1
|
Zhao X, Ma X, Ma Y, Yuan Z, Wang S, Pan Y, Shi M, Lin J. Ferrihydrite sulfidation transformation and coupled As(V) and Cd(II) mobilization under anoxic conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137734. [PMID: 40022930 DOI: 10.1016/j.jhazmat.2025.137734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/03/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Ferrihydrite sulfidation is an important process influencing the environmental behavior of co-existent arsenate (As(V)) and cadmium (Cd(II)) pollutants in mining-impacted environments. However, the mineral evolution of ferrihydrite and the coupled mobilization behavior of co-existent As(V) and Cd(II) remain unclear. In this study, we have investigated As(V)-Cd(II)-bearing ferrihydrite conversion behavior induced by environmentally relevant concentrations of S(-II) (1 and 5 mM). PXRD, HR-TEM, and XAS results demonstrate that the co-existent As(V) and Cd(II) inhibit the conversion of ferrihydrite to secondary lepidocrocite (γ-FeO(OH)) and subsequently to goethite (α-FeO(OH)) at different S(-II) concentrations. Elevated As(V) and Cd(II) levels promote the formation of amorphous mackinawite (FeS) and pyrite (FeS2). Lepidocrocite and greenockite (CdS) are the predominant secondary phases at 1 mM S(-II) but lepidocrocite and pyrite are dominant at 5 mM S(-II) when the As(V) and Cd(II) levels are low. These sulfidation transformation pathways reduce the mobilization of the co-existent As(V) and Cd(II). Cs-TEM and chemical extraction results reveal that substantial portions of Cd(II) and As(V) are incorporated into secondary pyrite and lepidocrocite, in addition to surface adsorption and greenockite precipitation. These findings not only enhance our understanding of the geochemical cycling of Fe(III), As(V), and Cd(II) in natural anoxic sulfidic environments but also may provide guidelines for developing effective remediation methods for As-Cd co-contaminated settings.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Xu Ma
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China.
| | - Yuyin Ma
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Zidan Yuan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Yuanming Pan
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Meiling Shi
- Liaoning Eco-Environmental Protection Science and Technology Center, Liaoning 110061, PR China
| | - Jinru Lin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Arslan M, Usman M, Gamal El-Din M. Metal sulfides in aged-coarse sands tailings facilitate naphthenic acids removal from oil sands process water. WATER RESEARCH 2025; 276:123253. [PMID: 39933298 DOI: 10.1016/j.watres.2025.123253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The use of natural substrates for oil sands process water (OSPW) reclamation offers advantages such as onsite availability and scalability. This study evaluated potential of aged and fresh coarse sand tailings (CST) towards removal of classical naphthenic acids (NAs) from a real OSPW obtained from an oil sands' tailing ponds in Alberta (NAs: 4.87 mg/L). Aged-CST achieved superior removal efficiencies of NAs (96.5 %), aromatics (>90 %), and acid-extractable organics (∼95 %), compared to fresh-CST, which showed limited removal (∼34.3 %) similar to conventional slow sand filters (∼30-45 %). Although limited surface area of both CST materials (∼1.82 m2/g) was not conducive to physical adsorption, the oxidation of metal sulfides in aged-CST enhanced the chemical reactivity, surface heterogeneity, and microbial activity, facilitating efficient adsorption, precipitation, and biodegradation of NAs. Kinetics modelling indicated that aged-CST strongly fit the pseudo-second order (R² = 0.969, k₂ = 0.003 g mg⁻¹ h⁻¹) and Elovich model (R² = 0.876, 1/b = 1.713 mg g⁻¹), indicating chemisorption as dominant removal mechanism, while fresh-CST exhibited poor fits and limited performance. Fourier-transform infrared spectroscopy and synchronous fluorescence spectroscopy analyses revealed that intensities of hydroxyl groups, aliphatic, carboxylic, and ester compounds significantly increased in aged-CST after filtration. A labelled isotope desorption study using Lauric-D23 acid cross-verified that adsorption and precipitation (∼65 %) with metal sulfides were key mechanisms, while remaining ∼35 % were chemically transformed by-products, as indicated by mass balance. Microbial community analysis showed that aged-CST had higher microbial richness (Chao1 ∼1000) compared to fresh-CST (∼500, respectively). Hydrocarbon-degrading bacteria (e.g., Rhodococcus and Sphingomonas) and acidophilic bacteria (Bryobacter, Candidatus Solibacter) were dominant in aged-CST, facilitating NAs biodegradation. BE-SPME analysis confirmed successful removal (∼86 %) of bioavailable organics removing toxicity. This study highlights aged-CST as a viable natural substrate for OSPW reclamation, offering insights into its fate and opportunities for resource recovery.
Collapse
Affiliation(s)
- Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.
| |
Collapse
|
3
|
Samulewski RB, Graff IL, Nemšák S, Zaia DAM. Influence of Cyanide and Thiocyanate on the Formation of Magnetite Synthesized under Prebiotic Chemistry Conditions: Interplay between Surface, Structural, and Magnetic Properties. ACS OMEGA 2025; 10:13377-13387. [PMID: 40224451 PMCID: PMC11983221 DOI: 10.1021/acsomega.4c11450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Understanding the chemical and geological conditions of early Earth is crucial to unraveling the processes that led to the evolution of life. Iron, abundant in the early oceans, likely played a significant role in the evolution of life, particularly in the form of minerals that supported the emergence of the first life forms. This article investigates the catalytic effects of cyanide and thiocyanate ions on magnetite samples synthesized under conditions that simulate the early Earth. Magnetite samples were characterized using X-ray photoelectron spectroscopy (XPS), Fe L23 near-edge X-ray absorption fine structure (NEXAFS), transmission electron microscopy (TEM), and magnetization measurements. The results reveal variations in elemental composition influenced by synthesis conditions, with cyanide ions promoting the formation of magnetite and seawater and thiocyanate inducing the formation of ferrihydrite and goethite, respectively, along with magnetite. These discoveries enrich our understanding of Earth's earliest geochemical processes, contribute to new material synthesis routes, and help environmental science.
Collapse
Affiliation(s)
- Rafael Block Samulewski
- Programa
de Pós-Graduação em Ciência e Engenharia
de Materiais (PPGCEM), Universidade Tecnológica
Federal do Paraná UTFPR, Apucarana, Paraná CEP 86812-460, Brazil
| | - Ismael Leandro Graff
- Departamento
de Física, Universidade Federal do
Paraná UFPR, Curitiba, Paraná CEP 81531-980, Brazil
| | - Slavomír Nemšák
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | |
Collapse
|
4
|
Lu F, Wang J, Zhang C, Xin Z, Deng Z, Ren J, Shi J. Sodium citrate-modification enhanced Fe 3S 4 for Cr(Ⅵ) removal from aqueous solution and soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125889. [PMID: 39986560 DOI: 10.1016/j.envpol.2025.125889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Fe3S4 has been widely employed to remove Cr(Ⅵ) from wastewater, however, its practical effectiveness is often limited by agglomeration and passivation. This study introduces sodium citrate (SC) as a ligand to synthesize an Fe3S4-SC magnetic micro-crystal for Cr(Ⅵ) removal from aqueous solutions and contaminated soils. Experimental results show that Fe3S4-SC exhibits superior Cr(Ⅵ) removal efficiency, especially in acidic environments, with a maximum adsorption capacity of 449.12 mg/g. When Fe3S4-SC was used to remediate Cr(Ⅵ)-contaminated soil with a Cr(Ⅵ) content of 664.98 mg/kg and a TCLP-Cr(Ⅵ) concentration of 26.57 mg/L, the removal efficiencies of Cr(Ⅵ) and TCLP-Cr(Ⅵ) were 99.29% and 98.52% after 60 days. Cr speciation shifted from exchangeable fraction and weak acid-soluble fraction to more stable species bound to Fe-Mn oxides and residual fraction. Cr(Ⅵ) removal was primarily facilitated by surface Fe(Ⅱ), dissolved Fe(Ⅱ), and surface S(-Ⅱ). Surface S(-Ⅱ) provided electrons to Fe(Ⅲ), facilitating Fe(Ⅱ) regeneration for the continuous reduction of Cr(Ⅵ). The SC ligand enhanced material dispersion and stability, promoted Fe(Ⅱ) dissolution, reduced passivation layer formation, and improved electron transfer efficiency, thus increasing the efficacy of Fe3S4-SC in Cr(Ⅵ) removal. These findings provide a valuable reference for effectively remediating Cr(Ⅵ) contamination in wastewater and soil.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Xin
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenkun Deng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Scintilla S, Rossetto D, Clémancey M, Rendon J, Ranieri A, Guella G, Assfalg M, Borsari M, Gambarelli S, Blondin G, Mansy SS. Prebiotic synthesis of the major classes of iron-sulfur clusters. Chem Sci 2025; 16:4614-4624. [PMID: 39944125 PMCID: PMC11812447 DOI: 10.1039/d5sc00524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Conditions that led to the synthesis of iron-sulfur clusters coordinated to tripeptides with a single thiolate ligand were investigated by UV-vis, NMR, EPR, and Mössbauer spectroscopies and by electrochemistry. Increasing concentrations of hydrosulfide correlated with the formation of higher nuclearity iron-sulfur clusters from mononuclear to [2Fe-2S] to [4Fe-4S] and finally to a putative, nitrogenase-like [6Fe-9S] complex. Increased nuclearity was also associated with decreased dynamics and increased stability. The synthesis of higher nuclearity iron-sulfur clusters is compatible with shallow, alkaline bodies of water on the surface of the early Earth, although other niche environments are possible. Because of the plasticity of such complexes, the type of iron-sulfur cluster formed on the prebiotic Earth would have been greatly influenced by the chemical environment and the thiolate containing scaffold. The discovery that all the major classes of iron-sulfur clusters easily form under prebiotically reasonable conditions broadens the chemistry accessible to protometabolic systems.
