1
|
Vagiakos I, Tsoureas N, Huang T, Christodoulou S, Maron L, Pickl T, Mink J, Halter DP. Monomeric M(II) (M = Fe, Co, Ni) complexes supported by bulky aryloxide ligands tethered to an arene functionality; synthesis, electrochemistry and study of the M(II)-arene interaction. Dalton Trans 2025. [PMID: 40327400 DOI: 10.1039/d5dt00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The aminolysis reaction between MN''2 (N'' = N(SiMe3)2; M = Fe, Co, Ni) and the neutral pro-ligand 6,6'-(1,4-phenylenebis(propane-2,2-diyl))bis(2,4-di-tert-butylphenol) (LH2) affords the low coordinate, isomorphous, monomeric bis-aryloxide complexes (2-M) (M = Fe, Co, Ni). Their molecular structures all feature a basal arene functionality, poised to interact with the metal centre, anchored by two sterically encumbering pendant aryloxide arms. Complexes (2-M) show metal-arene interactions with decreasing strength from (2-Ni), to (2-Co) and finally to (2-Fe). The M-arene interactions were evaluated by a combination of SC-XRD studies, supported by computational investigation and IR spectroscopic characterisation of basal-arene C-C stretches in the absence and the presence of THF in their coordination sphere. The mono-THF adducts (2-Fe·THF) and (2-Co·THF) were also synthesised, isolated and structurally characterised, showing that the M-arene interaction is disrupted upon THF coordination. Cyclic voltammetry (CV) studies of (2-Fe) and (2-Co) show reversible M2+/M+ reduction waves in non-coordinating solvent, and more complex redox chemistry upon THF coordination with (2-Fe·THF) and (2-Co·THF) in THF.
Collapse
Affiliation(s)
- Ioannis Vagiakos
- Department of Chemistry, National and Kapodistrian University of Athens, Inorganic Chemistry Laboratory, Panepistimioupoli Zografou, Athens, 15772, Greece.
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Nikolaos Tsoureas
- Department of Chemistry, National and Kapodistrian University of Athens, Inorganic Chemistry Laboratory, Panepistimioupoli Zografou, Athens, 15772, Greece.
| | - Tianyin Huang
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Stella Christodoulou
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR 5212, Toulouse 31077, France.
| | - Laurent Maron
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR 5212, Toulouse 31077, France.
| | - Thomas Pickl
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - János Mink
- Institute of Materials and Environmental Chemistry, Research Center of Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok Körútja 2, Budapest H-1519, Hungary
- Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, Veszprém H-8200, Hungary
| | - Dominik P Halter
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
- Research Group Applied Electrochemistry & Catalysis (ELCAT), Faculty of Applied Engineering, Department of Biochemical and Chemical Engineering, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
2
|
Churchill O, Dase A, Taylor LJ, Argent SP, Coles NT, Walker GS, Kays DL. Synthesis of the Bulky Phosphanide [P(Si iPr 3) 2] - and Its Stabilization of Low-Coordinate Group 12 Complexes. Inorg Chem 2024; 63:20286-20294. [PMID: 39388151 PMCID: PMC11523236 DOI: 10.1021/acs.inorgchem.4c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Here, we report an improved synthesis of the bulky phosphanide anion [P(SiiPr3)2]- in synthetically useful yields and its complexation to group 12 metals. The ligand is obtained as the sodium salt NaP(SiiPr3)2 1 in a 42% isolated yield and a single step from red phosphorus and sodium. This is a significantly higher-yielding and safer preparation compared to the previously reported synthesis of this ligand, and we have thus applied 1 to the synthesis of the two-coordinate complexes M[P(SiiPr3)2]2 (M = Zn, Cd, Hg). These group 12 complexes are all monomeric and with nonlinear P-M-P angles in the solid state, with DFT calculations suggesting that this bending is due to the steric demands of the ligand. Multinuclear NMR spectroscopy revealed complex second-order splitting patterns due to strong PP' coupling. This work demonstrates that the synthesis of 1 is viable and provides a springboard for the synthesis of low-coordinate complexes featuring this unusual bulky ligand.
Collapse
Affiliation(s)
- Olivia
P. Churchill
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Antonia Dase
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Laurence J. Taylor
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Stephen P. Argent
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Nathan T. Coles
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Gavin S. Walker
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2GA, U.K.
| | - Deborah L. Kays
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
3
|
Schulz A, Hadlington TJ. Analogous carbene-stabilised [M I-(η 6-tol)] + cations (M = Fe, Co, Ni): synthetic access and [carbene·M I] + transfer. Dalton Trans 2024; 53:15795-15800. [PMID: 39308331 DOI: 10.1039/d4dt02372b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
A series of low-coordinate cationic 3d metal(I) complexes of the general formula [IPr·M(η6-tol)]+ is reported (M = Fe, Co, Ni; IPr = [(H)CN(Dip)C:]; Dip = 2,6-iPr2-C6H3), employing the weakly coordinating [BArF4]- counter-anion. The central metal in these complexes is stabilised solely by neutral carbene (i.e. IPr) and arene (i.e. toluene) ligands, making them rare examples of such cationic 3d metal(I) complexes, the electronic nature of which is explored by SQUID magnetometry. The utility of these species in [IPr·MI]+ transfer chemistry is demonstrated through the addition of a further equivalent of IPr, leading to formally two-coordinate cationic complexes, [(IPr2)·MI]+.
Collapse
Affiliation(s)
- Annika Schulz
- Lehrstuhl für anorganische Chemie mit Schwerpunkt neue Materialien, School of Natural Sciences, Technische Universität München, Lichtenberg Strasse 4, 85747 Garching.
| | - Terrance J Hadlington
- Lehrstuhl für anorganische Chemie mit Schwerpunkt neue Materialien, School of Natural Sciences, Technische Universität München, Lichtenberg Strasse 4, 85747 Garching.
| |
Collapse
|
4
|
Werncke CG, Müller I, Weißer K, Limberg C. Divergent Interaction of (Iso)nitriles with a Linear Iron(I) Silylamide─A Combined Structural, Spectroscopic, and Computational Study. Inorg Chem 2024; 63:15236-15246. [PMID: 39066707 DOI: 10.1021/acs.inorgchem.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nitriles and isonitriles are important σ-donor ligands in coordination chemistry. Isonitriles also function in low-valent complexes as π-acceptor ligands similar to CO. Herein we present the unusual behavior of the highly reducing, high-spin iron(I) complex [Fe(hmds)2]- toward these compound classes. Rare examples of side-on coordination of nitriles to the metal center are observed. Insights gained by 57Fe Mössbauer spectroscopy as well as DFT and CASSCF calculations give an interplay between the resonance structures of not only an iron(I) π-complex and an iron(III) metallacycle but also point to the importance of an iron(II) nitrile radical anion. For an aromatic isonitrile end-on coordination is observed, which is best described as an iron(I) complex with only minor unpaired spin transfer onto the isonitrile. For aliphatic isonitriles, the selective R-CN bond cleavage occurs and yields stoichiometric mixtures of alkyl iron(II) and cyanido iron(II) complexes. Attempts to isolate presumed (iso)nitrile radical anions void of 3d-metal coordination give for the reaction of an aromatic isonitrile with KC8 facile reductive coupling to the corresponding diamido acetylene.
