1
|
Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS APPLIED BIO MATERIALS 2022; 5:2507-2535. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite rapid advances in molecular biology, particularly in site-specific genome editing technologies, such as CRISPR/Cas9 and base editing, financial and logistical challenges hinder a broad population from accessing and benefiting from gene therapy. To improve the affordability and scalability of gene therapy, we need to deploy chemically defined, economical, and scalable materials, such as synthetic polymers. For polymers to deliver nucleic acids efficaciously to targeted cells, they must optimally combine design attributes, such as architecture, length, composition, spatial distribution of monomers, basicity, hydrophilic-hydrophobic phase balance, or protonation degree. Designing polymeric vectors for specific nucleic acid payloads is a multivariate optimization problem wherein even minuscule deviations from the optimum are poorly tolerated. To explore the multivariate polymer design space rapidly, efficiently, and fruitfully, we must integrate parallelized polymer synthesis, high-throughput biological screening, and statistical modeling. Although materiomics approaches promise to streamline polymeric vector development, several methodological ambiguities must be resolved. For instance, establishing a flexible polymer ontology that accommodates recent synthetic advances, enforcing uniform polymer characterization and data reporting standards, and implementing multiplexed in vitro and in vivo screening studies require considerable planning, coordination, and effort. This contribution will acquaint readers with the challenges associated with materiomics approaches to polymeric gene delivery and offers guidelines for overcoming these challenges. Here, we summarize recent developments in combinatorial polymer synthesis, high-throughput screening of polymeric vectors, omics-based approaches to polymer design, barcoding schemes for pooled in vitro and in vivo screening, and identify materiomics-inspired research directions that will realize the long-unfulfilled clinical potential of polymeric carriers in gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Pushpavanam K, Dutta S, Zhang N, Ratcliff T, Bista T, Sokolowski T, Boshoven E, Sapareto S, Breneman CM, Rege K. Radiation-Responsive Amino Acid Nanosensor Gel (RANG) for Radiotherapy Monitoring and Trauma Care. Bioconjug Chem 2021; 32:1984-1998. [PMID: 34384218 DOI: 10.1021/acs.bioconjchem.1c00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Accurate detection of doses is critical for the development of effective countermeasures and patient stratification strategies in cases of accidental exposure to ionizing radiation. Existing detection devices are limited by high fabrication costs, long processing times, need for sophisticated detection systems, and/or loss of readout signal over time, particularly in complex environments. Here, we describe fundamental studies on amino acid-facilitated templating of gold nanoparticles following exposure to ionizing radiation as a new colorimetric approach for radiation detection. Tryptophan demonstrated spontaneous nanoparticle formation, and parallel screening of a library of amino acids and related compounds led to the identification of lead candidates, including phenylalanine, which demonstrated an increase in absorbance at wavelengths typical of gold nanoparticles in the presence of ionizing radiation (X-rays). Evaluation of screening, i.e., absorbance data, in concert with chemical informatics modeling led to the elucidation of physicochemical properties, particularly polarizable regions and partial charges, that governed nanoparticle formation propensities upon exposure of amino acids to ionizing radiation. NMR spectroscopy revealed key roles of amino and carboxy moieties in determining the nanoparticle formation propensity of phenylalanine, a lead amino acid from the screen. These findings were employed for fabricating radiation-responsive amino acid nanosensor gels (RANGs) based on phenylalanine and tryptophan, and efficacy of RANGs was demonstrated for predicting clinical doses of ionizing radiation in anthropomorphic thorax phantoms and in live canine patients undergoing radiotherapy. The use of biocompatible templating ligands (amino acids), rapid response, simplicity of fabrication, efficacy, ease of operation and detection, and long-lasting readout indicate several advantages of the RANG over existing detection systems for monitoring radiation in clinical radiotherapy, radiological emergencies, and trauma care.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ni Zhang
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tyree Ratcliff
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tomasz Bista
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | | | - Eric Boshoven
- Arizona Veterinary Oncology, Gilbert, Arizona 85233, United States
| | - Stephen Sapareto
- Banner-MD Anderson Cancer Center, Gilbert, Arizona 85234, United States
| | - Curt M Breneman
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Khan PM, Roy K. QSPR modelling for investigation of different properties of aminoglycoside-derived polymers using 2D descriptors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:595-614. [PMID: 34148451 DOI: 10.1080/1062936x.2021.1939150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The quantitative structure-property relationship (QSPR) method is commonly used to predict different physicochemical characteristics of interest of chemical compounds with an objective to accelerate the process of design and development of novel chemical compounds in the biotechnology and healthcare industries. In the present report, we have employed a QSPR approach to predict the different properties of the aminoglycoside-derived polymers (i.e. polymer DNA binding and aminoglycoside-derived polymers mediated transgene expression). The final QSPR models were obtained using the partial least squares (PLS) regression approach using only specific categories of two-dimensional descriptors and subsequently evaluated considering different internationally accepted validation metrics. The proposed models are robust and non-random, demonstrating excellent predictive ability using test set compounds. We have also developed different kinds of consensus models using several validated individual models to improve the prediction quality for external set compounds. The present findings provide new insight for exploring the design of an aminoglycoside-derived polymer library based on different identified physicochemical properties as well as predict their property before their synthesis.