Collapse
Affiliation(s)
- Simone Scintilla
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
- Hudson River, Department of Biochemistry Nieuwe Kanaal 7V Wageningen PA 6709 Netherlands
| | - Daniele Rossetto
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
| | - Martin Clémancey
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux - UMR 5249 17 rue des Martyrs Grenoble 38000 France
| | - Julia Rendon
- CEA, Laboratoire de Résonance Magnétique, INAC/SCIB, UMR E3 CEA-UJF 17, rue des Martyrs Grenoble Cedex 9 38054 France
- University of Grenoble Alpes, CNRS, CEA, INAC-SyMMES Grenoble 38000 France
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia Via G. Campi, 103 Modena 41125 Italy
| | - Graziano Guella
- Department of Physics, University of Trento Via Sommarive 14 Povo TN 38123 Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona Strada Le Grazie 15 Verona 37134 Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia Via G. Campi, 103 Modena 41125 Italy
| | - Serge Gambarelli
- CEA, Laboratoire de Résonance Magnétique, INAC/SCIB, UMR E3 CEA-UJF 17, rue des Martyrs Grenoble Cedex 9 38054 France
| | - Geneviève Blondin
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux - UMR 5249 17 rue des Martyrs Grenoble 38000 France
| | - Sheref S Mansy
- DiCIBIO, University of Trento Via Sommarive 9 Povo TN 38123 Italy
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive Edmonton AB T6G 2G2 Canada
| |
Collapse
|
6
|
Zhu W, Chen F, Ye L, Wang X, Tang Y, Li Y, Song Y. Pyrrhotite promote aerobic granular sludge formation in dye wastewater: pH, interfacial free energy, and microbial community evolution. BIORESOURCE TECHNOLOGY 2025; 419:131922. [PMID: 39709134 DOI: 10.1016/j.biortech.2024.131922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024]
Abstract
This study introduces a technique utilizing natural pyrrhotite powder as a nucleating agent in four sequencing batch reactors (SBRs) for the treatment of dye wastewater. Through analysis of various factors including pH, pyrrhotite surface free energy, sludge zeta potential, and shifts in microbial communities, the mechanism by which pyrrhotite facilitates the formation of aerobic granular sludge (AGS) is elucidated. Over 140 days of continuous operation under neutral conditions, natural pyrrhotite rapidly cultivated AGS under neutral conditions. The structure of the sludge was compact and the settling properties were satisfactory (SVI30/SVI5 close to 1). Reductions in both sludge zeta potential and interfacial free energy of pyrrhotite correlated with increased hydrophobicity of AGS, leading to enhanced sludge aggregation. Changes in pH, sludge interfacial free energy, and zeta potential were found to influence the microbial community composition and diversity within the sludge.This study provides a novel approach for dye wastewater treatment.
Collapse
Affiliation(s)
- Wenfang Zhu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou 310023, PR China.
| | - Fangyuan Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China
| | - Lei Ye
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China
| | - Xinyue Wang
- Beijing LongTech Environmental Technology Co., Ltd., Beijing 100072, PR China
| | - Yan Tang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China
| | - Yongchao Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou 310023, PR China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310000, PR China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou 310023, PR China
| |
Collapse
|
7
|
Cárdenas-Hernández PA, Murillo-Gelvez J, Rincón-Rodríguez JC, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Predicting Abiotic Reduction Rate Constants of Munition Compounds in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3229-3238. [PMID: 39912794 DOI: 10.1021/acs.est.4c12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
We report an empirical poly-parameter linear free energy relationship (LFER) for estimating the mass-normalized rate constants for the abiotic reduction of munition compounds (MC) in soil. A total of 131 kinetic experiments were performed, using three classes of MC (nitroaromatic [TNT, DNAN], nitramine [RDX], and azole [NTO]) and 11 soils having highly varied organic carbon and iron contents and reduced with dithionite to different electron contents. The LFER has the same form as that for MC reduction by FeIII (oxyhydr)oxide-FeaqII redox couples and predicts MC reduction rate constants to within an order of magnitude, using only the aqueous-phase one electron reduction potential (EH1) of the MC and the pe and pH of the soil. As previously shown for azoles, which exhibited markedly higher reactivity toward iron than toward carbon reductants relative to all neutral MC, NTO reduction rate depended on soil composition and hence a correction to model prediction was necessary at soil iron-to-carbon mass ratios ≲1. This is the first successful attempt to predict the reduction kinetics of structurally diverse nitro compounds in compositionally complex soils based on their thermodynamic properties. The LFER would be useful in the management/restoration (e.g., natural or enhanced attenuation) of soils impacted by MC or other nitro pollutants.
Collapse
Affiliation(s)
- Paula A Cárdenas-Hernández
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Juan C Rincón-Rodríguez
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil, Construction, and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Peters VFD, Koskamp JA, Di Tommaso D, Wolthers M. Influence of solution stoichiometry on the thermodynamic stability of prenucleation FeS clusters. Phys Chem Chem Phys 2025; 27:3115-3123. [PMID: 39831572 PMCID: PMC11744768 DOI: 10.1039/d4cp03758h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The significance of iron sulphide (FeS) formation extends to "origin of life" theories, industrial applications, and unwanted scale formation. However, the initial stages of FeS nucleation, particularly the impact of solution composition, remain unclear. Often, the iron and sulphide components' stoichiometry in solution differs from that in formed particles. This study uses ab initio methods to computationally examine aqueous FeS prenucleation clusters with excess Fe(II) or S(-II). The results suggest that clusters with additional S(-II) are more likely to form, implying faster nucleation of FeS particles in S(-II)-rich environments compared to Fe(II)-rich ones.
Collapse
Affiliation(s)
- Vincent F D Peters
- Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands.
| | - Janou A Koskamp
- Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands.
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mariette Wolthers
- Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands.
| |
Collapse
|
9
|
Liu J, Klonicki-Ference E, Krause SJE, Treude T. Iron Oxides Fuel Anaerobic Oxidation of Methane in the Presence of Sulfate in Hypersaline Coastal Wetland Sediment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:513-522. [PMID: 39741005 PMCID: PMC11741001 DOI: 10.1021/acs.est.4c10639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Wetland methane emissions are the primary natural contributor to the global methane budget, accounting for approximately one-third of total emissions from natural and anthropogenic sources. Anaerobic oxidation of methane (AOM) serves as the major sink of methane in anoxic wetland sediments, where electron acceptors are present, thereby effectively mitigating its emissions. Nevertheless, environmental controls on electron acceptors, in particular, the ubiquitous iron oxides, involved in AOM are poorly understood. Here, we explored methane sinks within a hypersaline pool situated in a coastal wetland. The geochemical profiles reveal a tiering, where microbial sulfate reduction dominates in the organic-rich surface sediment, yielding to iron reduction in the deeper organic-poor yet sulfate-rich subsurface sediment. This shift is attributed to the drilling-induced depression and subsequent diagenetic transformation of the surface sediment. Radiotracer incubations demonstrate a strong association of AOM with sulfate in surface sediment and with iron oxides in subsurface sediment. Despite high concentrations of sulfate in coastal wetlands, Fe-dependent AOM may play a significant, yet often under-considered, role as a sink for methane emissions.
Collapse
Affiliation(s)
- Jiarui Liu
- Department
of Earth, Planetary, and Space Sciences, University of California, Los
Angeles, California 90095, United States
| | - Emily Klonicki-Ference
- Department
of Earth, Planetary, and Space Sciences, University of California, Los
Angeles, California 90095, United States
| | - Sebastian J. E. Krause
- Earth
Research Institute, University of California, Santa Barbara, California 93106, United States
| | - Tina Treude
- Department
of Earth, Planetary, and Space Sciences, University of California, Los
Angeles, California 90095, United States
| |
Collapse
|
10
|
Bian L, Chappaz A, Sanei H. Chromium, tungsten and vanadium sediment-porewater geochemistry under oxic and anoxic redox conditions: Implication for their remobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178036. [PMID: 39671940 DOI: 10.1016/j.scitotenv.2024.178036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Global chromium (Cr), tungsten (W), and vanadium (V) cycles are emerging concerns due to their toxicities to ecosystems. However, a comprehensive understanding of their geochemical reactions and controls at the sediment-water interface remains largely unknown. This knowledge gap hinders the assessment of their potential remobilization in Earth's surface environments threatened by hypoxic conditions. We collected pore water and sediment samples from the undisturbed Castle Lake, situated in the Klamath-Siskiyou Mountains of northern California, USA, to investigate the geochemical controls responsible for the fixation and release of Cr, W, and V under redox transitions from oxia to anoxia during early diagenesis. The results show that, under oxic conditions, authigenic Cr, W, and V ratios in porewater account for approximately 4.7 %, <0.1 %, and < 0.1 %, respectively, whereas their ratios display around ten times increase under anoxic conditions with average values of 62.4 % for Cr, 4.1 % for W, and 1.1 % for V. Our combined thermodynamic calculation and diagenetic analyses show that the sequestration and release of Cr, W, and V are intimately associated with Fe cycle under anoxic conditions. In contrast, under oxygenated conditions, only Cr and V geochemical behaviors are significantly affected by Fe cycle, while the adsorption of W to Fe minerals is probably inhibited by dissolved organic matter. Furthermore, we suggest that the Cr, W, and V pollution could become significant in coastal and inland water areas where redox conditions oscillate between oxia and anoxia, with intensified water deoxygenation, acidity, and eutrophication.
Collapse
Affiliation(s)
- Leibo Bian
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China; STARLAB, Dept. of Earth and Atmospheric Sciences, Central Michigan University, MI 48859, USA; Lithospheric Organic Carbon (L.O.C.) Group, Dept. of Geoscience, Aarhus University, Aarhus 8000C, Denmark
| | - Anthony Chappaz
- STARLAB, Dept. of Earth and Atmospheric Sciences, Central Michigan University, MI 48859, USA.
| | - Hamed Sanei
- Lithospheric Organic Carbon (L.O.C.) Group, Dept. of Geoscience, Aarhus University, Aarhus 8000C, Denmark
| |
Collapse
|
11
|
Zhao Z, Chen Y, Zhou Z, Ye G, Wu D. Coexisting ferrihydrite-enhanced contaminant degradation during pyrite oxygenation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135930. [PMID: 39307021 DOI: 10.1016/j.jhazmat.2024.135930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Oxygenation of pyrite (Py) is known to mediate generation of reactive oxygen species (ROS) with these species capable of inducing contaminants degradation, whereas the possible participation of coexisting Fe(III) minerals in these processes is still unclear. This study finds that freshly formed ferrihydrite (Fh) significantly enhances the Py-mediated sulfamethoxazole (SMX) degradation process. Through the 56Fe isotope tracer experiment and a series of control experiments, Fh is found to be reduced by Py to form secondary solid-phase Fe(II) species (Fe(II)RF) which in turn facilitates generation of H2O2 from the O2 reduction pathway. However, Py was found to mediate rapid structural transformation of Fh to form more thermodynamically stable goethite and hematite with these less redox active minerals unable to sustainably promote the Py-mediated SMX degradation process. Therefore, the improvement of Fh on Py-mediated SMX degradation process is not readily observable in reaction systems with low concentrations of coexisting Fh. In comparison, continuing input of 10 mM Fh increased the degradation efficiency of SMX by 60 % over three days. Our results demonstrate that the oxidative degradation of organic contaminants over the oxygenation of Py when coexisting with Fh can be more significant but currently underestimated.