Collapse
Affiliation(s)
- C Gunnar Werncke
- Chemistry Department, Philipps-University Marburg, Hans-Meerwein-Straße 4, D-35043 Marburg, Germany
| | - Igor Müller
- Chemistry Department, Philipps-University Marburg, Hans-Meerwein-Straße 4, D-35043 Marburg, Germany
| | - Kilian Weißer
- Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor-Str. 2, D-13089 Berlin, Germany
| | - Christian Limberg
- Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor-Str. 2, D-13089 Berlin, Germany
| |
Collapse
|
5
|
Qu Y, Xi Z, Sun Z, Yang L, Liu R, Dong B, Wu B, Yang XJ. Activation of cyclopentadiene derivatives by an α-diimine-ligated Mg-Mg-bonded compound. Dalton Trans 2024; 53:10065-10069. [PMID: 38847200 DOI: 10.1039/d4dt01038h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Heteroleptic, bimetallic (Mg/K) cyclopentadienyl complexes (2-4) were synthesized by the reaction of the Mg-Mg-bonded compound [K(THF)3]2[LMg-MgL] (1, L = [(2,6-iPr2C6H3)NC(CH3)]22-) with cyclopentadiene derivatives, 6,6-dimethylfulvene, 6-(dimethylamino)fulvene, or 1,2,3,4-tetramethyl-1,3-cyclopentadiene. The reactions proceed through diverse pathways, including hydrogen abstraction, C-C coupling, and dehydrogenation, depending on the property of the polyene substrate, thus providing an access to alkali/alkaline earth metal cyclopentadienyl complexes.
Collapse
Affiliation(s)
- Yao Qu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Zhixian Xi
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Zhenzhou Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Li Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Rui Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Ben Dong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Xiao-Juan Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
6
|
Logallo A, Maddock LCH, Mu M, Gravogl L, Jin N, Peñas-Defrutos MN, Meyer K, García-Melchor M, Hevia E. Unlocking the Metalation Applications of TMP-powered Fe and Co(II) bis(amides): Synthesis, Structure and Mechanistic Insights. Angew Chem Int Ed Engl 2024; 63:e202402907. [PMID: 38563772 DOI: 10.1002/anie.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Typified by LiTMP and TMPMgCl.LiCl, (TMP=2,2,6,6-tetramethylpiperidide), s-block metal amides have found widespread applications in arene deprotonative metalation. On the contrary, transition metal amides lack sufficient basicity to activate these substrates. Breaking new ground in this field, here we present the synthesis and full characterisation of earth-abundant transition metals M(TMP)2 (M=Fe, Co). Uncovering a new reactivity profile towards fluoroarenes, these amide complexes can promote direct M-H exchange processes regioselectively using one or two of their basic amide arms. Remarkably, even when using a perfluorinated substrate, selective C-H metalation occurs leaving C-F bonds intact. Their kinetic basicity can be boosted by LiCl or NBu4Cl additives which enables formation of kinetically activated ate species. Combining spectroscopic and structural studies with DFT calculations, mechanistic insights have been gained on how these low polarity metalation processes take place. M(TMP)2 can also be used to access ferrocene and cobaltocene by direct deprotonation of cyclopentadiene and undergo efficient CO2 insertion of both amide groups under mild reaction conditions.
Collapse
Affiliation(s)
- Alessandra Logallo
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Lewis C H Maddock
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Manting Mu
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green, Dublin, Ireland
| | - Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Na Jin
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Marconi N Peñas-Defrutos
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green, Dublin, Ireland
- IU CINQUIMA, Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071, Valladolid, Spain
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green, Dublin, Ireland
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
7
|
McLoughlin C, Witt AJ, Power PP. Ni(I) and Ni(II) Bis(trimethylsilyl)amides Obtained in Pursuit of the Elusive Structure of Ni{N(SiMe 3) 2} 2. Inorg Chem 2024; 63:9031-9039. [PMID: 38710074 PMCID: PMC11110003 DOI: 10.1021/acs.inorgchem.3c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Salt metathesis routes to five new -N(SiMe3)2 nickel derivatives were studied to illuminate their mode of formation, structures, and spectroscopy. The reaction between NiI2 and K{N(SiMe3)2} afforded the Ni(II) and Ni(I) complexes [K][Ni{N(SiMe3)2}3] (1) and [K][Ni{N(SiMe3)2}2] (2). Dissolving 1 in tetrahydrofuran (THF) gave the Ni(II) species [K(THF)2][Ni{N(SiMe3)2}3] (3). The Ni(I) salt [K(DME)][Ni2{N(SiMe3)2}3] (4) was obtained by using NiCl2(DME) (DME = 1,2-dimethoxyethane) as the nickel source rather than NiI2. The isolation of the Ni(I) complexes 2 and 4 highlights the tendency for K{N(SiMe3)2} to function as a reducing agent. Introduction of adventitious O2 to solutions of [K][Ni{N(SiMe3)2}2] (2) gave the nickel inverse crown ether (ICE) species [K2][O(Ni{N(SiMe3)2}2)2] (5). Complex 5 is the first ICE complex of nickel and is one of four known ICE complexes for the 3d metals. The experimental results indicate that the reduced Ni(I) bis(trimethylsilyl)amides are relatively easily generated, whereas Ni(III) derivatives that might be expected from a disproportionation of a Ni(II) derivative are apparently not yet isolable by the above routes. Overall, the new species crystallize readily from the reaction mixtures, but under ambient conditions, they begin to decompose as solids within ca. 24 h, which hinders their characterization.
Collapse
Affiliation(s)
| | | | - Philip P. Power
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
8
|
Bi L, Jamnuch S, Chen A, Do A, Balto KP, Wang Z, Zhu Q, Wang Y, Zhang Y, Tao AR, Pascal TA, Figueroa JS, Li S. Molecular-Scale Visualization of Steric Effects of Ligand Binding to Reconstructed Au(111) Surfaces. J Am Chem Soc 2024; 146:11764-11772. [PMID: 38625675 PMCID: PMC11066864 DOI: 10.1021/jacs.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.
Collapse
Affiliation(s)
- Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Sasawat Jamnuch
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Amanda Chen
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Alexandria Do
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Krista P. Balto
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Zhe Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Yufei Wang
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Yanning Zhang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Andrea R. Tao
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Tod A. Pascal
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Joshua S. Figueroa
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| |
Collapse
|
9
|
Puerta Lombardi BM, Faas MR, West D, Suvinen RA, Tuononen HM, Roesler R. An isolable, chelating bis[cyclic (alkyl)(amino)carbene] stabilizes a strongly bent, dicoordinate Ni(0) complex. Nat Commun 2024; 15:3417. [PMID: 38653986 DOI: 10.1038/s41467-024-47036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Chelating ligands have had a tremendous impact in coordination chemistry and catalysis. Notwithstanding their success as strongly σ-donating and π-accepting ligands, to date no chelating bis[cyclic (alkyl)(amino)carbenes] have been reported. Herein, we describe a chelating, C2-symmetric bis[cyclic (alkyl)(amino)carbene] ligand, which was isolated as a racemic mixture. The isolation and structural characterization of its isostructural, pseudotetrahedral complexes with iron, cobalt, nickel, and zinc dihalides featuring eight-membered metallacycles demonstrates the binding ability of the bis(carbene). Reduction of the nickel(II) dibromide with potassium graphite produces a dicoordinate nickel(0) complex that features one of the narrowest angles measured in any unsupported dicoordinate transition metal complexes.