Collapse
Affiliation(s)
- P M Khan
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Educational and Research (NIPER), Kolkata, India
| | - K Roy
- Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Godeshala S, Miryala B, Dutta S, Christensen MD, Nandi P, Chiu PL, Rege K. A library of aminoglycoside-derived lipopolymer nanoparticles for delivery of small molecules and nucleic acids. J Mater Chem B 2020; 8:8558-8572. [PMID: 32830211 DOI: 10.1039/d0tb00924e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simultaneous delivery of small molecules and nucleic acids using a single vehicle can lead to novel combination treatments and multifunctional carriers for a variety of diseases. In this study, we report a novel library of aminoglycoside-derived lipopolymers nanoparticles (LPNs) for the simultaneous delivery of different molecular cargoes including nucleic acids and small-molecules. The LPN library was screened for transgene expression efficacy following delivery of plasmid DNA, and lead LPNs that showed high transgene expression efficacies were characterized using hydrodynamic size, zeta potential, 1H NMR and FT-IR spectroscopy, and transmission electron microscopy. LPNs demonstrated significantly higher efficacies for transgene expression than 25 kDa polyethyleneamine (PEI) and lipofectamine, including in presence of serum. Self-assembly of these cationic lipopolymers into nanoparticles also facilitated the delivery of small molecule drugs (e.g. doxorubicin) to cancer cells. LPNs were also employed for the simultaneous delivery of the small-molecule histone deacetylase (HDAC) inhibitor AR-42 together with plasmid DNA to cancer cells as a combination treatment approach for enhancing transgene expression. Taken together, our results indicate that aminoglycoside-derived LPNs are attractive vehicles for simultaneous delivery of imaging agents or chemotherapeutic drugs together with nucleic acids for different applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Sudhakar Godeshala
- Chemical Engineering, Arizona State University, 501 E. Tyler Mall, ECG 303, Tempe, AZ 85287-6106, USA.
| | - Bhavani Miryala
- Chemical Engineering, Arizona State University, 501 E. Tyler Mall, ECG 303, Tempe, AZ 85287-6106, USA.
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Matthew D Christensen
- Chemical Engineering, Arizona State University, 501 E. Tyler Mall, ECG 303, Tempe, AZ 85287-6106, USA.
| | - Purbasha Nandi
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, 501 E. Tyler Mall, ECG 303, Tempe, AZ 85287-6106, USA.