Collapse
Affiliation(s)
- Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yufan Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, 310018 Hangzhou, PR China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
12
|
Li R, Deng Q, Han L, Ouyang T, Che S, Fang Y. Prebiotic formation of enantiomeric excess D-amino acids on natural pyrite. Nat Commun 2024; 15:10130. [PMID: 39578467 PMCID: PMC11584652 DOI: 10.1038/s41467-024-54481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
D-amino acids, found in excess in a minority of organisms and crucial for marine invertebrates, contrast with the more common L-amino acids in most life forms. The local prebiotic origin of D-amino acid enantiomeric excess in natural systems remains an unsolved conundrum. Herein, we demonstrate the formation of enantiomeric excess (ee) D-amino acids through photocatalytic reductive amination of α-keto acids on natural pyrite. Various amino acids with ee values in the range of 14.5-42.4%, are formed. The wavy arrangement of atoms on the surface of pyrite is speculated to lead to the preferential formation of D-amino acids. This work reveals the intrinsic asymmetric photocatalytic activity of pyrite, which could expand understandings on mechanism of asymmetric catalysis and chirality of inorganic crystals. Furthermore, it provides a plausible pathway for the prebiotic formation of D-amino acids, adding further evidence to the origin of D-amino acids enantiomeric excess in natural systems.
Collapse
Affiliation(s)
- Ruiqi Li
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Quanzheng Deng
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Tianwei Ouyang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Shunai Che
- School of Chemical Science and Engineering, Tongji University, Shanghai, China.
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China.
| | - Yuxi Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Zhao Z, Zhou Z, Zhang X, Hou C, Wu D. Overlooked pyrite-mediated heterogeneous Fenton processes: Mechanisms of surface hydroxyl radical generation and associated decontamination performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175833. [PMID: 39214359 DOI: 10.1016/j.scitotenv.2024.175833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pyrite-based Fenton-like processes have been extensively studied for wastewater decontamination; however, most relevant studies placed excessive emphasis on the homogeneous Fenton reaction mediated by aqueous Fe2+, resulting in the proposed technologies facing issues such as additional acid requirements for pH adjustment and excessive iron sludge production. Herein, through in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), custom dual-chamber reactor experiments, and a series of control experiments, significant hydroxyl radical generation was identified during the pyrite/H2O2 process, while the dominant reactive iron species was verified to the structural Fe sites on the pyrite surface, rather than structural Fe(II) in secondary iron minerals and surface adsorbed Fe2+. Consequently, even with significant suppression of the homogeneous Fenton pathway, the pyrite/H2O2 process exhibited significant degradation efficiency for sulfamethoxazole (SMX) at pH 4. Moreover, the pyrite/H2O2 process was found to selectively remove 50 μM of pollutants with high affinity for pyrite (bisphenol A, carbamazepine, nitrobenzene, and SMX), even in the presence of 50-100 mM methanol. Compared to the typical iron-based reductive catalyst (zero-valent iron, ZVI), pyrite mediated a Fenton process with greater potential for practical applications at pH 4, achieving a 43.75-fold reduction in iron sludge production and almost doubling the H2O2 utilization efficiency. Additionally, in contrast to ZVI, minimal iron oxide formed on the pyrite surface during the oxidation process. Thus, after seven cycles of degradation experiments, the decontamination efficiency of the pyrite/H2O2 process remained stable. These findings are crucial for understanding the complex environmental behavior of pyrite in both natural and engineering processes and provide a new perspective for the efficient utilization of pyrite resources as well.
Collapse
Affiliation(s)
- Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Chengsi Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
14
|
Men X, Deng T, Chen L, Che J, Wang J, Wang J. Suppressing Surface Oxidation of Pyrite FeS 2 by Cobalt Doping in Lithium Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403576. [PMID: 39183525 DOI: 10.1002/smll.202403576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Lithium-sulfur batteries have emerged as a promising energy storage device due to ultra-high theoretical capacity, but the slow kinetics of sulfur and polysulfide shuttle hinder the batteries' further development. Here, the 10% cobalt-doped pyrite iron disulfide electrocatalyst deposited on acetylene black as a separator coating in lithium-sulfur batteries is reported. The adsorption rate to the intermediate Li2S6 is significantly improved while surface oxidation of FeS2 is inhibited: iron oxide and sulfate, thus avoiding FeS2 electrocatalyst deactivation. The electrocatalytic activity has been evaluated in terms of electronic resistivity, lithium-ion diffusion, liquid-liquid, and liquid-solid conversion kinetics. The coin batteries exhibit ultra-long cycle life at 1 C with an initial capacity of 854.7 mAh g-1 and maintained at 440.8 mAh g-1 after 920 cycles. Furthermore, the separator is applied to a laminated pouch battery with a sulfur mass of 326 mg (3.7 mg cm-2) and retained the capacity of 590 mAh g-1 at 0.1 C after 50 cycles. This work demonstrates that FeS2 electrocatalytic activity can be improved when Co-doped FeS2 suppresses surface oxidation and provides a reference for low-cost separator coating design in pouch batteries.
Collapse
Affiliation(s)
- Xinliang Men
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710311, China
| | - Teng Deng
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710311, China
| | - Liping Chen
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710311, China
| | - Jiangxuan Che
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710311, China
| | - Jia Wang
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710311, China
| | - Juan Wang
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710311, China
| |
Collapse
|
15
|
Figueroa MC, Gregory DD, Williford KH, Fike DJ, Lyons TW. A Machine-Learning Approach to Biosignature Exploration on Early Earth and Mars Using Sulfur Isotope and Trace Element Data in Pyrite. ASTROBIOLOGY 2024; 24:1110-1127. [PMID: 39453409 DOI: 10.1089/ast.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We propose a novel approach to identify the origin of pyrite grains and distinguish biologically influenced sedimentary pyrite using combined in situ sulfur isotope (δ34S) and trace element (TE) analyses. To classify and predict the origin of individual pyrite grains, we applied multiple machine-learning algorithms to coupled δ34S and TE data from pyrite grains formed from diverse sedimentary, hydrothermal, and metasomatic processes across geologic time. Our unsupervised classification algorithm, K-means++ cluster analysis, yielded six classes based on the formation environment of the pyrite: sedimentary, low temperature hydrothermal, medium temperature, polymetallic hydrothermal, high temperature, and large euhedral. We tested three supervised models (random forest [RF], Naïve Bayes, k-nearest neighbors), and RF outperformed the others in predicting pyrite formation type, achieving a precision (area under the ROC curve) of 0.979 ± 0.005 and an overall average class accuracy of 0.878 ± 0.005. Moreover, we found that coupling TE and δ34S data significantly improved the performance of the RF model compared with using either TE or δ34S data alone. Our data provide a novel framework for exploring sedimentary rocks that have undergone multiple hydrothermal, magmatic, and metamorphic alterations. Most significant, however, is the demonstrated potential for distinguishing between biogenic and abiotic pyrite in samples from early Earth. This approach could also be applied to the search for potential biosignatures in samples returned from Mars.
Collapse
Affiliation(s)
- Maria C Figueroa
- Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Daniel D Gregory
- Department of Earth Sciences, University of Toronto, Toronto, Canada
| | | | - David J Fike
- Earth and Planetary Sciences, Washington University, St. Louis, Missouri, USA
| | - Timothy W Lyons
- Earth and Planetary Sciences, University of California, Riverside, California, USA
| |
Collapse
|
16
|
He F, Xu L, Wang H, Jiang C. Recent Progress in Molecular Oxygen Activation by Iron-Based Materials: Prospects for Nano-Enabled In Situ Remediation of Organic-Contaminated Sites. TOXICS 2024; 12:773. [PMID: 39590953 PMCID: PMC11598522 DOI: 10.3390/toxics12110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
In situ chemical oxidation (ISCO) is commonly used for the remediation of contaminated sites, and molecular oxygen (O2) after activation by aquifer constituents and artificial remediation agents has displayed potential for efficient and selective removal of soil and groundwater contaminants via ISCO. In particular, Fe-based materials are actively investigated for O2 activation due to their prominent catalytic performance, wide availability, and environmental compatibility. This review provides a timely overview on O2 activation by Fe-based materials (including zero-valent iron-based materials, iron sulfides, iron (oxyhydr)oxides, and Fe-containing clay minerals) for degradation of organic pollutants. The mechanisms of O2 activation are systematically summarized, including the electron transfer pathways, reactive oxygen species formation, and the transformation of the materials during O2 activation, highlighting the effects of the coordination state of Fe atoms on the capability of the materials to activate O2. In addition, the key factors influencing the O2 activation process are analyzed, particularly the effects of organic ligands. This review deepens our understanding of the mechanisms of O2 activation by Fe-based materials and provides further insights into the application of this process for in situ remediation of organic-contaminated sites.
Collapse
Affiliation(s)
- Fangru He
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Lianrui Xu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
17
|
Liu C, Lin S, Liu Y, Li M, Shen W, Jiang N, Li F, Tian J. Disclosing the influence mechanism of facet-dependent pyrite photo-activation and photo-dissolution processes on the reduction of Cr(VI). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124578. [PMID: 39032550 DOI: 10.1016/j.envpol.2024.124578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The photo-activation and photo-dissolution processes of pyrite (FeS2) can affect the environmental behavior of the co-existing hexavalent chromium (Cr(VI)). But the photochemical performance of FeS2 is intimately dependent on its exposed facets. Herein, FeS2 nanosheets (FeS2 NS) and FeS2 nanocubes (FeS2 NC) with the dominant exposed facets of (001) and (210)/(100) respectively are prepared. The more Fe3+, Fe2+, and SO42- are released in the FeS2 NS system than the other system due to its more excellent generation ability of photogenerated electrons and reactive oxygen species. The higher surface energy on (001) facet leads to the faster dissolution rate of FeS2 NS. Due to the optimal production ability of photogenerated electrons and Fe2+ of (001) facet, the much higher Cr(VI) elimination efficiency in the FeS2 NS system is observed than that in the FeS2 NC (72.8%) system within 120 min. This work could help to unveil the influence of FeS2 on the fate of Cr(VI) in surface environment, and offer a theoretical support to clarify the influence of heavy metal ions on the iron sulfide minerals.
