1
|
Tiwari AP, Chandra P, Rahman MS, Mirica KA, Scheideler WJ. Optimizing active sites via chemical bonding of 2D metal-organic frameworks and MXenes for efficient hydrogen evolution reaction activity. NANOSCALE 2025; 17:11028-11036. [PMID: 40223465 DOI: 10.1039/d5nr00550g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Metal-organic frameworks (MOFs) are promising electrocatalysts due to their large surface areas and abundant metal sites, but their efficacy is limited by poor exposure of active metal atoms to the electrolyte. To address this issue, we report an innovative approach that integrates a conductive layered MXene (Ti3C2Tx) with a 2-dimensional (2D) Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2-MOF through in situ synthesis of the MOF on the MXene, maximizing the accessible exposure of active sites for electrocatalytic hydrogen evolution reaction (HER) activity. XPS analysis confirms that the MOF is chemically bonded with the MXene layers, while SEM analysis shows complete overlapping, intercalation, and surface growth of the MOF on the MXene layers. The optimized chemically bonded MOF on MXene exhibits superior electrocatalytic activity, with an overpotential of 180 mV in alkaline media-four times better than that of the pristine MOF-and an overpotential of 240 mV in acidic media, three times better than that of the pristine MOF. The enhanced electrocatalytic activity is attributed to the bond formation between Ti atoms from the MXene and N atoms from the MOF, which facilitates charge transfer and improves both the kinetics and active electrocatalytic area for the HER. This method offers a simple, pioneering approach to fabricate noble metal-free, nanostructured electrocatalysts, enhancing water electrolysis efficiency and extending applicability to other conductive MOFs.
Collapse
Affiliation(s)
- Anand P Tiwari
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | - Priyanshu Chandra
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Md Saifur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
2
|
Hood B, de Coene Y, Jones CF, Deveaux N, Barber JM, Marshall CG, Jordan CA, Halcovitch NR, Champagne B, Clays K, Fielden J. Donor and Geometry Optimization: Fresh Perspectives for the Design of Polyoxometalate Charge Transfer Chromophores. Inorg Chem 2025; 64:8408-8420. [PMID: 40228151 PMCID: PMC12042256 DOI: 10.1021/acs.inorgchem.5c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Three linear, dipolar arylimido-polyoxometalate (POM) and one 2-dimensional bis-functionalized arylimido-polyoxometalate charge transfer chromophore, with diphenylacetylene bridges, have been synthesized and studied by spectroelectrochemistry, hyper-Rayleigh scattering (HRS), and DFT/TD-DFT calculations. The linear systems show that with julolidinyl (Jd) and -NTol2 donor groups, the alkyne bridge yields high second-order nonlinear optical (NLO) coefficients β (Jd, β0,zzz = 318 × 10-30 esu; -NTol2, β0,zzz = 222 × 10-30 esu), indeed the Jd compound gives the highest NLO activity of any organoimido-POM to date with minimal decrease in transparency. The bis-functionalized 2D (C2v) POM derivative showed increased activity over its monofunctionalized analogue with no decrease in transparency, although the NLO response was only minimally two dimensional. Spectroelectrochemistry and TD-DFT calculations showed switchable linear optical responses for the monofunctionalized derivatives due to the weakened charge transfer character of the electronic transitions in the reduced state, while TD-DFT also indicated potential for switched NLO responses. These have been demonstrated by electrochemistry-HRS for the Jd compound, but cyclability is limited by relatively poor stability in the reduced state. IR and CV studies for these sterically protected arylimido polyoxometalates indicate that decomposition proceeds via a breakdown of the {Mo6} cluster in the reduced state, rather than simple solvolysis of the Mo≡N bond.
Collapse
Affiliation(s)
- Bethany
R. Hood
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YW, U.K.
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Yovan de Coene
- Department
of Chemistry, University of Leuven, Celestijnenlaan 200D, Leuven 3001, Belgium
| | - Claire F. Jones
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Noah Deveaux
- Unit
of Theoretical and Structural Physical Chemistry, Namur Institute
of Structured Matter, University of Namur, Namur B-5000, Belgium
| | - Jack M. Barber
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | | | - Chloe A. Jordan
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | | | - Benoît Champagne
- Unit
of Theoretical and Structural Physical Chemistry, Namur Institute
of Structured Matter, University of Namur, Namur B-5000, Belgium
| | - Koen Clays
- Department
of Chemistry, University of Leuven, Celestijnenlaan 200D, Leuven 3001, Belgium
| | - John Fielden
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YW, U.K.
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| |
Collapse
|
3
|
Yamaguchi M, Yonesato K, Shioya K, Li C, Murata K, Ishii K, Yamaguchi K, Suzuki K. Engineering cofacial porphyrin dimers using lacunary polyoxotungstates. Chem Sci 2025:d5sc00814j. [PMID: 40303458 PMCID: PMC12036599 DOI: 10.1039/d5sc00814j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Cofacial porphyrin dimers have garnered extensive attention for their unique photophysical and catalytic properties, which strongly depend on structural configurations. However, precisely controlling key parameters, such as lateral and rotational displacements, interfacial distance, and stability, remains challenging. Herein, we present a novel strategy for engineering porphyrin dimer structures and properties using multivacant lacunary polyoxometalates (POMs), [SiW10O36]8- or [SiW9O34]10-, as linkers. By adjusting the types and coordination modes of lacunary POMs, three distinct hybrids were obtained via the self-assembly of two 5,10,15,20-tetra(4-pyridyl)porphyrin molecules and four lacunary POM units, each exhibiting modulated stacking geometries, interfacial distances and interactions, and photophysical properties. These hybrids demonstrated efficient visible-light-responsive photosensitized reactions to generate singlet oxygen from ground-state triplet oxygen (3O2), leading to the photooxidation of various organic substrates. Notably, hybrid II, constructed using [SiW10O36]8-, exhibited the strongest π-π interactions, distinct optical properties, and enhanced resistance to -induced degradation. These findings highlight the potential of POMs as versatile tools for the precise control of porphyrin dimer architectures and the development of materials with tailored photophysical and catalytic functions.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kaito Shioya
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako-shi Saitama 351-0198 Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
4
|
Zeaiter N, Martinetto Y, Cézard L, Haouas M, Roch-Marchal C, Pégot B, Floquet S, Cottyn-Boitte B. Decatungstate-Based Ionic Liquid Highly Active Under Mild Conditions for Upgrading Recalcitrant Humins from Biorefineries. Inorg Chem 2025; 64:5495-5504. [PMID: 40070226 DOI: 10.1021/acs.inorgchem.4c05419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Among all the materials resulting from the recovery of biomass, humin coproducts are produced today on a large scale, particularly in the sugar industry and biorefineries. Humins formation, with typical yields between 10 and 50 wt %, significantly reduces the efficiency and economic viability of the processes. With their complex structure, low solubility, and low reactivity, their valorization constitutes a real challenge. This paper aims to establish the proof of concept for the transformation of recalcitrant humins into high-value-added biobased products using polyoxometalate-based ionic liquids (POM-ILs) under "mild" conditions. In this contribution, the POM-IL (P6,6,6,14)4[W10O32] is used in the presence of H2O2, at atmospheric pressure and 90 °C for just 1 h. This system proved to be a powerful oxidizing catalyst for the extensive depolymerization of humins and their valorization into platform molecules. Under these conditions, the humin powder underwent an almost complete oxidative dissolution in the 94-99% yield range, leading to the formation of various carboxylic acids of industrial interest and sugars.
Collapse
Affiliation(s)
- Nour Zeaiter
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St-Quentin en Yvelines, Université Paris-Saclay, 45 avenue des Etats-Unis, Versailles 78035, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles 78000, France
| | - Yohan Martinetto
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St-Quentin en Yvelines, Université Paris-Saclay, 45 avenue des Etats-Unis, Versailles 78035, France
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles 78000, France
| | - Laurent Cézard
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles 78000, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St-Quentin en Yvelines, Université Paris-Saclay, 45 avenue des Etats-Unis, Versailles 78035, France
| | - Catherine Roch-Marchal
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St-Quentin en Yvelines, Université Paris-Saclay, 45 avenue des Etats-Unis, Versailles 78035, France
| | - Bruce Pégot
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St-Quentin en Yvelines, Université Paris-Saclay, 45 avenue des Etats-Unis, Versailles 78035, France
| | - Sébastien Floquet
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St-Quentin en Yvelines, Université Paris-Saclay, 45 avenue des Etats-Unis, Versailles 78035, France
| | - Betty Cottyn-Boitte
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles 78000, France
| |
Collapse
|
5
|
Renaudineau S, Chamoreau LM, Bernard A, Thouvenot R, Proust A, Gouzerh P. Synthesis, Characterization, and Stability of {Mo 132}-Type Capsules Containing Phosphorus Oxo Anion Ligands. Inorg Chem 2025; 64:4862-4872. [PMID: 40028860 DOI: 10.1021/acs.inorgchem.4c04695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This article deals with a set of {Mo132}-type capsules containing phosphorus oxo anions as ligands. Two of them, with hypophosphite and phosphate ligands, respectively, were prepared and characterized by infrared (IR) spectroscopy and X-ray diffraction in Bielefeld more than two decades ago. We extended this pioneering work to phosphite and methylphosphonate ligands. All these capsules were prepared by ligand exchange in the acetate-containing {Mo132} capsule and some of them contain residual acetate, depending on the incoming ligand and the pH of the reaction mixture. All of them were characterized by 1H and 31P NMR spectroscopy in D2O and one by single-crystal X-ray diffraction. These studies showed that side reactions occur. On the one hand, degradation of the {Mo132} framework leads to the release of fragments that can be trapped as {MoO3H}+ units by the ligands inside capsules. This was known for phosphate and is also observed for methylphosphonate. On the other hand, monitoring by NMR spectroscopy revealed that capsules slightly transform over time in solution as well as in the solid state, as evidenced by growth of characteristic signals of Strandberg-type complexes and reduced Keggin-type molybdophosphates. Decomposition, however, remains fairly low over a few months.
