1
|
Hoeser F, Saura P, Harter C, Kaila VRI, Friedrich T. A leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I. Chem Sci 2025; 16:7374-7386. [PMID: 40151474 PMCID: PMC11938283 DOI: 10.1039/d4sc04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Respiratory complex I is a central enzyme of cellular energy metabolism that couples electron transfer with proton translocation across a biological membrane. In doing so, it powers oxidative phosphorylation that drives energy consuming processes. Mutations in complex I lead to severe neurodegenerative diseases in humans. However, the biochemical consequences of these mutations remain largely unknown. Here, we use the Escherichia coli complex I as a model to biochemically characterize the F124LMT-ND5 mutation found in patients suffering from Leigh syndrome. We show that the mutation drastically perturbs proton translocation and electron transfer activities to the same extent, despite the remarkable 140 Å distance between the mutated position and the electron transfer domain. Our molecular dynamics simulations suggest that the disease-causing mutation induces conformational changes that hamper the propagation of an electric wave through an ion-paired network essential for proton translocation. Our findings imply that malfunction of the proton translocation domain is entirely transmitted to the electron transfer domain underlining the action-at-a-distance coupling in the proton-coupled electron transfer of respiratory complex I.
Collapse
Affiliation(s)
- Franziska Hoeser
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University Sweden
| | - Caroline Harter
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University Sweden
| | | |
Collapse
|
2
|
Leighton MP, Sivak DA. Flow of Energy and Information in Molecular Machines. Annu Rev Phys Chem 2025; 76:379-403. [PMID: 39952638 DOI: 10.1146/annurev-physchem-082423-030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Molecular machines transduce free energy between different forms throughout all living organisms. Unlike their macroscopic counterparts, molecular machines are characterized by stochastic fluctuations, overdamped dynamics, and soft components, and operate far from thermodynamic equilibrium. In addition, information is a relevant free energy resource for molecular machines, leading to new modes of operation for nanoscale engines. Toward the objective of engineering synthetic nanomachines, an important goal is to understand how molecular machines transduce free energy to perform their functions in biological systems. In this review, we discuss the nonequilibrium thermodynamics of free energy transduction within molecular machines, with a focus on quantifying energy and information flows between their components. We review results from theory, modeling, and inference from experiments that shed light on the internal thermodynamics of molecular machines, and ultimately explore what we can learn from considering these interactions.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada;
- Current affiliation: Department of Physics and Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA;
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada;
| |
Collapse
|
3
|
Li M, Chen Z, Li X, Yu S, Xu S, Qiu S, Ge S. Physiological and genetic responses of Chlorella sp. to nitrite accumulation in microalgal-bacterial consortium with partial nitrification treating municipal wastewater. WATER RESEARCH 2025; 280:123473. [PMID: 40086147 DOI: 10.1016/j.watres.2025.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
The integration of microalgal-bacterial consortium (MBC) with partial nitrification (PN-MBC) offers a promising strategy for low-carbon wastewater treatment. However, the gradually accumulated nitrite levels challenge microalgal activities and system stability. This study demonstrated the nitrite tolerance (10-300 mg/L) of Chlorella sp., isolated from the PN-MBC system, and the underlying mechanism. Physiological assays, transcriptomic analysis, and bioinformatics revealed that nitrite significantly affected photosynthesis, DNA processing, carbon metabolism, signal transduction, and protein processing. Specifically, nitrite inhibited photosystem II by targeting the PsbO subunit, disrupting electron transport and the proton gradient, hindering carbon fixation in the Calvin cycle. It also caused DNA damage, including strand breaks, base modifications and mismatches, with upregulated DNA repair pathways and biomass growth stagnation between Days 5-7. In response, Chlorella sp. upregulated carbon metabolism and oxidative phosphorylation to enhance ATP synthesis, while exopolysaccharides were secreted for energy storage, and protein processing was downregulated to mitigate proteotoxic stress. Evolution analysis suggested that active site variations in carbon metabolism enzymes contributed to Chlorella sp.'s enhanced nitrite resilience. These findings advance current understandings of nitrite's effects on microalgae and offer insights for optimizing PN-MBC performance under high-nitrite conditions.
