1
|
Shukla PM, Pratap A, Maji B. DIBAL-H-mediated N-deacetylation of tertiary amides: synthesis of synthetically valuable secondary amines. Org Biomol Chem 2024; 22:501-505. [PMID: 38165251 DOI: 10.1039/d3ob01660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A rapid DIBAL-H-mediated N-deacetylation of tertiary amides is described under mild conditions, affording synthetically valuable secondary amines in good to excellent yields.
Collapse
Affiliation(s)
- Pushpendra Mani Shukla
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India.
| | - Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India.
| |
Collapse
|
2
|
Knaus T, Corrado ML, Mutti FG. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catal 2022; 12:14459-14475. [PMID: 36504913 PMCID: PMC9724091 DOI: 10.1021/acscatal.2c03052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The efficient asymmetric catalytic synthesis of amines containing more than one stereogenic center is a current challenge. Here, we present a biocatalytic cascade that combines ene-reductases (EReds) with imine reductases/reductive aminases (IReds/RedAms) to enable the conversion of α,β-unsaturated ketones into primary, secondary, and tertiary amines containing two stereogenic centers in very high chemical purity (up to >99%), a diastereomeric ratio, and an enantiomeric ratio (up to >99.8:<0.2). Compared with previously reported strategies, our strategy could synthesize two, three, or even all four of the possible stereoisomers of the amine products while precluding the formation of side-products. Furthermore, ammonium or alkylammonium formate buffer could be used as the only additional reagent since it acted both as an amine donor and as a source of reducing equivalents. This was achieved through the implementation of an NADP-dependent formate dehydrogenase (FDH) for the in situ recycling of the NADPH coenzyme, thus leading to increased atom economy for this biocatalytic transformation. Finally, this dual-enzyme ERed/IRed cascade also exhibits a complementarity with the recently reported EneIRED enzymes for the synthesis of cyclic six-membered ring amines. The ERed/IRed method yielded trans-1,2 and cis-1,3 substituted cyclohexylamines in high optical purities, whereas the EneIRED method was reported to yield one cis-1,2 and one trans-1,3 enantiomer. As a proof of concept, when 3-methylcyclohex-2-en-1-one was converted into secondary and tertiary chiral amines with different amine donors, we could obtain all the four possible stereoisomer products. This result exemplifies the versatility of this method and its potential for future wider utilization in asymmetric synthesis by expanding the toolbox of currently available dehydrogenases via enzyme engineering and discovery.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maria L. Corrado
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Metwally NH, Koraa TH, Sanad SMH. Green one-pot synthesis and in vitro antibacterial screening of pyrano[2,3- c]pyrazoles, 4 H-chromenes and pyrazolo[1,5- a]pyrimidines using biocatalyzed pepsin. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2074301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Muratovska N, Silva P, Pozdniakova T, Pereira H, Grey C, Johansson B, Carlquist M. Towards engineered yeast as production platform for capsaicinoids. Biotechnol Adv 2022; 59:107989. [PMID: 35623491 DOI: 10.1016/j.biotechadv.2022.107989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022]
Abstract
Capsaicinoids are bioactive alkaloids produced by the chili pepper fruit and are known to be the most potent agonists of the human pain receptor TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1). They are currently produced by extraction from chili pepper fruit or by chemical synthesis. Transfer of the biosynthetic route to a microbial host could enable more efficient capsaicinoid production by fermentation and may also enable the use of synthetic biology to create a diversity of new compounds with potentially improved properties. This review summarises the current state of the art on the biosynthesis of capsaicinoid precursors in baker's yeast, Saccharomyces cerevisiae, and discusses bioengineering strategies for achieving total synthesis from sugar.
Collapse
Affiliation(s)
- Nina Muratovska
- Division of Applied Microbiology, Lund University, Box 124, 221 00 Lund, Sweden
| | - Paulo Silva
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Tatiana Pozdniakova
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Humberto Pereira
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Carl Grey
- Division of Biotechnology, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Björn Johansson
- CBMA - Center of Molecular and Environmental Biology Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Magnus Carlquist
- Division of Applied Microbiology, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
5
|
Prejanò M, Sheng X, Himo F. Computational Study of Mechanism and Enantioselectivity of Imine Reductase from Amycolatopsis orientalis. ChemistryOpen 2022; 11:e202100250. [PMID: 34825518 PMCID: PMC8734122 DOI: 10.1002/open.202100250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Imine reductases (IREDs) are NADPH-dependent enzymes (NADPH=nicotinamide adenine dinucleotide phosphate) that catalyze the reduction of imines to amines. They exhibit high enantioselectivity for a broad range of substrates, making them of interest for biocatalytic applications. In this work, we have employed density functional theory (DFT) calculations to elucidate the reaction mechanism and the origins of enantioselectivity of IRED from Amycolatopsis orientalis. Two substrates are considered, namely 1-methyl-3,4-dihydroisoquinoline and 2-propyl-piperideine. A model of the active site is built on the basis of the available crystal structure. For both substrates, different binding modes are first evaluated, followed by calculation of the hydride transfer transition states from each complex. We have also investigated the effect of mutations of certain important active site residues (Tyr179Ala and Asn241Ala) on the enantioselectivity. The calculated energies are consistent with the experimental observations and the analysis of transition states geometries provides insights into the origins of enantioselectivity of this enzyme.