Collapse
Affiliation(s)
- Chenrui Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Shuangyi Lin
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China.
| | - Mengke Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Wentao Shen
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Nengle Jiang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| |
Collapse
|
18
|
Valdez‐Nuñez LF, Kappler A, Ayala‐Muñoz D, Chávez IJ, Mansor M. Acidophilic sulphate-reducing bacteria: Diversity, ecophysiology, and applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70019. [PMID: 39396517 PMCID: PMC11471286 DOI: 10.1111/1758-2229.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Acidophilic sulphate-reducing bacteria (aSRB) are widespread anaerobic microorganisms that perform dissimilatory sulphate reduction and have key adaptations to tolerate acidic environments (pH <5.0), such as proton impermeability and Donnan potential. This diverse prokaryotic group is of interest from physiological, ecological, and applicational viewpoints. In this review, we summarize the interactions between aSRB and other microbial guilds, such as syntrophy, and their roles in the biogeochemical cycling of sulphur, iron, carbon, and other elements. We discuss the biotechnological applications of aSRB in treating acid mine drainage (AMD, pH <3), focusing on their ability to produce biogenic sulphide and precipitate metals, particularly in the context of utilizing microbial consortia instead of pure isolates. Metal sulphide nanoparticles recovered after AMD treatment have multiple potential technological uses, including in electronics and biomedicine, contributing to a cost-effective circular economy. The products of aSRB metabolisms, such as biominerals and isotopes, could also serve as biosignatures to understand ancient and extant microbial life in the universe. Overall, aSRB are active components of the sulphur and carbon cycles under acidic conditions, with potential natural and technological implications for the world around us.
Collapse
Affiliation(s)
- Luis Felipe Valdez‐Nuñez
- Biotechnology, Department of Biological SciencesNational University of Cajamarca. Av. Atahualpa 1050CajamarcaPeru
| | - Andreas Kappler
- Geomicrobiology, Department of GeosciencesUniversity of TübingenTübingenGermany
- Cluster of Excellence: EXC 2124Controlling Microbes to Fight InfectionTübingenGermany
| | - Diana Ayala‐Muñoz
- Biotechnology Engineering, Department of Engineering and Applied SciencesUniversity of Las AméricasQuitoEcuador
| | - Idelso Jamín Chávez
- Biotechnology, Department of Biological SciencesNational University of Cajamarca. Av. Atahualpa 1050CajamarcaPeru
| | - Muammar Mansor
- Geomicrobiology, Department of GeosciencesUniversity of TübingenTübingenGermany
| |
Collapse
|
19
|
Passalacqua E, Correcher R, Mantovani M, Collina E, Fullana A. Use of carbon-encapsulated zero-valent iron nanoparticles from waste biomass to hydrogen sulphide wet removal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241273800. [PMID: 39279233 DOI: 10.1177/0734242x241273800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
This study evaluates the use of carbon-encapsulated zero-valent iron nanoparticles for biogas upgrading in wet systems. The nanoparticles were produced by hydrothermal carbonization, using olive mill waste (OMW) or microalgae as carbon sources. The solids were characterized to investigate the specific surface area, total and zero-valent iron content, pHPZC and chemical and crystalline composition. Their adsorption performance towards hydrogen sulphide (H2S) was tested by treating two types of synthetic biogas with and without CO2. In both cases, the starting H2S concentration was approximately 60 ppm and the experiments lasted until the complete saturation of the nanoparticles. Optimal Fe/C ratios of 0.05 for OMW nanoparticles and 0.2 for microalgae nanoparticles demonstrated H2S-specific adsorption capacities of 9.66 and 9.55 mg H 2 S g CE-nZVI - 1 , respectively, in a synthetic biogas without CO2. The addition of CO2 in biogas reduced adsorption, possibly due to system acidification. X-ray photoelectron spectroscopy analysis revealed surface compounds on the surface of the spent nanoparticles, including disulphides, polysulphides and sulphate. The saturated adsorbents were effectively regenerated with air, leading to the oxidation of sulphur species and desorption. The regeneration allowed a total adsorption capacity of 53.25 and 34.14 mg H 2 S g CE-nZVI - 1 , after 10 consecutive cycles of adsorption/regeneration with a single batch of olive mill and microalgae nanoparticles, respectively.
Collapse
Affiliation(s)
- Elena Passalacqua
- Department of Earth and Environmental Sciences (DISAT), Università degli Studi di Milano - Bicocca, Milano, Italy
| | - Rubén Correcher
- Department of Chemical Engineering, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain
| | - Marco Mantovani
- Department of Earth and Environmental Sciences (DISAT), Università degli Studi di Milano - Bicocca, Milano, Italy
| | - Elena Collina
- Department of Earth and Environmental Sciences (DISAT), Università degli Studi di Milano - Bicocca, Milano, Italy
| | - Andrés Fullana
- Department of Chemical Engineering, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
20
|
Xu W, Xia C, He F, Wang Z, Liang L. Sulfidation of Nanoscale Zero-Valent Iron by Sulfide: The Dynamic Process, Mechanism, and Role of Ferrous Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39262330 DOI: 10.1021/acs.est.4c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Sulfidation of nanoscale zerovalent iron (nZVI) can enhance particle performance. However, the underlying mechanisms of nZVI sulfidation are poorly known. We studied the effects of Fe2+ on 24-h dynamics of nZVI sulfidation by HS- using a dosed S to Fe molar ratio of 0.2. This shows that in the absence of Fe2+, HS- rapidly adsorbed onto nZVI particles and reacted with surface iron oxide to form mackinawite and greigite (<0.5 h). As nZVI corrosion progressed, amorphous FeSx in solution deposited on nZVI, forming S-nZVI (0.5-24 h). However, in the initial presence of Fe2+, the rapid reaction between HS- and Fe2+ produced amorphous FeSx, which deposited on the nZVI and corroded the surface iron oxide layer (<0.25 h). This was followed by redeposition of colloidal iron (hydr)oxide on the particle surface (0.25-8 h) and deposition of residual FeSx (8-24 h) on S-nZVI. S loading on S-nZVI was 1 order of magnitude higher when Fe2+ was present. Surface characterization of the sulfidated particles by TEM-SAED, XPS, and XAFS verified the solution dynamics and demonstrated that S2- and S22-/Sn2- were the principal reduced S species on S-nZVI. This study provides a methodology to tune sulfur loading and S speciation on S-nZVI to suit remediation needs.
Collapse
Affiliation(s)
- Wenqiang Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyun Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
21
|
Whang G, Ketter L, Zhao T, Nazmutdinova E, Kraft MA, Zeier WG. High Areal Capacity Cation and Anionic Redox Solid-State Batteries Enabled by Transition Metal Sulfide Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42189-42197. [PMID: 39093830 DOI: 10.1021/acsami.4c07252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Pure sulfur (S8 and Li2S) all solid-state batteries inherently suffer from low electronic conductivities, requiring the use of carbon additives, resulting in decreased active material loading at the expense of increased loading of the passive components. In this work, a transition metal sulfide in combination with lithium disulfide is employed as a dual cation-anion redox conversion composite cathode system. The transition metal sulfide undergoes cation redox, enhancing the electronic conductivity, whereas the lithium disulfide undergoes anion redox, enabling high-voltage redox conducive to achieving high energy densities. Carbon-free cathode composites with active material loadings above 6.0 mg cm-2 attaining areal capacities of ∼4 mAh cm-2 are demonstrated with the possibility to further increase the active mass loading above 10 mg cm-2 achieving cathode areal capacities above 6 mAh cm-2, albeit with less cycle stability. In addition, the effective partial transport and thermal properties of the composites are investigated to better understand FeS:Li2S cathode properties at the composite level. The work introduced here provides an alternative route and blueprint toward designing new dual conversion cathode systems, which can operate without carbon additives enabling higher active material loadings and areal capacities.
Collapse
Affiliation(s)
- Grace Whang
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster 48149, Germany
| | - Lukas Ketter
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster 48149, Germany
- International Graduate School of Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster 48149, Germany
| | - Tong Zhao
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster 48149, Germany
- International Graduate School of Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster 48149, Germany
| | - Elina Nazmutdinova
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster 48149, Germany
- International Graduate School of Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster 48149, Germany
| | - Marvin A Kraft
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research Helmholtz-Institute Münster (IEK-12), Jülich 52425, Germany
| | - Wolfgang G Zeier
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster 48149, Germany
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research Helmholtz-Institute Münster (IEK-12), Jülich 52425, Germany
| |
Collapse
|
22
|
Farhan A, Qayyum W, Fatima U, Nawaz S, Balčiūnaitė A, Kim TH, Srivastava V, Vakros J, Frontistis Z, Boczkaj G. Powering the Future by Iron Sulfide Type Material (Fe xS y) Based Electrochemical Materials for Water Splitting and Energy Storage Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402015. [PMID: 38597684 DOI: 10.1002/smll.202402015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Water electrolysis is among the recent alternatives for generating clean fuels (hydrogen). It is an efficient way to produce pure hydrogen at a rapid pace with no unwanted by-products. Effective and cheap water-splitting electrocatalysts with enhanced activity, specificity, and stability are currently widely studied. In this regard, noble metal-free transition metal-based catalysts are of high interest. Iron sulfide (FeS) is one of the essential electrocatalysts for water splitting because of its unique structural and electrochemical features. This article discusses the significance of FeS and its nanocomposites as efficient electrocatalysts for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and overall water splitting. FeS and its nanocomposites have been studied also for energy storage in the form of electrode materials in supercapacitors and lithium- (LIBs) and sodium-ion batteries (SIBs). The structural and electrochemical characteristics of FeS and its nanocomposites, as well as the synthesis processes, are discussed in this work. This discussion correlates these features with the requirements for electrocatalysts in overall water splitting and its associated reactions. As a result, this study provides a road map for researchers seeking economically viable, environmentally friendly, and efficient electrochemical materials in the fields of green energy production and storage.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Wajeeha Qayyum
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Urooj Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Shahid Nawaz
- Department of Catalysis, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, LT-10257, Lithuania
| | - Aldona Balčiūnaitė
- Department of Catalysis, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, LT-10257, Lithuania
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Varsha Srivastava
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, FI-90014, Finland
| | - John Vakros
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, Patras, GR 265 04, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, Kozani, GR-50132, Greece
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk, 80-233, Poland
- EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland
| |
Collapse
|
23
|
van der Graaf CM, Sánchez-España J, Ilin AM, Yusta I, Stams AJM, Sánchez-Andrea I. Micrometric pyrite catalyzes abiotic sulfidogenesis from elemental sulfur and hydrogen. Sci Rep 2024; 14:17702. [PMID: 39085257 PMCID: PMC11291890 DOI: 10.1038/s41598-024-66006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Hydrogen sulfide (H2S) in environments with temperatures below 100 °C is generally assumed to be of microbial origin, while abiotic H2S production is typically restricted to higher temperatures (T). In this study, we report an abiotic process for sulfidogenesis through the reduction of elemental sulfur (S0) by hydrogen (H2), mediated by pyrite (FeS2). The process was investigated in detail at pH 4 and 80 °C, but experimental conditions ranged between 40 and 80 °C and pH 4-6. The experiments were conducted with H2 as reducing molecule, and µm-sized spherical (but not framboidal) pyrite particles that formed in situ from the H2S, S0 and Fe2+ present in the experiments. Fe monosulfides, likely mackinawite, were identified as potential pyrite precursors. The absence of H2 production in controls, combined with geochemical modelling, suggests that pyrite formation occurred through the polysulfide pathway, which is unexpected under acidic conditions. Most spherical aggregates of authigenic pyrite were composed of nanometric, acicular crystals oriented in diverse directions, displaying varying degrees of organization. Although it was initially hypothesized that the catalytic properties were related to the surface structure, commercially sourced, milled pyrite particles (< 50 μm) mediated H2S production at comparable rates. This suggests that the catalytic properties of pyrite depend on particle size rather than surface structure, requiring pyrite surfaces to act as electron shuttles between S0 and H2.