Collapse
Affiliation(s)
- Séverine Renaudineau
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Lise-Marie Chamoreau
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Aurélie Bernard
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, F-75005 Paris, France
| | - René Thouvenot
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Anna Proust
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Pierre Gouzerh
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, F-75005 Paris, France
| |
Collapse
|
6
|
Cai LX, Hu YH, Zhou LP, Cheng PM, Guo XQ, Chan YT, Sun QF. Polyoxometalate condensation and transformation mediated by adaptive coordination-assembled molecular flasks. Chem Sci 2025:d4sc08729a. [PMID: 40201166 PMCID: PMC11973575 DOI: 10.1039/d4sc08729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/08/2025] [Indexed: 04/10/2025] Open
Abstract
Here we report polyoxometalate (POM) condensation or transformation reactions mediated by adaptive coordination-assembled molecular flasks. Addition of Na2SiO3 to the (Mo6O19)2⊂1·(NO3)8 complex containing Lindquist-type clusters as guests leads to the formation of a new (SiMo12O40)⊂2·(NO3)8 host-guest complex, where the in situ generated Keggin-type cluster served as a trigger for the host transformation from cage 1 to isomeric bowl 2. Conversion from 1 to 2 driven by the in situ condensation was found to be 27.5-fold faster than the direct templation with independently prepared SiMo12O40 4-. As a comparison, cage 1 was noticed to bind only one W6O19 2- cluster in its cavity, and the formation of (W10O32)⊂2·(NO3)8 as the main product and (SiW12O40)⊂2·(NO3)8 as the minor host-guest complex was observed when it was used for the above condensation reaction, highlighting the crucial role of encapsulation in cavity-confined POM transformations. The reaction processes and the final structure of all the new host-guest complexes have been investigated by NMR, ESI-TOF-MS and SCXRD. Our findings not only showcase a unique example of inorganic-reaction-driven responsive supramolecular system, but also provide a new approach for the preparation of functional POMs⊂cage composite materials.
Collapse
Affiliation(s)
- Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yu-Hang Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University Taipei 10617 Taiwan
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
7
|
Jimbo A, Li C, Yonesato K, Yamaguchi K, Suzuki K. Ligand-directed top-down synthesis of trivacant lacunary polyoxomolybdates from plenary Keggin-type [α-XMo 12O 40] 3- (X = P, As, V) in organic media. Dalton Trans 2025. [PMID: 40034008 DOI: 10.1039/d5dt00252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lacunary polyoxometalates (POMs), featuring highly reactive vacant sites, serve as valuable building blocks and precursors for the rational design of functional materials with widespread applications in catalysis, analytical chemistry, energy conversion and storage, medicine, and optical materials. While diverse Keggin-type polyoxotungstates, including both plenary and lacunary species, have been synthesized through dehydration condensation reactions and equilibrium displacement in aqueous solvents, the isolation and use of lacunary polyoxomolybdates remain challenging. To address this, the current study proposes a "ligand-directed top-down synthetic approach" for producing lacunary polyoxomolybdates from plenary Keggin-type species in organic solvents. By reacting plenary Keggin-type polyoxomolybdates [α-XMo12O40]3- (X = P, As, V) with 4-methoxypyridine (pyOMe) in acetonitrile, we successfully synthesized the corresponding trivacant lacunary polyoxomolybdates ([XMo9O31(pyOMe)3]3-), where the vacant sites are stabilized by three pyOMe ligands. Remarkably, this approach enables the synthesis of a lacunary vanadomolybdate, a species previously unattainable through equilibrium control in aqueous systems. Furthermore, the reversible coordination of pyOMe ligands to molybdenum atoms at the vacant sites makes these lacunary polyoxomolybdates highly versatile precursors for assembling POM-organic hybrids. Overall, this study introduces an innovative synthetic methodology for POMs, demonstrating notable potential for advancing the development of functional materials.
Collapse
Affiliation(s)
- Atsuhiro Jimbo
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
8
|
Zheng Y, Sun X, Li L, Zhou W, Dou J, Zou A, He Y, Jiang S, Fu L, Peng J. Experimental and Theoretical Study of Two 3D Difunctional Electrocatalytic Hybrid Vanadate-Containing Metal-Organic Motifs. Inorg Chem 2025; 64:2394-2402. [PMID: 39878686 DOI: 10.1021/acs.inorgchem.4c04659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Two novel 3D inorganic-organic hybrids based on [V6O18]6-/[V3O9]3- clusters, [Cu18(bbpy)18(V6O18)6]·3H2O (1) and [Cu4Ag4(pty)4(V3O9)4]·H2O (2) (bbpy = 3,5-bis(1-benzimidazole) pyridine, pty = 4'-(4″-pyridyl)-2,2':6',2″-terpyridine), were isolated in the same POV/Cu/N-heterocycle ligand reaction systems. Hybrids 1 and 2 possess novel three-dimensional bimetallic frameworks derived from [V6O18]6-/[V3O9]3- clusters and Cu-organic complexes. In 1, bbpy ligands are grafted by Cu2+ to a grid ribbon 2D sheet, which are connected with benzene-like [V6O18]6- to yield a 3D framework. In 2, helical {O-V-O-V-}n chains are bridged by Cu(II) ions into a 2D layer including eight-membered rings {V6Cu2} and six-membered rings {V4Cu2}, and the adjoining sheets are joined by Ag-N coordination bonds to form a framework structure. Moreover, hybrid 1 has superior electrocatalytic properties for nitrite reduction and oxidation of ascorbic acid with electrocatalytic efficiencies of 397.2 and 96%, respectively. Hybrid 2 displays coordinated electrocatalytic performance toward oxidation reaction through V and Cu centers. Meanwhile, the corresponding theoretical studies were conducted to evaluate electrocatalytic active sites and charge distribution.
Collapse
Affiliation(s)
- Yanping Zheng
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Xinxin Sun
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Lingling Li
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Wanli Zhou
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Jia Dou
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Aiyang Zou
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Yu He
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Siyao Jiang
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Lihai Fu
- Faculty of Chemistry, Tonghua Normal University, Tonghua, Jilin 134002, PR China
| | - Jun Peng
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China
| |
Collapse
|
9
|
Hermi S, Ahmad S, Belaid AK, Islam MS, Habib MA, Almarhoon ZM, Hajji M. A zero-dimensional 1-butylpiperazine-cadmium(II) hybrid material: Synthesis, structural analysis, and DFT studies. J Mol Struct 2025; 1321:140079. [DOI: 10.1016/j.molstruc.2024.140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
10
|
Lv Y, Lu Y, Yu X, Yu L, Qu X, Yang Y, Jin H, Wei Q, Li X, Yu XY. Three New Multifunctional Supramolecular Compounds Based on Keggin-Type Polyoxoanions and 3,5-di(1H-Imidazol-1-yl)benzoic Acid: Syntheses, Structures, and Properties. Molecules 2025; 30:580. [PMID: 39942694 PMCID: PMC11820590 DOI: 10.3390/molecules30030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Three new inorganic-organic hybrid compounds, (H3DIBA)2·SiMo12O40·H2O (1), (H3DIBA)2·SiW12O40·H2O (2), and [(H2DIBA)(H3DIBA)]·PMo12O40·2H2O (3) (HDIBA = 3,5-di(1H-imidazol-1-yl)benzoic acid) were synthesized by the hydrothermal method. The structures were characterized by single-crystal X-ray diffraction, elemental analysis, powder X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. These three compounds are all 3D supramolecular structures formed by Keggin-type polyoxometalate anions and HDIBA through intermolecular weak interactions, which have been studied via Hirshfeld surface analysis. The electrochemistry properties of 1 and 3 have been studied, including cyclic voltammetric behaviors and electrocatalytic properties. The study on the removal of organic dye pollutants in water showed that compounds 1 and 3 had an adsorption effect on cationic dye RhB, and the adsorption process conforms to the Langmuir isotherm model. Compound 2 can photocatalytically degrade cationic organic dyes RhB, MB, and CV, and the photocatalytic mechanism study indicates that h+ plays a major role in the photocatalytic process.
Collapse
Affiliation(s)
- Yanxin Lv
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| | - Yang Lu
- Petrochina Jilin Petrochemical Company Research Institute, Jilin 132022, China
| | - Xingyuan Yu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| | - Liying Yu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| | - Xiaoshu Qu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| | - Yanyan Yang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| | - Hua Jin
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| | - Qingling Wei
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| | - Xuemei Li
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| | - Xiao-Yang Yu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; (Y.L.)
| |
Collapse
|
11
|
Gong X, Teng W, Liu W, Xiao H, Li H, Ou H, Yang G. A Sucker-Reactor Polyoxometalate Assembled Superstructures for Efficient Photocatalytic Nitrogen Fixation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412924. [PMID: 39533474 DOI: 10.1002/adma.202412924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Designing a reaction system that integrates reactant capture and transformation in an artificial photosynthesis system to achieve high reaction efficiency remains challenging. Here, an ionic liquid (IL) -polyoxometalate (POM) superstructure photocatalyst (P2HPMo) is reported, where the anisotropy of the superstructure is allowed by adjusting the alkyl chain lengths of ILs. Experimental data and theoretical simulation show that ILs and POM serve as the "sucker" and "reactor" of the reaction system to capture and transform the reactants, respectively. In particular, the addition of quaternary phosphorous IL cations is not only conducive to the adsorption of N2 but also effectively promotes the activation of N2 by manipulating the energy band and electronic structure. Consequently, the synthesized P2HPMo exhibits an ammonia synthesis rate of 98 µmol·gcat -1·h-1, which is one of the highest values available in a sacrificial agent-free system.
Collapse
Affiliation(s)
- Xiangjiao Gong
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wenkai Teng
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wei Liu
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hang Xiao
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - He Li
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Honghui Ou
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guidong Yang
- A XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
12
|
Duan ZC, Li G, Li KC, Cui XB. Three organic-inorganic polyoxoniobate-based compounds modified with Cu(II) amine complexes: synthesis, characterization, and catalytic studies for oxidation of styrene. Dalton Trans 2024; 53:17880-17892. [PMID: 39429099 DOI: 10.1039/d4dt02544j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Three novel organic-inorganic polyoxoniobate-based compounds modified with Cu(II) amine complexes were synthesized under hydrothermal conditions with the chemical formulas as follows: K0.5[Cu(enMe)2]4[K0.5SiNb12O40(VO)4.25](OH)1.5·9H2O (1), K0.5[Cu(enMe)2]4[K0.5H2PNb12O40(VO)2]·12.5H2O (2), and K0.5[Cu(enMe)2]4[K0.5H2VNb12O40(VO)2]·12.5H2O (3) (enMe = 1,2-diaminopropane). These compounds were characterized by single crystal X-ray diffraction, infrared spectroscopy (IR), UV-Vis spectroscopy, elemental analysis and powder X-ray diffraction (PXRD) analysis. Notably, while these three compounds exhibit identical cell parameters, they possess distinct stoichiometric compositions and differing polyoxometalate building block structures. Typically, compounds with the same cell parameters are classified as isostructural, sharing identical structures with only minor elemental variations in their compositions. To the best of our knowledge, compounds 1-3 represent the first instances of compounds that share the same cell parameters yet are not isostructural. In this study, we not only synthesized these three compounds and thoroughly examined the differences in their structures and properties, but also investigated their catalytic performances as catalysts for the oxidation of styrene.