Collapse
Affiliation(s)
- Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Xiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Sheng Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
4
|
Nazem-Bokaee H, Hom EFY, Mathews S, Gueidan C. Analyzing sorbitol biosynthesis using a metabolic network flux model of a lichenized strain of the green microalga Diplosphaera chodatii. Microbiol Spectr 2025; 13:e0366023. [PMID: 39651901 PMCID: PMC11705836 DOI: 10.1128/spectrum.03660-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
Diplosphaera chodatii, a unicellular terrestrial microalga found either free-living or in association with lichenized fungi, protects itself from desiccation by synthesizing and accumulating low-molecular-weight carbohydrates such as sorbitol. The metabolism of this algal species and the interplay of sorbitol biosynthesis with its growth, light absorption, and carbon dioxide fixation are poorly understood. Here, we used a recently available genome assembly for D. chodatii to develop a metabolic flux model and analyze the alga's metabolic capabilities, particularly, for sorbitol biosynthesis. The model contains 151 genes, 155 metabolites, and 194 unique metabolic reactions participating in 12 core metabolic pathways and five compartments. Both photoautotrophic and mixotrophic growths of D. chodatii were supported by the metabolic model. In the presence of glucose, mixotrophy led to higher biomass and sorbitol yields. Additionally, the model predicted increased starch biosynthesis at high light intensities during photoautotrophic growth, an indication that the "overflow hypothesis-stress-driven metabolic flux redistribution" could be applied to D. chodatii. Furthermore, the newly developed metabolic model of D. chodatii, iDco_core, captures both linear and cyclic electron flow schemes characterized in photosynthetic microorganisms and suggests a possible adaptation to fluctuating water availability during periods of desiccation. This work provides important new insights into the predicted metabolic capabilities of D. chodatii, including a potential biotechnological opportunity for industrial sorbitol biosynthesis.IMPORTANCELichenized green microalgae are vital components for the survival and growth of lichens in extreme environmental conditions. However, little is known about the metabolism and growth characteristics of these algae as individual microbes. This study aims to provide insights into some of the metabolic capabilities of Diplosphaera chodatii, a lichenized green microalgae, using a recently assembled and annotated genome of the alga. For that, a metabolic flux model was developed simulating the metabolism of this algal species and allowing for studying the algal growth, light absorption, and carbon dioxide fixation during both photoautotrophic and mixotrophic growth, in silico. An important capability of the new metabolic model of D. chodatii is capturing both linear and cyclic electron flow mechanisms characterized in several other microalgae. Moreover, the model predicts limits of the metabolic interplay between sorbitol biosynthesis and algal growth, which has potential applications in assisting the design of bio-based sorbitol production processes.
Collapse
Affiliation(s)
- Hadi Nazem-Bokaee
- Australian National Herbarium, National Research Collections Australia, NCMI, CSIRO, Canberra, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, Australia
| | - Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, The University of Mississippi, University, Mississippi, USA
| | - Sarah Mathews
- Australian National Herbarium, National Research Collections Australia, NCMI, CSIRO, Canberra, Australia
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Cécile Gueidan
- Australian National Herbarium, National Research Collections Australia, NCMI, CSIRO, Canberra, Australia
- Centre for Australian National Biodiversity Research (a joint venture between the Parks Australia and CSIRO), Canberra, Australia
| |
Collapse
|
5
|
Smirnova I, Wu F, Brzezinski P. Stimulation of cytochrome c oxidase activity by detergents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149509. [PMID: 39251013 DOI: 10.1016/j.bbabio.2024.149509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Cytochrome c oxidase (CytcO) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of CytcO to reversibly modulate its activity. However, purification of CytcO for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the CytcO enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The CytcO activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible CytcO activity. Possible functional consequences are discussed.