Collapse
Affiliation(s)
| | - Morgan R Faas
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | - Daniel West
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | - Roope A Suvinen
- Department of Chemistry, NanoScience Centre, University of Jyvӓskylӓ, Jyvӓskylӓ, Finland
| | - Heikki M Tuononen
- Department of Chemistry, NanoScience Centre, University of Jyvӓskylӓ, Jyvӓskylӓ, Finland.
| | - Roland Roesler
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada.
| |
Collapse
|
10
|
Nain S, Mukhopadhyaya A, Ali ME. Unravelling the Highest Magnetic Anisotropy Among all the nd-Shells in [WCp2]0 Metallocene. Inorg Chem 2024; 63:7401-7411. [PMID: 38578709 DOI: 10.1021/acs.inorgchem.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Single-molecule magnets (SMMs) with a large magnetization reversal barrier are predominated by the lanthanide systems due to their strong spin-orbit coupling (SOC). However, the transition metals have also emerged as potential contenders and the largest magnetic anisotropy has been identified for a cobalt system among any d-series-based SMMs (Bunting et al. Science 2018, 362, eaat7319). In this work, we have explored the magnetic anisotropy in highly axial ligand field systems of metallocene, having different d-subshell (3d4, 4d4, and 5d4). The wave function-based multireference methods including static and dynamic electron correlations have been employed to investigate the zero-field splitting (ZFS) parameters. Here, we report exceptionally large magnetic anisotropy for a 5d complex of [WCp2]0 with the highest energy barrier that is nearly twice as high as the previous record value for the Co complex. We have also observed that the axial ZFS parameter (D) is increasing down the group in the order of 3d < 4d < 5d, pertaining to a large SOC.
Collapse
Affiliation(s)
- Sakshi Nain
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Aritra Mukhopadhyaya
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
11
|
Nagelski AL, Ozerov M, Fataftah MS, Krzystek J, Greer SM, Holland PL, Telser J. Electronic Structure of Three-Coordinate Fe II and Co II β-Diketiminate Complexes. Inorg Chem 2024; 63:4511-4526. [PMID: 38408452 PMCID: PMC11751772 DOI: 10.1021/acs.inorgchem.3c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The β-diketiminate supporting group, [ArNCRCHCRNAr]-, stabilizes low coordination number complexes. Four such complexes, where R = tert-butyl, Ar = 2,6-diisopropylphenyl, are studied: (nacnactBu)ML, where M = FeII, CoII and L = Cl, CH3. These are denoted FeCl, FeCH3, CoCl, and CoCH3 and have been previously reported and structurally characterized. The two FeII complexes (S = 2) have also been previously characterized by Mössbauer spectroscopy, but only indirect assessment of the ligand-field splitting and zero-field splitting (zfs) parameters was available. Here, EPR spectroscopy is used, both conventional field-domain for the CoII complexes (with S = 3/2) and frequency-domain, far-infrared magnetic resonance spectroscopy (FIRMS) for all four complexes. The CoII complexes were also studied by magnetometry. These studies allow accurate determination of the zfs parameters. The two FeII complexes are similar with nearly axial zfs and large magnitude zfs given by D = -37 ± 1 cm-1 for both. The two CoII complexes likewise exhibit large and nearly axial zfs, but surprisingly, CoCl has positive D = +55 cm-1 while CoCH3 has negative D = -49 cm-1. Theoretical methods were used to probe the electronic structures of the four complexes, which explain the experimental spectra and the zfs parameters.
Collapse
Affiliation(s)
- Alexandra L Nagelski
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Majed S Fataftah
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Samuel M Greer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
12
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
13
|
Hsiao KC, Yang PC, Fang CT, Liu HK, Lin CY. A Linear Two-Coordinate Cr(II) Complex: Synthesis, Characterization, and Reactivity. Chem Asian J 2024; 19:e202300924. [PMID: 38059903 DOI: 10.1002/asia.202300924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
The synthesis and characterization of a linear two-coordinate Cr(II) amido complex, Cr{N(t Bu)Dipp}2 (Dipp=2,6-diisopropylphenyl), from the reaction of 1 molar equivalent (equiv) of CrCl2 and 2 equiv. of LiN(t Bu)Dipp is reported. Single-crystal X-ray diffractometry (SC-XRD) analysis revealed that it has a short Cr-N bond distance of 1.8878(9) Å, which could be attributed to the relatively less bulky nature of the amido ligand compared with reported systems. Furthermore, the oxidation reaction of the two-coordinate Cr(II) complex was explored. The oxidation reaction of Cr{N(t Bu)Dipp}2 with the one-electron oxidants AgOTf and [FeCp2 ][BArF 4 ] (BArF 4 - =[B{C6 H3 -3,5-(CF3 )2 }4 ]- ) afforded the trigonal planar three- and bent two-coordinate Cr(III) complexes Cr{N(t Bu)Dipp}2 (OTf) and [Cr{N(t Bu)Dipp}2 ][BArF 4 ], respectively. The reaction of Cr{N(t Bu)Dipp}2 with 1 equiv. of the organic azides AdN3 (Ad=1-adamantyl) and PhN3 afforded the three-coordinate Cr(IV) imido complexes Cr{N(t Bu)Dipp}2 (NAd) and Cr{N(t Bu)Dipp}2 (NPh), respectively. The reaction of Cr{N(t Bu)Dipp}2 and two equiv. of Me3 NO afforded the Cr(VI) dioxo complex Cr{N(t Bu)Dipp}2 (O)2 . The reaction of Cr{N(t Bu)Dipp}2 with 1 equiv. of CyN=C=NCy resulted in the insertion of the carbodiimide into the Cr-N bond, with the formation of a three-coordinate Cr(II) complex. Finally, density functional theory (DFT) calculations were used to elucidate the electronic structure of these complexes.