Collapse
Affiliation(s)
- Zhi-Cheng Duan
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Guanghua Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Ke-Chang Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Xiao-Bing Cui
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| |
Collapse
|
13
|
Zhu YH, Yang JB, Dong ZM, Mei H, Xu Y. Harnessing Visible Light for CO 2 Conversion: The Role of Highly Reduced Phosphomolybdate Crystals as Powerful Photocatalysts. Inorg Chem 2024; 63:21303-21312. [PMID: 39450659 DOI: 10.1021/acs.inorgchem.4c03810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Heterogeneous photocatalysts, characterized by well-defined atomic structures and the capacity for rapid, directional electron transfer, are pivotal in the exploration and development of highly efficient systems for visible-light-driven diluted CO2 reduction. Herein, we constructed highly reduced phosphomolybdates crystalline materials 1-3 to help this process, with the formula of [Co2(C8N3H7)4][Co2(C8N3H7)4(H2O)2][Co(H7P4Mo6O31)2]·8H2O (1), [Ni2(C8N3H7)4(H2O)2][Ni2(C8N3H7)4][Ni(H2O)4][Ni(H6P4Mo6O31)2]·3H2O·2C2H5OH (2), and [Zn2(C8N3H7)2][Zn2(C8N3H7)4][Zn2(C8N3H7)2(H2O)2][Zn(H5P4Mo6O31)2] (3) [C8N3H7 = 2-(1H-pyrazol-3-yl)pyridine]. Specifically, catalyst 1 demonstrated a CO production rate of 3276.4 μmol g-1 h-1 in an environment with 20% CO2 concentration, and an impressively elevated rate of 10740.3 μmol g-1 h-1 in a pure CO2 atmosphere. Steady-state photoluminescence spectroscopy revealed that the directional migration of photoelectrons from the Ru complexes to the catalyst was instrumental in enhancing the catalytic activity. This study provides valuable insights into the rational operation of low-concentration CO2 conversion treatment and the design and synthesis of photocatalysts.
Collapse
Affiliation(s)
- Yin-Hua Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jian-Bo Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhi-Ming Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hua Mei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yan Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
14
|
Lei W, Li H, Yang M, Liu J, Chen W, Ma P, Niu J, Wang J. Controllable Synthesis and Ultrahigh Proton Conduction of a Hydrogen-Bond Network. Inorg Chem 2024; 63:20492-20500. [PMID: 39413764 DOI: 10.1021/acs.inorgchem.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The functionalization of polyoxometalates with organic ligands provides a new-style strategy to accurately incorporate polyoxometalates with advanced functional organic moieties on their surfaces, the development of which has attracted increasing research interest due to the potential applications. A germanium tungstate Na2(H3O)6[{RuIV(bpy)}2{WO2(C2O4)}2(GeW11O39)2]·27H2O (bpy = 2,2'-bipyridine) with two ligands covalently modified was triumphantly synthesized, using the conventional one-pot hydrothermal method. It was systematically characterized by thermogravimetric analysis (TGA), elemental analysis, infrared (IR) spectroscopy, single-crystal X-ray diffraction, X-ray photoelectron spectroscopy (XPS), powder diffraction (PXRD), scanning electronic microscopy (SEM), and ultraviolet-visible (UV-vis) spectroscopy. The two-dimensional (2D) layered structure was established through hydrogen bonding and Na+ bridges. Impedance measurements indicate that it displays outstanding proton conduction properties, with a splendid conductivity up to 1.24 × 10-2 S·cm-1 under 353 K and 90% relative humidity (RH), owing to the rich interlayer hydrogen-bond network formed by the organic ligands ({RuC10H8N2}4+ and {WC2O4}4+), hydrated protons (H3O+), and crystal waters.
Collapse
Affiliation(s)
- Wenjing Lei
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Mengnan Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jiayu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Wenjing Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemical and Molecular Sciences, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
15
|
Pal A, Bhattacharya S, Ma X, Ben Kiran A, Silvestru C, Kortz U. Fluorinated Arylarsonate-Containing Polyoxomolybdates: pH-Dependent Formation of Mo 6 vs Mo 12 Species and Their Solution Properties. Inorg Chem 2024; 63:18838-18846. [PMID: 39324758 PMCID: PMC11462504 DOI: 10.1021/acs.inorgchem.4c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
We report on the synthesis and structural characterization of six novel arylarsonate-containing polyoxomolybdates with fluorinated-functionalities in the para position of the phenyl ring. The reaction of the various arylarsonic acids, RAsO3H2 [R = 4-F-C6H4 (H2LF), 4-F3C-C6H4 (H2LCF3), 4-F3CO-C6H4 (H2LOCF3)] with Na2MoO4·2H2O in aqueous pH 3 solution resulted in the heteropoly-6-molybdates [{(4-F-C6H4)As}2Mo6O24(H2O)]4- (1), [{(4-F3C-C6H4)As}2Mo6O24]4- (2) and [{(4-F3CO-C6H4)As}2Mo6O24(H2O)]4- (3), which were isolated as guanidinium salts. When the reaction was performed in aqueous pH 1 solution the inverted-Keggin type heteropoly-12-molydates [{(4-F-C6H4)As}4Mo12O46]4- (4), [{(4-F3C-C6H4)As}4Mo12O46]4- (5) and [{(4-F3CO-C6H4)As}4Mo12O46]4- (6), were obtained and isolated as sodium salts. The 6-molybdates 1-3 and the 12-molybdates 4-6 can be easily interconverted reversibly in solution as a function of pH (3 vs 1). Polyanions 1 and 3 are isostructural and they exhibit a bent hexamolybdate ring, whereas the ring is flat for 2. The inverted-Keggin polyanions 4-6 are isostructural and the metal-oxo core is capped by four arylarsonate groups. All six polyanions have been characterized in the solid state by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, and hermogravimetric analysis as well as in solution by multinuclear NMR (1H, 19F). The synthetic procedures for the arsonic acids (4-F3C-C6H4)AsO3H2 (H2LCF3) and (4-F3CO-C6H4)AsO3H2 (H2LOCF3) are reported for the first time.
Collapse
Affiliation(s)
- Arun Pal
- School
of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany
| | - Saurav Bhattacharya
- School
of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany
- Department
of Chemistry, BITS Pilani K. K. Birla Goa
Campus, Zuarinagar 403726 Goa, India
| | - Xiang Ma
- School
of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany
- Fujian
Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials,
College of Chemistry, Fuzhou University, Fuzhou 350108 Fujian, China
| | - Ahmad Ben Kiran
- Department
of Chemistry, Supramolecular Organic and Organometallic Chemistry
Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, Cluj-Napoca 400028, Romania
| | - Cristian Silvestru
- Department
of Chemistry, Supramolecular Organic and Organometallic Chemistry
Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, Cluj-Napoca 400028, Romania
| | - Ulrich Kortz
- School
of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany
| |
Collapse
|
16
|
Wang S, Yu X, Zhao J, Su Y. Polyacid-Modulated Carrier Dynamic Behavior at the Interface of 0D/2D Heterojunctions. J Phys Chem Lett 2024; 15:9945-9953. [PMID: 39312467 DOI: 10.1021/acs.jpclett.4c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Heterojunctions formed by polyoxometalates and 2D materials draw attention owing to their remarkable photoelectric and catalytic properties. However, the intrinsic mechanisms of polyoxometalates regulating the heterojunction photoelectric properties are unclear. Herein, we constructed two types of heterojunctions by integrating polyoxometalates (Keggin-type H3PW12O40 and Lindqvist-type H2W6O19) on g-C3N4 monolayers, exploring photoexcited carrier dynamics in these heterojunctions by ab initio calculations combined with nonadiabatic molecular dynamics (NAMD) simulations. Our results show that electrons and holes in H3PW12O40 on g-C3N4 monolayers relax within 583 and 760 fs, respectively. The electron-hole recombination occurs at 342 fs, faster than carrier separation, aligning with the behavior of Z-type heterojunctions. Contrarily, the H2W6O19/g-C3N4 heterojunction exhibits the typical characteristics of type II heterojunctions, with a long photogenerated carrier lifetime reaching 652 fs. These findings show tunable band alignment in polyoxometalate-supported systems by modulating polyoxometalate type, influencing hot electron dynamics, and guiding 0D/2D heterojunction design.
Collapse
Affiliation(s)
- Siying Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Xueke Yu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
17
|
Iftikhar T, Rosnes MH. Covalent organic-inorganic polyoxometalate hybrids in catalysis. Front Chem 2024; 12:1447623. [PMID: 39268008 PMCID: PMC11391350 DOI: 10.3389/fchem.2024.1447623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Polyoxometalates (POMs) are a class of compounds known for the vast range of tunable structures and properties available, leading to applications in areas such as catalysis, energy, and advanced medicine. The ability to covalently functionalize POMs with organic components has been investigated extensively to tune the physical and chemical properties of the resulting hybrid materials. These hybrids, where the organic entity is covalently attached to the POM-core ( Class II hybrid POMs) result in a vast library of promising customizable catalytic systems, displaying tunable properties with a high level of synergy between the polyanion and the organic component. A number of Class II hybrids have been investigated for a wide range of catalytic applications, and here, we give a brief overview of Class II hybrids of the p-block elements and their applications in catalysis.
Collapse
Affiliation(s)
- Tuba Iftikhar
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Mali H Rosnes
- Department of Chemistry, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Kawakami K, Yabe T, Amano F, Yamaguchi K, Suzuki K. Pd-incorporated polyoxometalate catalysts for electrochemical CO 2 reduction. Chem Sci 2024:d4sc04304a. [PMID: 39184297 PMCID: PMC11342151 DOI: 10.1039/d4sc04304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Polyoxometalates (POMs), representing anionic metal-oxo clusters, display diverse properties depending on their structures, constituent elements, and countercations. These characteristics position them as promising catalysts or catalyst precursors for electrochemical carbon dioxide reduction reaction (CO2RR). This study synthesized various salts-TBA+ (tetra-n-butylammonium), Cs+, Sr2+, and Ba2+-of a dipalladium-incorporated POM (Pd2, [γ-H2SiW10O36Pd2(OAc)2]4-) immobilized on a carbon support (Pd2/C). The synthesized catalysts-TBAPd2/C, CsPd2/C, SrPd2/C, and BaPd2/C-were deposited on a gas-diffusion carbon electrode, and the CO2RR performance was subsequently evaluated using a gas-diffusion flow electrolysis cell. Among the catalysts tested, BaPd2/C exhibited high selectivity toward carbon monoxide (CO) production (ca. 90%), while TBAPd2/C produced CO and hydrogen (H2) with moderate selectivity (ca. 40% for CO and ca. 60% for H2). Moreover, BaPd2/C exhibited high selectivity toward CO production over 12 h, while palladium acetate, a precursor of Pd2, showed a significant decline in CO selectivity during the CO2RR. Although both BaPd2/C and TBAPd2/C transformed into Pd nanoparticles and WO x nanospecies during the CO2RR, the influence of countercations on their product selectivity was significant. These results highlight that POMs and their countercations can effectively modulate the catalytic performance of POM-based electrocatalysts in CO2RR.