Collapse
Affiliation(s)
- Irina Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
6
|
Harter C, Melin F, Hoeser F, Hellwig P, Wohlwend D, Friedrich T. Quinone chemistry in respiratory complex I involves protonation of a conserved aspartic acid residue. FEBS Lett 2024; 598:2856-2865. [PMID: 39262040 PMCID: PMC11627005 DOI: 10.1002/1873-3468.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Respiratory complex I is a central metabolic enzyme coupling NADH oxidation and quinone reduction with proton translocation. Despite the knowledge of the structure of the complex, the coupling of both processes is not entirely understood. Here, we use a combination of site-directed mutagenesis, biochemical assays, and redox-induced FTIR spectroscopy to demonstrate that the quinone chemistry includes the protonation and deprotonation of a specific, conserved aspartic acid residue in the quinone binding site (D325 on subunit NuoCD in Escherichia coli). Our experimental data support a proposal derived from theoretical considerations that deprotonation of this residue is involved in triggering proton translocation in respiratory complex I.
Collapse
Affiliation(s)
- Caroline Harter
- Institut für Biochemie, Albert‐Ludwigs‐Universität FreiburgGermany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRSStrasbourgFrance
| | - Franziska Hoeser
- Institut für Biochemie, Albert‐Ludwigs‐Universität FreiburgGermany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRSStrasbourgFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Daniel Wohlwend
- Institut für Biochemie, Albert‐Ludwigs‐Universität FreiburgGermany
| | | |
Collapse
|
7
|
Kovalova T, Król S, Gamiz-Hernandez AP, Sjöstrand D, Kaila VRI, Brzezinski P, Högbom M. Inhibition mechanism of potential antituberculosis compound lansoprazole sulfide. Proc Natl Acad Sci U S A 2024; 121:e2412780121. [PMID: 39531492 PMCID: PMC11588064 DOI: 10.1073/pnas.2412780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis is one of the most common causes of death worldwide, with a rapid emergence of multi-drug-resistant strains underscoring the need for new antituberculosis drugs. Recent studies indicate that lansoprazole-a known gastric proton pump inhibitor and its intracellular metabolite, lansoprazole sulfide (LPZS)-are potential antituberculosis compounds. Yet, their inhibitory mechanism and site of action still remain unknown. Here, we combine biochemical, computational, and structural approaches to probe the interaction of LPZS with the respiratory chain supercomplex III2IV2 of Mycobacterium smegmatis, a close homolog of Mycobacterium tuberculosis supercomplex. We show that LPZS binds to the Qo cavity of the mycobacterial supercomplex, inhibiting the quinol substrate oxidation process and the activity of the enzyme. We solve high-resolution (2.6 Å) cryo-electron microscopy (cryo-EM) structures of the supercomplex with bound LPZS that together with microsecond molecular dynamics simulations, directed mutagenesis, and functional assays reveal key interactions that stabilize the inhibitor, but also how mutations can lead to the emergence of drug resistance. Our combined findings reveal an inhibitory mechanism of LPZS and provide a structural basis for drug development against tuberculosis.
Collapse
Affiliation(s)
- Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91Stockholm, Sweden
| |
Collapse
|
8
|
Lobez AP, Wu F, Di Trani JM, Rubinstein JL, Oliveberg M, Brzezinski P, Moe A. Electron transfer in the respiratory chain at low salinity. Nat Commun 2024; 15:8241. [PMID: 39300056 DOI: 10.1038/s41467-024-52475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have established that cellular electrostatic interactions are more influential than assumed previously. Here, we use cryo-EM and perform steady-state kinetic studies to investigate electrostatic interactions between cytochrome (cyt.) c and the complex (C) III2-IV supercomplex from Saccharomyces cerevisiae at low salinity. The kinetic studies show a sharp transition with a Hill coefficient ≥2, which together with the cryo-EM data at 2.4 Å resolution indicate multiple cyt. c molecules bound along the supercomplex surface. Negatively charged loops of CIII2 subunits Qcr6 and Qcr9 become structured to interact with cyt. c. In addition, the higher resolution allows us to identify water molecules in proton pathways of CIV and, to the best of our knowledge, previously unresolved cardiolipin molecules. In conclusion, the lowered electrostatic screening renders engagement of multiple cyt. c molecules that are directed by electrostatically structured CIII2 loops to conduct electron transfer between CIII2 and CIV.