Collapse
Affiliation(s)
- Charlotte M van der Graaf
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Faculty of Civil Engineering and Geoscience, Department of Geoscience and Engineering, Delft University of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands.
| | - Javier Sánchez-España
- Planetary Geology Research Group, Department of Planetology and Habitability, Centro de Astrobiología (CAB, CSIC-INTA), 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Andrey M Ilin
- Department of Geology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain
| | - Iñaki Yusta
- Department of Geology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080, Bilbao, Spain
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Department of Environmental Sciences for Sustainability, IE University, C. Cardenal Zúñiga, 12, 40003, Segovia, Spain.
| |
Collapse
|
24
|
Hagglund CR, Duranceau SJ. Screening the Performance of a Reverse Osmosis Pilot-Scale Process That Treats Blended Feedwater Containing a Nanofiltration Concentrate and Brackish Groundwater. MEMBRANES 2024; 14:164. [PMID: 39195416 DOI: 10.3390/membranes14080164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
A two-stage pilot plant study has been completed that evaluated the performance of a reverse osmosis (RO) membrane process for the treatment of feedwater that consisted of a blend of a nanofiltration (NF) concentrate and brackish groundwater. Membrane performance was assessed by monitoring the process operation, collecting water quality data, and documenting the blended feedwater's impact on fouling due to microbiological or organic means, plugging, and scaling, or their combination. Fluorescence and biological activity reaction tests were used to identify the types of organics and microorganisms present in the blended feedwater. Additionally, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to analyze suspended matter that collected on the surfaces of cartridge filters used in the pilot's pretreatment system. SEM and EDS were also used to evaluate solids collected on the surfaces of 0.45 µm silver filter pads after filtering known volumes of NF concentrate and RO feedwater blends. Water quality analyses confirmed that the blended feedwater contained little to no dissolved oxygen, and a significant amount of particulate matter was absent from the blended feedwater as defined by silt density index and turbidity measurements. However, water quality results suggested that the presence of sulfate, sulfide, iron, anaerobic bacteria, and humic acid organics likely contributed to the formation of pyrite observed on some of the membrane surfaces autopsied at the conclusion of pilot operations. It was determined that first-stage membrane productivity was impacted by the location of cartridge filter pretreatment; however, second-stage productivity was maintained with no observed flux decline during the entire pilot operation's timeline. Study results indicated that the operation of an RO process treating a blend of an NF concentrate and brackish groundwater could maintain a sustainable and productive operation that provided a practical minimum liquid discharge process operation for the NF concentrate, while the dilution of RO feedwater salinity would lower overall production costs.
Collapse
Affiliation(s)
- Christopher R Hagglund
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2450, USA
| | - Steven J Duranceau
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2450, USA
| |
Collapse
|
25
|
Kamyshny A, Klein R, Eckert W, Avetisyan K. Influence of environmental settings, including vegetation, on speciation of the redox-sensitive elements in the sediments of monomictic Lake Kinneret. LIMNOLOGY 2024; 26:1-18. [PMID: 39840382 PMCID: PMC11743360 DOI: 10.1007/s10201-024-00756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/16/2024] [Indexed: 01/23/2025]
Abstract
The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of Cyperus articulatus L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret. We measured roots content, porosity, and chemical parameters including pH, sulfur, iron and manganese speciation in the sediments from the shore, littoral and sublittoral zones with and without vegetation. Our results show that at ≥ 12 m water depth, the upper 10 cm of the sediments are affected by the active sulfur cycling with concentrations of hydrogen sulfide > 70 μM near the sediment-water interface. Speciation of sulfur, iron, and manganese in the upper 10 cm of littoral sediments, which are covered by < 20 cm of water, are affected by their permeability and, to a lesser extent, by roots penetration. In the case when sediments are not covered by water, oxygen penetration to the sediments by desiccation is an additional important control of the redox zonation in the surface sediments. In the shore sediments, despite relatively high concentrations of sulfate in the pore-waters, sulfur cycling may be described as "cryptic" as expressed by very low concentrations of hydrogen sulfide in the pore-waters. This is most likely a result of its fast reoxidation by the abundant highly reactive Fe(III) and Mn(IV) phases. Supplementary Information The online version contains supplementary material available at 10.1007/s10201-024-00756-7.
Collapse
Affiliation(s)
- Alexey Kamyshny
- Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel
| | - Rotem Klein
- Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel
| | - Werner Eckert
- Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic & Limnological Research Ltd, P.O. Box 447, 14950 Migdal, Israel
| | - Khoren Avetisyan
- Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4 Canada
| |
Collapse
|
26
|
Johnston SG, Aaso T, Maher DT, Burton ED, Call M, Birch M, Schmidt J, Ferguson A. Extreme iron cycling in a coastal lake-lagoon system driven by interactions between climate and entrance management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173345. [PMID: 38782265 DOI: 10.1016/j.scitotenv.2024.173345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Intermittently closed and open coastal lakes and lagoons (ICOLLs) are ecologically important and hydrologically sensitive estuarine systems. We explore how extreme drought and ICOLL entrance management intersect to influence the geochemical cycling of iron. Opening the ICOLL entrance just prior to an extreme drought in 2019 led to prolonged extremely low water levels, thereby exposing intertidal/subtidal sulfidic sediments and causing oxidation of sedimentary pyrite. Subsequent reflooding of exposed sediments for ∼4 months led to extremely elevated Fe2+(aq) (>10 mM) in intertidal hyporheic porewaters, consistent with Fe2+(aq) release via pyrite oxidation and via reductive dissolution of newly-formed Fe(III) phases. Re-opening the ICOLL entrance caused a rapid fall in water levels (∼1.5 m over 7 d), driving the development of effluent groundwater gradients in the intertidal zone, thereby transporting Fe2+-rich porewater into surface sediments and surface waters. This was accompanied by co-mobilisation of some trace metals and nutrients. On contact with oxic, circumneutral-pH estuarine water, the abundant Fe2+(aq) oxidised, forming a spatially extensive accumulation of poorly crystalline Fe(III) oxyhydroxide floc (up to 25 % Fe dry weight) in shallow intertidal zone benthic sediments throughout the ICOLL. Modelling estimates ∼4050 × 103 kg of poorly-crystalline Fe was translocated into surficial sediments. The newly formed Fe(III)-oxyhydroxides serve as a metastable sink encouraging enrichment of both phosphate and various trace metal(loid)s in near-surface sediments, which may have consequences for future cycling of nutrients, metals and ICOLL ecological function. The additional Fe also may enhance ICOLL sensitivity to similar future drought events by encouraging pyrite formation in shallow (<5 cm) benthic sediments. This system-wide translocation of Fe from deeper sediments into surficial benthic sediments represents a form of geochemical hysteresis with an uncertain recovery trajectory. This study demonstrates how climate extremes can interact with anthropogenic management to amplify ICOLL hydrological oscillations and influence biogeochemistry in complex ways.
Collapse
Affiliation(s)
- Scott G Johnston
- Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Thor Aaso
- Soil Conservation Service, 13 Short Street, Port Macquarie, NSW, Australia
| | - Damien T Maher
- Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Edward D Burton
- Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mitchell Call
- Catchments, Coasts and Communities Cluster, Southern Cross University, Lismore, NSW 2480, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mathew Birch
- Soil Conservation Service, 13 Short Street, Port Macquarie, NSW, Australia
| | - John Schmidt
- Science Division, Department of Climate Change, Energy, the Environment and Water, NSW, Australia
| | - Angus Ferguson
- Science Division, Department of Climate Change, Energy, the Environment and Water, NSW, Australia
| |
Collapse
|
27
|
Cao H, Yuan Y, Zhao R, Shi W, Jiang J, Gao Y, Chen L, Gao L. Deciphering the Catalytic Mechanism of Peroxidase-like Activity of Iron Sulfide Nanozymes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30958-30966. [PMID: 38833280 DOI: 10.1021/acsami.4c06024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Iron sulfide nanomaterials represented by FeS2 and Fe3S4 nanozymes have attracted increasing attention due to their biocompatibility and peroxidase-like (POD-like) catalytic activity in disease diagnosis and treatments. However, the mechanism responsible for their POD-like activities remains unclear. Herein, taking the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 on FeS2(100) and Fe3S4(001) surfaces, the catalytic mechanism was investigated in detail using density functional theory (DFT) calculations and experimental characterizations. Our experimental results showed that the catalytic activity of FeS2 nanozymes was significantly higher than that of Fe3S4 nanozymes. Our DFT calculations indicated that the surface iron ions of iron sulfide nanozymes could effectively catalyze the production of HO• radicals via the interactions between Fe 3d electrons and the frontier orbitals of H2O2 in the range of -10 to 5 eV. However, FeS2 nanozymes exhibited higher POD-like activity due to the surface Fe(II) binding to H2O2, forming inner-orbital complexes, which results in a larger binding energy and a smaller energy barrier for the base-like decomposition of H2O2. In contrast, the surface iron ions of Fe3S4 nanozymes bind to H2O2, forming outer-orbital complexes, which results in a smaller binding energy and a larger energy barrier for the base-like decomposition of H2O2. The charge transfer analysis showed that FeS2 nanozymes transferred 0.12 e and Fe3S4 nanozymes transferred 0.05 e from their surface iron ions to H2O2, respectively. The simulations were consistent with the experimental observations that the FeS2 nanozymes had a greater affinity for H2O2 compared to that of Fe3S4 nanozymes. This work provides a theoretical foundation for the rational design and accurate preparation of iron sulfide functional nanozymes.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Yuan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Runze Zhao
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Shi
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 450052, China
| |
Collapse
|
28
|
Hu H, Bai Y, Zhou C, Jia W, Lens PNL, Hu Z, Caffrey D, Zhan X. Nitrate Chemodenitrification by Iron Sulfides to Ammonium under Mild Conditions and Transformation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9804-9814. [PMID: 38771927 PMCID: PMC11154956 DOI: 10.1021/acs.est.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.