Collapse
Affiliation(s)
- Kimitake Kawakami
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Fumiaki Amano
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
19
|
Yonesato K, Yamaguchi K, Suzuki K. Synthesis of polyoxothiometalates through site-selective post-editing sulfurization of polyoxometalates. Chem Sci 2024; 15:11267-11271. [PMID: 39055039 PMCID: PMC11268463 DOI: 10.1039/d4sc02912g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Polyoxometalates (POMs) function as platforms for synthesizing structurally well-defined inorganic molecules with diverse structures, metals, compositions, and arrangements. Although post-editing of the oxygen sites of POMs has great potential for development of unprecedented structures, electronic states, properties, and applications, facile methods for site-selective substitution of the oxygen sites with other atoms remain limited. Herein, we report a direct site-selective oxygen-sulfur substitution method that enables transforming POMs [XW12O40]4- (X = Si, Ge) to Keggin-type polyoxothiometalates (POTMs) [XW12O28S12]4- using sulfurizing reagents in an organic solvent. The resulting POTMs retain the original Keggin-type structure, with all 12 surface W[double bond, length as m-dash]O groups selectively converted to W[double bond, length as m-dash]S without sulfurization of other oxygen sites. These POTMs show high stability against water and O2 in organic solvents and a drastic change in the electronic states and redox properties. The findings of this study represent a facile method for converting POMs to POTMs, leading to the development of their unique properties and applications in diverse fields, including (photo)catalysis, sensing, optics, electronics, energy conversion, and batteries.
Collapse
Affiliation(s)
- Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
20
|
Nowicka D, Marcinkowski D, Vadra N, Szymańska M, Kubicki M, Consiglio G, Drożdż W, Stefankiewicz AR, Patroniak V, Fik-Jaskółka M, Gorczyński A. The effect of ionic versus covalent functionalization of polyoxometalate hybrid materials with coordinating subunits on their stability and interaction with DNA. Dalton Trans 2024; 53:11678-11688. [PMID: 38751208 DOI: 10.1039/d4dt00965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Inorganic-organic hybrid materials that combine both Polyoxometalates (POMs) and metal ion coordinating subunits (CSUs) represent promising multifunctional materials. Though their individual components are often biologically active, utilization of hybrid materials in bioassays significantly depends on the functionalization method and thus resulting stability of the system. Quite intriguingly, these aspects were very scarcely studied in hybrid materials based on the Wells-Dawson POM (WD POM) scaffold and remain unknown. We chose two model WD POM hybrid systems to establish how the functionalization mode (ionic vs. covalent) affects their stability in biological medium and interaction with nucleic acids. The synthetic scope and limitations of the covalent POM-terpyridine hybrids were demonstrated and compared with the ionic Complex-Decorated Surfactant Encapsulated-Clusters (CD-SECs) hybrids. The nature of POM and CSU binding can be utilized to modulate the stability of the hybrid and the extent of DNA binding. The above systems show potential to behave as model cargo-platforms for potential utilization in medicine and pharmacy.
Collapse
Affiliation(s)
- Daria Nowicka
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Dawid Marcinkowski
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Nahir Vadra
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física and CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires C1428EGA, Argentina
| | - Martyna Szymańska
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Maciej Kubicki
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Giuseppe Consiglio
- Università di Catania, Dipartimento di Scienze Chimiche, I-95125 Catania, Italy
| | - Wojciech Drożdż
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
- Adam Mickiewicz University in Poznań, Center for Advanced Technology, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Artur R Stefankiewicz
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
- Adam Mickiewicz University in Poznań, Center for Advanced Technology, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Violetta Patroniak
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Marta Fik-Jaskółka
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Adam Gorczyński
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
21
|
Shen Q, Sheng K, Gao ZY, Bilyachenko A, Huang XQ, Azam M, Tung CH, Sun D. Vanadium-Silsesquioxane Nanocages as Heterogeneous Catalysts for Synthesis of Quinazolinones. Inorg Chem 2024; 63:13022-13030. [PMID: 38946199 DOI: 10.1021/acs.inorgchem.4c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The functionalization of polyoxovanadate clusters is promising but of great challenge due to the versatile coordination geometry and oxidation state of vanadium. Here, two unprecedented silsesquioxane ligand-protected "fully reduced" polyoxovanadate clusters were fabricated via a facial solvothermal methodology. The initial mixture of the two polyoxovanadate clusters with different colors and morphologies (green plate V14 and blue block V6) was successfully separated as pure phases by meticulously controlling the assembly conditions. Therein, the V14 cluster is the highest-nuclearity V-silsesquioxane cluster to date. Moreover, the transformation from a dimeric silsesquioxane ligand-protected V14 cluster to a cyclic hexameric silsesquioxane ligand-protected V6 cluster was also achieved, and the possible mechanism termed "ligand-condensation-involved dissociation reassembly" was proposed to explain this intricate conversion process. In addition, the robust V6 cluster was served as a heterogeneous catalyst for the synthesis of important heterocyclic compounds, quinazolinones, starting from 2-aminobenzamide and aldehydes. The V6 cluster exhibits high activity and selectivity to access pure quinazolinones under mild conditions, where the high selectivity was attributed to the confinement effect of the macrocyclic silsesquioxane ligand constraining the molecular freedom of the reaction species. The stability and recyclability as well as the tolerance of a wide scope of aldehyde substrates endow the V6 cluster with a superior performance and appreciable potential in catalytic applications.
Collapse
Affiliation(s)
- Qi Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Kai Sheng
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, People's Republic of China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Alexey Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119334, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455 Riyadh 11451, Saudi Arabia
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
22
|
Ruan W, Gao Y, Lin J, Fang X. Polyoxometalate-Dicarboxylate Hybrid Dimers with {SiW 10Cr 2} Nodes: Syntheses, Structures, and Mass Spectrometric Characterization. Inorg Chem 2024; 63:12399-12403. [PMID: 38905145 DOI: 10.1021/acs.inorgchem.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The current study describes a new family of hybrid dimers constructed from secondary building blocks based on a dichromium-substituted silicodecatungstate, {SiW10Cr2}, and flexible dicarboxylate ligands of varied lengths. All five polyoxometalate-organic hybrid compounds exhibit an entropically favored, cyclic dimer motif that contains just two {SiW10Cr2} clusters─the minimum to form a closed loop, linked by two aliphatic dicarboxylates, as revealed by single-crystal X-ray diffraction. Due to the kinetic inertness of such Cr3+-based hybrid dimers, ESI-MS has become a particularly useful technique for the characterization of these paramagnetic, NMR-unfriendly systems.
Collapse
Affiliation(s)
- Wenjun Ruan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuan Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiaheng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xikui Fang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
23
|
Li S, Zhou Y, Xu C, Wang L, Wang T, Zhu B, Xu W, Wu YA, Tao H. ZIFs-Derived Hollow Nanostructures via a Strong/Weak Coetching Strategy for Long-Life Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309932. [PMID: 38295134 DOI: 10.1002/smll.202309932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Recently, zeolitic imidazolate frameworks (ZIFs) composites have emerged as promising precursors for synthesizing hollow-structured N-doped carbon-based noble-metal materials with diverse structures and compositions. Here, a strong/weak competitive coordination strategy is presented for synthesizing high-performance electrocatalysts with hollow features. During the competitive coordination process, the cubic zeolitic-imidazole framework-8 (Cube-8)@ZIF-67 with core-shell structures are transformed into Cube-8@ZIF-67@PF/POM with yolk-shell nanostructures employing phosphomolybdic acid (POM) and potassium ferricyanide (PF) as the strong chelator and the weak chelator, respectively. After calcination, the hollow Mo/Fe/Co@NC catalyst exhibits superior performance in both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Interestingly, the Mo/Fe/Co@NC catalyst exhibits efficient electrocatalytic performance for Zn-air batteries (ZABs), with a high power density (≈150 mW cm-2) and superior cycling life (≈500 h) compared to commercial platinum/carbon (Pt/C) and ruthenium dioxide (RuO2) mixture benchmarks catalysts. In addition, the density functional theory further proves that after the introduction of Mo and Fe atoms, the adsorption energy with the adsorption intermediates is weakened by adjusting the d-band center, thus weakening the reaction barrier and promoting the reaction kinetics of OER. Undoubtedly, this study presents novel insights into the fabrication of ZIFs-derived hollow structure bifunctional oxygen electrocatalysts for clean-energy diverse applications.
Collapse
Affiliation(s)
- Shunli Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yingtang Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chenxi Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Wang
- Department of Mechanical and Mechatronics Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Tianzheng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Baikang Zhu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Weijian Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
- National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
24
|
Sun H, Jimbo A, Li C, Yonesato K, Yamaguchi K, Suzuki K. Self-assembled molecular hybrids comprising lacunary polyoxometalates and multidentate imidazole ligands. Chem Sci 2024; 15:9281-9286. [PMID: 38903217 PMCID: PMC11186312 DOI: 10.1039/d4sc02384f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Self-assembly via coordination bonding facilitates the creation of diverse inorganic-organic molecular hybrids with distinct structures and properties. Recent advances in this field have been driven by the versatility of organic ligands and inorganic units. Lacunary polyoxometalates are a class of well-defined metal-oxide clusters with a customizable number of reactive sites and bond directions, which make them promising inorganic units for self-assembled molecular hybrids. Herein, we report a novel synthesis method for self-assembled molecular hybrids utilizing the reversible coordination of multidentate imidazole ligands to the vacant sites of lacunary polyoxometalates. We synthesized self-assembled molecular hybrids including monomer, dimers, and tetramer, demonstrating the potential of our method for constructing intricate hybrids with tailored properties and functionalities.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Atsuhiro Jimbo
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
25
|
Ilbeygi H, Jaafar J. Recent Progress on Functionalized Nanoporous Heteropoly Acids: From Synthesis to Applications. CHEM REC 2024; 24:e202400043. [PMID: 38874111 DOI: 10.1002/tcr.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Functionalized nanoporous heteropoly acids (HPAs) have garnered significant attention in recent years due to their enhanced surface area and porosity, as well as their potential for low-cost regeneration compared to bulk materials. This review aims to provide an overview of the recent advancements in the synthesis and applications of functionalized HPAs. We begin by introducing the fundamental properties of HPAs and their unique structure, followed by a comprehensive overview of the various approaches employed for the synthesis of functionalized HPAs, including salts, anchoring onto supports, and implementing mesoporous silica sieves. The potential applications of functionalized HPAs in various fields are also discussed, highlighting their boosted performance in a wide range of applications. Finally, we address the current challenges and present future prospects in the development of functionalized HPAs, particularly in the context of mesoporous HPAs. This review aims to provide a comprehensive summary of the recent progress in the field, highlighting the significant advancements made in the synthesis and applications of functionalized HPAs.