Collapse
Affiliation(s)
- Mario Prejanò
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Xiang Sheng
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences and National Technology Innovation Center of Synthetic BiologyTianjin300308China
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| |
Collapse
|
6
|
Berry SS, Jones S. Current applications of kinetic resolution in the asymmetric synthesis of substituted pyrrolidines. Org Biomol Chem 2021; 19:10493-10515. [PMID: 34842884 DOI: 10.1039/d1ob01943k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chiral substituted pyrrolidines are key elements in various biologically active molecules and are therefore valuable synthetic targets. One traditional method towards enantiomerically pure compounds is the application of kinetic resolution. In this review, current KR methodology used in the synthesis of substituted pyrrolidines is surveyed, including enzymatic methods, cycloadditions and reduction of ketones.
Collapse
Affiliation(s)
- Sian S Berry
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| |
Collapse
|
7
|
Chiral Synthesis of 3-Amino-1-phenylbutane by a Multi-Enzymatic Cascade System. Catalysts 2021. [DOI: 10.3390/catal11080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asymmetric synthesis of chiral amines from prochiral ketones using transaminases is an attractive biocatalytic strategy. Nevertheless, it is hampered by its unfavorable thermodynamic equilibrium. In the present work, an insitu by-product removal strategy was applied for the synthesis of 3-amino-1-phenylbutane (3-APB) by coupling a transaminase with a pyruvate decarboxylase (PDC), which does not require the use of any expensive additional cofactor. Using this strategy, the pyruvate obtained in the transamination reaction is transformed by PDC into acetaldehyde and CO2 which are of high volatility. Two different transaminases from Chromobacterium violaceum (CviTA) and Vibrio fluvialis (VflTA) were characterized to find out the appropriate pH conditions. In both cases, the addition of PDC dramatically enhanced 3-APB synthesis. Afterwards, different reaction conditions were tested to improve reaction conversion and yield. It was concluded that 30 °C and a 20-fold alanine excess lead to the best process metrics. Under the mentioned conditions, yields higher than 60% were reached with nearly 90% selectivity using both CviTA and VflTA. Moreover, high stereoselectivity for (S)-3-APB was obtained and ee of around 90% was achieved in both cases. For the first time, the asymmetric synthesis of 3-APB using PDC as by-product removal system using CviTA is reported.
Collapse
|
8
|
Yamamoto K, Kuriyama M, Onomura O. Shono-Type Oxidation for Functionalization of N-Heterocycles. CHEM REC 2021; 21:2239-2253. [PMID: 33656281 DOI: 10.1002/tcr.202100031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023]
Abstract
The development of facile synthetic methods for stereodefined aliphatic cyclic amines is an important research field in synthetic organic chemistry since such scaffolds constitute a variety of natural products and biologically active compounds. N-Acyl cyclic N,O-acetals which prepared by electrochemical oxidation of the corresponding cyclic amines have proven to be useful and versatile precursors for the synthesis of such skeletons. In this Personal Account, we introduce our efforts toward the development of synthetic strategies for the diastereo- and/or enantioselective synthesis of cyclic amines by using electrochemically prepared cyclic N,O-acetals. In addition, the investigation of the "memory of chirality" in the electrooxidative methoxylation of N-acyl amino acid derivatives, the strategy for the synthesis of chiral azabicyclic compounds by utilizing electrochemical oxidation, and halogen cation-mediated synthesis of nitrogen-containing heterocycles are also described.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
9
|
Han Y, Zhang X, Zheng L. Engineering actively magnetic crosslinked inclusion bodies of Candida antarctica lipase B: An efficient and stable biocatalyst for enzyme-catalyzed reactions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Zhou XY, Chen X. K2CO3-Promoted Highly Selective N-Hydroxymethylation of Indoles Under Metal- and Lewis Acid-Free Conditions. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200728214752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inorganic base promoted highly selective N-hydroxymethylation of indole and its derivatives
have been developed. It provided a simple method for the preparation of N-hydroxymethyl
indoles with polyformaldehyde as reagents under the metal- and Lewis acid-free reaction conditions.
The reaction proceeded smoothly using K<sub>2</sub>CO<sub>3</sub> as base in 1,4-dioxane to produce the corresponding
N-hydroxymethyl indoles with 62%->99% yields.