Collapse
Affiliation(s)
- Huanhuan Hu
- Civil
Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Yang Bai
- Civil
Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Chong−wen Zhou
- Combustion
Chemistry Centre, School of Biological and Chemical Sciences, Ryan
Institute, University of Galway, Galway H91 TK33, Ireland
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Weihang Jia
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Piet N. L. Lens
- Department
of Microbiology, University of Galway, Galway H91 TK33, Ireland
| | - Zhenhu Hu
- Department
of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - David Caffrey
- School of
Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Xinmin Zhan
- Civil
Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| |
Collapse
|
29
|
Orlikowski J, Jażdżewska A, Łuksa I, Szociński M, Darowicki K. Corrosion Monitoring in Petroleum Installations-Practical Analysis of the Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2663. [PMID: 38893927 PMCID: PMC11173398 DOI: 10.3390/ma17112663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
This paper presents the most typical corrosion mechanisms occurring in the petroleum industry. The methods of corrosion monitoring are described for particular corrosion mechanisms. The field and scope of the application of given corrosion-monitoring methods are provided in detail. The main advantages and disadvantages of particular methods are highlighted. Measurement difficulties and obstacles are identified and widely discussed based on actual results. Presented information will allow the corrosion personnel in refineries to extract more reliable data from corrosion-monitoring systems.
Collapse
Affiliation(s)
- Juliusz Orlikowski
- Department of Electrochemistry, Corrosion and Materials Engineering, Chemical Faculty, Gdansk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdansk, Poland; (J.O.); (K.D.)
| | - Agata Jażdżewska
- Rafineria Gdanska Sp. z o.o., Elblaska Str. 135, 80-718 Gdansk, Poland;
| | - Iwona Łuksa
- Orlen S.A., Chemikow Str. 7, 09-411 Plock, Poland;
| | - Michał Szociński
- Department of Electrochemistry, Corrosion and Materials Engineering, Chemical Faculty, Gdansk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdansk, Poland; (J.O.); (K.D.)
| | - Kazimierz Darowicki
- Department of Electrochemistry, Corrosion and Materials Engineering, Chemical Faculty, Gdansk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdansk, Poland; (J.O.); (K.D.)
| |
Collapse
|
30
|
Yu C, Luong NT, Hefni ME, Song Z, Högfors-Rönnholm E, Engblom S, Xie S, Chernikov R, Broström M, Boily JF, Åström ME. Storage and Distribution of Organic Carbon and Nutrients in Acidic Soils Developed on Sulfidic Sediments: The Roles of Reactive Iron and Macropores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9200-9212. [PMID: 38743440 PMCID: PMC11137870 DOI: 10.1021/acs.est.3c11007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
In a boreal acidic sulfate-rich subsoil (pH 3-4) developing on sulfidic and organic-rich sediments over the past 70 years, extensive brownish-to-yellowish layers have formed on macropores. Our data reveal that these layers ("macropore surfaces") are strongly enriched in 1 M HCl-extractable reactive iron (2-7% dry weight), largely bound to schwertmannite and 2-line ferrihydrite. These reactive iron phases trap large pools of labile organic matter (OM) and HCl-extractable phosphorus, possibly derived from the cultivated layer. Within soil aggregates, the OM is of a different nature from that on the macropore surfaces but similar to that in the underlying sulfidic sediments (C-horizon). This provides evidence that the sedimentary OM in the bulk subsoil has been largely preserved without significant decomposition and/or fractionation, likely due to physiochemical stabilization by the reactive iron phases that also existed abundantly within the aggregates. These findings not only highlight the important yet underappreciated roles of iron oxyhydroxysulfates in OM/nutrient storage and distribution in acidic sulfate-rich and other similar environments but also suggest that boreal acidic sulfate-rich subsoils and other similar soil systems (existing widely on coastal plains worldwide and being increasingly formed in thawing permafrost) may act as global sinks for OM and nutrients in the short run.
Collapse
Affiliation(s)
- Changxun Yu
- Department
of Biology and Environmental Science, Linnaeus
University, 39231 Kalmar, Sweden
| | | | - Mohammed E. Hefni
- Department
of Chemistry and Biomedical Sciences, Linnaeus
University, 39231 Kalmar, Sweden
| | - Zhaoliang Song
- Institute
of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Eva Högfors-Rönnholm
- Research
and Development, Novia University of Applied
Sciences, 65200 Vaasa, Finland
| | - Sten Engblom
- Research
and Development, Novia University of Applied
Sciences, 65200 Vaasa, Finland
| | - Shurong Xie
- School
of
Earth Sciences, East China University of
Technology, Nanchang 330013, China
| | - Roman Chernikov
- Canadian
Light Source, 44 Innovation
Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Markus Broström
- Thermochemical
Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, 90187 Umeå, Sweden
| | | | - Mats E. Åström
- Department
of Biology and Environmental Science, Linnaeus
University, 39231 Kalmar, Sweden
| |
Collapse
|
31
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
32
|
Zhang X, Lu C, Tian J, Zeng L, Wang Y, Sun W, Han H, Kang J. Artificial intelligence optimization and controllable slow-release iron sulfide realizes efficient separation of copper and arsenic in strongly acidic wastewater. J Environ Sci (China) 2024; 139:293-307. [PMID: 38105056 DOI: 10.1016/j.jes.2023.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 12/19/2023]
Abstract
Iron sulfide (FeS) is a promising material for separating copper and arsenic from strongly acidic wastewater due to its S2- slow-release effect. However, uncertainties arise because of the constant changes in wastewater composition, affecting the selection of operating parameters and FeS types. In this study, the aging method was first used to prepare various controllable FeS nanoparticles to weaken the arsenic removal ability without affecting the copper removal. Orthogonal experiments were conducted, and the results identified the Cu/As ratio, H2SO4 concentration, and FeS dosage as the three main factors influencing the separation efficiency. The backpropagation artificial neural network (BP-ANN) model was established to determine the relationship between the influencing factors and the separation efficiency. The correlation coefficient (R) of overall model was 0.9923 after optimizing using genetic algorithm (GA). The BP-GA model was also solved using GA under specific constraints, predicting the best solution for the separation process in real-time. The predicted results show that the high temperature and long aging time of FeS were necessary to gain high separation efficiency, and the maximum separation factor can reached 1,400. This study provides a suitable sulfurizing material and a set of methods and models with robust flexibility that can successfully predict the separation efficiency of copper and arsenic from highly acidic environments.
Collapse
Affiliation(s)
- Xingfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Chenglong Lu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
| | - Jia Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Liqiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yufeng Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Haisheng Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Jianhua Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
33
|
Ren M, Zhuang Q, He X, Liu W, Guo C, Ye H, Reinfelder JR, Ma C, Li J, Dang Z. Speciation and Possible Origins of Organosulfur Compounds in Rice Paddy Soils Affected by Acid Mine Drainage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7357-7366. [PMID: 38568220 DOI: 10.1021/acs.est.3c09622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Although sulfur cycling in acid mine drainage (AMD)-contaminated rice paddy soils is critical to understanding and mitigating the environmental consequences of AMD, potential sources and transformations of organosulfur compounds in such soils are poorly understood. We used sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy to quantify organosulfur compounds in paddy soils from five AMD-contaminated sites and one AMD-uncontaminated reference site near the Dabaoshan sulfide mining area in South China. We also determined the sulfur stable isotope compositions of water-soluble sulfate (δ34SWS), adsorbed sulfate (δ34SAS), fulvic acid sulfur (δ34SFAS), and humic acid sulfur (δ34SHAS) in these samples. Organosulfate was the dominant functional group in humic acid sulfur (HAS) in both AMD-contaminated (46%) and AMD-uncontaminated paddy soils (42%). Thiol/organic monosulfide contributed a significantly lower proportion of HAS in AMD-contaminated paddy soils (8%) compared to that in AMD-uncontaminated paddy soils (21%). Within contaminated soils, the concentration of thiol/organic monosulfide was positively correlated with cation exchange capacity (CEC), moisture content (MC), and total Fe (TFe). δ34SFAS ranged from -6.3 to 2.7‰, similar to δ34SWS (-6.9 to 8.9‰), indicating that fulvic acid sulfur (FAS) was mainly derived from biogenic S-bearing organic compounds produced by assimilatory sulfate reduction. δ34SHAS (-11.0 to -1.6‰) were more negative compared to δ34SWS, indicating that dissimilatory sulfate reduction and abiotic sulfurization of organic matter were the main processes in the formation of HAS.
Collapse
Affiliation(s)
- Meihui Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Qinglin Zhuang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoshuang He
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxuan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Chengyan Ma
- Institute of High Energy Physics, Chinese Academy of Science, Beijing Synchrotron Radiation Facility, Beijing 100049, China
| | - Jianmin Li
- Institute of High Energy Physics, Chinese Academy of Science, Beijing Synchrotron Radiation Facility, Beijing 100049, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
- China Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
34
|
Spielman-Sun E, Boye K, Dwivedi D, Engel M, Thompson A, Kumar N, Noël V. A Critical Look at Colloid Generation, Stability, and Transport in Redox-Dynamic Environments: Challenges and Perspectives. ACS EARTH & SPACE CHEMISTRY 2024; 8:630-653. [PMID: 38654896 PMCID: PMC11033945 DOI: 10.1021/acsearthspacechem.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 04/26/2024]
Abstract
Colloid generation, stability, and transport are important processes that can significantly influence the fate and transport of nutrients and contaminants in environmental systems. Here, we critically review the existing literature on colloids in redox-dynamic environments and summarize the current state of knowledge regarding the mechanisms of colloid generation and the chemical controls over colloidal behavior in such environments. We also identify critical gaps, such as the lack of universally accepted cross-discipline definition and modeling infrastructure that hamper an in-depth understanding of colloid generation, behavior, and transport potential. We propose to go beyond a size-based operational definition of colloids and consider the functional differences between colloids and dissolved species. We argue that to predict colloidal transport in redox-dynamic environments, more empirical data are needed to parametrize and validate models. We propose that colloids are critical components of element budgets in redox-dynamic systems and must urgently be considered in field as well as lab experiments and reactive transport models. We intend to bring further clarity and openness in reporting colloidal measurements and fate to improve consistency. Additionally, we suggest a methodological toolbox for examining impacts of redox dynamics on colloids in field and lab experiments.