Collapse
Affiliation(s)
- Hamid Ilbeygi
- Battery Research and Innovation Hub, Institute of Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Juhana Jaafar
- N29a, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
26
|
Vilà N, Nguyen L, Lacroix JC, Sun X, Walcarius A, Mbomekallé I. Assessing the Influence of Confinement on the Stability of Polyoxometalate-Functionalized Surfaces: A Soft Sequential Immobilization Approach for Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26521-26536. [PMID: 38713480 DOI: 10.1021/acsami.4c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A functionalization process has been developed and the experimental conditions optimized allowing the immobilization of first-row transition metal (Mn+) containing polyoxometalates (POMs) with the formula [M(H2O)P2W17O61](10-n)- on transparent indium-tin oxide (ITO) electrodes for electrochromic applications. Both flat ITO grafted with 4-sulfophenyl moieties and sulfonate-functionalized vertically oriented silica films on ITO have been used as electrode supports to evaluate possible confinement effects provided by the mesoporous matrix on the stability of the modified surfaces and their electrochromic properties. Functionalization involved a two-step sequential process: (i) the immobilization of hexaaqua metallic ions, such as Fe(H2O)63+, onto the sulfonate-functionalized materials achieved through hydrogen bonding interactions between the sulfonate functions and aqua ligands (water molecules) coordinated to the metallic ions facilitating and stabilizing the attachment of the metallic ions to the sulfonated surfaces; (ii) their coordination to [P2W17O61]10- species to generate "in situ" the target [Fe(H2O)P2W17O61]7- moieties. Comparison of the characterized surfaces clearly evidenced a significant improvement in the long-term stability of the nanostructured [Fe(H2O)P2W17O61]7--functionalized silica films compared to the less constrained flat [Fe(H2O)P2W17O61]7--modified ITO electrodes for which a rapid loss of [P2W17O61]10- species was observed. Concordantly, the [Fe(H2O)P2W17O61]7- POM confined in the mesoporous films coated on ITO gave rise to much better and stable electrochromic properties, with a transmittance modulation of 40% at 515 nm.
Collapse
Affiliation(s)
- Neus Vilà
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | - Linh Nguyen
- Université Paris Cité, CNRS, ITODYS, Paris F-75, France
| | | | - Xiaonan Sun
- Université Paris Cité, CNRS, ITODYS, Paris F-75, France
| | | | - Israël Mbomekallé
- Université Paris Saclay CNRS, Institut de Chimie Physique,Orsay F-91405, France
| |
Collapse
|
27
|
Sun Y, Xie S, Tang Z, Zhao J, Chen L. An Innovative Sb III-W VI-Cotemplated Antimonotungstate with Potential in Sensing Paroxetine Electrochemically. Inorg Chem 2024; 63:7123-7136. [PMID: 38591874 DOI: 10.1021/acs.inorgchem.3c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Advances in polyoxometalate (POM) self-assembly chemistry are always accompanied by new developments in molecular blocks. The exploration and discovery of uncommon building blocks offer great possibilities for generating unprecedented POM clusters. An intriguing SbIII-WVI-cotemplated antimonotungstate [H2N(CH3)2]11Na[SbW9O33]Er2(H2O)2Sb2[SbWVIW15O57]·22H2O (1) was synthesized, which comprises a classical trivacant Keggin [SbW9O33]9- ({SbW9}) fragment and an unclassical lacunary Dawson-like [SbWVIW15O57]15- ({SbWVIW15}) subunit. Notably, the Dawson-like {SbWVIW15} subunit is the first example of a [SbO3]3- and [WVIO6]6- mixed-heteroatom-directing POM segment. Hexacoordinated [WVIO6]6- can not only serve as the heteroatom function but its additional oxygen sites can also link to lanthanide, main-group metal, and transition-metal centers to form the innovative structure. {SbWVIW15} and {SbW9} subunits are joined by the heterometallic [Er2(H2O)2Sb2O17]22- cluster to give rise to an asymmetric sandwich-type architecture. To further realize its potential application in electrochemical sensing, a conductive 1@rGO composite was obtained by the electrochemical deposition of 1 with graphene oxide (GO). Using a 1@rGO-modified glassy carbon electrode as the working electrode, an electrochemical biosensor for detecting the antidepressant drug paroxetine (PRX) was successfully constructed. This work can provide a viable strategy for synthesizing mixed-heteroatom-directing POMs and demonstrates the application of POM-based materials for the electrochemical detection of drug molecules.
Collapse
Affiliation(s)
- Yancai Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
28
|
Wang Q, Ma W, Qian J, Li N, Zhang C, Deng M, Du H. S-scheme towards interfacial charge transfer between POMs and MOFs for efficient visible-light photocatalytic Cr (VI) reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123707. [PMID: 38447652 DOI: 10.1016/j.envpol.2024.123707] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The establishment of heterojunctions was considered as an exceptional strategy to obtain high-efficiency charge separation and enhanced photocatalytic performance. Herein, a series of FePMo/MIL-53(Fe) (FeM-53) heterojunctions were successfully constructed through in-situ growth of FePMo onto MIL-53(Fe) surface and their photocatalytic capacity were examined by visible-light-induced Cr(VI) reduction. Interestingly, the as-fabricated composites offered various photocatalytic activities controllably relying on the mass ratio of FePMo to MIL-53(Fe). Particularly, the one with the 10% ratio displayed the highest Cr(VI) reduction rate (100%) within 75 min, which was respectively over 4 and 2 folds higher than pure FePMo and MIL-53(Fe). The boosted photoactivity might be ascribed to the establishment of S-scheme heterojunction with suitable band alignment between FePMo and MIL-53(Fe), which broadened the light absorption range and improved charge separation. Further mechanism investigations implied both •O2- and e- were the key reactive species for Cr(VI) removal. Besides, the composite preserved excellent stability after 4 consecutive tests, and performed well in the presence of organic dyes. Such a S-scheme heterojunction may promise for highly efficient environmental mitigation.
Collapse
Affiliation(s)
- Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wanggang Ma
- Hangzhou Hangda Environmental Protection Engineering Co., Ltd., Hangzhou, Zhejiang, 310018, China
| | - Jianying Qian
- CCTEG Hangzhou Research Institute Co., Ltd., Hangzhou, Zhejiang, 310018, China
| | - Ningyi Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chao Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Man Deng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
29
|
Harzallah M, Medimagh M, Issaoui N, Kaminsky W, Ayed B. An original zero-dimensional material: 1, (2-aminoethyl) piperazinuim) tetrabromidomercurate (II) monohydrate, characterization and molecular docking. Struct Chem 2024; 35:421-436. [DOI: 10.1007/s11224-023-02181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/01/2023] [Indexed: 01/11/2025]
|
30
|
Liu-Fu W, Xiao H, Chen J, Cai L, Yang J, Xue B, Lan L, Lai Y, Yin JF, Yin P. Unique Viscoelasticity and Hierarchical Relaxation Dynamics of Molecular Granular Materials. NANO LETTERS 2024; 24:3307-3314. [PMID: 38456631 DOI: 10.1021/acs.nanolett.3c03636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Resulting from the dense packing of subnanometer molecular clusters, molecular granular materials (MGMs) are shown to maintain high elasticity far above their apparent glass transition temperature (Tg*). However, our microscopic understanding of their structure-property relationship is still poor. Herein, 1 nm polyhedral oligomeric silsesquioxanes (POSSs) are appended to a backbone chain in a brush configuration with different flexible linker chains. Assemblies of these brush polymers exhibit hierarchical relaxation dynamics with the glass transition arising from the cooperative dynamics of packed POSSs. The interaction among the assemblies can be strengthened by increasing the rigidity of linkers with the MGM relaxation modes changing from colloid- to polymer chain-like behavior, rendering their tunable viscoelasticity. This finally contributes to the decoupling of mechanical and thermal properties by showing elasticity dominant mechanical properties at a temperature 150 K above the Tg*.
Collapse
Affiliation(s)
- Wei Liu-Fu
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Haiyan Xiao
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linjie Lan
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
31
|
Petrovskii SK, Grachova EV, Monakhov KY. Bioorthogonal chemistry of polyoxometalates - challenges and prospects. Chem Sci 2024; 15:4202-4221. [PMID: 38516091 PMCID: PMC10952089 DOI: 10.1039/d3sc06284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.
Collapse
Affiliation(s)
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University Universitetskii pr. 26 St. Petersburg 198504 Russia
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 Leipzig 04318 Germany
| |
Collapse
|
32
|
Dong XY, Pan M, Zeng H. Interfacial Hydrogen Bond-Reinforced Adhesion and Cohesion Enabling an Ultrastretchable and Wet Adhesive Hydrogel Strain Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5444-5454. [PMID: 38427794 DOI: 10.1021/acs.langmuir.3c03990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Historically, research on silicotungstic-acid-based hydrogels has primarily focused on their adhesive properties, often at the expense of mechanical strength (cohesion). In this study, we present a novel approach to fabricate a polysaccharide hydrogel that harmoniously balances both adhesion and cohesion via interfacial hydrogen bonds. This hydrogel, composed of carboxymethyl cellulose (CMC), polyacrylamide (PAM), silicotungstic acid (SiW), and lithium chloride (LiCl), showcases a unique combination of properties: strain-responsive ionic conductivity, superior transparency, remarkable stretchability, and robust adhesion. Contrary to conventional PAM hydrogels, our PAM-SiW networked hydrogel addresses the common challenge of achieving good adhesion without compromising on cohesion. Specifically, our hydrogel demonstrates a maximum toughness of 20.3 MJ/m3 and a strain of 4079%, an accomplishment rarely observed in other adhesive hydrogel. Furthermore, the hydrogel's adhesion is both reversible and versatile, adhering effectively to a variety of wet and dry substrates. This makes it a promising candidate for advanced healthcare applications, particularly as a mechanically reinforced underwater adhesive with unparalleled stability. We also provide insights into the role of LiCl in the hydrogel matrix, emphasizing its influence on electrostatic interactions without affecting the hydrogen bonds. This study serves as a testament to the potential of harmonizing adhesive and cohesive properties in hydrogels, paving the way for future innovations in the field.