Collapse
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004,China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004,China
| |
Collapse
|
11
|
Zhou XY, Chen X, Lei YZ. Ru-catalyzed oxidative dearomatization-alkoxylation of N-Boc indoles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1859542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Yi-Zhu Lei
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
12
|
Methyltrioxorhenium/urea hydrogen peroxide catalyzed oxidation of N-sulfinyl imines: A mild and highly efficient access to N-sulfonyl aldimines, ketimines and α-ketiminoesters. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Zhou XY, Chen X, Liu HL. Ru-catalyzed oxidative dearomatization-hydroxylation of N-Boc indoles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1836564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Hai-Long Liu
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
14
|
Dong W, Yao P, Wang Y, Wu Q, Zhu D. Chemoenzymatic Stereoselective Synthesis of Substituted γ‐ or δ‐lactams with Two Chiral Centers via Transaminase‐catalysed Dynamic Kinetic Resolution. ChemCatChem 2020. [DOI: 10.1002/cctc.202001142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wenyue Dong
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Yingang Wang
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19(A) Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19(A) Yuquan Road Shijingshan District Beijing 100049 P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19(A) Yuquan Road Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
15
|
Soluble expression and biomimetic immobilization of a ω-transaminase from Bacillus subtilis: Development of an efficient and recyclable biocatalyst. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Zhou XY, Chen X. An easy-to-operate n-carbonylation of indoles with diaryl carbonates as reagent and Na 2CO 3 as catalyst. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1758143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
17
|
Mangas-Sanchez J, Sharma M, Cosgrove SC, Ramsden JI, Marshall JR, Thorpe TW, Palmer RB, Grogan G, Turner NJ. Asymmetric synthesis of primary amines catalyzed by thermotolerant fungal reductive aminases. Chem Sci 2020; 11:5052-5057. [PMID: 34122962 PMCID: PMC8159254 DOI: 10.1039/d0sc02253e] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chiral primary amines are important intermediates in the synthesis of pharmaceutical compounds. Fungal reductive aminases (RedAms) are NADPH-dependent dehydrogenases that catalyse reductive amination of a range of ketones with short-chain primary amines supplied in an equimolar ratio to give corresponding secondary amines. Herein we describe structural and biochemical characterisation as well as synthetic applications of two RedAms from Neosartorya spp. (NfRedAm and NfisRedAm) that display a distinctive activity amongst fungal RedAms, namely a superior ability to use ammonia as the amine partner. Using these enzymes, we demonstrate the synthesis of a broad range of primary amines, with conversions up to >97% and excellent enantiomeric excess. Temperature dependent studies showed that these homologues also possess greater thermal stability compared to other enzymes within this family. Their synthetic applicability is further demonstrated by the production of several primary and secondary amines with turnover numbers (TN) up to 14 000 as well as continous flow reactions, obtaining chiral amines such as (R)-2-aminohexane in space time yields up to 8.1 g L−1 h−1. The remarkable features of NfRedAm and NfisRedAm highlight their potential for wider synthetic application as well as expanding the biocatalytic toolbox available for chiral amine synthesis. Fungal reductive aminases as effective biocatalysts for the preparation of chiral primary amines.![]()
Collapse
Affiliation(s)
- Juan Mangas-Sanchez
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York YO10 5DD York UK
| | - Sebastian C Cosgrove
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Jeremy I Ramsden
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - James R Marshall
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Thomas W Thorpe
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Ryan B Palmer
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York YO10 5DD York UK
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
18
|
Zhang Y, Yin Z, Wu XF. Copper-Catalyzed Carbonylative Synthesis of β-Homoprolines from N-Fluoro-sulfonamides. Org Lett 2020; 22:1889-1893. [DOI: 10.1021/acs.orglett.0c00227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youcan Zhang
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Zhiping Yin
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
19
|
Yamamoto K, Kuriyama M, Onomura O. Anodic Oxidation for the Stereoselective Synthesis of Heterocycles. Acc Chem Res 2020; 53:105-120. [PMID: 31872753 DOI: 10.1021/acs.accounts.9b00513] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
20
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
21
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
22
|
Kiss L, Ouchakour L, Ábrahámi RA, Nonn M. Stereocontrolled Synthesis of Functionalized Azaheterocycles from Carbocycles through Oxidative Ring Opening/Reductive Ring Closing Protocols. CHEM REC 2019; 20:120-141. [PMID: 31250972 DOI: 10.1002/tcr.201900025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Fluorine-containing organic scaffolds are of significant interest in medicinal chemistry. The incorporation of fluorine into biomolecules can lead to remarkable changes in their physical, chemical, and biological properties. There are already many drugs on the market, which contain at least one fluorine atom. Saturated functionalized azaheterocycles as bioactive substances have gained increasing attention in pharmaceutical chemistry. Due to the high biorelevance of organofluorine molecules and the importance of N-heterocyclic compounds, selective stereocontrolled procedures to the access of new fluorine-containing saturated N-heterocycles are considered to be a hot research topic. This account summarizes the synthesis of functionalized and fluorine-containing saturated azaheterocycles starting from functionalized cycloalkenes and based on oxidative ring cleavage of diol intermediates followed by ring expansion with reductive amination.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Lamiaa Ouchakour
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| | - Renáta A Ábrahámi
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, Hungary
| |
Collapse
|
23
|
Kelly SA, Magill DJ, Megaw J, Skvortsov T, Allers T, McGrath JW, Allen CCR, Moody TS, Gilmore BF. Characterisation of a solvent-tolerant haloarchaeal (R)-selective transaminase isolated from a Triassic period salt mine. Appl Microbiol Biotechnol 2019; 103:5727-5737. [PMID: 31123770 PMCID: PMC6597733 DOI: 10.1007/s00253-019-09806-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Transaminase enzymes (TAms) are becoming increasingly valuable in the chemist’s toolbox as a biocatalytic route to chiral amines. Despite high profile successes, the lack of (R)-selective TAms and robustness under harsh industrial conditions continue to prove problematic. Herein, we report the isolation of the first haloarchaeal TAm (BC61-TAm) to be characterised for the purposes of pharmaceutical biocatalysis. BC61-TAm is an (R)-selective enzyme, cloned from an extremely halophilic archaeon, isolated from a Triassic period salt mine. Produced using a Haloferax volcanii–based expression model, the resulting protein displays a classic halophilic activity profile, as well as thermotolerance (optimum 50 °C) and organic solvent tolerance. Molecular modelling predicts the putative active site residues of haloarchaeal TAms, with molecular dynamics simulations providing insights on the basis of BC61-TAm’s organic solvent tolerance. These results represent an exciting advance in the study of transaminases from extremophiles, providing a possible scaffold for future discovery of biocatalytic enzymes with robust properties.