| |
Collapse
|
5
|
Zhen Z, Potta T, Christensen MD, Narayanan E, Kanagal K, Breneman CM, Rege K. Accelerated Materials Discovery Using Chemical Informatics Investigation of Polymer Physicochemical Properties and Transgene Expression Efficacy. ACS Biomater Sci Eng 2018; 5:654-669. [DOI: 10.1021/acsbiomaterials.8b00963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuo Zhen
- Rensselaer Exploratory Center for Cheminformatics Research and Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Thrimoorthy Potta
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Matthew D. Christensen
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Eshwaran Narayanan
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Kapil Kanagal
- Brophy College Preparatory, 4701 N Central Ave, Phoenix, Arizona 85012, United States
| | - Curt M. Breneman
- Rensselaer Exploratory Center for Cheminformatics Research and Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, United States
| |
Collapse
|
6
|
Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery. J Control Release 2017; 249:131-142. [DOI: 10.1016/j.jconrel.2017.01.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/28/2017] [Indexed: 12/18/2022]
|
7
|
Mével M, Haudebourg T, Colombani T, Peuziat P, Dallet L, Chatin B, Lambert O, Berchel M, Montier T, Jaffrès PA, Lehn P, Pitard B. Important role of phosphoramido linkage in imidazole-based dioleyl helper lipids for liposome stability and primary cell transfection. J Gene Med 2016; 18:3-15. [PMID: 26519353 DOI: 10.1002/jgm.2869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To optimize synthetic gene delivery systems, there is a need to develop more efficient lipid formulations. Most cationic lipid formulations contain 'helper' neutral lipids because of their ability to increase DNA delivery, in particular by improving endosomal escape of DNA molecules via the pH-buffering effect of protonatable groups and/or fusion with the lipid bilayer of endosomes. METHODS We evaluated the influence of the linker structure between the two oleyl chains in the helper lipid on transfection efficiency in cell lines, as well as in primary cells (hepatocytes/cardiomyocytes). We reported the synthesis of two new pH-buffering imidazole helper lipids characterized by a polar headgroup containing one (compound 6) or two (compound 5) imidazole groups and two oleyl chains linked by an amide group. We studied their association with the aminoglycoside lipidic derivative dioleylsuccinylparomomycin (DOSP), which contains two oleyl chains linked to the aminoglycoside polar headgroup via an amide function. We compared the morphology and transfection properties of such binary liposomes of DOSP/5 and DOSP/6 with those of liposomes combining DOSP with another imidazole-based dioleyl helper lipid (MM27) in which a phosphoramido group acts as a linker between the two oleyl chains and imidazole function. RESULTS The phosphoramido linker in the helper lipid induces a major difference in terms of morphology and resistance to decomplexation at physical pH for DOSP/helper lipid complexes. CONCLUSIONS This hybrid dioleyl linker composition of DOSP/MM27 led to higher transfection efficiency in cell lines and in primary cells compared to complexes with homogeneous dioleyl linker.
Collapse
Affiliation(s)
- Mathieu Mével
- Unité INSERM UMR 1087, CNRS UMR 6291, Nantes, France
- Université de Nantes, l'institut du thorax, Nantes, France
| | - Thomas Haudebourg
- Unité INSERM UMR 1087, CNRS UMR 6291, Nantes, France
- Université de Nantes, l'institut du thorax, Nantes, France
| | - Thibault Colombani
- Unité INSERM UMR 1087, CNRS UMR 6291, Nantes, France
- Université de Nantes, l'institut du thorax, Nantes, France
| | - Pauline Peuziat
- Unité INSERM UMR 1087, CNRS UMR 6291, Nantes, France
- Université de Nantes, l'institut du thorax, Nantes, France
| | - Laurence Dallet
- Unité INSERM UMR 1087, CNRS UMR 6291, Nantes, France
- Université de Nantes, l'institut du thorax, Nantes, France
- CBMN UMR-CNRS 5248 IECB, Université de Bordeaux 1-IPB, Pessac, France
| | - Benoît Chatin
- Unité INSERM UMR 1087, CNRS UMR 6291, Nantes, France
- Université de Nantes, l'institut du thorax, Nantes, France
| | - Olivier Lambert
- CBMN UMR-CNRS 5248 IECB, Université de Bordeaux 1-IPB, Pessac, France
| | - Mathieu Berchel
- UMR CNRS 6521, IFR 148 ScInBioS, Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest, France
| | - Tristan Montier
- Unité INSERM 1078, IFR 148 ScInBioS, Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest Cedex, France
- Service de Génétique Moléculaire et d'histocompatibilité, CHUR, Brest, France
| | - Paul-Alain Jaffrès
- UMR CNRS 6521, IFR 148 ScInBioS, Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest, France
| | - Pierre Lehn
- Unité INSERM 1078, IFR 148 ScInBioS, Université de Bretagne Occidentale, Université Européenne de Bretagne, Brest Cedex, France
| | - Bruno Pitard
- Unité INSERM UMR 1087, CNRS UMR 6291, Nantes, France
- Université de Nantes, l'institut du thorax, Nantes, France
| |
Collapse
|
8
|
Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery. Colloids Surf B Biointerfaces 2016; 146:924-37. [PMID: 27472455 DOI: 10.1016/j.colsurfb.2016.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023]
Abstract
The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer.