Collapse
Affiliation(s)
- Xin Yi Dong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Chanzhou 213000, People's Republic of China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
33
|
Yamaguchi M, Shioya K, Li C, Yonesato K, Murata K, Ishii K, Yamaguchi K, Suzuki K. Porphyrin-Polyoxotungstate Molecular Hybrid as a Highly Efficient, Durable, Visible-Light-Responsive Photocatalyst for Aerobic Oxidation Reactions. J Am Chem Soc 2024; 146:4549-4556. [PMID: 38285116 DOI: 10.1021/jacs.3c11394] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Organic-polyoxometalate (POM) hybrids have recently attracted considerable interest because of their distinctive properties and wide-ranging applications. For the construction of organic-POM hybrids, porphyrins are promising building units owing to their optical properties and reactivity, including strong visible-light absorption and subsequent singlet-oxygen (1O2*) generation. However, the practical utilization of porphyrins as photocatalysts and photosensitizers is often hindered by their own degradation by 1O2*. Therefore, there is a substantial demand for the development of porphyrin-derived photocatalysts with both high efficiency and durability. Herein, we present a porphyrin-polyoxotungstate molecular hybrid featuring a face-to-face stacked porphyrin dimer (I) fastened by four lacunary polyoxotungstates. Hybrid I exhibited remarkable efficiency and durability in photocatalytic aerobic oxidation reactions, and the selective oxidation of various dienes, alkenes, sulfides, and amines proceeded using just 0.003 mol % of the catalyst. Mechanistic investigations suggested that the high activity of I stems from the efficient generation of 1O2*, resulting from the heavy-atom effect of POMs. Furthermore, despite its high efficiency in 1O2* generation compared to free porphyrins, I exhibited superior durability against 1O2*-induced degradation under photoirradiation.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kaito Shioya
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
34
|
Jones CF, Hood BR, de Coene Y, Lopez-Poves I, Champagne B, Clays K, Fielden J. Bridge improvement work: maximising non-linear optical performance in polyoxometalate derivatives. Chem Commun (Camb) 2024; 60:1731-1734. [PMID: 38240142 DOI: 10.1039/d3cc05433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
New phenyl and stilbene-bridged polyoxometalate (POM) charge-transfer chromophores with diphenylamino donor groups produce, respectively, the highest intrinsic and absolute quadratic hyperpolarisabilities measured for such species. The β0,zzz obtained for the phenyl bridge - at 180 × 10-30 esu - is remarkable for a short conjugated system while changing to the stilbene (260 × 10-30 esu) produces a substantial increase in non-linearity for a minimal red-shift in the absorption profile. Together with TD-DFT calculations, the results show that maximising conjugation in the π-bridge is vital to high performance in such "POMophores".
Collapse
Affiliation(s)
- Claire F Jones
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Bethany R Hood
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Yovan de Coene
- Department of Chemistry, University of Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
| | - Ivan Lopez-Poves
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Benoît Champagne
- Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Namur B-5000, Belgium
| | - Koen Clays
- Department of Chemistry, University of Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
| | - John Fielden
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
35
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Sánchez-Lara E, Favela R, Tzian K, Monroy-Torres B, Romo-Pérez A, Ramírez-Apan MT, Flores-Alamo M, Rodríguez-Diéguez A, Cepeda J, Castillo I. Effects of the tetravanadate [V 4O 12] 4- anion on the structural, magnetic, and biological properties of copper/phenanthroline complexes. J Biol Inorg Chem 2024; 29:139-158. [PMID: 38175299 PMCID: PMC11001746 DOI: 10.1007/s00775-023-02035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
The aim to access linked tetravanadate [V4O12]4- anion with mixed copper(II) complexes, using α-amino acids and phenanthroline-derived ligands, resulted in the formation of four copper(II) complexes [Cu(dmb)(Gly)(OH2)]2[Cu(dmb)(Gly)]2[V4O12]·9H2O (1) [Cu(dmb)(Lys)]2[V4O12]·8H2O (2), [Cu(dmp)2][V4O12]·C2H5OH·11H2O (3), and [Cu(dmp)(Gly)Cl]·2H2O (4), where dmb = 4,4'-dimethioxy-2,2'-bipyridine; Gly = glycine; Lys = lysine; and dmp = 2,9-dimethyl-1,10-phenanthroline. The [V4O12]4- anion is functionalized with mixed copper(II) units in 1 and 2; while in 3, it acts as a counterion of two [Cu(dmp)]2+ units. Compound 4 crystallized as a unit that did not incorporate the vanadium cluster. All compounds present magnetic couplings arising from Cu⋯O/Cu⋯Cu bridges. Stability studies of water-soluble 3 and 4 by UV-Vis spectroscopy in cell culture medium confirmed the robustness of 3, while 4 appears to undergo ligand scrambling over time, resulting partially in the stable species [Cu(dmp)2]+ that was also identified by electrospray ionization mass spectrometry at m/z = 479. The in vitro cytotoxicity activity of 3 and 4 was determined in six cancer cell lines; the healthy cell line COS-7 was also included for comparative purposes. MCF-7 cells were more sensitive to compound 3 with an IC50 value of 12 ± 1.2 nmol. The tested compounds did not show lipid peroxidation in the TBARS assay, ruling out a mechanism of action via reactive oxygen species formation. Both compounds inhibited cell migration at 5 µM in wound-healing assays using MCF-7, PC-3, and SKLU-1 cell lines, opening a new window to study the anti-metastatic effect of mixed vanadium-copper(II) systems.
Collapse
Affiliation(s)
- Eduardo Sánchez-Lara
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, 04510, Ciudad de Mexico, Mexico.
| | - Roberto Favela
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, 04510, Ciudad de Mexico, Mexico
| | - Kitze Tzian
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, 04510, Ciudad de Mexico, Mexico
| | - Brian Monroy-Torres
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, 04510, Ciudad de Mexico, Mexico
| | - Adriana Romo-Pérez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, 04510, Ciudad de Mexico, Mexico
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, 04510, Ciudad de Mexico, Mexico
| | - Marcos Flores-Alamo
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, 04510, Ciudad de Mexico, Mexico
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva, 18071, Granada, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco UPV/EHU, 20018, Donostia-San Sebastian, Spain
| | - Ivan Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, 04510, Ciudad de Mexico, Mexico.
| |
Collapse
|
37
|
Ahmad W, Ahmad N, Wang K, Aftab S, Hou Y, Wan Z, Yan B, Pan Z, Gao H, Peung C, Junke Y, Liang C, Lu Z, Yan W, Ling M. Electron-Sponge Nature of Polyoxometalates for Next-Generation Electrocatalytic Water Splitting and Nonvolatile Neuromorphic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304120. [PMID: 38030565 PMCID: PMC10837383 DOI: 10.1002/advs.202304120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Indexed: 12/01/2023]
Abstract
Designing next-generation molecular devices typically necessitates plentiful oxygen-bearing sites to facilitate multiple-electron transfers. However, the theoretical limits of existing materials for energy conversion and information storage devices make it inevitable to hunt for new competitors. Polyoxometalates (POMs), a unique class of metal-oxide clusters, have been investigated exponentially due to their structural diversity and tunable redox properties. POMs behave as electron-sponges owing to their intrinsic ability of reversible uptake-release of multiple electrons. In this review, numerous POM-frameworks together with desired features of a contender material and inherited properties of POMs are systematically discussed to demonstrate how and why the electron-sponge-like nature of POMs is beneficial to design next-generation water oxidation/reduction electrocatalysts, and neuromorphic nonvolatile resistance-switching random-access memory devices. The aim is to converge the attention of scientists who are working separately on electrocatalysts and memory devices, on a point that, although the application types are different, they all hunt for a material that could exhibit electron-sponge-like feature to realize boosted performances and thus, encouraging the scientists of two completely different fields to explore POMs as imperious contenders to design next-generation nanodevices. Finally, challenges and promising prospects in this research field are also highlighted.
Collapse
Affiliation(s)
- Waqar Ahmad
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Nisar Ahmad
- School of MicroelectronicsUniversity of Science and Technology of ChinaHefei230026China
| | - Kun Wang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Sumaira Aftab
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Yunpeng Hou
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengwei Wan
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Bei‐Bei Yan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Zhao Pan
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Huai‐Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of MaterialsDepartment of Modern MechanicsCAS Center for Excellence in Complex System MechanicsUniversity of Science and Technology of ChinaHefei230027China
| | - Chen Peung
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Yang Junke
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
| | - Chengdu Liang
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Zhihui Lu
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| | - Wenjun Yan
- School of AutomationHangzhou Dianzi UniversityHangzhou310018China
| | - Min Ling
- Division of New Energy MaterialsInstitute of Zhejiang University‐QuzhouQuzhou324000China
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
38
|
Chakraborty A, Dash S, Thakur N, Agarwal V, Nayak D, Sarma TK. Polyoxometalate-Guanosine Monophosphate Hydrogels with Haloperoxidase-like Activity for Antibacterial Performance. Biomacromolecules 2024; 25:104-118. [PMID: 38051745 DOI: 10.1021/acs.biomac.3c00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Haloperoxidases represent an important class of enzymes that nature adopts as a defense mechanism to combat the colonial buildup of microorganisms on surfaces, commonly known as biofouling. Subsequently, there has been tremendous focus on the development of artificial haloperoxidase mimics that can catalyze the oxidation of X- (halide ion) in the presence of H2O2 to form HOX. The natural intermediate HOX disrupts the bacterial quorum sensing, thus preventing biofilm formation. Herein, we report a simple method for the formation of supramolecular hydrogels through the self-assembly of Keggin-structured polyoxometalates, phosphotungstic acid, and silicotungstic acid with the small biomolecule guanosine monophosphate (GMP) in an aqueous medium. The polyoxometalate-GMP hydrogels that contained highly entangled nanofibers were mechanically robust and showed thixotropic properties. The gelation of the polyoxometalates with GMP not only rendered manifold enhancement in biocompatibility but also the fibril network in the hydrogel provided high water wettability and the polyoxometalates acted as an efficient haloperoxidase mimic to trigger oxidative iodination, as demonstrated by a haloperoxidase assay. The antifouling activity of the phosphotungstic acid-GMP hydrogel was demonstrated against both Gram-positive and Gram-negative bacteria, which showed enhanced antibacterial performance of the hydrogel as compared to the polyoxometalate alone. We envision that the polyoxometalate-GMP hydrogels may facilitate mechanically robust coatings in a simple pathway that can be useful for antifouling applications.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Saswati Dash
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| | - Neha Thakur
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Debasis Nayak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| | - Tridib K Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
39
|
Iftikhar T, Izarova NV, Kögerler P. Organoarsonates Enable Single-Site Condensation of Hexalacunary {P 2W 12} Polyoxotungstates. Inorg Chem 2024; 63:99-107. [PMID: 38111082 DOI: 10.1021/acs.inorgchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A systematic study of the condensation reactions of arylarsonic-functionalized [α-P2W12O48]14- units in acidic aqueous media identified that the specific presence of an amino group in the ortho position of the phenyl rings induces a dimerization process that allowed isolation of discrete dimeric polyanions [(o-H2N-C6H4-AsO3)4P4W24O85]14- (1) with an unprecedented polyoxometalate skeleton characterized by two seminal {P2W12} groups joined via a single W-O-W bridge. At the same time, addition of divalent transition metal ions (MnII, CoII, and NiII) in the reaction mixture directed a condensation process on a completely different pathway resulting in one-dimensional (1D) coordination polymers based on V-shaped [{M(H2O)4}P4W24O92(C6H6AsNO)2]14- polyanions (M = MnII (2), CoII (3), and NiII (4)). All polyanions were isolated as hydrated mixed potassium/dimethylammonium salts and thoroughly characterized in the solid state. 31P NMR studies showed that the discrete cluster 1 is comparatively stable in 1 M LiCl aqueous solution and thus represents a potential precursor for subsequent reactions.
