1
|
Vo DK, Trinh KTL. Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines. Vaccines (Basel) 2025; 13:191. [PMID: 40006737 PMCID: PMC11860421 DOI: 10.3390/vaccines13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Using plants as bioreactors, molecular farming has emerged as a versatile and sustainable platform for producing recombinant vaccines, therapeutic proteins, industrial enzymes, and nutraceuticals. This innovative approach leverages the unique advantages of plants, including scalability, cost-effectiveness, and reduced risk of contamination with human pathogens. Recent advancements in gene editing, transient expression systems, and nanoparticle-based delivery technologies have significantly enhanced the efficiency and versatility of plant-based systems. Particularly in vaccine development, molecular farming has demonstrated its potential with notable successes such as Medicago's Covifenz for COVID-19, illustrating the capacity of plant-based platforms to address global health emergencies rapidly. Furthermore, edible vaccines have opened new avenues in the delivery of vaccines, mainly in settings with low resources where the cold chain used for conventional logistics is a challenge. However, optimization of protein yield and stability, the complexity of purification processes, and regulatory hurdles are some of the challenges that still remain. This review discusses the current status of vaccine development using plant-based expression systems, operational mechanisms for plant expression platforms, major applications in the prevention of infectious diseases, and new developments, such as nanoparticle-mediated delivery and cancer vaccines. The discussion will also touch on ethical considerations, the regulatory framework, and future trends with respect to the transformative capacity of plant-derived vaccines in ensuring greater global accessibility and cost-effectiveness of the vaccination. This field holds great promise for the infectious disease area and, indeed, for applications in personalized medicine and biopharmaceuticals in the near future.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Inam S, Abbas Z, Noor S, Rehman N, Adeel Zafar S, Ramzan Khan M, Ali Kaimkhani Z, Al-Misned F, Shah M, Mahboob S, Muhammad Ali G. Isolation, cloning and transgenic expression of hepatitis B surface antigen ( HBsAg) in Solanum lycopersicum L. Saudi J Biol Sci 2022; 29:1559-1564. [PMID: 35280581 PMCID: PMC8913426 DOI: 10.1016/j.sjbs.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
The Hepatitis B virus (HBV) infection is one of the most widespread viral infections of humans. HBV causes acute and chronic hepatitis. Chronic hepatitis leads to hepatocellular carcinoma, which is a significant cause of death. DNA-based immunization programs to control the spread of Hepatitis B in developing countries are costly and require special storage and transportation. The alternative way is to express Hepatitis B surface antigen (HBsAg) in plants to develop oral vaccines. In this study, HBsAg gene was isolated, cloned, and then transformed in tomato plants. The transgenic tomato plants were confirmed through RT-qPCR. HBsAg expression was analysed in mature green and red stages of tomato fruit through quantitative real-time PCR. It was observed that expression of HBsAg was high in matured red tomato as compared to mature green. The present study is the first step to developing Solanum lycopersicum as an edible vaccine production system in this world region.
Collapse
Affiliation(s)
- Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | - Zaheer Abbas
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | - Sabahat Noor
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | - Syed Adeel Zafar
- Department of Botany and Plant Sciences, University of California, Reiverside, USA
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| | | | - F. Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Masaud Shah
- School of Medicine, Department of Physiology, Ajou University, Suwon 16499, Korea
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Pakistan Agriculture Research Council, Pakistan
| |
Collapse
|
3
|
Huang Y, Tu WL, Yao YQ, Cai YL, Ma LP. Construction of a Novel Gene-Based Model for Survival Prediction of Hepatitis B Virus Carriers With HCC Development. Front Genet 2021; 12:720888. [PMID: 34531900 PMCID: PMC8439286 DOI: 10.3389/fgene.2021.720888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022] Open
Abstract