Collapse
Affiliation(s)
| | - Damian J Magill
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Julianne Megaw
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - John W McGrath
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | | - Thomas S Moody
- Almac, Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | | |
Collapse
|
24
|
de Gonzalo G, Alcántara AR, Domínguez de María P. Cyclopentyl Methyl Ether (CPME): A Versatile Eco-Friendly Solvent for Applications in Biotechnology and Biorefineries. CHEMSUSCHEM 2019; 12:2083-2097. [PMID: 30735610 DOI: 10.1002/cssc.201900079] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/04/2019] [Indexed: 05/14/2023]
Abstract
The quest for sustainable solvents is currently a matter of intense research and development, as solvents significantly contribute heavily to the waste generated by chemical industries. Cyclopentyl methyl ether (CPME) is a promising eco-friendly solvent with valuable properties such as low peroxide formation rate, stability under basic and acidic conditions, and relatively high boiling point. This Review discusses the potential use of CPME for applications in biotechnology (e.g., biotransformations, as solvent or cosolvent), biorefineries, and bioeconomy (e.g., for furan synthesis or as an extractive agent in liquid-liquid separations), as well as for other purposes, such as chromatography or peptide synthesis. Although CPME is currently produced by petrochemical means with a remarkably high atom economy, its biogenic production can be envisaged from substrates such as cyclopentanol or cyclopentanone, which can be derived from furfural or from (bio-based) adipic acid, respectively. The combination of the promising properties of CPME as a (co)solvent with a future (economic) biogenic origin would be advantageous for setting strategies aligned with the sustainable chemistry principles.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, c/ Profesor García González 2, 41012, Sevilla, Spain
| | - Andrés R Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Section of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n., E-28040, Madrid, Spain
| | - Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, Las Palmas Gran Canaria, E-35011, Canary Islands, Spain
| |
Collapse
|
25
|
Noshita M, Shimizu Y, Morimoto H, Akai S, Hamashima Y, Ohneda N, Odajima H, Ohshima T. Ammonium Salt-Accelerated Hydrazinolysis of Unactivated Amides: Mechanistic Investigation and Application to a Microwave Flow Process. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Megumi Noshita
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Shimizu
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 567-0871, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Ohneda
- SAIDA FDS Inc., 143-10 Isshiki, Yaizu, Shizuoka 425-0054, Japan
| | - Hiromichi Odajima
- Pacific Microwave Technologies Corp., Seattle, Washington 98116, United States
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
26
|
Shen JW, Qi JM, Zhang XJ, Liu ZQ, Zheng YG. Efficient Resolution of cis-(±)-Dimethyl 1-Acetylpiperidine-2,3-dicarboxylate by Covalently Immobilized Mutant Candida antarctica Lipase B in Batch and Semicontinuous Modes. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiang-Wei Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jia-Mei Qi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
27
|
Rathod PB, Kumar KSA, Athawale AA, Pandey AK, Chattopadhyay S. Polymer-Shell-Encapsulated Magnetite Nanoparticles Bearing Hexamethylenetetramine for Catalysing Aza-Michael Addition Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Prakash B. Rathod
- Department of Chemistry; Savitribai Phule Pune University; -411007 Pune India
- Radiochemistry Division; Bhabha Atomic Research Centre; -400085 Trombay Mumbai India
| | - K. S. Ajish Kumar
- Bio-Organic Division; Bhabha Atomic Research Centre; -400085 Trombay Mumbai India
| | - Anjali A. Athawale
- Department of Chemistry; Savitribai Phule Pune University; -411007 Pune India
| | - Ashok K. Pandey
- Radiochemistry Division; Bhabha Atomic Research Centre; -400085 Trombay Mumbai India
- Homi Bhabha National Institute; TSH Complex -400094 Anushaktinagar Mumbai India
| | | |
Collapse
|
28
|
Petchey M, Cuetos A, Rowlinson B, Dannevald S, Frese A, Sutton PW, Lovelock S, Lloyd RC, Fairlamb IJS, Grogan G. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark Petchey
- Department of Chemistry; University of York; York YO10 5DD UK
| | - Anibal Cuetos
- Department of Chemistry; University of York; York YO10 5DD UK
| | | | | | - Amina Frese
- Department of Chemistry; University of York; York YO10 5DD UK
| | - Peter W. Sutton
- GSK Medicines Research Centre; Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Current address: Department of Chemical, Biological and Environmental Engineering; Bioprocess Engineering and Applied Biocatalysis Group; Engineering School; Campus de la UAB 08193 Bellaterra (Cerdanyola del Vallés) Barcelona Spain
| | - Sarah Lovelock
- GSK Medicines Research Centre; Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Current address: School of Chemistry; University of Manchester; Manchester Institute of Biotechnology; 131 Princess Street Manchester M1 7DN UK
| | - Richard C. Lloyd
- GSK Medicines Research Centre; Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | - Gideon Grogan
- Department of Chemistry; University of York; York YO10 5DD UK
| |
Collapse
|
29
|
Petchey M, Cuetos A, Rowlinson B, Dannevald S, Frese A, Sutton PW, Lovelock S, Lloyd RC, Fairlamb IJS, Grogan G. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides. Angew Chem Int Ed Engl 2018; 57:11584-11588. [PMID: 30035356 PMCID: PMC6282839 DOI: 10.1002/anie.201804592] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/22/2018] [Indexed: 11/08/2022]
Abstract
Amide bond formation is one of the most important reactions in pharmaceutical synthetic chemistry. The development of sustainable methods for amide bond formation, including those that are catalyzed by enzymes, is therefore of significant interest. The ATP-dependent amide bond synthetase (ABS) enzyme McbA, from Marinactinospora thermotolerans, catalyzes the formation of amides as part of the biosynthetic pathway towards the marinacarboline secondary metabolites. The reaction proceeds via an adenylate intermediate, with both adenylation and amidation steps catalyzed within one active site. In this study, McbA was applied to the synthesis of pharmaceutical-type amides from a range of aryl carboxylic acids with partner amines provided at 1-5 molar equivalents. The structure of McbA revealed the structural determinants of aryl acid substrate tolerance and differences in conformation associated with the two half reactions catalyzed. The catalytic performance of McbA, coupled with the structure, suggest that this and other ABS enzymes may be engineered for applications in the sustainable synthesis of pharmaceutically relevant (chiral) amides.