Collapse
|
9
|
Godeshala S, Nitiyanandan R, Thompson B, Goklany S, Nielsen DR, Rege K. Folate receptor-targeted aminoglycoside-derived polymers for transgene expression in cancer cells. Bioeng Transl Med 2016; 1:220-231. [PMID: 29313013 PMCID: PMC5675079 DOI: 10.1002/btm2.10038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Targeted delivery of anticancer therapeutics can potentially overcome the limitations associated with current chemotherapeutic regimens. Folate receptors are overexpressed in several cancers, including ovarian, triple-negative breast and bladder cancers, making them attractive for targeted delivery of nucleic acid therapeutics to these tumors. This work describes the synthesis, characterization and evaluation of folic acid-conjugated, aminoglycoside-derived polymers for targeted delivery of transgenes to breast and bladder cancer cell lines. Transgene expression was significantly higher with FA-conjugated aminoglycoside-derived polymers than with Lipofectamine, and these polymers demonstrated minimal cytotoxicty. Competitive inhibition using free folic acid significantly reduced transgene expression efficacy of folate-targeted polymers, suggesting a role for folate receptor-mediated uptake. High efficacy FA-targeted polymers were employed to deliver a plasmid expressing the TRAIL protein, which induced death in cancer cells. These results indicate that FA-conjugated aminoglycoside-derived polymers are promising for targeted delivery of nucleic acids to cancer cells that overexpress folate receptors.
Collapse
Affiliation(s)
| | | | - Brian Thompson
- Chemical EngineeringArizona State UniversityTempeAZ85287
| | - Sheba Goklany
- Chemical EngineeringArizona State UniversityTempeAZ85287
| | | | - Kaushal Rege
- Chemical EngineeringArizona State UniversityTempeAZ85287
| |
Collapse
|
10
|
Miryala B, Zhen Z, Potta T, Breneman CM, Rege K. Parallel Synthesis and Quantitative Structure–Activity Relationship (QSAR) Modeling of Aminoglycoside-Derived Lipopolymers for Transgene Expression. ACS Biomater Sci Eng 2015; 1:656-668. [DOI: 10.1021/acsbiomaterials.5b00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bhavani Miryala
- Chemical
Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Zhuo Zhen
- Department
of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Thrimoorthy Potta
- Chemical
Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Curt M. Breneman
- Department
of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kaushal Rege
- Chemical
Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| |
Collapse
|
11
|
Grandhi TSP, Mallik A, Lin KN, Miryala B, Potta T, Tian Y, Rege K. Aminoglycoside antibiotic-derived anion-exchange microbeads for plasmid DNA binding and in situ DNA capture. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18577-89. [PMID: 25314226 DOI: 10.1021/am503240q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plasmid DNA (pDNA) therapeutics are being investigated for gene therapy and DNA vaccines against diseases including cancer, cystic fibrosis and AIDS. In addition, several applications in modern biotechnology require pDNA for transient protein production. Here, we describe the synthesis, characterization, and evaluation of microbeads ("Amikabeads") derived from the aminoglycoside antibiotic amikacin for pDNA binding and in situ DNA capture from mammalian cells. The parental aminoglycoside-derived microbeads (Amikabeads-P) acted as anion-exchange materials, and demonstrated high capacities for binding pDNA. Binding of pDNA was significantly enhanced following quaternization of the amines on the microbeads (Amikabeads-Q). Amikabeads were further employed for the disruption and extraction of DNA from mammalian cells, indicating their utility for in situ DNA capture. Our results indicate that Amikabeads are a novel material, with multiple reactive groups for further conjugation, and can have several applications in plasmid DNA biotechnology.
Collapse
Affiliation(s)
- Taraka Sai Pavan Grandhi
- Harrington Biomedical Engineering, School of Biological and Health Systems Engineering ‡Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Potta T, Zhen Z, Grandhi TSP, Christensen MD, Ramos J, Breneman CM, Rege K. Discovery of antibiotics-derived polymers for gene delivery using combinatorial synthesis and cheminformatics modeling. Biomaterials 2013; 35:1977-88. [PMID: 24331709 DOI: 10.1016/j.biomaterials.2013.10.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/27/2013] [Indexed: 01/06/2023]
Abstract
We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and 'building block' polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology.