Collapse
Affiliation(s)
- Ana Paula Lobez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Justin M Di Trani
- Molecular Medicine program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - John L Rubinstein
- Molecular Medicine program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada
- Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, Ontario, Canada
- Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | - Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern, Switzerland.
| |
Collapse
|
9
|
Riepl D, Gamiz-Hernandez AP, Kovalova T, Król SM, Mader SL, Sjöstrand D, Högbom M, Brzezinski P, Kaila VRI. Long-range charge transfer mechanism of the III 2IV 2 mycobacterial supercomplex. Nat Commun 2024; 15:5276. [PMID: 38902248 PMCID: PMC11189923 DOI: 10.1038/s41467-024-49628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.
Collapse
Affiliation(s)
- Daniel Riepl
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sylwia M Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
Wohlwend D, Mérono L, Bucka S, Ritter K, Jessen HJ, Friedrich T. Structures of 3-acetylpyridine adenine dinucleotide and ADP-ribose bound to the electron input module of respiratory complex I. Structure 2024; 32:715-724.e3. [PMID: 38503292 DOI: 10.1016/j.str.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is a major enzyme of energy metabolism that couples NADH oxidation and ubiquinone reduction with proton translocation. The NADH oxidation site features different enzymatic activities with various nucleotides. While the kinetics of these reactions are well described, only binding of NAD+ and NADH have been structurally characterized. Here, we report the structures of the electron input module of Aquifex aeolicus complex I with bound ADP-ribose and 3-acetylpyridine adenine dinucleotides at resolutions better than 2.0 Å. ADP-ribose acts as inhibitor by blocking the "ADP-handle" motif essential for nucleotide binding. The pyridine group of APADH is minimally offset from flavin, which could contribute to its poorer suitability as substrate. A comparison with other nucleotide co-structures surprisingly shows that the adenine ribose and the pyrophosphate moiety contribute most to nucleotide binding, thus all adenine dinucleotides share core binding modes to the unique Rossmann-fold in complex I.
Collapse
Affiliation(s)
- Daniel Wohlwend
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Luca Mérono
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sarah Bucka
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Kevin Ritter
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thorsten Friedrich
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Zhao Y, Cheng X, Lei M, Zong L, Gao M, Du X, Liu X, Qiu D, Xing X. Construction of a novel near-infrared fluorescent Nile blue@MOF nanoprobe for imaging mitochondrial ATP in living cells. Analyst 2024; 149:2796-2800. [PMID: 38669149 DOI: 10.1039/d4an00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
A near-infrared fluorescent nanoprobe consisting of Nile blue-capped ZIF-90 is first proposed for real-time imaging of mitochondrial ATP. Owing to the strong binding of ATP with Zn2+, the structure of the probe is disrupted, leading to the release of fluorescent NB.
Collapse
Affiliation(s)
- Yifan Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Minglin Lei
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Luyi Zong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengying Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - XianChao Du
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xueguo Liu
- Key Laboratory of Henan of Industrial Microbial Resources and Fermentation Technology, and Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China.
| | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
12
|
Djurabekova A, Lasham J, Zdorevskyi O, Zickermann V, Sharma V. Long-range electron proton coupling in respiratory complex I - insights from molecular simulations of the quinone chamber and antiporter-like subunits. Biochem J 2024; 481:499-514. [PMID: 38572757 DOI: 10.1042/bcj20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.
