solar energy harvesting, due to their high internal quantum efficiency. However, applications of RCs in bio-photovoltaic devices so far show relatively low external power conversion efficiency, mainly due to low efficiency of the charge transfer to the electrode. Preferential orientation of RCs on an electrode’s surface can enhance the charge transfer rate to some extent. Yet, the results of direct coupling of RCs to an Au electrode, through cysteine residues from the H-subunit, revealed that direct electron transfer is not efficient. This work focuses on a different approach to achieve high charge transfer rate between an Au electrode and RC protein complexes by employing cytochrome c (Cyt c)\carboxylic acid-terminated linker molecules. This approach preferentially orients RCs with the primary donor site to the electrode. Furthermore, Cyt c can be considered as a conductive linker, while the charge transfer mechanism through carboxylic acid-terminated linker molecules is dominated by tunneling. The photochronoamperometric results for a two electrode cell setup indicated a 156 nA.cm-2 cathodic photocurrent density; the photocurrent was measured in an electrochemical cell with ubiquinone-10 (Q2) in the electrolyte. Negligible photocurrents were observed in the case of coupled RCs to the Au via cysteine residues on H-subunit, with only Cyt c in the electrolyte. These findings contribute to the design of highly efficient bio-photovoltaic devices.
Collapse
|
36
|
Sumino A, Dewa T, Sasaki N, Kondo M, Nango M. Electron Conduction and Photocurrent Generation of a Light-Harvesting/Reaction Center Core Complex in Lipid Membrane Environments. J Phys Chem Lett 2013; 4:1087-1092. [PMID: 26282025 DOI: 10.1021/jz301976z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To reveal the structure-function relationship of membrane proteins, a membrane environment is often used to establish a suitable platform for assembly, functioning, and measurements. The control of the orientation of membrane proteins is the main challenge. In this study, the electron conductivity and photocurrent of a light-harvesting/reaction center core complex (LH1-RC) embedded in a lipid membrane were measured using conductive atomic force microscopy (C-AFM) and photoelectrochemical analysis. AFM topographs showed that LH1-RC molecules were well-orientated, with their H-subunits toward the membrane surface. Rectified conductivity was observed in LH1-RC under precise control of the applied force on the probe electrode (<600 pN). LH1-RC embedded in a membrane generated photocurrent upon irradiation when assembled on an electrode. The observed action spectrum was consistent with the absorption spectrum of LH1-RC. The control of the orientation of LH1-RC by lipid membranes provided well-defined conductivity and photocurrent.
Collapse
Affiliation(s)
- Ayumi Sumino
- †Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takehisa Dewa
- †Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- ‡PRESTO/JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Nobuaki Sasaki
- †Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masaharu Kondo
- †Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mamoru Nango
- †Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
37
|
Dimonte A, Frache S, Erokhin V, Piccinini G, Demarchi D, Milano F, Micheli GD, Carrara S. Nanosized optoelectronic devices based on photoactivated proteins. Biomacromolecules 2012; 13:3503-9. [PMID: 23046154 DOI: 10.1021/bm301063m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Molecular nanoelectronics is attracting much attention, because of the possibility to add functionalities to silicon-based electronics by means of intrinsically nanoscale biological or organic materials. The contact point between active molecules and electrodes must present, besides nanoscale size, a very low resistance. To realize Metal-Molecule-Metal junctions it is, thus, mandatory to be able to control the formation of useful nanometric contacts. The distance between the electrodes has to be of the same size of the molecule being put in between. Nanogaps technology is a perfect fit to fulfill this requirement. In this work, nanogaps between gold electrodes have been used to develop optoelectronic devices based on photoactive proteins. Reaction Centers (RC) and Bacteriorhodopsin (BR) have been inserted in nanogaps by drop casting. Electrical characterizations of the obtained structures were performed. It has been demonstrated that these nanodevices working principle is based on charge separation and photovoltage response. The former is induced by the application of a proper voltage on the RC, while the latter comes from the activation of BR by light of appropriate wavelengths.
Collapse
Affiliation(s)
- Alice Dimonte
- Fondazione Istituto Italiano di Tecnologia, IIT@Polito Center, Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|