Collapse
Affiliation(s)
- Thrimoorthy Potta
- Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Zhuo Zhen
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | - James Ramos
- Harrington Biomedical Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Curt M Breneman
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA; Harrington Biomedical Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
13
|
Ramos J, Rege K. Poly(aminoether)-gold nanorod assemblies for shRNA plasmid-induced gene silencing. Mol Pharm 2013; 10:4107-19. [PMID: 24066795 DOI: 10.1021/mp400080f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanorods (GNRs) have emerged as promising nanomaterials for biosensing, imaging, photothermal hyperthermia treatments, and therapeutic delivery for several diseases. We generated poly(aminoether)-GNR nanoassemblies using a layer-by-layer deposition approach based on the 1,4C-1,4Bis polymer from a library recently synthesized in our laboratory. Subtoxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ("shRNA plasmid") against firefly luciferase gene to knock down expression of the protein constitutively expressed in prostate cancer cells. The role of hydrodynamic size and zeta potential in determining nanoassembly mediated luciferase silencing was investigated. Finally, the theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. Our results indicate that poly(aminoether)-GNR nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
Collapse
Affiliation(s)
- James Ramos
- Biomedical Engineering, School of Biological and Health Systems Engineering and ‡Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University , 501 E. Tyler Mall, ECG 303, Tempe, Arizona 85287-6106, United States
| | | |
Collapse
|
14
|
Vu L, Ramos J, Potta T, Rege K. Generation of a focused poly(amino ether) library: polymer-mediated transgene delivery and gold-nanorod based theranostic systems. Am J Cancer Res 2012; 2:1160-73. [PMID: 23382773 PMCID: PMC3563149 DOI: 10.7150/thno.4492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/14/2012] [Indexed: 12/13/2022] Open
Abstract
A focused library of twenty-one cationic poly(amino ethers) was synthesized following ring-opening polymerization of two diglycidyl ethers by different oligoamines. The polymers were screened in parallel for plasmid DNA (pDNA) delivery, and transgene expression efficacies of individual polymers were compared to those of 25 kDa polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Seven lead polymers that demonstrated higher transgene expression than PEI in pancreatic and prostate cancer cells lines were identified from the screen. All seven lead polymers showed highest transgene expression at a polymer:pDNA weight ratio of 5:1 in the MIA PaCa-2 pancreatic cancer cell line. Among the conditions studied, transgene expression efficacy correlated with minimal polymer cytotoxicity but not polyplex sizes. In addition, this study indicated that methylene spacing between amine centers in the monomers, amine content, and molecular weight of the polymers are all significant factors and should be considered when designing polymers for transgene delivery. A lead effective polymer was employed for coating gold nanorods, leading to theranostic nanoassemblies that possess combined transgene delivery and optical imaging capabilities, leading to potential theranostic systems.
Collapse
|
15
|
Paromomycin and neomycin B derived cationic lipids: Synthesis and transfection studies. J Control Release 2012; 158:461-9. [DOI: 10.1016/j.jconrel.2011.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/12/2011] [Accepted: 12/17/2011] [Indexed: 11/21/2022]
|
16
|
Ramos J, Rege K. Transgene delivery using poly(amino ether)-gold nanorod assemblies. Biotechnol Bioeng 2012; 109:1336-46. [PMID: 22170455 DOI: 10.1002/bit.24408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/31/2011] [Accepted: 11/28/2011] [Indexed: 01/19/2023]
Abstract
Gold nanorods (GNRs) have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment, and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach; polymers from a poly(amino ether) library recently synthesized in our laboratory were employed to generate the PAE-GNR assemblies. PAE-GNR assemblies demonstrate long-term colloidal stability as well as the capacity to bind plasmid DNA by means of electrostatic interactions. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. The roles of polyelectrolyte chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. Our results indicate that stable and effective PAE-GNR assemblies are a promising engineered platform for transgene delivery. PAE-GNRs also have the potential to be used simultaneously for photothermal ablation, photothermally enhanced drug and gene delivery, and biological imaging, thus making them a powerful theranostic platform.