Collapse
Affiliation(s)
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Bourne-Worster S, Worth GA. Quantum dynamics of excited state proton transfer in green fluorescent protein. J Chem Phys 2024; 160:065102. [PMID: 38353309 DOI: 10.1063/5.0188834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Photoexcitation of green fluorescent protein (GFP) triggers long-range proton transfer along a "wire" of neighboring protein residues, which, in turn, activates its characteristic green fluorescence. The GFP proton wire is one of the simplest, most well-characterized models of biological proton transfer but remains challenging to simulate due to the sensitivity of its energetics to the surrounding protein conformation and the possibility of non-classical behavior associated with the movement of lightweight protons. Using a direct dynamics variational multiconfigurational Gaussian wavepacket method to provide a fully quantum description of both electrons and nuclei, we explore the mechanism of excited state proton transfer in a high-dimensional model of the GFP chromophore cluster over the first two picoseconds following excitation. During our simulation, we observe the sequential starts of two of the three proton transfers along the wire, confirming the predictions of previous studies that the overall process starts from the end of the wire furthest from the fluorescent chromophore and proceeds in a concerted but asynchronous manner. Furthermore, by comparing the full quantum dynamics to a set of classical trajectories, we provide unambiguous evidence that tunneling plays a critical role in facilitating the leading proton transfer.
Collapse
Affiliation(s)
| | - Graham A Worth
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| |
Collapse
|
14
|
Liu X, Brooks Iii CL. Enhanced Sampling of Buried Charges in Free Energy Calculations Using Replica Exchange with Charge Tempering. J Chem Theory Comput 2024; 20:1051-1061. [PMID: 38232295 PMCID: PMC11275198 DOI: 10.1021/acs.jctc.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Buried ionizable groups in proteins often play important structural and functional roles. However, it is generally challenging to study the detailed molecular mechanisms solely based on experimental measurements. Free energy calculations using atomistic simulations, on the other hand, complement experimental studies and can provide high temporal and spatial resolution information that can lead to mechanistic insights. Nevertheless, it is also well recognized that sufficient sampling of such atomistic simulations can be challenging, considering that structural changes related to the buried charges may be very slow. In the present study, we describe a simple but effective enhanced sampling technique called replica exchange with charge tempering (REChgT) with a novel free energy method, multisite λ dynamics (MSλD), to study two systems containing buried charges, pKa prediction of a small molecule, orotate, in complex with the dihydroorotate dehydrogenase, and relative stability of a Glu-Lys pair buried in the hydrophobic core of two variants of Staphylococcal nuclease. Compared to the original MSλD simulations, the usage of REChgT dramatically increases sampling in both conformational and alchemical spaces, which directly translates into a significant reduction of wall time to converge the free energy calculations. This study highlights the importance of sufficient sampling toward developing improved free energy methods.
Collapse
Affiliation(s)
- Xiaorong Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks Iii
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Burlacot A. Quantifying the roles of algal photosynthetic electron pathways: a milestone towards photosynthetic robustness. THE NEW PHYTOLOGIST 2023; 240:2197-2203. [PMID: 37872749 DOI: 10.1111/nph.19328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
During photosynthesis, electron transport reactions generate and shuttle reductant to allow CO2 reduction by the Calvin-Benson-Bassham cycle and the formation of biomass building block in the so-called linear electron flow (LEF). However, in nature, environmental parameters like light intensity or CO2 availability can vary and quickly change photosynthesis rates, creating an imbalance between photosynthetic energy production and metabolic needs. In addition to LEF, alternative photosynthetic electron flows are central to allow photosynthetic energy to match metabolic demand in response to environmental variations. Microalgae arguably harbour one of the most diverse set of alternative electron flows (AEFs), including cyclic (CEF), pseudocyclic (PCEF) and chloroplast-to-mitochondria (CMEF) electron flow. While CEF, PCEF and CMEF have large functional overlaps, they differ in the conditions they are active and in their role for photosynthetic energy balance. Here, I review the molecular mechanisms of CEF, PCEF and CMEF in microalgae. I further propose a quantitative framework to compare their key physiological roles and quantify how the photosynthetic energy is partitioned to maintain a balanced energetic status of the cell. Key differences in AEF within the green lineage and the potential of rewiring photosynthetic electrons to enhance plant robustness will be discussed.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Moe A, Dimogkioka AR, Rapaport D, Öjemyr LN, Brzezinski P. Structure and function of the S. pombe III-IV-cyt c supercomplex. Proc Natl Acad Sci U S A 2023; 120:e2307697120. [PMID: 37939086 PMCID: PMC10655221 DOI: 10.1073/pnas.2307697120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023] Open