Collapse
Affiliation(s)
- Kai-Chin Hsiao
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| | - Po-Chun Yang
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| | - Chia-Te Fang
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| | - Chun-Yi Lin
- Department of Chemistry, National Cheng Kung University, No. 1 University Road, 701401, Tainan, Taiwan
| |
Collapse
|
14
|
Allão Cassaro RA, Lahti PM, Vaz MGF, Novak MA. Lattice Solvent Engineering Improves the Stability of a Cobalt Pyrenylnitronylnitroxide Ferrimagnetic Chain. Inorg Chem 2023. [PMID: 37411011 DOI: 10.1021/acs.inorgchem.3c01543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Reaction of 2-(1'-pyrenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (PyrNN) with [Co(hfac)2(H2O)2] (hfac = hexafluoroacetylacetonate) in n-heptane solvent (hep) with a small amount of bromoform (CHBr3 = bf) gives the 1D ferrimagnetic complex [Co(hfac)2PyrNN]n·0.5bf·0.5hep (Co-PyrNN·bf). This chain exhibits slow magnetic relaxation with magnetic blocking below 13.4 K, presenting a magnetic hysteresis with high coercive field (51 kOe at 5.0 K) as a hard magnet. It also shows frequency-dependent behavior consistent with one dominant relaxation process with an activation barrier of Δτ/kB = (365 ± 24) K. The compound is an isomorphous variant of a previously reported ambient unstable chain made by using chloroform (CHCl3 = cf), [Co(hfac)2PyrNN]n·0.5cf·0.5hep (Co-PyrNN·cf). This shows that the variation of a magnetically inactive lattice solvent can improve the stability of analogous, void space containing single-chain magnets.
Collapse
Affiliation(s)
- Rafael A Allão Cassaro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil
| | - Paul M Lahti
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Maria G F Vaz
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Miguel A Novak
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-972, Brazil
| |
Collapse
|
15
|
Suga Y, Sunada Y. Iron(II) Complex with a Silacycle-Bridged Biaryl-Based Ligand. ACS OMEGA 2023; 8:24078-24082. [PMID: 37426232 PMCID: PMC10324383 DOI: 10.1021/acsomega.3c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Treatment of 2,6-dimethyl-1,1'-biphenyl-substituted chlorosilane with potassium followed by FeBr2/TMEDA led to the formation of an iron(II) monobromide complex supported by a TMEDA ligand and a carbanion-based ligand containing a six-membered silacycle-bridged biphenyl skeleton. The obtained complex crystallized as a racemic mixture of (Sa, S) and (Ra, R) forms, in which the dihedral angle of the two phenyl rings of the biphenyl moiety was ∼43°.
Collapse
|
16
|
Gonzalez A, Chen TY, Demeshko S, Meyer F, Werncke CG. Synthesis, Properties, and Reactivity of a Linear NHC-Based Chromium(I) Silylamide. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
17
|
Noor A. Recent developments in two coordinate transition metal chemistry. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Kumar Sahu P, Kharel R, Shome S, Goswami S, Konar S. Understanding the unceasing evolution of Co(II) based single-ion magnets. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Chakraborty U, Fedulin A, Jacobi von Wangelin A. Synthesis and Catalysis of Anionic Amido Iron(II) Complexes. ChemCatChem 2022; 14:e202201105. [PMID: 37064762 PMCID: PMC10099668 DOI: 10.1002/cctc.202201105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Low-coordinate, open-shell 3d metal complexes have attracted great attention due to their critical role in several catalytic transformations but have been notoriously difficult to prepare and study due to their high lability. Here, we report the synthesis of a heteroleptic tri-coordinate amidoferrate that displays high catalytic activity in the regioselective hydrosilylation of alkenes.
Collapse
Affiliation(s)
- Uttam Chakraborty
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | - Andrey Fedulin
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | |
Collapse
|
20
|
Tomita Y, Okamura T, Onitsuka K. One Ligand Fits All: Formation and Stabilization of a Single‐Ligand Arenethiolato Cobalt(II) Complex via Metal‐π Coordination from a Bulky Acylamino Group. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yusuke Tomita
- Department of Macromolecular Science Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Taka‐aki Okamura
- Department of Macromolecular Science Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
21
|
Ballmann GM, Gentner TX, Kennedy AR, Hevia E, Mulvey RE. Heavy Alkali Metal Manganate Complexes: Synthesis, Structures and Solvent-Induced Dissociation Effects. Chemistry 2022; 28:e202201716. [PMID: 35775467 PMCID: PMC9804227 DOI: 10.1002/chem.202201716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/05/2023]
Abstract
Rare examples of heavier alkali metal manganates [{(AM)Mn(CH2 SiMe3 )(N'Ar )2 }∞ ] (AM=K, Rb, or Cs) [N'Ar =N(SiMe3 )(Dipp), where Dipp=2,6-iPr2 -C6 H3 ] have been synthesised with the Rb and Cs examples crystallographically characterised. These heaviest manganates crystallise as polymeric zig-zag chains propagated by AM⋅⋅⋅π-arene interactions. Key to their preparation is to avoid Lewis base donor solvents. In contrast, using multidentate nitrogen donors encourages ligand scrambling leading to redistribution of these bimetallic manganate compounds into their corresponding homometallic species as witnessed for the complete Li - Cs series. Adding to the few known crystallographically characterised unsolvated and solvated rubidium and caesium s-block metal amides, six new derivatives ([{AM(N'Ar )}∞ ], [{AM(N'Ar )⋅TMEDA}∞ ], and [{AM(N'Ar )⋅PMDETA}∞ ] where AM=Rb or Cs) have been structurally authenticated. Utilising monodentate diethyl ether as a donor, it was also possible to isolate and crystallographically characterise sodium manganate [(Et2 O)2 Na(n Bu)Mn[(N'Ar )2 ], a monomeric, dinuclear structure prevented from aggregating by two blocking ether ligands bound to sodium.
