1
|
Taylor DM, Anglin J, Park S, Ucisik MN, Faver JC, Simmons N, Jin Z, Palaniappan M, Nyshadham P, Li F, Campbell J, Hu L, Sankaran B, Prasad BV, Huang H, Matzuk MM, Palzkill T. Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries. ACS Infect Dis 2020; 6:1214-1227. [PMID: 32182432 PMCID: PMC7673237 DOI: 10.1021/acsinfecdis.0c00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial resistance to β-lactam antibiotics is largely mediated by β-lactamases, which catalyze the hydrolysis of these drugs and continue to emerge in response to antibiotic use. β-Lactamases that hydrolyze the last resort carbapenem class of β-lactam antibiotics (carbapenemases) are a growing global health threat. Inhibitors have been developed to prevent β-lactamase-mediated hydrolysis and restore the efficacy of these antibiotics. However, there are few inhibitors available for problematic carbapenemases such as oxacillinase-48 (OXA-48). A DNA-encoded chemical library approach was used to rapidly screen for compounds that bind and potentially inhibit OXA-48. Using this approach, a hit compound, CDD-97, was identified with submicromolar potency (Ki = 0.53 ± 0.08 μM) against OXA-48. X-ray crystallography showed that CDD-97 binds noncovalently in the active site of OXA-48. Synthesis and testing of derivatives of CDD-97 revealed structure-activity relationships and informed the design of a compound with a 2-fold increase in potency. CDD-97, however, synergizes poorly with β-lactam antibiotics to inhibit the growth of bacteria expressing OXA-48 due to poor accumulation into E. coli. Despite the low in vivo activity, CDD-97 provides new insights into OXA-48 inhibition and demonstrates the potential of using DNA-encoded chemistry technology to rapidly identify β-lactamase binders and to study β-lactamase inhibition, leading to clinically useful inhibitors.
Collapse
Affiliation(s)
- Doris Mia Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Anglin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suhyeorn Park
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melek N. Ucisik
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John C. Faver
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas Simmons
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhuang Jin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Murugesan Palaniappan
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pranavanand Nyshadham
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James Campbell
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Lab, CA, 94720, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongbing Huang
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
2
|
O'Malley MA, Naranjo AN, Lazarova T, Robinson AS. Analysis of adenosine A₂a receptor stability: effects of ligands and disulfide bonds. Biochemistry 2010; 49:9181-9. [PMID: 20853839 DOI: 10.1021/bi101155r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of integral membrane proteins present in all eukaryotic cells, yet relatively little information about their structure, folding, and stability has been published. In this work, we describe several approaches to characterizing the conformational stability of the human adenosine A(2)a receptor (hA(2)aR). Thermal denaturation and chemical denaturation were not reversible, yet clear differences in the unfolding behavior were observed upon ligand binding via circular dichroism and fluorescence spectrometry. We found that the stability of hA(2)aR was increased upon incubation with the agonist N(6)-cyclohexyladenosine or the antagonist theophylline. When extracellular disulfide bonds were reduced with a chemical reducing agent, the ligand binding activity decreased by ~40%, but reduction of these bonds did not compromise the unfolding transition observed via urea denaturation. Overall, these approaches offer a general strategy for characterizing the effect of surfactant and ligand effects on the stability of GPCRs.
Collapse
Affiliation(s)
- Michelle A O'Malley
- Department of Chemical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
3
|
O'Malley MA, Mancini JD, Young CL, McCusker EC, Raden D, Robinson AS. Progress toward heterologous expression of active G-protein-coupled receptors in Saccharomyces cerevisiae: Linking cellular stress response with translocation and trafficking. Protein Sci 2009; 18:2356-70. [PMID: 19760666 PMCID: PMC2788290 DOI: 10.1002/pro.246] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/15/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
High-level expression of mammalian G-protein-coupled receptors (GPCRs) is a necessary step toward biophysical characterization and high-resolution structure determination. Even though many heterologous expression systems have been used to express mammalian GPCRs at high levels, many receptors are improperly trafficked or are inactive in these systems. En route to engineering a robust microbial host for GPCR expression, we have investigated the expression of 12 GPCRs in the yeast Saccharomyces cerevisiae, where all receptors are expressed at the mg/L scale. However, only the human adenosine A(2)a (hA(2)aR) receptor is active for ligand-binding and located primarily at the plasma membrane, whereas other tested GPCRs are mainly retained within the cell. Selective receptors associate with BiP, an ER-resident chaperone, and activated the unfolded protein response (UPR) pathway, which suggests that a pool of receptors may be folded incorrectly. Leader sequence cleavage of the expressed receptors was complete for the hA(2)aR, as expected, and partially cleaved for hA(2)bR, hCCR5R, and hD(2L)R. Ligand-binding assays conducted on the adenosine family (hA(1)R, hA(2)aR, hA(2)bR, and hA(3)R) of receptors show that hA(2)aR and hA(2)bR, the only adenosine receptors that demonstrate leader sequence processing, display activity. Taken together, these studies point to translocation as a critical limiting step in the production of active mammalian GPCRs in S. cerevisiae.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne S Robinson
- Department of Chemical Engineering, University of DelawareNewark, Delaware 19716
| |
Collapse
|