Collapse
Affiliation(s)
- Mark Petchey
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Anibal Cuetos
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | - Amina Frese
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Peter W Sutton
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.,Current address: Department of Chemical, Biological and Environmental Engineering, Bioprocess Engineering and Applied Biocatalysis Group, Engineering School, Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Sarah Lovelock
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.,Current address: School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Richard C Lloyd
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
30
|
Rostamnia S, Alamgholiloo H. Synthesis and Catalytic Application of Mixed Valence Iron (FeII/FeIII)-Based OMS-MIL-100(Fe) as an Efficient Green Catalyst for the aza-Michael Reaction. Catal Letters 2018. [DOI: 10.1007/s10562-018-2490-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Shin M, Gu M, Lim SS, Kim MJ, Lee J, Jin H, Jang YH, Jung B. CuI
-Catalysed Enantioselective Alkyl 1,4-Additions to (E
)-Nitroalkenes and Cyclic Enones with Phosphino-Oxazoline Ligands. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minkyeong Shin
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - Minji Gu
- LG Chem; 34122 Daejeon Republic of Korea
| | - Sung Soo Lim
- Department of Energy, Science, & Engineering; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - Min-Jae Kim
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - JuHyung Lee
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - HyeongGyu Jin
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - Yun Hee Jang
- Department of Energy, Science, & Engineering; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - Byunghyuck Jung
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| |
Collapse
|
32
|
Marx L, Ríos‐Lombardía N, Farnberger JF, Kroutil W, Benítez‐Mateos AI, López‐Gallego F, Morís F, González‐Sabín J, Berglund P. Chemoenzymatic Approaches to the Synthesis of the Calcimimetic Agent Cinacalcet Employing Transaminases and Ketoreductases. Adv Synth Catal 2018; 360:2157-2165. [PMID: 29937706 PMCID: PMC6001662 DOI: 10.1002/adsc.201701485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Indexed: 12/16/2022]
Abstract
Several chemoenzymatic routes have been explored for the preparation of cinacalcet, a calcimimetic agent. Transaminases (TAs) and ketoreductases (KREDs) turned out to be useful biocatalysts for the preparation of key optically active precursors. Thus, the asymmetric amination of 1-acetonaphthone yielded an enantiopure (R)-amine, which can be alkylated in one step to yield cinacalcet. Alternatively, the bioreduction of the same ketone resulted in an enantiopure (S)-alcohol, which was easily converted into the previous (R)-amine. In addition, the reduction was efficiently performed with the KRED and its cofactor co-immobilized on the same porous surface. This self-sufficient heterogeneous biocatalyst presented an accumulated total turnover number (TTN) for the cofactor of 675 after 5 consecutive operational cycles. Finally, in a preparative scale synthesis the TA-based approach was performed in aqueous medium and led to enantiopure cinacalcet in two steps and 50% overall yield.
Collapse
Affiliation(s)
- Lisa Marx
- KTH Royal Institute of TechnologyDepartment of Industrial BiotechnologySE-106 91StockholmSweden
- EntreChem, S.L.Vivero Ciencias de la SaludSanto Domingo de Guzmán33011OviedoSpain
| | | | - Judith F. Farnberger
- Austrian Centre of Industrial BiotechnologyACIB GmbHc/o University of GrazHarrachgasse 218010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryOrganic and Bioorganic ChemistryUniversity of GrazHarrachgasse 218010GrazAustria
| | - Ana I. Benítez‐Mateos
- Heterogeneous biocatalysis groupCIC biomaGUNEEdificio Empresarial “C”Paseo de Miramón 18220009DonostiaSpain
| | - Fernando López‐Gallego
- Heterogeneous biocatalysis groupCIC biomaGUNEEdificio Empresarial “C”Paseo de Miramón 18220009DonostiaSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Francisco Morís
- EntreChem, S.L.Vivero Ciencias de la SaludSanto Domingo de Guzmán33011OviedoSpain
| | | | - Per Berglund
- KTH Royal Institute of TechnologyDepartment of Industrial BiotechnologySE-106 91StockholmSweden
| |
Collapse
|
33
|
Tsuchiya T, Kajitani Y, Ohta K, Yamada Y, Sato S. Vapor-phase synthesis of piperidine over SiO2 catalysts. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Lipase-catalyzed asymmetric synthesis of naphtho[2,3-c]furan-1(3H)-one derivatives by a one-pot dynamic kinetic resolution/intramolecular Diels–Alder reaction: Total synthesis of (−)-himbacine. Bioorg Med Chem 2018; 26:1378-1386. [DOI: 10.1016/j.bmc.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
35
|
Yoo M, Jung KY. Deacetylation of Unactivated Amide Bonds in Heterocyclic Systems Using t
-BuOK. ChemistrySelect 2018. [DOI: 10.1002/slct.201702289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minjin Yoo
- Department of Medicinal Chemistry and Pharmacology; University of Science & Technology; 217 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| | - Kwan-Young Jung