Collapse
Affiliation(s)
- Tuba Iftikhar
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen D-52074 ,Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter-Grünberg-Institute 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Natalya V Izarova
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen D-52074 ,Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter-Grünberg-Institute 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Paul Kögerler
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen D-52074 ,Germany
- Jülich-Aachen Research Alliance (JARA-FIT) and Peter-Grünberg-Institute 6, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
40
|
Singh M, Yadav A, Singh R, Pradeep CP. Aryl selenonium vs. aryl sulfonium counterions in polyoxometalate chemistry: the impact of Se + cationic centers on the photocatalytic reduction of dichromate. Dalton Trans 2024; 53:724-737. [PMID: 38086687 DOI: 10.1039/d3dt03465h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A selenonium organic counter ion has been used in polyoxometalate chemistry to develop a new aryl selenonium polyoxometalate (POM) hybrid, and its photocatalytic properties have been explored in comparison with an aryl sulfonium POM-hybrid counterpart for the first time. The chalcogenonium counterions, namely, methyldiphenylsulfonium trifluoromethane sulfonate (MDPST) and methyldiphenylselenonium trifluoromethane sulfonate (MDPSeT), and their octamolybdate ([Mo8O26]4-) hybrids, 1 and 2, with the general formula (C13H13X)4[Mo8O26] (where X = S for 1 and Se for 2) were synthesized and characterized. Hybrids 1 and 2 vary in their chalcogenonium cationic center (S+vs. Se+), which enabled a direct comparison of their photocatalytic properties as a function of the cationic center. The photocatalytic activities of hybrids 1 and 2 were tested using the reduction of dichromate (Cr2O72-) as a model reaction under UV irradiation. A 99% photocatalytic reduction of Cr2O72- with a rate constant of 0.0305 min-1 was achieved with hybrid 2, while only a 67% reduction with a rate constant of 0.0062 min-1 was observed with hybrid 1 in 180 minutes. The better catalytic performance of hybrid 2 may be correlated to the larger atomic radii of Se than S, which helps in better stabilizing the photogenerated electron-hole (e--h+) pair on the POM cluster by polarizing its lone pair more efficiently compared to S. The catalytic recyclability was tested for up to 4 cycles using hybrid 2, and up to 98% reduction was obtained even after the 4th cycle. Recyclability tests and control experiments also indicated the generation of some elemental Se through possible cleavage of some C-Se bonds of MDPSe under prolonged UV exposure during catalysis, and the Se thus generated was found to contribute to the catalytic reduction of dichromate. This study, therefore, opens new avenues for aryl selenonium moieties and their POM hybrids for potential catalytic applications.
Collapse
Affiliation(s)
- Mahender Singh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Aakash Yadav
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Ranjit Singh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi - 175075, Himachal Pradesh, India.
| |
Collapse
|
41
|
Murmu G, Samajdar S, Ghosh S, Shakeela K, Saha S. Tungsten-based Lindqvist and Keggin type polyoxometalates as efficient photocatalysts for degradation of toxic chemical dyes. CHEMOSPHERE 2024; 346:140576. [PMID: 38303401 DOI: 10.1016/j.chemosphere.2023.140576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Photocatalytic dye degradation employing polyoxometalates (POMs) has been a research focus for several years. We report the facile synthesis of tungsten-based Lindqvist and Keggin-type POMs that degrade toxic chemical dyes, methyl orange (MO) and methylene blue (MB), respectively. The Lindqvist POM, sodium hexatungstate, Na2W6O19, degrades MO under 100 W UV light irradiation within 15 min, whereas the Keggin POM, Ag4PW11VO40, degrades MB under 20 W visible light source within 180 min. The effect of various operating parameters, such as photocatalyst concentration, pH, time, and initial dye concentration, were assessed in the degradation of both dyes. The photoelectrochemical performance of the as-synthesized polyoxometalates shows that the Ag4PW11VO40 shows 2.4 times higher photocurrent density than Na2W6O19 at a potential of 0.9 V vs. Ag/AgCl. Electrochemical impedance analysis reveals that Ag4PW11VO40 exhibits much lower charge transfer resistance as compared to Na2W6O19, which indicates facile charge transfer at the electrode-electrolyte interface. Further Mott-Schottky measurements reveal that both the catalysts possess n-type semiconductivity and the charge carrier concentration of Ag4PW11VO40 (5.89 × 1019 cm-3) is 1.4 times higher as compared to Na2W6O19 (4.25 × 1019 cm-3). This work offers a new paradigm for designing polyoxometalates suitable for efficient photocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Gajiram Murmu
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Soumita Samajdar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India; Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - Srabanti Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India; Energy Materials & Devices Division, CSIR - Central Glass and Ceramic Research Institute, Kolkata, 700032, India
| | - K Shakeela
- B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
42
|
Li S, Ma Y, Zhao Y, Liu R, Zhao Y, Dai X, Ma N, Streb C, Chen X. Hydrogenation Catalysis by Hydrogen Spillover on Platinum-Functionalized Heterogeneous Boronic Acid-Polyoxometalates. Angew Chem Int Ed Engl 2023; 62:e202314999. [PMID: 37889729 DOI: 10.1002/anie.202314999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
The activation of molecular hydrogen is a key process in catalysis. Here, we demonstrate how polyoxometalate (POM)-based heterogeneous compounds functionalized with Platinum particles activate H2 by synergism between a hydrogen spillover mechanism and electron-proton transfer by the POM. This interplay facilitates the selective catalytic reduction of olefins and nitroarenes with high functional group tolerance. A family of polyoxotungstates covalently functionalized with boronic acids is reported. In the solid-state, the compounds are held together by non-covalent interactions (π-π stacking and hydrogen bonding). The resulting heterogeneous nanoscale particles form stable colloidal dispersions in acetonitrile and can be surface-functionalized with platinum nanoparticles by in situ photoreduction. The resulting materials show excellent catalytic activity in hydrogenation of olefins and nitrobenzene derivatives under mild conditions (1 bar H2 and room temperature).
Collapse
Affiliation(s)
- Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yubin Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yue Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Rongji Liu
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Yupeng Zhao
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Xusheng Dai
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
43
|
Niu B, Zhang M, Yan L, Yu A, Ma P, Wang J, Niu J. Two Tetra-Nuclear Ln-Substituted Prazine Dicarboxylic Acid-Functionalized Selenotungstates with Catalytic Oxidation of Thioether Properties. Inorg Chem 2023. [PMID: 37996253 DOI: 10.1021/acs.inorgchem.3c03109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Two two-dimensional Ln-substituted prazine dicarboxylic acid-functionalized selenotungstates Na3H9[(H2N(CH3)2]2{(Se4W27O100)[Ln4(H2O)8(Hpzdc)2(pzdc)]}·26H2O [Ln = Nd (1) and Ce (2)]; H2pzdc = 2,3-pyrazine dicarboxylic acid) have been synthesized by one-pot self-assembly strategy, in which the basic polyanion [Se4W27O100]22-was composed of two [SeW8O31]10- fragments, a [SeW9O33]8- segment and an intriguing {SeO} group, simultaneously tetra-nuclear Ln3+ ions with H2pzdc pendants were embedded. Compounds 1 and 2 showed excellent catalytic oxidation of thioether properties within a short time (20 min) with high 100% conversion and 98.9% selectivity. In addition, the pioneering Ln-substituted selenotungstates were used as catalysts to degrade sulfur mustard simulant 2-chloroethyl ethyl sulfide at room temperature with 99% conversion and 100% selectivity. The chemical kinetic experiment studies revealed that the catalytic reaction was in compliance with the first-order reaction, and the kinetic half-life (t1/2) values were 3.814 and 3.849 min, respectively.
Collapse
Affiliation(s)
- Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Miao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Luting Yan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Anqi Yu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
44
|
Peter CYM, Schreiber E, Proe KR, Matson EM. Surface ligand length influences kinetics of H-atom uptake in polyoxovanadate-alkoxide clusters. Dalton Trans 2023; 52:15775-15785. [PMID: 37850536 DOI: 10.1039/d3dt02074f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The uptake of hydrogen atoms (H-atoms) at reducible metal oxide nanocrystal surfaces has implications in catalysis and energy storage. However, it is often difficult to gain insight into the physicochemical factors that dictate the thermodynamics and kinetics of H-atom transfer to the surface of these assemblies. Recently, our research group has demonstrated the formation of oxygen-atom (O-atom) defects in polyoxovanadate-alkoxide (POV-alkoxide) clusters via conversion of surface oxido moieties to aquo ligands, which can be accomplished via addition of two H-atom equivalents. Here, we present the dependence of O-atom defect formation via H-atom transfer at the surface of vanadium oxide clusters on the length of surface alkoxide ligands. Analysis of H-atom transfer reactions to low-valent POV-alkoxide clusters [V6O7(OR)12]1- (R = Me, Et, nPr, nBu) reveals that the length of primary alkoxide surface ligands does not significantly influence the thermodynamics of these processes. However, surface ligand length has a significant impact on the kinetics of these PCET reactions. Indeed, the methoxide-bridged cluster, [V6O7(OMe)12]1- reacts ∼20 times faster than the other derivatives evaluated. Interestingly, as the aliphatic linkages are increased in size from -C2H5 to -C4H9, reaction rates remain consistent, suggesting restricted access to available ligand conformers as a result of the incompatibility of the aliphatic ligands and acetonitrile may buffer further changes to the rate of reaction.