Collapse
Affiliation(s)
- Eleanor Spielman-Sun
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kristin Boye
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dipankar Dwivedi
- Earth
and Environmental Sciences Area, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Maya Engel
- Department
of Soil and Water Sciences, Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aaron Thompson
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
| | - Naresh Kumar
- Soil
Chemistry, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Vincent Noël
- Environmental
Geochemistry Group at SLAC, Stanford Synchrotron Radiation Lightsource
(SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
35
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
36
|
Liu H, Li Y, Lv G, Liu X, Liao L. High-purity monoclinic pyrrhotite derived from natural pyrite with excellent removal performance for Cr (VI) and its mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20234-20245. [PMID: 38369659 DOI: 10.1007/s11356-024-32445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Pyrrhotite, especially the monoclinic type, is a promising material for removing Cr (VI) from wastewater and groundwater due to its high reactivity. However, the purity of the preparation monoclinic pyrrhotite from heated natural pyrite is not high enough, and the role of possible sulfur vacancies in pyrrhotite's crystal structure has been largely ignored in the removal mechanism of Cr (VI). In this work, we characterized the phase composition changes of annealed pyrite in inert gas and prepared high-purity (~ 96%) monoclinic pyrrhotite at the optimal condition. We found that it could remove 18.6 mg/g of Cr (VI) by redox reaction, which is the best value reported of natural pyrite-derived materials so far. As the reactive media material of simulated permeable reactive barrier, the service life of the high-purity monoclinic pyrrhotite column is 297 PV, which is much longer than that of the pyrite column (50 PV). A new founding is that S2- and S vacancy play the essential role during the redox reaction of pyrrhotite and Cr (VI). Monoclinic pyrrhotite had more S vacancy than hexagonal pyrrhotite and pyrite, which explained its superior Cr (VI) removal performance.
Collapse
Affiliation(s)
- Hao Liu
- School of Science, China University of Geosciences, Beijing, 100083, China
| | - Yuxin Li
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Room 120, Ceshi Building, Beijing, 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Room 120, Ceshi Building, Beijing, 100083, China
| | - Xin Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Room 120, Ceshi Building, Beijing, 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Room 120, Ceshi Building, Beijing, 100083, China.
| |
Collapse
|
37
|
Gao X, Dai C, Tian X, Nie Y, Shi J. Self-acclimation mechanism of pyrite to sulfamethoxazole concentration in terms of degradation behavior and toxicity effects caused by reactive oxygen species. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132962. [PMID: 37976862 DOI: 10.1016/j.jhazmat.2023.132962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Pyrite has been extensively tested for oxidizing contaminants via the activation of water molecule or dissolved oxygen, while the changing of oxidation species induced by contaminant's concentration has been largely underestimated. In this study, we revealed a self-acclimation mechanism of pyrite in terms of •OH conversion to 1O2 during the sulfamethoxazole (SMX) degradation process under oxic conditions. Two reaction stages of SMX degradation by pyrite were observed. The SMX concentration decreased by 70% rapidly in the first 12 h after the reaction was initiated, then, the removal rate began to decrease as the SMX concentration decreased. Importantly, •OH and O2•- were the dominant oxidizing species in stage one, while 1O2 was responsible for the further degradation of SMX in stage two. The self-acclimated mechanism of pyrite was proven to be caused by the conversion of oxidative species at the surface of pyrite. This process can overcome the shortages of •OH such as ultrashort lifetime and limited effective diffusion in the decontamination of micropollutant. Moreover, different reactive oxygen species will lead to different degradation pathways and environmental toxicity while degrading pollutants. This finding of oxidizing species' self-acclimation mechanism should be of concern when using pyrite for water treatment.
Collapse
Affiliation(s)
- Xuyun Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Jianbo Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
38
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Koppenol WH, Sies H. Was hydrogen peroxide present before the arrival of oxygenic photosynthesis? The important role of iron(II) in the Archean ocean. Redox Biol 2024; 69:103012. [PMID: 38183797 PMCID: PMC10808959 DOI: 10.1016/j.redox.2023.103012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024] Open
Abstract
We address the chemical/biological history of H2O2 back at the times of the Archean eon (2.5-3.9 billion years ago (Gya)). During the Archean eon the pO2 was million-fold lower than the present pO2, starting to increase gradually from 2.3 until 0.6 Gya, when it reached ca. 0.2 bar. The observation that some anaerobic organisms can defend themselves against O2 has led to the view that early organisms could do the same before oxygenic photosynthesis had developed at about 3 Gya. This would require the anaerobic generation of H2O2, and here we examine the various mechanisms which were suggested in the literature for this. Given the concentration of Fe2+ at 20-200 μM in the Archean ocean, the estimated half-life of H2O2 is ca. 0.7 s. The oceanic H2O2 concentration was practically zero. We conclude that early organisms were not exposed to H2O2 before the arrival of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Willem H Koppenol
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zürich, Switzerland.
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
40
|
Tang F, Feng YS, Yang W, Xu HJ. Synergistic Photoredox and Iron Catalyzed 1,2-Thiosulfonylation of Alkenes with Thiophenols and Sulfonyl Chlorides. Org Lett 2024; 26:236-240. [PMID: 38149800 DOI: 10.1021/acs.orglett.3c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Herein, a three-component 1,2-thiosulfonylation of alkenes with thiophenols and sulfonyl chlorides via synergistic photoredox and iron catalysis is described. Compared with previous studies, this protocol avoids tedious pre-synthesis of thiosulfonates and employs more readily accessible sulfonyl chlorides as a sulfonation reagent. Moreover, the reaction exhibits high compatibility with styrenes and unactivated alkenes as well as diverse sulfonyl chlorides, especially sulfamoyl chlorides. Preliminary mechanism investigations reveal that a radical pathway is involved in the catalytic cycle.
Collapse
Affiliation(s)
- Fei Tang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wenqing Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
41
|
Sharma V, Yan R, Feng X, Xu J, Pan M, Kong L, Li L. Removal of toxic metals using iron sulfide particles: A brief overview of modifications and mechanisms. CHEMOSPHERE 2024; 346:140631. [PMID: 37939922 DOI: 10.1016/j.chemosphere.2023.140631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.
Collapse
Affiliation(s)
- Vaishali Sharma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruixin Yan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xiuping Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junqing Xu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Meitian Pan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
42
|
Liu R, Dai Y, Feng Y, Sun S, Zhang X, An C, Zhao S. Hydroxyl radical production by abiotic oxidation of pyrite under estuarine conditions: The effects of aging, seawater anions and illumination. J Environ Sci (China) 2024; 135:715-727. [PMID: 37778841 DOI: 10.1016/j.jes.2023.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 10/03/2023]
Abstract
Pyrite is widely distributed in estuarine sediments as an inexpensive natural Fenton-like reagent, however, the mechanism on the hydroxyl radical (HO·) production by pyrite under estuarine environmental conditions is still poorly understood. The batch experiments were performed to investigate the effects of estuarine conditions including aging (in air, in water), seawater anions (Cl-, Br- and HCO3-) and light on the HO· production by pyrite oxidation. The one-electron transfer dominated the process from O2 to HO· induced by oxidation of pyrite. The Fe (oxyhydr)oxide coatings on the surface of pyrite aged in air and water consumed hydrogen peroxide while mediating the electron transfer, and the combined effect of the two resulted in a suppression of HO· production in the early stage of aging and a promotion of HO· production in the later stage of aging. Corrosion of the surface oxide layers by aggressive anions was the main reason for the inhibition of HO· production by Cl- and Br-, and the generation of Cl· and Br· may also play a role in the scavenging of HO·. HCO3- increased the average rate of HO· production through surface-CO2 complexes formed by adsorption on the surface of pyrite. The significant enhancement of HO· production under light was attributed to the formation of photoelectrons induced by photochemical reactions on pyrite and its surface oxide layers. These findings provide new insights into the environmental chemical behavior of pyrite in the estuary and enrich the understanding of natural remediation of estuarine environments.
Collapse
Affiliation(s)
- Ruixue Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yucheng Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shiwen Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaodong Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
43
|
Zhang J, Li X, Qian A, Xu X, Lv Y, Zhou X, Yang X, Zhu W, Zhang H, Ding Y. Effects of operating conditions on the in situ control of sulfur-containing odors by using a novel alternative landfill cover and its transformation mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7959-7976. [PMID: 38175505 DOI: 10.1007/s11356-023-31721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Sulfur-containing gases are main sources of landfill odors, which has become a big issue for pollution to environment and human health. Biocover is promising for treating landfill odors, with advantages of durability and environmental friendliness. In this study, charcoal sludge compost was utilized as the main effective component of a novel alternative landfill cover and the in situ control of sulfur-containing odors from municipal solid waste landfilling process was simulated under nine different operating conditions. Results showed that five sulfur-containing odors (hydrogen sulfide, H2S; methyl mercaptan, CH3SH; dimethyl sulfide, CH3SCH3; ethylmercaptan, CH3CH2SH; carbon disulfide, CS2) were monitored and removed by the biocover, with the highest removal efficiencies of 77.18% for H2S, 87.36% for CH3SH, and 92.19% for CH3SCH3 in reactor 8#, and 95.94% for CH3CH2SH and 94.44% for CS2 in reactor 3#. The orthogonal experiment showed that the factors influencing the removal efficiencies of sulfur-containing odors were ranked from high to low as follows: temperature > weight ratio > humidity content. The combination of parameters of 20% weight ratio, 25°C temperature, and 30% water content was more recommended based on the consideration of the removal efficiencies and economic benefits. The mechanisms of sulfur conversion inside biocover were analyzed. Most organic sulfur was firstly degraded to reduced sulfides or element sulfur, and then oxidized to sulfate which could be stable in the layer as the final state. In this process, sulfur-oxidizing bacteria play a great role, and the distribution of them in reactor 1#, 5#, and 8# was specifically monitored. Bradyrhizobiaceae and Rhodospirillaceae were the dominant species which can utilize sulfide as substance to produce sulfate and element sulfur, respectively. Based on the results of OUTs, the biodiversity of these sulfur-oxidizing bacteria, these microorganisms, was demonstrated to be affected by the different parameters. These results indicate that the novel alternative landfill cover modified with bamboo charcoal compost is effective in removing sulfur odors from landfills. Meanwhile, the findings have direct implications for addressing landfill odor problems through parameter adjustment.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xiaowen Li
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Aiai Qian
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xianwen Xu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ya Lv
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xinrong Zhou
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xinrui Yang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Weiqin Zhu
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Hangjun Zhang
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ying Ding
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
44
|
Kour M, Taborosi A, Boyd ES, Szilagyi RK. Development of molecular cluster models to probe pyrite surface reactivity. J Comput Chem 2023; 44:2486-2500. [PMID: 37650712 DOI: 10.1002/jcc.27213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur.