- Bio & Drug Discovery Division; Korea Research Institute of Chemical Technology; 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology; University of Science & Technology; 217 Gajeong-ro, Yuseong-gu Daejeon 34113 Republic of Korea
| |
Collapse
|
36
|
Barrera Valderrama DI, Doerr M, Daza Espinosa MC. Función de los confórmeros de ataque cercano en la acilación enantioselectiva del (R,S)-propranolol catalizada por lipasa B de Candida antarctica. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2018. [DOI: 10.15446/rev.colomb.biote.v20n1.73652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
La lipasa B de Candida antarctica (CalB) se ha utilizado en la acilación quimio- y enantioselectiva del racemato (R,S)-propranolol. CalB tiene enantioselectividad moderada (E=63) por el R-propranolol. La enantioselectividad, se origina en la reacción de transferencia del grupo acilo desde la serina catalítica, acilada, al propranolol. La fase inicial de esta reacción involucra la formación de complejos de Michaelis y posteriormente conformaciones de ataque cercano. El análisis de las conformaciones de ataque cercano ha permitido en varios casos explicar el origen de la catálisis o reproducir el efecto catalítico. En este trabajo se profundiza en la comprensión la función de las conformaciones de ataque cercano en la enantioselectividad de la acilación del (R,S)-propranolol catalizada por CalB. Para lo anterior se realizó un estudio detallado de los complejos de Michaelis y de las conformaciones de ataque cercano del paso enantioselectivo de la reacción de acilación del (R,S)-propranolol utilizando un protocolo de dinámica molecular QM/MM (SCCDFTB/CHARMM) utilizando 6 distribuciones de velocidades iniciales y simulaciones de 2,5 ns. Se estudiaron 7 complejos CalB-propranolol. Los enlaces de hidrógeno del sitio activo de CalB acilada relevantes para la actividad catalítica fueron estables en todas las simulaciones. Las poblaciones de los complejos de Michaelis y de las conformaciones de ataque cercano son dependientes de la distribución de las velocidades iniciales de la dinámica molecular. La enantioselectividad moderada de CalB acilada, encontrada experimentalmente, puede ser parcialmente atribuida a la alta población de conformaciones de ataque cercano observada para el S-propranolol.
Collapse
|
37
|
Conversion of γ- and δ-Keto Esters into Optically Active Lactams. Transaminases in Cascade Processes. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Kelly SA, Pohle S, Wharry S, Mix S, Allen CCR, Moody TS, Gilmore BF. Application of ω-Transaminases in the Pharmaceutical Industry. Chem Rev 2017; 118:349-367. [PMID: 29251912 DOI: 10.1021/acs.chemrev.7b00437] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral amines are valuable building blocks for the pharmaceutical industry. ω-TAms have emerged as an exciting option for their synthesis, offering a potential "green alternative" to overcome the drawbacks associated with conventional chemical methods. In this review, we explore the application of ω-TAms for pharmaceutical production. We discuss the diverse array of reactions available involving ω-TAms and process considerations of their use in both kinetic resolution and asymmetric synthesis. With the aid of specific drug intermediates and APIs, we chart the development of ω-TAms using protein engineering and their contribution to elegant one-pot cascades with other enzymes, including carbonyl reductases (CREDs), hydrolases and monoamine oxidases (MAOs), providing a comprehensive overview of their uses, beginning with initial applications through to the present day.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| | - Stefan Pohle
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Scott Wharry
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Stefan Mix
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K
| | - Christopher C R Allen
- School of Biological Sciences, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| | - Thomas S Moody
- Almac , Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, N. Ireland, U.K.,Arran Chemical Company Limited , Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast , Belfast BT9 7BL, N. Ireland, U.K
| |
Collapse
|
39
|
Efficient Enzymatic Routes for the Synthesis of New Eight-membered Cyclic β-Amino Acid and β-Lactam Enantiomers. Molecules 2017; 22:molecules22122211. [PMID: 29236036 PMCID: PMC6149698 DOI: 10.3390/molecules22122211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022] Open
Abstract
Efficient enzymatic resolutions are reported for the preparation of new eight-membered ring-fused enantiomeric β-amino acids [(1R,2S)-9 and (1S,2R)-9] and β-lactams [(1S,8R)-3, (1R,8S)-3 (1S,8R)-4 and (1R,8S)-7], through asymmetric acylation of (±)-4 (E > 100) or enantioselective hydrolysis (E > 200) of the corresponding inactivated (±)-3 or activated (±)-4 β-lactams, catalyzed by PSIM or CAL-B in an organic solvent. CAL-B-catalyzed ring cleavage of (±)-6 (E > 200) resulted in the unreacted (1S,8R)-6, potential intermediate for the synthesis of enantiomeric anatoxin-a. The best strategies, in view of E, reaction rate and product yields, which underline the importance of substrate engineering, are highlighted.