Despite the effectiveness of hepatitis B virus (HBV) vaccination in reducing the prevalence of chronic HBV infection as well as the incidence of acute hepatitis B, fulminant hepatitis, liver cirrhosis and hepatocellular carcinoma (HCC), there was still a large crowd of chronically infected populations at risk of developing cirrhosis or HCC. In this study, we established a comprehensive prognostic system covering multiple signatures to elevate the predictive accuracy for overall survival (OS) of hepatitis B virus carriers with HCC development. Weighted Gene Co-Expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination (SVM-RFE), and multivariate COX analysis, along with a suite of other online analyses were successfully applied to filtrate a three-gene signature model (TP53, CFL1, and UBA1). Afterward, the gene-based risk score was calculated based on the Cox coefficient of the individual gene, and the prognostic power was assessed by time-dependent receiver operating characteristic (tROC) and Kaplan–Meier (KM) survival analysis. Furthermore, the predictive power of the nomogram, integrated with the risk score and clinical parameters (age at diagnosis and TNM stage), was revealed by the calibration plot and tROC curves, which was verified in the validation set. Taken together, our study may be more effective in guiding the clinical decision-making of personalized treatment for HBV carriers.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Biochemistry and Molecular Biology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Wen-Ling Tu
- Department of Genetics, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.,The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Yan-Qiu Yao
- Department of Biochemistry and Molecular Biology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Ye-Ling Cai
- Department of Biochemistry and Molecular Biology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Li-Ping Ma
- Department of Biochemistry and Molecular Biology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Li Y, Xue M, Yu L, Luo G, Yang H, Jia L, Zeng Y, Li T, Ge S, Xia N. Expression and characterization of a novel truncated rotavirus VP4 for the development of a recombinant rotavirus vaccine. Vaccine 2018; 36:2086-2092. [DOI: 10.1016/j.vaccine.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022]
|
5
|
Xue M, Yu L, Che Y, Lin H, Zeng Y, Fang M, Li T, Ge S, Xia N. Characterization and protective efficacy in an animal model of a novel truncated rotavirus VP8 subunit parenteral vaccine candidate. Vaccine 2015; 33:2606-13. [PMID: 25882173 DOI: 10.1016/j.vaccine.2015.03.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/14/2015] [Accepted: 03/23/2015] [Indexed: 11/17/2022]
Abstract
The cell-attachment protein VP8* of rotavirus is a potential candidate parenteral vaccine. However, the yield of full-length VP8 protein (VP8*, residues 1-231) expressed in Escherichia coli was low, and a truncated VP8 protein (ΔVP8*, residues 65-231) cannot elicit efficient protective immunity in a mouse model. In this study, tow novel truncated VP8 proteins, VP8-1 (residues 26-231) and VP8-2 (residues 51-231), were expressed in E. coli and evaluated for immunogenicity and protective efficacy, compared with VP8* and ΔVP8*. As well as ΔVP8*, the protein VP8-1 and VP8-2 were successfully expressed in high yield and purified in homogeneous dimeric forms, while the protein VP8* was expressed with lower yield and prone to aggregation and degradation in solution. Although the immunogenicity of the protein VP8*, VP8-1, VP8-2 and ΔVP8* was comparable, immunization of VP8* and VP8-1 elicited significantly higher neutralizing antibody titers than that of VP8-2 and ΔVP8* in mice. Furthermore, when assessed using a mouse maternal antibody model, the efficacy of VP8-1 to protect against rotavirus-induced diarrhea in pups was comparable to that of VP8*, both were dramatically higher than that of VP8-2 and ΔVP8*. Taken together, the novel truncated protein VP8-1, with increased yield, improved homogeneity and high protective efficacy, is a viable candidate for further development of a parenterally administrated prophylactic vaccine against rotavirus infection.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Diarrhea/prevention & control
- Disease Models, Animal
- Escherichia coli/genetics
- Female
- Immunity, Maternally-Acquired
- Injections, Subcutaneous
- Mice, Inbred BALB C
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- Rotavirus/immunology
- Rotavirus Infections/prevention & control
- Rotavirus Vaccines/administration & dosage
- Rotavirus Vaccines/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
Collapse
Affiliation(s)
- Miaoge Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Linqi Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yaojian Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Haijun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yuanjun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China.