Collapse
Affiliation(s)
- Gerd M. Ballmann
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Thomas X. Gentner
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Alan R. Kennedy
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Eva Hevia
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Robert E. Mulvey
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
22
|
Kalita AJ, Sarmah K, Guha AK. Weak Zinc-Zinc slipped triple bond in Zn2Li6 cluster. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Khurana R, Ali ME. Single-Molecule Magnetism in Linear Fe(I) Complexes with Aufbau and Non-Aufbau Ground States. Inorg Chem 2022; 61:15335-15345. [PMID: 36129329 DOI: 10.1021/acs.inorgchem.2c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the ongoing efforts on synthesizing mononuclear single-ion magnets (SIMs) with promising applications in high-density data storage and spintronics devices, the linear or quasi-linear Fe(I) complexes emerge as the enticing candidates possessing large unquenched angular momentum. Herein, we have studied five experimentally synthesized linear Fe(I) complexes to uncover the origin of single-molecule magnetic behavior of these complexes. To begin with, we benchmarked the methodology on the experimentally and theoretically well-studied complex [Fe(C(SiMe3)3)2]-1 (1) (SiMe3 = trimethylsilyl), which is characterized with a large spin-reversal barrier of 226 cm-1. Subsequently, the spin-phonon coupling coefficients are calculated for the low-frequency vibrational modes to understand the relaxation mechanism of the complex. Furthermore, the two Fe(I) complexes, that is, [Fe(cyIDep)2]+1 (2) (cyIDep = 1,3-bis(2',6'-diethylphenyl)-4,5-(CH2)4-imidazole-2-ylidene) and [Fe(sIDep)2]+1 (3) (sIDep = 1,3-bis(2',6'-diethylphenyl)-imidazolin-2-ylidene), are studied that are experimentally reported with no SIM behavior under ac or dc magnetic fields; however, they exhibit large opposite axial zero field splitting (-62.4 and +34.0 cm-1, respectively) from ab initio calculations. We have unwrapped the origin of this contrasting observation between experiment and theory by probing their magnetic relaxation pathways and the pattern of d orbital splitting. Additionally, the two experimentally synthesized Fe(I) complexes, that is, [(η6-C6H6)FeAr*-3,5-Pr2i] (4) (Ar*-3,5-Pr2i = C6H-2,6-(C6H2-2,4,6-Pr3i)2-3,5-Pr2i) and [(CAAC)2Fe]+1 (5) (CAAC = cyclic (alkyl) (amino)carbene), are investigated for SIM behavior, since there is no report on their magnetic anisotropy. To this end, complex 4 presents itself as the possible candidate for SIM.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
24
|
Wang Y, Chen AA, Balto KP, Xie Y, Figueroa JS, Pascal TA, Tao AR. Curvature-Selective Nanocrystal Surface Ligation Using Sterically-Encumbered Metal-Coordinating Ligands. ACS NANO 2022; 16:12747-12754. [PMID: 35943141 DOI: 10.1021/acsnano.2c04595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic ligands are critical in determining the physiochemical properties of inorganic nanocrystals. However, precise nanocrystal surface modification is extremely difficult to achieve. Most research focuses on finding ligands that fully passivate the nanocrystal surface, with an emphasis on the supramolecular structure generated by the ligand shell. Inspired by molecular metal-coordination complexes, we devised an approach based on ligand anchoring groups that are flanked by encumbering organic substituents and are chemoselective for binding to nanocrystal corner, edge, and facet sites. Through experiment and theory, we affirmed that the surface-ligand steric pressures generated by these organic substituents are significant enough to impede binding to regions of low nanocurvature, such as nanocrystal facets, and to promote binding to regions of high curvature such as nanocrystal edges.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92023, United States
| | - Amanda A Chen
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
| | - Krista P Balto
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92023, United States
| | - Yu Xie
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
| | - Joshua S Figueroa
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92023, United States
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92023, United States
| | - Tod A Pascal
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92023, United States
| | - Andrea R Tao
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92023, United States
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92023, United States
| |
Collapse
|
25
|
Tendera L, Krummenacher I, Radius U. Cationic Nickel d9‐Metalloradicals [Ni(NHC)2]+. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lukas Tendera
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Anorganische Chemie GERMANY
| | - Ivo Krummenacher
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Anorganische Chemie GERMANY
| | - Udo Radius
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland 97074 Würzburg GERMANY
| |
Collapse
|
26
|
Manke DR, Golen JA, Stennett CR, Naeem M, Javier-Jimenez DR, Power PP. Reusing meta-terphenyl ligands: Synthesis, metalation and recycling of 5-pyrrolidino-m-terphenyl. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Wen GH, Zou Q, Xu K, Huang XD, Bao SS, Chen XT, Ouyang Z, Wang Z, Zheng LM. Layered Uranyl Phosphonates Encapsulating Co(II)/Mn(II)/Zn(II) Ions: Exfoliation into Nanosheets and Its Impact on Magnetic and Luminescent Properties. Chemistry 2022; 28:e202200721. [PMID: 35570193 DOI: 10.1002/chem.202200721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 01/17/2023]
Abstract
Layered heterometallic 5f-3d uranyl phosphonates can exhibit unique luminescent and/or magnetic properties, but the fabrication and properties of their 2D counterparts have not been investigated. Herein we report three heterobimetallic uranyl phosphonates, namely, [(UO2 )3 M(2-pmbH)4 (H2 O)4 ] ⋅ 2H2 O [MU, M=Co(II), CoU; Mn(II), MnU; Zn(II), ZnU; 2-pmbH3 =2-(phosphonomethyl)benzoic acid]. They are isostructural and display two-dimensional layered structures where the M(II) centers are encapsulated inside the windows generated by the diamagnetic uranyl phosphonate layer. Each M(II) has an octahedral geometry filled with four water molecules in the equatorial positions and two phosphonate oxygen atoms in the axial positions. The uranium atoms adopt UO7 pentagonal bipyramidal and UO6 square bipyramidal geometries. The lattice and coordination water molecules can be released by thermal treatment and reabsorbed in a reversible manner, accompanied with changes of magnetic dynamics. Interestingly, the bulk samples of MU can be exfoliated in acetone via freezing and thawing processes forming nanosheets with single-layer or two-layer thickness (MU-ns). Magnetic studies revealed that the CoU and MnU systems exhibited field-induced slow magnetization relaxation at low temperature. Compared with crystalline CoU, the magnetic relaxation of the CoU-ns aggregates is significantly accelerated. Moreover, photoluminescence measured at 77 K showed slight red-shift of the five characteristic uranyl emission bands for ZnU-ns in comparison with those of the crystalline ZnU. This work gives the first examples of 2D materials based on 5f-3d heterometallic uranyl phosphonates and illustrates the impact of dimension reduction on their magnetic/optical properties.
Collapse
Affiliation(s)
- Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
28
|
Kaiser M, Winkler L, Hinz A. Complexes of 3d Metals with a Bulky Carbazolyl Ligand. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michelle Kaiser
- Karlsruhe Institute of Technology (KIT) Institute of Inorganic Chemistry (AOC) Engesserstr.15, Geb. 30.45, 76131 Karlsruhe, Germany
| | - Lucas Winkler
- Karlsruhe Institute of Technology (KIT) Institute of Inorganic Chemistry (AOC) Engesserstr.15, Geb. 30.45, 76131 Karlsruhe, Germany
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT) Institute of Inorganic Chemistry (AOC) Engesserstr.15, Geb. 30.45, 76131 Karlsruhe, Germany
| |
Collapse
|
29
|
Reckziegel A, Battistella B, Schmidt A, Werncke CG. Intricate Road to Linear Anionic Nickel(I) Hexamethyldisilazanide [Ni(N(SiMe 3) 2) 2] . Inorg Chem 2022; 61:7794-7803. [PMID: 35522526 DOI: 10.1021/acs.inorgchem.2c00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this report, we present intricate pathways for the synthesis of linear nickel(I) silylamide K{m}[Ni(NR2)2] (NR2 = -N(SiMe3)2). This is achieved first via the reduction of nickel(II) trisamide Li(donor)4[Ni(NR2)3] (Li(thf)x[1]) with KC8 in the presence of 18-crown-6 or crypt.222. In due course, the behavior of Li(donor)4[Ni(NR2)3] as a source of masked two-coordinate nickel(II) hexamethyldisilazanide is explored, leading to the formation of nickel(I) and nickel(II) N-donor adducts, as well as metal-metal-bonded dinickel(I) trisamide K(toluene)[Ni2(NR2)3] (K(toluene)[5]). Finally, a convenient and reliable synthesis of K{m}[Ni(NR2)2] by ligand exchange of phosphines in [Ni(NR2)(PPh3)2] with K{m}(NR2) is presented. This allows for the comprehensive analysis of its electronic properties which reveals a fluxional behavior in solution with tight anion/cation interactions.