Collapse
|
40
|
France SP, Aleku GA, Sharma M, Mangas-Sanchez J, Howard RM, Steflik J, Kumar R, Adams RW, Slabu I, Crook R, Grogan G, Wallace TW, Turner NJ. Biocatalytic Routes to Enantiomerically Enriched Dibenz[c
,e
]azepines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Scott P. France
- School of Chemistry; University of Manchester; Manchester Institute of Biotechnology; 131 Princess Street Manchester M17DN UK
| | - Godwin A. Aleku
- School of Chemistry; University of Manchester; Manchester Institute of Biotechnology; 131 Princess Street Manchester M17DN UK
| | - Mahima Sharma
- York Structural Biology Laboratory; Department of Chemistry; University of York; Heslington York YO10 5DD UK
| | - Juan Mangas-Sanchez
- School of Chemistry; University of Manchester; Manchester Institute of Biotechnology; 131 Princess Street Manchester M17DN UK
| | - Roger M. Howard
- Groton Laboratories; Pfizer Worldwide Research and Development; 445 Eastern Point Road Groton CT 06340 USA
- Sandwich Laboratories; Pfizer Worldwide Research and Development; Discovery Park Sandwich, Kent CT13 9NJ UK
| | - Jeremy Steflik
- Groton Laboratories; Pfizer Worldwide Research and Development; 445 Eastern Point Road Groton CT 06340 USA
| | - Rajesh Kumar
- Groton Laboratories; Pfizer Worldwide Research and Development; 445 Eastern Point Road Groton CT 06340 USA
| | - Ralph W. Adams
- School of Chemistry; University of Manchester; Manchester M13 9PL UK
| | - Iustina Slabu
- School of Chemistry; University of Manchester; Manchester Institute of Biotechnology; 131 Princess Street Manchester M17DN UK
| | - Robert Crook
- Sandwich Laboratories; Pfizer Worldwide Research and Development; Discovery Park Sandwich, Kent CT13 9NJ UK
| | - Gideon Grogan
- York Structural Biology Laboratory; Department of Chemistry; University of York; Heslington York YO10 5DD UK
| | | | - Nicholas J. Turner
- School of Chemistry; University of Manchester; Manchester Institute of Biotechnology; 131 Princess Street Manchester M17DN UK
| |
Collapse
|
41
|
France SP, Aleku GA, Sharma M, Mangas-Sanchez J, Howard RM, Steflik J, Kumar R, Adams RW, Slabu I, Crook R, Grogan G, Wallace TW, Turner NJ. Biocatalytic Routes to Enantiomerically Enriched Dibenz[c,e]azepines. Angew Chem Int Ed Engl 2017; 56:15589-15593. [PMID: 29024400 DOI: 10.1002/anie.201708453] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 11/11/2022]
Abstract
Biocatalytic retrosynthetic analysis of dibenz[c,e]azepines has highlighted the use of imine reductase (IRED) and ω-transaminase (ω-TA) biocatalysts to establish the key stereocentres of these molecules. Several enantiocomplementary IREDs were identified for the synthesis of (R)- and (S)-5-methyl-6,7-dihydro-5H-dibenz[c,e]azepine with excellent enantioselectivity, by reduction of the parent imines. Crystallographic evidence suggests that IREDs may be able to bind one conformer of the imine substrate such that, upon reduction, the major product conformer is generated directly. ω-TA biocatalysts were also successfully employed for the production of enantiopure 1-(2-bromophenyl)ethan-1-amine, thus enabling an orthogonal route for the installation of chirality into dibenz[c,e]azepine framework.
Collapse
Affiliation(s)
- Scott P France
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M17DN, UK
| | - Godwin A Aleku
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M17DN, UK
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Juan Mangas-Sanchez
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M17DN, UK
| | - Roger M Howard
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT, 06340, USA.,Sandwich Laboratories, Pfizer Worldwide Research and Development, Discovery Park, Sandwich, Kent, CT13 9NJ, UK
| | - Jeremy Steflik
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT, 06340, USA
| | - Rajesh Kumar
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT, 06340, USA
| | - Ralph W Adams
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Iustina Slabu
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M17DN, UK
| | - Robert Crook
- Sandwich Laboratories, Pfizer Worldwide Research and Development, Discovery Park, Sandwich, Kent, CT13 9NJ, UK
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Timothy W Wallace
- School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M17DN, UK
| |
Collapse
|
42
|
Kelly SA, Megaw J, Caswell J, Scott CJ, Allen CCR, Moody TS, Gilmore BF. Isolation and Characterisation of a Halotolerant ω-Transaminase from a Triassic Period Salt Mine and Its Application to Biocatalysis. ChemistrySelect 2017. [DOI: 10.1002/slct.201701642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stephen A. Kelly
- School of Pharmacy; Queen's University Belfast; Belfast BT9 7BL, N. Ireland UK
| | - Julianne Megaw
- School of Pharmacy; Queen's University Belfast; Belfast BT9 7BL, N. Ireland UK
| | - Jill Caswell
- Department of Biocatalysis & Isotope Chemistry; Almac; Craigavon BT63 5QD, N. Ireland UK
| | - Christopher J. Scott
- School of Medicine, Dentistry and Biomedical Sciences; Queen's University Belfast; Belfast BT9 7BL, N. Ireland UK
| | | | - Thomas S. Moody
- Department of Biocatalysis & Isotope Chemistry; Almac; Craigavon BT63 5QD, N. Ireland UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate; Athlone, Co. Roscommon Ireland
| | - Brendan F. Gilmore
- School of Pharmacy; Queen's University Belfast; Belfast BT9 7BL, N. Ireland UK
| |
Collapse
|
43
|
Lenz M, Borlinghaus N, Weinmann L, Nestl BM. Recent advances in imine reductase-catalyzed reactions. World J Microbiol Biotechnol 2017; 33:199. [DOI: 10.1007/s11274-017-2365-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/07/2017] [Indexed: 11/24/2022]
|
44
|