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361102, Fujian, PR China
| |
Collapse
|
6
|
Aboul-Ata AAE, Vitti A, Nuzzaci M, El-Attar AK, Piazzolla G, Tortorella C, Harandi AM, Olson O, Wright SA, Piazzolla P. Plant-based vaccines: novel and low-cost possible route for Mediterranean innovative vaccination strategies. Adv Virus Res 2014; 89:1-37. [PMID: 24751193 DOI: 10.1016/b978-0-12-800172-1.00001-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A plant bioreactor has enormous capability as a system that supports many biological activities, that is, production of plant bodies, virus-like particles (VLPs), and vaccines. Foreign gene expression is an efficient mechanism for getting protein vaccines against different human viral and nonviral diseases. Plants make it easy to deal with safe, inexpensive, and provide trouble-free storage. The broad spectrum of safe gene promoters is being used to avoid risk assessments. Engineered virus-based vectors have no side effect. The process can be manipulated as follows: (a) retrieve and select gene encoding, use an antigenic protein from GenBank and/or from a viral-genome sequence, (b) design and construct hybrid-virus vectors (viral vector with a gene of interest) eventually flanked by plant-specific genetic regulatory elements for constitutive expression for obtaining chimeric virus, (c) gene transformation and/or transfection, for transient expression, into a plant-host model, that is, tobacco, to get protocols processed positively, and then moving into edible host plants, (d) confirmation of protein expression by bioassay, PCR-associated tests (RT-PCR), Northern and Western blotting analysis, and serological assay (ELISA), (e) expression for adjuvant recombinant protein seeking better antigenicity, (f) extraction and purification of expressed protein for identification and dosing, (g) antigenicity capability evaluated using parental or oral delivery in animal models (mice and/or rabbit immunization), and (h) growing of construct-treated edible crops in protective green houses. Some successful cases of heterologous gene-expressed protein, as edible vaccine, are being discussed, that is, hepatitis C virus (HCV). R9 mimotope, also named hypervariable region 1 (HVR1), was derived from the HVR1 of HCV. It was used as a potential neutralizing epitope of HCV. The mimotope was expressed using cucumber mosaic virus coat protein (CP), alfalfa mosaic virus CP P3/RNA3, and tobacco mosaic virus (TMV) CP-tobacco mild green mosaic virus (TMGMV) CP as expression vectors into tobacco plants. Expressed recombinant protein has not only been confirmed as a therapeutic but also as a diagnostic tool. Herpes simplex virus 2 (HSV-2), HSV-2 gD, and HSV-2 VP16 subunits were transfected into tobacco plants, using TMV CP-TMGMV CP expression vectors.
Collapse
Affiliation(s)
- Aboul-Ata E Aboul-Ata
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt.
| | - Antonella Vitti
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Maria Nuzzaci
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Ahmad K El-Attar
- Molecular Biology Laboratory II, Plant Virus and Phytoplasma Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Giuseppina Piazzolla
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Cosimo Tortorella
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Allergology and Immunology, University of Bari, Bari, Italy
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Olof Olson
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Sandra A Wright
- Department of Electronics, Mathematics and Natural Sciences, University of Gävle, Gävle, Sweden
| | - Pasquale Piazzolla
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
7
|
Shchelkunov SN, Shchelkunova GA. Plant-based vaccines against human hepatitis B virus. Expert Rev Vaccines 2014; 9:947-55. [DOI: 10.1586/erv.10.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Chan HT, Chia MY, Pang VF, Jeng CR, Do YY, Huang PL. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:315-324. [PMID: 23116484 DOI: 10.1111/pbi.12015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a persistent threat of economically significant influence to the swine industry worldwide. Recombinant DNA technology coupled with tissue culture technology is a viable alternative for the inexpensive production of heterologous proteins in planta. Embryogenic cells of banana cv. 'Pei chiao' (AAA) have been transformed with the ORF5 gene of PRRSV envelope glycoprotein (GP5) using Agrobacterium-mediated transformation and have been confirmed. Recombinant GP5 protein levels in the transgenic banana leaves were detected and ranged from 0.021%-0.037% of total soluble protein. Pigs were immunized with recombinant GP5 protein by orally feeding transgenic banana leaves for three consecutive doses at a 2-week interval and challenged with PRRSV at 7 weeks postinitial immunization. A vaccination-dependent gradational increase in the elicitation of serum and saliva anti-PRRSV IgG and IgA was observed. Furthermore, significantly lower viraemia and tissue viral load were recorded when compared with the pigs fed with untransformed banana leaves. The results suggest that transgenic banana leaves expressing recombinant GP5 protein can be an effective strategy for oral delivery of recombinant subunit vaccines in pigs and can open new avenues for the production of vaccines against PRRSV.