Collapse
Affiliation(s)
- Manjinder Kour
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Attila Taborosi
- Research Initiative for Supra-Materials, Faculty of Engineering, Shinshu University, Nagano, Japan
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Robert K Szilagyi
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
45
|
Li K, Ma S, Zou C, Latif J, Jiang Y, Ni Z, Shen S, Feng J, Jia H. Unrecognized Role of Organic Acid in Natural Attenuation of Pollutants by Mackinawite (FeS): The Significance of Carbon-Center Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20871-20880. [PMID: 38029317 DOI: 10.1021/acs.est.3c07473] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Organic acid is prevalent in underground environments and, against the backdrop of biogeochemical cycles on Earth, holds significant importance in the degradation of contaminants by redox-active minerals. While earlier studies on the role of organic acid in the generation of reactive oxygen species (ROS) primarily concentrated on electron shuttle or ligand effects, this study delves into the combined impacts of organic acid decomposition and Mackinawite (FeS) oxidation in contaminant transformation under dark aerobic conditions. Using bisphenol A (BPA) as a model, our findings showed that oxalic acid (OA) notably outperforms other acids in enhancing BPA removal, attaining a rate constant of 0.69 h-1. Mass spectrometry characterizations, coupled with anaerobic treatments, advocate for molecule-O2 activation as the principal mechanism behind pollutant transformation. Comprehensive results unveiled that carbon center radicals, initiated by hydroxyl radical (•OH) attack, serve as the primary agents in pollutant oxidation, accounting for at least 93.6% of the total •OH generation. This dynamic, driven by the decomposition of organic acids and the concurrent formation of carbon-centered radicals, ensures a steady supply of electrons for ROS generation. The obtained information highlights the importance of OA decomposition in the natural attenuation of pollutants and offers innovative strategies for FeS and organic acid-coupled decontamination.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chuningrui Zou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Siqi Shen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Jinpeng Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| |
Collapse
|
46
|
Halevy I, Fike DA, Pasquier V, Bryant RN, Wenk CB, Turchyn AV, Johnston DT, Claypool GE. Sedimentary parameters control the sulfur isotope composition of marine pyrite. Science 2023; 382:946-951. [PMID: 37995229 DOI: 10.1126/science.adh1215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Reconstructions of coupled carbon, oxygen, and sulfur cycles rely heavily on sedimentary pyrite sulfur isotope compositions (δ34Spyr). With a model of sediment diagenesis, paired with global datasets of sedimentary parameters, we show that the wide range of δ34Spyr (~100 per mil) in modern marine sediments arises from geographic patterns in the relative rates of diffusion, burial, and microbial reduction of sulfate. By contrast, the microbial sulfur isotope fractionation remains large and relatively uniform. Over Earth history, the effect of increasing seawater sulfate and oxygen concentrations on sulfate and sulfide transport and reaction may explain the corresponding increase observed in the δ34S offset between sulfate and pyrite. More subtle variations may be related to changes in depositional environments associated with sea level fluctuations and supercontinent cycles.
Collapse
Affiliation(s)
- I Halevy
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - D A Fike
- Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
| | - V Pasquier
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - R N Bryant
- Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
- Earth, Atmospheric and Planetary Sciences, Purdue University, W. Lafayette, IN 47907, USA
| | - C B Wenk
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - A V Turchyn
- Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - D T Johnston
- Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - G E Claypool
- 8910 West Jewell Avenue, Unit 209, Lakewood, CO 80232, USA
| |
Collapse
|
47
|
Molina A, Duque G, Cogua P. Effect of environmental variables on mercury accumulation in sediments of an anthropogenically impacted tropical estuary (Buenaventura Bay, Colombian Pacific). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1316. [PMID: 37833421 PMCID: PMC10575815 DOI: 10.1007/s10661-023-11721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Estuaries are the main entry areas of mercury to the marine environment and are important to understand the effect of this contaminant on marine organisms, since it accumulates in the sediments becoming available to enter the food trophic chain. This study aims to determine the environmental variables that mainly influence the spatiotemporal dynamics of total mercury accumulation in sediments of tropical estuaries. Sediment samples were collected from interior and exterior areas of the estuary during the dry and rainy seasons, representing the spatiotemporal gradients of the estuary. The grain size, organic matter content (OM), and total mercury concentration (THg) of the sediment samples were determined. In addition, salinity, temperature, dissolved oxygen, and pH of the water column associated with each sediment sample were assessed. The variations in environmental conditions, OM and THg in sediment were in accordance with a gradient which goes from conditions influenced by fresh water in the inner estuary to conditions influenced by sea water in the outer part of the estuary. The OM and THg in sediments presented similar variation patterns; they were higher in the rainy season than in the dry season and in the interior area of the estuary than in the exterior area. Despite the complex dynamic observed in the distribution and accumulation processes of mercury in sediments, these processes could be modeled from OM and salinity parameters. Due to the correlations found, in the process of accumulation of mercury in sediments the OM could represents the pathway of transport and accumulation of THg, and salinity could represent the influence of the hydroclimatic variations and environmental gradients of the estuary.
Collapse
Affiliation(s)
- Andrés Molina
- Grupo de investigación en Ecología y Contaminación Acuática, Universidad Nacional de Colombia, Sede Palmira, Palmira, Colombia
| | - Guillermo Duque
- Universidad Nacional de Colombia, Sede Palmira, Facultad de Ingeniería y Administración, Palmira, Colombia.
| | - Pilar Cogua
- Universidad de Santiago de Cali, Facultad de Ciencias Básicas, Cali, Colombia
| |
Collapse
|
48
|
Sun J, Feng Y, Zheng R, Kong L, Wu X, Zhang K, Zhou J, Liu S. Chameleon-like Anammox Bacteria for Surface Color Change after Suffering Starvation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15087-15098. [PMID: 37754765 DOI: 10.1021/acs.est.3c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Bacteria are often exposed to long-term starvation during transportation and storage, during which a series of enzymes and metabolic pathways are activated to ensure survival. However, why the surface color of the bacteria changes during starvation is still not well-known. In this study, we found black anammox consortia suffering from long-term starvation contained 0.86 mmol gVSS-1 cytochrome c, which had no significant discrepancy compared with the red anammox consortia (P > 0.05), indicating cytochrome c was not the key issue for chromaticity change. Conversely, we found that under starvation conditions cysteine degradation is an important metabolic pathway for the blackening of the anammox consortia for H2S production. In particular, anammox bacteria contain large amounts of iron-rich nanoparticles, cytochrome c, and other iron-sulfur clusters that are converted to produce free iron. H2S combines with free iron in bacteria to form Fe-S compounds, which eventually exist stably as FeS2, mainly in the extracellular space. Interestingly, FeS2 could be oxidized by air aeration, which makes the consortia turn red again. The unique self-protection mechanism makes the whole consortia appear black, avoiding inhibition by high concentrations of H2S and achieving Fe storage. This study expands the understanding of the metabolites of anammox bacteria as well as the bacterial survival mechanism during starvation.
Collapse
Affiliation(s)
- Jingqi Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| |
Collapse
|
49
|
Lacroix EM, Aeppli M, Boye K, Brodie E, Fendorf S, Keiluweit M, Naughton HR, Noël V, Sihi D. Consider the Anoxic Microsite: Acknowledging and Appreciating Spatiotemporal Redox Heterogeneity in Soils and Sediments. ACS EARTH & SPACE CHEMISTRY 2023; 7:1592-1609. [PMID: 37753209 PMCID: PMC10519444 DOI: 10.1021/acsearthspacechem.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 07/21/2023] [Indexed: 09/28/2023]
Abstract
Reduction-oxidation (redox) reactions underlie essentially all biogeochemical cycles. Like most soil properties and processes, redox is spatiotemporally heterogeneous. However, unlike other soil features, redox heterogeneity has yet to be incorporated into mainstream conceptualizations of soil biogeochemistry. Anoxic microsites, the defining feature of redox heterogeneity in bulk oxic soils and sediments, are zones of oxygen depletion in otherwise oxic environments. In this review, we suggest that anoxic microsites represent a critical component of soil function and that appreciating anoxic microsites promises to advance our understanding of soil and sediment biogeochemistry. In sections 1 and 2, we define anoxic microsites and highlight their dynamic properties, specifically anoxic microsite distribution, redox gradient magnitude, and temporality. In section 3, we describe the influence of anoxic microsites on several key elemental cycles, organic carbon, nitrogen, iron, manganese, and sulfur. In section 4, we evaluate methods for identifying and characterizing anoxic microsites, and in section 5, we highlight past and current approaches to modeling anoxic microsites. Finally, in section 6, we suggest steps for incorporating anoxic microsites and redox heterogeneities more broadly into our understanding of soils and sediments.
Collapse
Affiliation(s)
- Emily M. Lacroix
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Meret Aeppli
- Institut
d’ingénierie de l’environnement (IIE), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Kristin Boye
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Eoin Brodie
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Scott Fendorf
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Marco Keiluweit
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
| | - Hannah R. Naughton
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Vincent Noël
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Debjani Sihi
- Department
of Environmental Sciences, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
50
|
Bairan Espano JR, Macdonald JE. Phase Control in the Synthesis of Iron Sulfides. J Am Chem Soc 2023; 145:18948-18955. [PMID: 37595286 DOI: 10.1021/jacs.3c05653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The identity and repeating arrangement of atoms determine the properties of all solids. Even combinations of two atoms can have multiple crystal structures of varying stoichiometries and symmetries with vastly different electronic and chemical behaviors. The conditions of existing bottom-up routes for achieving one phase over another are serendipitous, and the links among precursor reactivity, decomposition mechanism, temperature, and time are elusive. Our studies take a systematic approach to understanding the role that the precursor kinetic decomposition has in the synthesis of iron sulfides, isolating it from other mechanistic factors. The data suggest that phase determination in binary solids can be logically predicted through the consideration of the anion stacking and thermodynamic relationships between phases. Mapping these relationships allows for the rational synthetic targeting of metastable crystalline phases.
Collapse
Affiliation(s)
- Jeremy R Bairan Espano
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Janet E Macdonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|