Wu LL, Zeng QQ, Yang YX, Hu HF, Guan Z, He YH. Earthworm extract as a biocatalyst for asymmetric Mannich addition of cyclic ketimine 3-aryl-2H-1,4-benzoxazines. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1349116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ling-Ling Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Qing-Qing Zeng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Ya-Xuan Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Hong-Feng Hu
- School of Life Science, Southwest University, Chongqing, PR China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China
| |
Collapse
|
45
|
Xia B, Xu J, Xiang Z, Cen Y, Hu Y, Lin X, Wu Q. Stereoselectivity-Tailored, Metal-Free Hydrolytic Dynamic Kinetic Resolution of Morita–Baylis–Hillman Acetates Using an Engineered Lipase–Organic Base Cocatalyst. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Xia
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhiwei Xiang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yixin Cen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
46
|
Pedragosa-Moreau S, Le Flohic A, Thienpondt V, Lefoulon F, Petit AM, Ríos-Lombardía N, Morís F, González-Sabín J. Exploiting the Biocatalytic Toolbox for the Asymmetric Synthesis of the Heart-Rate Reducing Agent Ivabradine. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601222] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | - François Lefoulon
- Technologie Servier; Research and Biopharmacy Centre; 27 rue Eugène Vignat 45000 Orléans France
| | - Anne-Marie Petit
- Technologie Servier; Research and Biopharmacy Centre; 27 rue Eugène Vignat 45000 Orléans France
| | | | - Francisco Morís
- EntreChem, S.L.; Edificio Científico Tecnológico; Campus El Cristo 33006 Oviedo Spain
| | - Javier González-Sabín
- EntreChem, S.L.; Edificio Científico Tecnológico; Campus El Cristo 33006 Oviedo Spain
| |
Collapse
|
47
|
Bergamonti L, Graiff C, Tegoni M, Predieri G, Bellot-Gurlet L, Lottici PP. Raman and NMR kinetics study of the formation of amidoamines containing N-hydroxyethyl groups and investigations on their Cu(II) complexes in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:515-524. [PMID: 27592056 DOI: 10.1016/j.saa.2016.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Three amidoamines containing the N-hydroxyethyl group (HOEt), namely (HOEt)2N(CH2)2C(O)NH2 (1), [(HOEt)2N(CH2)2C(O)NH]2CH2 (2) and HOEtN[(CH2)2C(O)NH2]2 (3) have been synthesized by reacting diethanolamine HOEt2NH with acrylamide and N,N'-methylenebisacrylamide (respectively 1 and 2) and ethanolamine HOEtNH2 with acrylamide (3). Four other compounds corresponding to 1 and 2, but derived from sec-amines Me2NH (4 and 5) and Et2NH (6 and 7) have been prepared for the sake of comparison of the spectroscopic features. All compounds have been obtained by the well-known aza-Michael addition between an N-nucleophile and an activated vinyl group. The reaction in water between diethanolamine and acrylamide leading to 1 has been monitored in situ by Raman and NMR spectroscopy, both techniques confirming second order kinetics and giving values for kinetic constants in excellent agreement. The coordination ability of 1 and 2 towards Cu2+ in water has been studied by the Job's plot method. Spectroscopic data indicate that ligand 1 prevalently forms a 4:1 Ligand/Metal complex with a (N,O3) coordination set on the equatorial plane of Cu2+, whereas ligand 2, containing two amide functionalities bridged by a methylene group, appears able to form a 1:1 Ligand/Metal chelate species, again with a (N,O3) donor set around copper.
Collapse
Affiliation(s)
- Laura Bergamonti
- Dipartimento di Chimica, University of Parma, Viale delle Scienze 17/A, 43124 Parma, Italy.
| | - Claudia Graiff
- Dipartimento di Chimica, University of Parma, Viale delle Scienze 17/A, 43124 Parma, Italy.
| | - Matteo Tegoni
- Dipartimento di Chimica, University of Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| | - Giovanni Predieri
- Dipartimento di Chimica, University of Parma, Viale delle Scienze 17/A, 43124 Parma, Italy
| | - Ludovic Bellot-Gurlet
- Sorbonne Universités, MONARIS, UMR 8233 UPMC-CNRS, Université Pierre et Marie Curie Paris 6, 75252 Paris, France
| | - Pier Paolo Lottici
- Dipartimento di Fisica e Scienze della Terra, University of Parma, Viale delle Scienze 7/A, 43124 Parma, Italy
| |
Collapse
|
48
|
López-Iglesias M, González-Martínez D, Rodríguez-Mata M, Gotor V, Busto E, Kroutil W, Gotor-Fernández V. Asymmetric Biocatalytic Synthesis of Fluorinated Pyridines through Transesterification or Transamination: Computational Insights into the Reactivity of Transaminases. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- María López-Iglesias
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstraβe 28 8010 Graz Austria
| | - Daniel González-Martínez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - María Rodríguez-Mata
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| | - Eduardo Busto
- Departamento de Química Orgánica I, Facultad de Química; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Wolfgang Kroutil
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz; BioTechMed Graz; Heinrichstraβe 28 8010 Graz Austria
| | - Vicente Gotor-Fernández
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias; Universidad de Oviedo; 33006 Oviedo Spain
| |
Collapse
|
49
|
Alalla A, Merabet-Khelassi M, Riant O, Aribi-Zouioueche L. Easy kinetic resolution of some β-amino alcohols by Candida antarctica lipase B catalyzed hydrolysis in organic media. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
López-Iglesias M, Arizpe A, Sayago FJ, Gotor V, Cativiela C, Gotor-Fernández V. Lipase-catalyzed dynamic kinetic resolution of dimethyl (1,3-dihydro-2H-isoindol-1-yl)phosphonate. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|