Collapse
Affiliation(s)
- James Ramos
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-6106, USA
| | | |
Collapse
|
17
|
Abstract
The extent of ionization of the polyamines is an important factor in their interactions with cellular components. The pK(a) is the pH at which a functional group is 50% ionized. For compounds such as polyamines with more than one ionizable center (atom or functional group), there is a pK(a) value for each center of ionization. This chapter describes the pK(a) values for each amine group in many important polyamines, the factors influencing these values and methods for their determination using potentiometric titration and nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | |
Collapse
|
18
|
Barua S, Joshi A, Banerjee A, Matthews D, Sharfstein ST, Cramer SM, Kane RS, Rege K. Parallel synthesis and screening of polymers for nonviral gene delivery. Mol Pharm 2009; 6:86-97. [PMID: 19102694 DOI: 10.1021/mp800151j] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We describe the parallel synthesis and in vitro evaluation of a cationic polymer library for the discovery of nonviral gene delivery vectors. The library was synthesized based on the ring-opening polymerization reaction between epoxide groups of diglycidyl ethers and the amines of (poly)amines. Parallel screening of soluble library constituents led to the identification of lead polymers with high DNA-binding efficacies. Transfection efficacies of lead polymers were evaluated using PC3-PSMA human prostate cancer cells and murine osteoblasts in the absence and presence of serum. In vitro experiments resulted in the identification of a candidate polymer that demonstrated significantly higher transfection efficacies and lower cytotoxicities than poly(ethyleneimine) (pEI), the current standard for polymeric transfection agents. In addition, polymers that demonstrated moderately higher and comparable transfection efficacies with respect to pEI were also identified. Our results demonstrate that high-throughput synthesis and screening of polymers is a powerful approach for the identification of novel nonviral gene delivery agents.
Collapse
Affiliation(s)
- Sutapa Barua
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6006, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Verma RP, Hansch C. Investigation of DNA‐Binding Properties of Organic Molecules Using Quantitative Structure‐Activity Relationship (QSAR) Models. J Pharm Sci 2008; 97:88-110. [PMID: 17722103 DOI: 10.1002/jps.21087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Due to the great potential of DNA as a receptor, many classes of synthetic and naturally occurring molecules exert their anticancer activities through DNA-binding. In the field of antitumor DNA-binding agents, a number of acridine and anthracycline derivatives are in the market as chemotherapeutic agents. However, the clinical application of such classes of compounds has encountered problems such as multi-drug resistance and secondary and/or collateral effects. Thus, there has been increasing interest in discovering and developing small molecules that are capable of DNA-binding, which will be expected to be used either in place of or in conjunction with, the existing compounds. The interest in the application of the QSAR paradigm has steadily increased in recent decades and we hope it may be useful in the design and development of DNA-binding molecules as new anticancer agents. In the present review, an attempt has been made to understand the DNA-binding properties of different compound series and discussed using 27 QSAR models, which reveal a number of interesting points. The most important determinants for the activity in these models are Hammett electronic (sigma and sigma+), hydrophobic, molar refractivity, and Sterimol width parameters.
Collapse
Affiliation(s)
- Rajeshwar P Verma
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, CA 91711, USA.
| | | |
Collapse
|
20
|
Strømgaard K, Piazzi L, Olsen CA, Franzyk H, Jaroszewski JW. Protolytic properties of polyamine wasp toxin analogues studied by 13C NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44:1013-22. [PMID: 16941578 DOI: 10.1002/mrc.1890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Acid-base properties of the natural polyamine wasp toxin PhTX-433 (1) and seven synthetic analogues [PhTX-343 (2), PhTX-334 (3), PhTX-443 (4), PhTX-434 (5), PhTX-344 (6), PhTX-444 (7), and PhTX-333 (8)], each having four protolytic sites, were characterized by 13C NMR spectroscopy. Nonlinear, multiparameter, simultaneous fit of all chemical shift data obtained from the NMR titration curves yielded macroscopic pKa values as well as intrinsic chemical shift data of all differently protonated macrospecies. Analyses of the chemical shift data demonstrated strong interactions between all four sites and provided information about complex relationships between chemical shift values and protonation state. Deprotonation of fully protonated forms starts at the central amino group of the polyamine moiety, and the extent of this trend depends on the distance to the flanking, protonated amino groups. The pKa1 values of 1-8 are in the range 8.2-9.4. Hence, some of the toxins are incompletely protonated at the pH and ionic strength conditions used for assessment of their interactions with ionotropic glutamate and nicotinic acetylcholine receptors, and the degree of protonation is expected to have pharmacological importance in the ion-channel binding event.
Collapse
Affiliation(s)
- Kristian Strømgaard
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
21
|
|