Collapse
Affiliation(s)
- Alexander Reckziegel
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, D-35037 Marburg, Germany
| | - Beatrice Battistella
- Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Andreas Schmidt
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, D-35037 Marburg, Germany
| | - C Gunnar Werncke
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Straße 4, D-35037 Marburg, Germany
| |
Collapse
|
30
|
Mears KL, Power PP. Beyond Steric Crowding: Dispersion Energy Donor Effects in Large Hydrocarbon Ligands. Acc Chem Res 2022; 55:1337-1348. [PMID: 35427132 DOI: 10.1021/acs.accounts.2c00116] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between sterically crowded hydrocarbon-substituted ligands are widely considered to be repulsive because of the intrusion of the electron clouds of the ligand atoms into each other's space, which results in Pauli repulsion. Nonetheless, there is another interaction between the ligands which is less widely publicized but is always present. This is the London dispersion (LD) interaction which can occur between atoms or molecules in which dipoles can be induced instantaneously, for example, between the H atoms from the ligand C-H groups.These LD interactions are always attractive, but their effects are not as widely recognized as those of the Pauli repulsion despite their central role in the formation of condensed matter. Their relatively poor recognition is probably due to the relative weakness (ca. 1 kcal mol-1) of individual H···H interactions owing to their especially strong distance dependence. In contrast, where there are numerous H···H interactions, a collective LD energy equaling several tens of kcal mol-1 may ensue. As a result, in some molecules the latent importance of the LD attraction energies emerges and assumes a prominence that can overshadow the Pauli effects (e.g., in the stabilization of high-oxidation-state transition-metal alkyls, inducing disproportionation reactions, or in the stabilization of otherwise unstable bonds).Despite being known for over a century, the accurate quantification of individual H···H LD effects in molecular species is a relatively recent phenomenon and at present is based mainly on modified DFT calculations. A few leading reviews summarized these earlier studies of the C-H···H-C LD interactions in organic molecules, and their effects on the structures and stabilities were described. LD effects in sterically crowded inorganic and organometallic molecules have been recognized.The author's interest in these LD effects arose fortuitously over a decade ago during research on sterically crowded heavier main-group element carbene analogues and two-coordinate, open-shell (d1-d9) transition-metal complexes where counterintuitive steric effects were observed. More detailed explanations of these effects were provided by dispersion-corrected DFT calculations in collaboration with the groups of Tuononen and Nagase (see below).This Account describes our development of these initial results for other inorganic molecular classes. More recently, the work has led us to move to the planned inclusion of dispersion effects in ligands to stabilize new molecular types with theoretical input from the groups of Vasko and Grimme (see below). Our approach sought to use what Grimme has described as dispersion effect donor (DED) groups (i.e., spatially close-lying, densely packed substituents either as ligands (e.g., -C6H2-2,4,6-Cy3, Cy = cyclohexyl) or as parts of ligands (e.g., a Cy substituent) that produce relatively large dispersion energies to stabilize these new compounds.We predict that the future design of sterically crowding hydrocarbon ligands will include the consideration and incorporation of LD effects as a standard methodology for directed use in the attainment of new synthetic targets.
Collapse
Affiliation(s)
- Kristian L. Mears
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Philip P. Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
31
|
Weller R, Müller I, Werncke CG. Catalytic 1,3‐H Atom Shift of a Terminal Benzylic Alkyne by Iron and Alkali Metal Silylamides – Switching between Allene and Internal Alkyne. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ruth Weller
- Department of Chemistry Philipps-University Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| | - Igor Müller
- Department of Chemistry Philipps-University Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| | - C. Gunnar Werncke
- Department of Chemistry Philipps-University Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| |
Collapse
|
32
|
Yang PC, Yu KP, Hsieh CT, Zou J, Fang CT, Liu HK, Pao CW, Deng L, Cheng MJ, Lin CY. Stabilization of a high-spin three-coordinate Fe(III) imidyl complex by radical delocalization. Chem Sci 2022; 13:9637-9643. [PMID: 36091897 PMCID: PMC9400638 DOI: 10.1039/d2sc02699f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
High-spin, late transition metal imido complexes have attracted significant interest due to their group transfer reactivity and catalytic C−H activation of organic substrates. Reaction of a new two-coordinate iron complex,...
Collapse
Affiliation(s)
- Po-Chun Yang
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Kuan-Po Yu
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Junjie Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Chia-Te Fang
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 300092 Taiwan
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chun-Yi Lin
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| |
Collapse
|
33
|
Zhou Y, Li Y, Xi J, Qin Y, Cen P, Zhang YQ, Guo Y, Ding Y, Liu X. Modulation of the architectures and magnetic dynamics in pseudotetrahedral cobalt(II) complexes. Dalton Trans 2022; 51:7673-7680. [DOI: 10.1039/d2dt01047j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two β-Diketiminate cobalt(II) compounds of formula [LCo(μ-Cl)]2∙2C6H14 (1) and [LCoClPy]∙0.5C7H8∙0.5C6H14 (2) (L = [PhC-(PhCN-Dip)2]−, Dip = 2,6-iPr2C6H3) have been synthesized and structurally characterized by single crystal X-ray diffraction. Compound 1...
Collapse
|
34
|
Brown WK, Klausmeyer KK, Lindley BM. Unlocking metal coordination of diborylamides through ring constraints. Chem Commun (Camb) 2021; 58:867-870. [PMID: 34935791 DOI: 10.1039/d1cc06458d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A cyclic lithium diborylamide compound was synthesized and crystallographically characterized, revealing strong Li-N bonding in sharp contrast to previous linear diborylamides. Two iron(II) diborylamide complexes were also synthesized, including a 2-coordinate Fe bis(diborylamide) complex. The present cyclic diborylamide represents a new addition to the growing scope of amide ligands.
Collapse
Affiliation(s)
- W Kice Brown
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, USA.
| | - Kevin K Klausmeyer
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, USA.
| | - Brian M Lindley
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, USA.