Abstract
The respiratory chain in aerobic organisms is composed of a number of membrane-bound protein complexes that link electron transfer to proton translocation across the membrane. In mitochondria, the final electron acceptor, complex IV (CIV), receives electrons from dimeric complex III (CIII2), via a mobile electron carrier, cytochrome c. In the present study, we isolated the CIII2CIV supercomplex from the fission yeast Schizosaccharomyces pombe and determined its structure with bound cyt. c using single-particle electron cryomicroscopy. A respiratory supercomplex factor 2 was found to be bound at CIV distally positioned in the supercomplex. In addition to the redox-active metal sites, we found a metal ion, presumably Zn2+, coordinated in the CIII subunit Cor1, which is encoded by the same gene (qcr1) as the mitochondrial-processing peptidase subunit β. Our data show that the isolated CIII2CIV supercomplex displays proteolytic activity suggesting a dual role of CIII2 in S. pombe. As in the supercomplex from S. cerevisiae, subunit Cox5 of CIV faces towards one CIII monomer, but in S. pombe, the two complexes are rotated relative to each other by ~45°. This orientation yields equal distances between the cyt. c binding sites at CIV and at each of the two CIII monomers. The structure shows cyt. c bound at four positions, but only along one of the two symmetrical branches. Overall, this combined structural and functional study reveals the integration of peptidase activity with the CIII2 respiratory system and indicates a two-dimensional cyt. c diffusion mechanism within the CIII2-CIV supercomplex.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Anna-Roza Dimogkioka
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen72076, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen72076, Germany
| | - Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, StockholmSE-106 91, Sweden
| |
Collapse
|
17
|
Amthor JS. ATP yield of plant respiration: potential, actual and unknown. ANNALS OF BOTANY 2023; 132:133-162. [PMID: 37409716 PMCID: PMC10550282 DOI: 10.1093/aob/mcad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS The ATP yield of plant respiration (ATP/hexose unit respired) quantitatively links active heterotrophic processes with substrate consumption. Despite its importance, plant respiratory ATP yield is uncertain. The aim here was to integrate current knowledge of cellular mechanisms with inferences required to fill knowledge gaps to generate a contemporary estimate of respiratory ATP yield and identify important unknowns. METHOD A numerical balance sheet model combining respiratory carbon metabolism and electron transport pathways with uses of the resulting transmembrane electrochemical proton gradient was created and parameterized for healthy, non-photosynthesizing plant cells catabolizing sucrose or starch to produce cytosolic ATP. KEY RESULTS Mechanistically, the number of c subunits in the mitochondrial ATP synthase Fo sector c-ring, which is unquantified in plants, affects ATP yield. A value of 10 was (justifiably) used in the model, in which case respiration of sucrose potentially yields about 27.5 ATP/hexose (0.5 ATP/hexose more from starch). Actual ATP yield often will be smaller than its potential due to bypasses of energy-conserving reactions in the respiratory chain, even in unstressed plants. Notably, all else being optimal, if 25 % of respiratory O2 uptake is via the alternative oxidase - a typically observed fraction - ATP yield falls 15 % below its potential. CONCLUSIONS Plant respiratory ATP yield is smaller than often assumed (certainly less than older textbook values of 36-38 ATP/hexose) leading to underestimation of active-process substrate requirements. This hinders understanding of ecological/evolutionary trade-offs between competing active processes and assessments of crop growth gains possible through bioengineering of processes that consume ATP. Determining the plant mitochondrial ATP synthase c-ring size, the degree of any minimally required (useful) bypasses of energy-conserving reactions in the respiratory chain, and the magnitude of any 'leaks' in the inner mitochondrial membrane are key research needs.