Collapse
Affiliation(s)
- Hui-Ting Chan
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
The twenty-year story of a plant-based vaccine against hepatitis B: stagnation or promising prospects? Int J Mol Sci 2013; 14:1978-98. [PMID: 23337199 PMCID: PMC3565360 DOI: 10.3390/ijms14011978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/07/2013] [Accepted: 01/14/2013] [Indexed: 01/20/2023] Open
Abstract
Hepatitis B persists as a common human disease despite effective vaccines having been employed for almost 30 years. Plants were considered as alternative sources of vaccines, to be mainly orally administered. Despite 20-year attempts, no real anti-HBV plant-based vaccine has been developed. Immunization trials, based on ingestion of raw plant tissue and conjugated with injection or exclusively oral administration of lyophilized tissue, were either impractical or insufficient due to oral tolerance acquisition. Plant-produced purified HBV antigens were highly immunogenic when injected, but their yields were initially insufficient for practical purposes. However, knowledge and technology have progressed, hence new plant-derived anti-HBV vaccines can be proposed today. All HBV antigens can be efficiently produced in stable or transient expression systems. Processing of injection vaccines has been developed and needs only to be successfully completed. Purified antigens can be used for injection in an equivalent manner to the present commercial vaccines. Although oral vaccines require improvement, plant tissue, lyophilized or extracted and converted into tablets, etc., may serve as a boosting vaccine. Preliminary data indicate also that both vaccines can be combined in an effective parenteral-oral immunization procedure. A partial substitution of injection vaccines with oral formulations still offers good prospects for economically viable and efficacious anti-HBV plant-based vaccines.
Collapse
|
10
|
Cloning, Transformation and Expression of Human Interferon α2b Gene in Tobacco Plant (Nicotiana tabacum cv. xanthi). Jundishapur J Nat Pharm Prod 2012. [DOI: 10.5812/jjnpp.3678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Ahangarzadeh S, Daneshvar MH, Rajabi-Memari H, Galehdari H, Alamisaied K. Cloning, Transformation and Expression of Human Interferon α2b Gene in Tobacco Plant (Nicotiana tabacum cv. xanthi). Jundishapur J Nat Pharm Prod 2012. [DOI: 10.17795/jjnpp-3678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Ahangarzadeh S, Daneshvar MH, Rajabi-Memari H, Galehdari H, Alamisaied K. Cloning, Transformation and Expression of Human Interferon α2b Gene in Tobacco Plant (Nicotiana tabacum cv. xanthi). Jundishapur J Nat Pharm Prod 2012; 7:111-6. [PMID: 24624166 PMCID: PMC3941850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/26/2012] [Accepted: 06/06/2012] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Molecular farming is the production of important recombinant proteins in transgenic organisms on an agricultural scale. Interferons are proteins with antiviral and antitumor activities and can be used for viral infections and cancers treatments. OBJECTIVES This study reports the transformation of INF α2b gene in tobacco plant for the first time in Iran. MATERIALS AND METHODS Interferon α2b gene was amplified by PCR using specific primers containing appropriate restriction enzymes, plant highly expression sequence and Histidine tag sequence. Target sequence was cloned in plant expression vector pCAMBIA1304 and the construct named pCAMINFα. pCAMINFα was transferred to E. coli strain DH5α and plated on LB agar medium containing kanamycin 50 mgl-1. The colonies were confirmed by colony PCR and sequencing. The construct was transferred into Agrobacterium tumefaciens by freeze-thaw method and transformed colonies were confirmed by colony PCR. Tobacco plants (cultivar xanthi) were inoculated with A. tumefaciens strain LBA4404 by leaf disc method. Inoculated explants were cultured on MSII (MS + BAP 1mgl-1 + NAA 0.1 mgl-1) at 28°C and darkness for 48 hours. Then explants were transferred to selection medium containing cephotaxime (250 mgl-1) and hygromycin (15 mgl-1) in a 16/8 (day/night) h photoperiod in growth room with an irradiance of 5000 lux. Transgenic plants were regenerated and transferred to perlite. Genomic DNA was extracted from regenerated plants by Dellaporta method at 5-leaf step and transgenic lines were confirmed by PCR with specific primers. Expression of Interferon α2b gene was confirmed by dot blotting. CONCLUSIONS Since no report of interferon alpha production in plants in Iran has been expressed yet, this research could create a field of producing this drug in tobacco, in Iran.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Department of Agricultural Biotechnology, University of Agriculture and Natural Resources, Ahwaz, IR Iran,Department of Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Hosein Daneshvar