| |
Collapse
|
35
|
Indris S, Bredow T, Schwarz B, Eichhöfer A. Paramagnetic 7Li NMR Shifts and Magnetic Properties of Divalent Transition Metal Silylamide Ate Complexes [LiM{N(SiMe 3) 2} 3] (M 2+ = Mn, Fe, Co). Inorg Chem 2021; 61:554-567. [PMID: 34931842 DOI: 10.1021/acs.inorgchem.1c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
7Li NMR shifts and magnetic properties have been determined for three so-called ate complexes [LiM{N(SiMe3)2}3] (M2+ = Mn, Fe, Co; e.g., named lithium-tris(bis(trimethylsilylamide))-manganate(II) in accordance with a formally negative charge assigned to the complex fragment [M{N(SiMe3)2}3]-, which comprises the transition metal). They are formed by addition reactions of LiN(SiMe3)2 and [M{N(SiMe3)2}2] and stabilized by Lewis base/Lewis acid interactions. The results are compared to those of the related "ion-separated" complexes [Li(15-crown-5)][M{N(SiMe3)2}3]. The ate complexes with the lithium atoms connected to the 3d metal atoms manganese, iron, or cobalt via μ2 nitrogen bridges reveal strong 7Li NMR paramagnetic shifts of about -75, 125, and 171 ppm, respectively, whereas the shifts for the lithium ions coordinated by the 15-crown-5 ether are close to zero. The observed trends of the 7Li NMR shifts are confirmed by density-functional theory calculations. The magnetic dc and ac properties display distinct differences for the six compounds under investigation. Both manganese compounds, [LiMn{N(SiMe3)2}3] and [Li(15-crown-5)][Mn{N(SiMe3)2}3], display almost pure and ideal spin-only paramagnetic behavior of a 3d5 high-spin complex. In this respect slightly unexpected, both complexes show slow relaxation behavior at low temperatures under applied dc fields, which is especially pronounced for the ate complex [LiMn{N(SiMe3)2}3]. Dc magnetic properties of the iron complexes reveal moderate g-factor anisotropies with small values of the axial magnetic anisotropy parameter D and a larger E (transversal anisotropy). Both complexes display at low temperatures and, under external dc fields of up to 5000 Oe, only weak ac signals with no maxima in the frequency range from 1 to 1500 s-1. In contrast, the two cobalt complexes display strong g-factor anisotropies with large values of D and E. In addition, in both cases, the ac measurements at low temperatures and applied dc fields reveal two, in terms of their frequency range, well separated relaxation processes with maxima lying for the most part outside of the measurement range between 1 and 1500 s-1.
Collapse
Affiliation(s)
- Sylvio Indris
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Björn Schwarz
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andreas Eichhöfer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
36
|
Affiliation(s)
- Alessandro Bismuto
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI CH-8093 Zürich Switzerland
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI CH-8093 Zürich Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI CH-8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI CH-8093 Zürich Switzerland
| |
Collapse
|
37
|
Novikov VV, Nelyubina YV. Modern physical methods for the molecular design of single-molecule magnets. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Many paramagnetic metal complexes have emerged as unique magnetic materials (single-molecule magnets), which behave as conventional magnets at the single-molecule level, thereby making it possible to use them in modern devices for data storage and processing. The rational design of these complexes, however, requires a deep understanding of the physical laws behind a single-molecule magnet behaviour, the mechanisms of magnetic relaxation that determines the magnetic properties and the relationship of these properties with the structure of single-molecule magnets. This review focuses on the physical methods providing such understanding, including different versions and various combinations of magnetometry, electron paramagnetic and nuclear magnetic resonance spectroscopy, optical spectroscopy and X-ray diffraction. Many of these methods are traditionally used to determine the composition and structure of new chemical compounds. However, they are rarely applied to study molecular magnetism.
The bibliography includes 224 references.
Collapse
|
38
|
Wang X, Chin AL, Zhou J, Wang H, Tong R. Resilient Poly(α-hydroxy acids) with Improved Strength and Ductility via Scalable Stereosequence-Controlled Polymerization. J Am Chem Soc 2021; 143:16813-16823. [PMID: 34582185 DOI: 10.1021/jacs.1c08802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the degradability and biocompatibility of poly(α-hydroxy acids), their utility remains limited because their thermal and mechanical properties are inferior to those of commodity polyolefins, which can be attributed to the lack of side-chain functionality on the polyester backbone. Attempts to synthesize high-molecular-weight functionalized poly(α-hydroxy acids) from O-carboxyanhydrides have been hampered by scalability problems arising from the need for an external energy source such as light or electricity. Herein, we report an operationally simple, scalable method for the synthesis of stereoregular, high-molecular-weight (>200 kDa) functionalized poly(α-hydroxy acids) by means of controlled ring-opening polymerization of O-carboxyanhydrides mediated by a highly redox reactive manganese complex and a zinc-alkoxide. Mechanistic studies indicated that the ring-opening process likely proceeded via the Mn-mediated decarboxylation with alkoxy radical formation. Gradient copolymers produced directly by this method from mixtures of two O-carboxyanhydrides exhibited better ductility and toughness than their corresponding homopolymers and block copolymers, therefore highlighting the potential feasibility of functionalized poly(α-hydroxy acids) as ductile and resilient polymeric materials.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Ai Lin Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Jingyi Zhou
- Department of Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 60801, United States
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 60801, United States
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| |
Collapse
|
39
|
Weller R, Völlinger L, Werncke CG. On the Synthesis and Reduction of Trigonal Halido Bis(silylamido) Metalates of Chromium to Cobalt. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ruth Weller
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| | - Lena Völlinger
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| | - C. Gunnar Werncke
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35032 Marburg Germany
| |
Collapse
|
40
|
Kloß SD, Attfield JP. Low-dimensional magnetism in calcium nitridonickelate(II) Ca 2NiN 2. Chem Commun (Camb) 2021; 57:10427-10430. [PMID: 34549238 DOI: 10.1039/d1cc04001d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium nitridonickelate(II) Ca2NiN2 has been prepared through a high-temperature and high-pressure azide-mediated redox reaction, demonstrating that this method can stabilise nitrides of late transition metals in relatively high oxidation states. Ca2NiN2 crystallizes in the Na2HgO2 structure type and displays low-dimensional antiferromagnetic ordering of Ni2+ spins.
Collapse
Affiliation(s)
- Simon D Kloß
- Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - J Paul Attfield
- Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, UK.
| |
Collapse
|
41
|
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021; 121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
42
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
43
|
Dong Y, Lipschutz MI, Witzke RJ, Panetier JA, Tilley TD. Switchable Product Selectivity in Diazoalkane Coupling Catalyzed by a Two-Coordinate Cobalt Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuyang Dong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael I. Lipschutz
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ryan J. Witzke
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Julien A. Panetier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
44
|
|
45
|
Crossman AS, Shi JX, Krajewski SM, Maurer LA, Marshak MP. Synthesis, reactivity, and crystallography of a sterically hindered acyl triflate. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Maddock L, Morton R, Kennedy A, Hevia E. Lateral Metallation and Redistribution Reactions of Sodium Ferrates Containing Bulky 2,6-Diisopropyl-N-(trimethylsilyl)anilide Ligands. Chemistry 2021; 27:15180-15186. [PMID: 34324749 PMCID: PMC8596604 DOI: 10.1002/chem.202102328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/02/2022]
Abstract
Alkali‐metal ferrates containing amide groups have emerged as regioselective bases capable of promoting Fe−H exchanges of aromatic substrates. Advancing this area of heterobimetallic chemistry, a new series of sodium ferrates is introduced incorporating the bulky arylsilyl amido ligand N(SiMe3)(Dipp) (Dipp=2,6‐iPr2‐C6H3). Influenced by the large steric demands imposed by this amide, transamination of [NaFe(HMDS)3] (HMDS=N(SiMe3)2) with an excess of HN(SiMe3)(Dipp) led to the isolation of heteroleptic [Na(HMDS)2Fe{N(SiMe3)Dipp}]∞ (1) resulting from the exchange of just one HMDS group. An alternative co‐complexation approach, combining the homometallic metal amides [NaN(SiMe3)Dipp] and [Fe{N(SiMe3)Dipp}2] induces lateral metallation of one Me arm from the SiMe3 group in the iron amide furnishing tetrameric [NaFe{N(SiCH2Me2)Dipp}{N(SiMe3)Dipp}]4 (2). Reactivity studies support that this deprotonation is driven by the steric incompatibility of the single metal amides rather than the basic capability of the sodium reagent. Displaying synergistic reactivity, heteroleptic sodium ferrate 1 can selectively promote ferration of pentafluorobenzene using one of its HMDS arms to give heterotrileptic [Na{N(SiMe3)Dipp}(HMDS)Fe(C6F5)]∞ (4). Attempts to deprotonate less activated pyridine led to the isolation of NaHMDS and heteroleptic Fe(II) amide [(py)Fe{N(SiMe3)Dipp}(HMDS)] (5), resulting from an alternative redistribution process which is favoured by the Lewis donor ability of this substrate.
