1
|
Helgren TR, Seven ES, Chen C, Edwards TE, Staker BL, Abendroth J, Myler PJ, Horn JR, Hagen TJ. The identification of inhibitory compounds of Rickettsia prowazekii methionine aminopeptidase for antibacterial applications. Bioorg Med Chem Lett 2018; 28:1376-1380. [PMID: 29551481 PMCID: PMC5908248 DOI: 10.1016/j.bmcl.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/25/2022]
Abstract
Methionine aminopeptidase (MetAP) is a dinuclear metalloprotease responsible for the cleavage of methionine initiator residues from nascent proteins. MetAP activity is necessary for bacterial proliferation and is therefore a projected novel antibacterial target. A compound library consisting of 294 members containing metal-binding functional groups was screened against Rickettsia prowazekii MetAP to determine potential inhibitory motifs. The compounds were first screened against the target at a concentration of 10 µM and potential hits were determined to be those exhibiting greater than 50% inhibition of enzymatic activity. These hit compounds were then rescreened against the target in 8-point dose-response curves and 11 compounds were found to inhibit enzymatic activity with IC50 values of less than 10 µM. Finally, compounds (1-5) were docked against RpMetAP with AutoDock to determine potential binding mechanisms and the results were compared with crystal structures deposited within the PDB.
Collapse
Affiliation(s)
- Travis R Helgren
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Elif S Seven
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Congling Chen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - Jan Abendroth
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA.
| |
Collapse
|
2
|
Žalubovskis R, Winum JY. Inhibitors of Selected Bacterial Metalloenzymes. Curr Med Chem 2018; 26:2690-2714. [PMID: 29611472 DOI: 10.2174/0929867325666180403154018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/26/2022]
Abstract
The utilization of bacterial metalloenzymes, especially ones not having mammalian (human) counterparts, has drawn attention to develop novel antibacterial agents to overcome drug resistance and especially multidrug resistance. In this review, we focus on the recent achievements on the development of inhibitors of bacterial enzymes peptide deformylase (PDF), metallo-β-lactamase (MBL), methionine aminopeptidase (MetAP) and UDP-3-O-acyl- N-acetylglucosamine deacetylase (LpxC). The state of the art of the design and investigation of inhibitors of bacterial metalloenzymes is presented, and challenges are outlined and discussed.
Collapse
Affiliation(s)
- Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Latvia
| | - Jean-Yves Winum
- Institut des Biomolecules Max Mousseron, Universite de Montpellier, France
| |
Collapse
|
3
|
Helgren TR, Chen C, Wangtrakuldee P, Edwards TE, Staker BL, Abendroth J, Sankaran B, Housley NA, Myler PJ, Audia JP, Horn JR, Hagen TJ. Rickettsia prowazekii methionine aminopeptidase as a promising target for the development of antibacterial agents. Bioorg Med Chem 2017; 25:813-824. [PMID: 28089350 PMCID: PMC5319851 DOI: 10.1016/j.bmc.2016.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023]
Abstract
Methionine aminopeptidase (MetAP) is a class of ubiquitous enzymes essential for the survival of numerous bacterial species. These enzymes are responsible for the cleavage of N-terminal formyl-methionine initiators from nascent proteins to initiate post-translational modifications that are often essential to proper protein function. Thus, inhibition of MetAP activity has been implicated as a novel antibacterial target. We tested this idea in the present study by targeting the MetAP enzyme in the obligate intracellular pathogen Rickettsia prowazekii. We first identified potent RpMetAP inhibitory species by employing an in vitro enzymatic activity assay. The molecular docking program AutoDock was then utilized to compare published crystal structures of inhibited MetAP species to docked poses of RpMetAP. Based on these in silico and in vitro screens, a subset of 17 compounds was tested for inhibition of R. prowazekii growth in a pulmonary vascular endothelial cell (EC) culture infection model system. All compounds were tested over concentration ranges that were determined to be non-toxic to the ECs and 8 of the 17 compounds displayed substantial inhibition of R. prowazekii growth. These data highlight the therapeutic potential for inhibiting RpMetAP as a novel antimicrobial strategy and set the stage for future studies in pre-clinical animal models of infection.
Collapse
Affiliation(s)
- Travis R Helgren
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Congling Chen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Phumvadee Wangtrakuldee
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Bart L Staker
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Jan Abendroth
- Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicole A Housley
- Department of Microbiology and Immunology and The Center for Lung Biology, University of South Alabama College of Medicine, Laboratory of Infectious Diseases, 307 North University Blvd, Mobile, AL 36688, USA
| | - Peter J Myler
- Center for Infectious Disease Research, Formerly Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle, WA 98109, USA; Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, USA; Department of Global Health and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Jonathon P Audia
- Department of Microbiology and Immunology and The Center for Lung Biology, University of South Alabama College of Medicine, Laboratory of Infectious Diseases, 307 North University Blvd, Mobile, AL 36688, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA
| | - Timothy J Hagen
- Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115, USA.
| |
Collapse
|
4
|
Lethu S, Bosc D, Mouray E, Grellier P, Dubois J. New protein farnesyltransferase inhibitors in the 3-arylthiophene 2-carboxylic acid series: diversification of the aryl moiety by solid-phase synthesis. J Enzyme Inhib Med Chem 2012; 28:163-71. [DOI: 10.3109/14756366.2011.643302] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sébastien Lethu
- Institut de Chimie des Substances Naturelles, CNRS, Centre de Recherche de Gif,
Gif sur Yvette, France
| | - Damien Bosc
- Institut de Chimie des Substances Naturelles, CNRS, Centre de Recherche de Gif,
Gif sur Yvette, France
| | | | | | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, CNRS, Centre de Recherche de Gif,
Gif sur Yvette, France
| |
Collapse
|
5
|
Kappe CO, Dallinger D. Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Divers 2009; 13:71-193. [PMID: 19381851 DOI: 10.1007/s11030-009-9138-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/27/2009] [Indexed: 01/25/2023]
|