Collapse
Affiliation(s)
- Chari Y M Peter
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Eric Schreiber
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Kathryn R Proe
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
45
|
Li X, Yang L, Liu Q, Bai W, Li H, Wang M, Qian Q, Yang Q, Xiao C, Xie Y. Directional Shunting of Photogenerated Carriers in POM@MOF for Promoting Nitrogen Adsorption and Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304532. [PMID: 37595959 DOI: 10.1002/adma.202304532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/20/2023] [Indexed: 08/20/2023]
Abstract
The efficient catalysis of nitrogen (N2 ) into high-value N-containing products plays a crucial role in the N economic cycle. However, weak N2 adsorption and invalid N2 activation remain two major bottlenecks in rate-determining steps, leading to low N2 fixation performance. Herein, an effective dual active sites photocatalyst of polyoxometalates (POMs)-based metal-organic frameworks (MOFs) is highlighted via altering coordination microenvironment and inducing directional shunting of photogenerated carriers to facilitate N2 /catalyst interaction and enhance oxidation performance. MOFs create more open unsaturated metal cluster sites with unoccupied d orbital possessing Lewis acidity to accept electrons from the 3σg bonding orbital of N2 for storage by combining with POMs to replace bidentate linkers. POMs act as electron sponges donating electrons to MOFs, while the holes directional flow to POMs. The hole-rich POMs with strong oxidation capacity are easily involved in oxidizing adsorbed N2 . Taking UiO-66 (C48 H28 O32 Zr6 ) and Mo72 Fe30 ([Mo72 Fe30 O252 (CH3 COO)12 {Mo2 O7 (H2 O)}2 {H2 Mo2 O8 (H2 O)}(H2 O)91 ]·150H2 O) as an example, Mo72 Fe30 @UiO-66 shows twofold enhanced adsorption of N2 (250.5 cm3 g-1 ) than UiO-66 (122.9 cm3 g-1 ) at P/P0 = 1. And, the HNO3 yield of Mo72 Fe30 @UiO-66 is 702.4 µg g-1 h-1 , ≈7 times and 24 times higher than UiO-66 and Mo72 Fe30 . This work provides reliable value for the storage and relaying artificial N2 fixation.
Collapse
Affiliation(s)
- Xiaohong Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qilong Liu
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Wei Bai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huiyi Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengxiang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qinghua Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
46
|
Li Z, Chaemchuen S. Recent Progress on the Synthesis and Modified Strategies of Zeolitic-Imidazole Framework-67 Towards Electrocatalytic Oxygen Evolution Reaction. CHEM REC 2023; 23:e202300142. [PMID: 37565697 DOI: 10.1002/tcr.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Indexed: 08/12/2023]
Abstract
As a class of metal-organic framework, the zeolitic-imidazole framework-67 is constructed from bridging cobalt ions and 2-methylimidazole. The high content of abundant active cobalt species, uniform structure, ultrahigh porosity, and large surface area show the potential for multiple catalytic applications, especially electrocatalytic oxygen evolution reaction (OER). The design and synthetic strategies of catalyst-based ZIF-67 that approach the maximized catalytic performance are still challenging in further development. Herein, the current progress strategy on the structural design, synthetic route, and functionalization of electrocatalysts based on ZIF-67 to boost the catalytic performance of OER is reviewed. Besides, the structurally designed catalyst from various fabricated strategies corresponding to enhancing catalytic activity is discussed. The emphasized review for understanding design and synthetic structure with catalytic performance could guide researchers in further developing catalyst-based ZIF-67 for improving the efficient electrocatalytic OER.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
47
|
Darvishnejad F, Raoof JB, Ghani M, Ojani R. Keggin-type polyoxometalate embedded polyvinylidene fluoride for thin film microextraction of organophosphorus pesticides. Food Chem X 2023; 19:100857. [PMID: 37780334 PMCID: PMC10534218 DOI: 10.1016/j.fochx.2023.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
The present research is the first report on the application of Keggin-type phosphotungstic acid/polyvinylidene fluoride membrane. This compound as a simple, cost-effective and novel sorbent was used for the extraction and pre-concentration of two organophosphorus pesticides in real samples in the thin film solid-phase microextraction (TFME) method. TFME as one of the sub-branches of solid phase microextraction resolves the problems of SPME methods, including their limited absorption capacity. These extraction methods have a high surface-to-volume ratio, which improves their sensitivity compared to other geometries. Under optimal conditions, the limit of detections (LODs), the limit of quantifications (LOQs), and relative standard deviation (RSD) of this method varied in the ranges of 0.29-0.31 μg L-1, 0.96-1.0 μg L-1, and 3.9%-6.2%, respectively. This method showed a linear dynamic range (LDR) of 1.0-500 μg L-1 with a coefficient of determination (r2) above 0.9978. This promising method was used to analyze malathion and diazinon.
Collapse
Affiliation(s)
- Fatemeh Darvishnejad
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
48
|
Amini M, Haji Hosseinzadeh A, Nikkhoo M, Hosseinifard M, Namvar A, Naslhajian H, Bayrami A. High-Performance Novel Polyoxometalate-LDH Nanocomposite-Modified Thin-Film Nanocomposite Forward Osmosis Membranes: A Study of Desalination and Antifouling Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14528-14538. [PMID: 37802097 DOI: 10.1021/acs.langmuir.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Numerous investigations have focused on creating effective membranes for desalination in order to alleviate the water scarcity crisis. In this study, first, LDH nanoplates were synthesized and utilized to alter the surface of thin-film composite (TFC) membranes in the course of this investigation. Following that, a simple technique was used to produce a novel nanocomposite incorporating LDH layers and Na14(P2W18Co4O70)·28H2O polyoxometalate nanoparticles, resulting in the creation of a fresh variety of thin-film nanocomposite (TFN). The performance of all of the membranes acquired was examined in the process of forward osmosis (FO). The impact of the compounds that were prepared was assessed on the hydrophilicity, topology, chemical structure, and morphology of the active layer of polyamide (PA) through analysis methods such as atomic force microscopy (AFM), energy-dispersive X-ray (EDX), FTIR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and water contact angle (WCA) goniometry. After evaluating the outcomes of both modified membrane types, it was observed that the membrane equipped with the nanocomposite modifier at a concentration of 0.01 wt % exhibited the highest water flux, measuring 46.6 LMH and selectivity of 0.23 g/L. This membrane was thus considered the best option. Furthermore, the membrane's ability to prevent fouling was examined, and the findings revealed an enhancement in its resistance to fouling in comparison to the filler-free membrane.
Collapse
Affiliation(s)
- Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, P.O. Box 5166616471 Tabriz, Iran
| | - Asal Haji Hosseinzadeh
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Mohammad Nikkhoo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, P.O. Box 1458889694 Tehran, Iran
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center, P.O. Box 14155-4777 Karaj, Iran
| | - Amir Namvar
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Hadi Naslhajian
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 5518779842 Maragheh, Iran
| | - Arshad Bayrami
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615 Tehran, Iran
| |
Collapse
|
49
|
Jimbo A, Li C, Yonesato K, Ushiyama T, Yamaguchi K, Suzuki K. Molecular hybrids of trivacant lacunary polyoxomolybdate and multidentate organic ligands. Chem Sci 2023; 14:10280-10284. [PMID: 37772125 PMCID: PMC10530144 DOI: 10.1039/d3sc03713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Functional molecular inorganic-organic hybrids of lacunary polyoxometalates and organic ligands attract much attention for advanced material applications. However, the inherent instability of lacunary polyoxomolybdates hinders the synthesis of hybrids and their utilization. Herein, we present a viable approach for the synthesis of molecular hybrids of trivacant lacunary Keggin-type polyoxomolybdates and multidentate organic ligands including carboxylates and phosphonates, which is based on the use of a lacunary structure stabilized by removable pyridyl ligands as a starting material.
Collapse
Affiliation(s)
- Atsuhiro Jimbo
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Chifeng Li
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomoki Ushiyama
- NIPPON STEEL Eco-Tech Corporation 2-1-38 Shiohama Kisarazu Chiba 292-0838 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
50
|
Su X, Li S, Yan L. N-H Bond Activation Catalyzed by an Anderson-Type Polyoxometalate-Based Compound: Key Role of Transition-Metal Heteroatom. Inorg Chem 2023; 62:15673-15679. [PMID: 37708077 DOI: 10.1021/acs.inorgchem.3c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Polyoxometalates (POMs) have a broad array of applied platforms with well-characterized catalysis to achieve N-H bond activation. Herein, the mechanism of the Anderson-type POM-based catalyst [FeIIIMoVI6O18{(OCH2)3CNH2}2]3- ([TrisFeIIIMoVI6O18]3-, Tris = {(OCH2)3CNH2}2) for the N-H bond activation of hydrazine (PhHNNHPh) was investigated by density functional theory calculations. The results reveal that [TrisFeIIIMoVI6O18]3- as the active species is responsible for the continuous abstraction of two electrons and two protons of PhHNNHPh via a proton-coupled electron transfer pathway, resulting in the activation of two N-H bonds in PhHNNHPh and thus the product PhNNPh. H2O2 acts as an oxidant to regulate catalyst regeneration. Based on the proposed catalytic mechanism, the key role of the heteroatom FeIII in [TrisFeIIIMoVI6O18]3- was disclosed. The d-orbital of FeIII in [TrisFeIIIMoVI6O18]3- acts as an electron receptor to promote the electron transfer (ET) in the rate-determining step (RDS) of the catalytic cycle. The substitution of the heteroatom FeIII of [TrisFeIIIMoVI6O18]3- with CoIII, RuIII, or MnIII is expected to improve the catalytic activity for several reasons: (i) the unoccupied molecular orbitals of POM-based compounds containing CoIII or RuIII are low, which is beneficial for the ET of RDS; (ii) For N-H bond activation catalyzed by the MnIII-containing POM-based compound, the transition state of RDS is stable because the d-orbital of its active site is half-filled, which results in a low free-energy barrier.
Collapse
Affiliation(s)
- Xiaofang Su
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Shujun Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Likai Yan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130018, P. R. China
| |
Collapse
|