- Department of Agricultural Biotechnology, University of Agriculture and Natural Resources, Ahwaz, IR Iran
| | - Hamid Rajabi-Memari
- Department of Agronomy and Plant Breeding, Shahid Chamran University, Ahwaz, IR Iran,Corresponding author: Hamid Rajabi-Memari, Department of Agronomy and Plant Breeding, Shahid Chamran University, Ahwaz, IR Iran. Tel.: +98-02123872552. E-mail:
| | - Hamid Galehdari
- Department of Genetics, Shahid Chamran University, Ahwaz, IR Iran
| | - Khalil Alamisaied
- Department of Agricultural Biotechnology, University of Agriculture and Natural Resources, Ahwaz, IR Iran
| |
Collapse
|
13
|
Salyaev RK, Rigano MM, Rekoslavskaya NI. Development of plant-based mucosal vaccines against widespread infectious diseases. Expert Rev Vaccines 2010; 9:937-46. [PMID: 20673015 DOI: 10.1586/erv.10.81] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mucosal vaccination is a perspective for the control of infectious diseases, since it is capable of inducing humoral and cell-mediated responses. In addition, the delivery of vaccines to mucosal surfaces makes immunization practice safe and acceptable, and eliminates needle-associated risks. Transgenic plants can be used as bioreactors for the production of mucosally delivered protective antigens. This technology shows great promise to simplify and decrease the cost of vaccine delivery. Herein, we review the development of mucosally administered vaccines expressed in transgenic plants. In particular, we evaluate the advantages and disadvantages of using plants for the production of mucosal vaccines against widespread infectious diseases such as HIV, hepatitis B and TB.
Collapse
Affiliation(s)
- Rurick K Salyaev
- Siberian Institute of Plant Physiology and Biochemistry of The Siberian Branch of the RAS, Irkutsk, Russia.
| | | | | |
Collapse
|
14
|
Zhang Q, Zhong J, Huan L. Expression of hepatitis B virus surface antigen determinants in Lactococcus lactis for oral vaccination. Microbiol Res 2010; 166:111-20. [PMID: 20227266 DOI: 10.1016/j.micres.2010.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/03/2010] [Accepted: 02/06/2010] [Indexed: 11/30/2022]
Abstract
Lactococcus lactis with non-pathogenic and non-colonizing properties is an attractive candidate for delivering biologically active proteins by mucosal routes. In this report we described recombinant L. lactis applicable for the development of live mucosal vaccine against hepatitis B virus (HBV). The PreS region of the HBV surface antigen alone or combined with "a" determinant of S region (PreSa) was cloned and expressed in the food grade bacterium L. lactis using a nisin-controlled expression (NICE) system. Western blot analysis indicated that both PreS and PreSa fusion proteins were successfully expressed in L. lactis after nisin induction. Oral immunization of BALB/c mice with PreS and PreSa-producing strains induced both mucosal (intestinal IgA) and systemic (serum IgG) immune responses against HBV at the same magnitude. Two additional groups of mice given L. lactis expressing human interferon-alpha 2b as an adjuvant with the PreS or PreSa-producing strains produced higher IgG but not IgA antibody responses. These results indicated that the lactococci-derived vaccines could be promising candidates as alternative HBV vaccines for preventing hepatitis B.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | |
Collapse
|
15
|
Deineko EV, Zagorskaya AA, Pozdnyakov SG, Filipenko EA, Permyakova NV, Sidorchuk YV, Uvarova EA, Pozdnyakova LD, Shumny VK, Vlasov VV, Hammond RV, Shchelkunov SN. Comparative analysis of HBV M-antigen production in leaves of individual transgenic carrot plants. DOKL BIOCHEM BIOPHYS 2009; 425:76-9. [DOI: 10.1134/s1607672909020057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 2009; 27:449-67. [PMID: 19356740 PMCID: PMC7126855 DOI: 10.1016/j.biotechadv.2009.03.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/12/2022]
Abstract
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Rakesh Tuli
- Corresponding author. National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226001 (U.P.) India. Tel.: +91 522 2205848; fax: +91 522 2205839.
| |
Collapse
|
17
|
Bobak DA. Hepatitis B vaccine nonresponders: a role for revaccination with the combination hepatitis A/B vaccine? Curr Infect Dis Rep 2009; 11:93-4. [PMID: 19239797 DOI: 10.1007/s11908-009-0013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|