Collapse
Affiliation(s)
- J S Amthor
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
18
|
Sato W, Ishimori K. Regulation of electron transfer in the terminal step of the respiratory chain. Biochem Soc Trans 2023; 51:1611-1619. [PMID: 37409479 DOI: 10.1042/bst20221449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In mitochondria, electrons are transferred along a series of enzymes and electron carriers that are referred to as the respiratory chain, leading to the synthesis of cellular ATP. The series of the interprotein electron transfer (ET) reactions is terminated by the reduction in molecular oxygen at Complex IV, cytochrome c oxidase (CcO) that is coupled with the proton pumping from the matrix to the inner membrane space. Unlike the ET reactions from Complex I to Complex III, the ET reaction to CcO, mediated by cytochrome c (Cyt c), is quite specific in that it is irreversible with suppressed electron leakage, which characterizes the ET reactions in the respiratory chain and is thought to play a key role in the regulation of mitochondrial respiration. In this review, we summarize the recent findings regarding the molecular mechanism of the ET reaction from Cyt c to CcO in terms of specific interaction between two proteins, a molecular breakwater, and the effects of the conformational fluctuation on the ET reaction, conformational gating. Both of these are essential factors, not only in the ET reaction from Cyt c to CcO, but also in the interprotein ET reactions in general. We also discuss the significance of a supercomplex in the terminal ET reaction, which provides information on the regulatory factors of the ET reactions that are specific to the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Wataru Sato
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
19
|
Kim H, Saura P, Pöverlein MC, Gamiz-Hernandez AP, Kaila VRI. Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I. J Am Chem Soc 2023; 145:17075-17086. [PMID: 37490414 PMCID: PMC10416309 DOI: 10.1021/jacs.3c03086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 07/27/2023]
Abstract
Complex I is a redox-driven proton pump that drives electron transport chains and powers oxidative phosphorylation across all domains of life. Yet, despite recently resolved structures from multiple organisms, it still remains unclear how the redox reactions in Complex I trigger proton pumping up to 200 Å away from the active site. Here, we show that the proton-coupled electron transfer reactions during quinone reduction drive long-range conformational changes of conserved loops and trans-membrane (TM) helices in the membrane domain of Complex I from Yarrowia lipolytica. We find that the conformational switching triggers a π → α transition in a TM helix (TM3ND6) and establishes a proton pathway between the quinone chamber and the antiporter-like subunits, responsible for proton pumping. Our large-scale (>20 μs) atomistic molecular dynamics (MD) simulations in combination with quantum/classical (QM/MM) free energy calculations show that the helix transition controls the barrier for proton transfer reactions by wetting transitions and electrostatic effects. The conformational switching is enabled by re-arrangements of ion pairs that propagate from the quinone binding site to the membrane domain via an extended network of conserved residues. We find that these redox-driven changes create a conserved coupling network within the Complex I superfamily, with point mutations leading to drastic activity changes and mitochondrial disorders. On a general level, our findings illustrate how catalysis controls large-scale protein conformational changes and enables ion transport across biological membranes.
Collapse
Affiliation(s)
- Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | | | - Ana P. Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
20
|
Ikunishi R, Otani R, Masuya T, Shinzawa-Itoh K, Shiba T, Murai M, Miyoshi H. Respiratory complex I in mitochondrial membrane catalyzes oversized ubiquinones. J Biol Chem 2023; 299:105001. [PMID: 37394006 PMCID: PMC10416054 DOI: 10.1016/j.jbc.2023.105001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023] Open
Abstract
NADH-ubiquinone (UQ) oxidoreductase (complex I) couples electron transfer from NADH to UQ with proton translocation in its membrane part. The UQ reduction step is key to triggering proton translocation. Structural studies have identified a long, narrow, tunnel-like cavity within complex I, through which UQ may access a deep reaction site. To elucidate the physiological relevance of this UQ-accessing tunnel, we previously investigated whether a series of oversized UQs (OS-UQs), whose tail moiety is too large to enter and transit the narrow tunnel, can be catalytically reduced by complex I using the native enzyme in bovine heart submitochondrial particles (SMPs) and the isolated enzyme reconstituted into liposomes. Nevertheless, the physiological relevance remained unclear because some amphiphilic OS-UQs were reduced in SMPs but not in proteoliposomes, and investigation of extremely hydrophobic OS-UQs was not possible in SMPs. To uniformly assess the electron transfer activities of all OS-UQs with the native complex I, here we present a new assay system using SMPs, which were fused with liposomes incorporating OS-UQ and supplemented with a parasitic quinol oxidase to recycle reduced OS-UQ. In this system, all OS-UQs tested were reduced by the native enzyme, and the reduction was coupled with proton translocation. This finding does not support the canonical tunnel model. We propose that the UQ reaction cavity is flexibly open in the native enzyme to allow OS-UQs to access the reaction site, but their access is obstructed in the isolated enzyme as the cavity is altered by detergent-solubilizing from the mitochondrial membrane.