Collapse
Affiliation(s)
- Lewis Maddock
- University of Bern: Universitat Bern, Department of Chemistry and Biochemistry, SWITZERLAND
| | - Rebekka Morton
- University of Strathclyde Department of Pure and Applied Chemistry, Pure and Applied Chemistry, UNITED KINGDOM
| | - Alan Kennedy
- University of Strathclyde Faculty of Science, Pure and applied chemistry, UNITED KINGDOM
| | - Eva Hevia
- Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND
| |
Collapse
|
47
|
Weller R, Ruppach L, Shlyaykher A, Tambornino F, Werncke CG. Homoleptic quasilinear metal(i/ii) silylamides of Cr-Co with phenyl and allyl functions - impact of the oxidation state on secondary ligand interactions. Dalton Trans 2021; 50:10947-10963. [PMID: 34318833 DOI: 10.1039/d1dt01543e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we describe the synthesis and characterization of a variety of new quasilinear metal(i/ii) silylamides of the type [M(N(Dipp)SiR3)2]0,- (M = Cr-Co) with different silyl substituents (SiR3 = SiPh3-nMen (n = 1-3), SiMe2(allyl)). By comparison of the solid state structures we show that in the case of phenyl substituents secondary metal-ligand interactions are suppressed upon reduction of the metal. Introduction of an allyl substituted silylamide gives divalent complexes with additional metal-π-alkene interactions with only weak activation of the C[double bond, length as m-dash]C bond but substantial bending of the principal N-M-N axis. 1e--reduction makes cobalt a more strongly bound alkene substituent, whereas for chromium, reduction and intermolecular dimerisation of the allyl unit are observed. It thus indicates that the general view of low-coordinate 3d-metal ions as electron deficient seems not to apply to anionic metal(i) complexes. Additionally, the obtained cobalt(i) complexes are reacted with an aryl azide giving trigonal imido metal complexes. These can be regarded as rare examples of high-spin imido cobalt compounds from their structural and solution magnetic features.
Collapse
Affiliation(s)
- Ruth Weller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Lutz Ruppach
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Alena Shlyaykher
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Frank Tambornino
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - C Gunnar Werncke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| |
Collapse
|
48
|
Tiaouinine S, Flores Gonzalez J, Lefeuvre B, Guizouarn T, Cordier M, Dorcet V, Kaboub L, Cador O, Pointillart F. Spin Crossover and Field‐Induced Single‐Molecule Magnet Behaviour in Co(II) Complexes Based on Terpyridine with Tetrathiafulvalene Analogues. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siham Tiaouinine
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
- Laboratory of Organic Materials and Heterochemistry University of Tebessa Rue de Constantine 12002 Tébessa Algeria
| | - Jessica Flores Gonzalez
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Bertrand Lefeuvre
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Thierry Guizouarn
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Marie Cordier
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Vincent Dorcet
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Lakehmici Kaboub
- Laboratory of Organic Materials and Heterochemistry University of Tebessa Rue de Constantine 12002 Tébessa Algeria
- Laboratory of Chemistry Molecular Engineering and Nanostructures University of Ferhat Abbas-Sétif 1 19000 Sétif Algeria
| | - Olivier Cador
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| | - Fabrice Pointillart
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226 35000 Rennes France
| |
Collapse
|
49
|
Cui P, Wu C, Du J, Luo G, Huang Z, Zhou S. Three-Coordinate Pd(0) with Rare-Earth Metalloligands: Synergetic CO Activation and Double P-C Bond Cleavage-Formation Reactions. Inorg Chem 2021; 60:9688-9699. [PMID: 34125520 DOI: 10.1021/acs.inorgchem.1c00990] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalation of β-diketiminato rare-earth metal complexes LnacnacLn(PhNCH2PPh2)2 (Ln = Y, Yb, Lu) with (COD)Pd(CH2SiMe3)2 afforded three-coordinate Pd(0) complexes supported by two sterically less bulky phosphines and a Pd → Ln dative interaction. The Pd(0) center is prone to ligation with isonitrile and CO; in the latter case, the insertion of a second CO with the Y-N bond was assisted via a precoordination of CO on the Pd(0) center, which led to the formation of an anionic Pd(0) carbamoyl. The reaction of the Pd-Y complex with iodobenzene showed a remarkable double P-C bond cleavage-formation pathway within the heterobimetallic Pd-Y core to afford (Ph3P)2PdI(Ph), imine PhNCH2, and a β-diketiminato yttrium diiodide. In the related reaction of LnacnacY(PhNCH2PPh2)2 with (Ph3P)2PdI(Ph), the P-C bond cleavage following with a N-C bond formation was observed. Computational studies revealed a synergetic bimetallic mechanism for these reactions.
Collapse
Affiliation(s)
- Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Changjiang Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Jun Du
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zeming Huang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Shuangliu Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
50
|
Touchton AJ, Wu G, Hayton TW. [Ni 8(CN tBu) 12][Cl]: A nickel isocyanide nanocluster with a folded nanosheet structure. J Chem Phys 2021; 154:211102. [PMID: 34240994 DOI: 10.1063/5.0054231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The reaction of 1.75 equiv of tBuNC with Ni(1,5-COD)2, followed by crystallization from benzene/pentane, resulted in the isolation of [Ni8(CNtBu)12][Cl] (2) in low yields. Similarly, the reaction of Ni(1,5-COD)2 with 0.6 equiv of [Ni(CNtBu)4], followed by addition of 0.08 equiv of I2, resulted in the formation of [Ni8(CNtBu)12][I] (3), which could be isolated in 52% yield after work-up. Both 2 and 3 adopt folded nanosheet structures in the solid state, characterized by two symmetry-related planar Ni4 arrays, six terminally bound tBuNC ligands, and six tBuNC ligands that adopt bridging coordination modes. The metrical parameters of the six bridging tBuNC ligands suggest that they have been reduced to their [tBuNC]2- form. In contrast to the nanosheet structures observed for 2 and 3, gas phase Ni8 is predicted to feature a compact bisdisphenoid ground state structure. The strikingly different structural outcomes reveal the profound structural changes that can occur upon addition of ligands to bare metal clusters. Ultimately, the characterization of 2 and 3 will enable more accurate structural predictions of ligand-protected nanoclusters in the future.
Collapse
Affiliation(s)
- Alexander J Touchton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, USA
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106-9510, USA
| |
Collapse
|