Collapse
Affiliation(s)
- Ryo Ikunishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryohei Otani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
21
|
Lee Y, Cho CH, Noh C, Yang JH, Park SI, Lee YM, West JA, Bhattacharya D, Jo K, Yoon HS. Origin of minicircular mitochondrial genomes in red algae. Nat Commun 2023; 14:3363. [PMID: 37291154 PMCID: PMC10250338 DOI: 10.1038/s41467-023-39084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Eukaryotic organelle genomes are generally of conserved size and gene content within phylogenetic groups. However, significant variation in genome structure may occur. Here, we report that the Stylonematophyceae red algae contain multipartite circular mitochondrial genomes (i.e., minicircles) which encode one or two genes bounded by a specific cassette and a conserved constant region. These minicircles are visualized using fluorescence microscope and scanning electron microscope, proving the circularity. Mitochondrial gene sets are reduced in these highly divergent mitogenomes. Newly generated chromosome-level nuclear genome assembly of Rhodosorus marinus reveals that most mitochondrial ribosomal subunit genes are transferred to the nuclear genome. Hetero-concatemers that resulted from recombination between minicircles and unique gene inventory that is responsible for mitochondrial genome stability may explain how the transition from typical mitochondrial genome to minicircles occurs. Our results offer inspiration on minicircular organelle genome formation and highlight an extreme case of mitochondrial gene inventory reduction.
Collapse
Affiliation(s)
- Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chanyoung Noh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yu Min Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 08901, USA
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
22
|
Abstract
We present a brief review of the mitochondrial respiratory chain with emphasis on complexes I, III and IV, which contribute to the generation of protonmotive force across the inner mitochondrial membrane, and drive the synthesis of ATP by the process called oxidative phosphorylation. The basic structural and functional details of these complexes are discussed. In addition, we briefly review the information on the so-called supercomplexes, aggregates of complexes I-IV, and summarize basic physiological aspects of cell respiration.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland.
| | - Cristina Pecorilla
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| | - Vivek Sharma
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland; Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| |
Collapse
|
23
|
Greife P, Schönborn M, Capone M, Assunção R, Narzi D, Guidoni L, Dau H. The electron-proton bottleneck of photosynthetic oxygen evolution. Nature 2023; 617:623-628. [PMID: 37138082 PMCID: PMC10191853 DOI: 10.1038/s41586-023-06008-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Photosynthesis fuels life on Earth by storing solar energy in chemical form. Today's oxygen-rich atmosphere has resulted from the splitting of water at the protein-bound manganese cluster of photosystem II during photosynthesis. Formation of molecular oxygen starts from a state with four accumulated electron holes, the S4 state-which was postulated half a century ago1 and remains largely uncharacterized. Here we resolve this key stage of photosynthetic O2 formation and its crucial mechanistic role. We tracked 230,000 excitation cycles of dark-adapted photosystems with microsecond infrared spectroscopy. Combining these results with computational chemistry reveals that a crucial proton vacancy is initally created through gated sidechain deprotonation. Subsequently, a reactive oxygen radical is formed in a single-electron, multi-proton transfer event. This is the slowest step in photosynthetic O2 formation, with a moderate energetic barrier and marked entropic slowdown. We identify the S4 state as the oxygen-radical state; its formation is followed by fast O-O bonding and O2 release. In conjunction with previous breakthroughs in experimental and computational investigations, a compelling atomistic picture of photosynthetic O2 formation emerges. Our results provide insights into a biological process that is likely to have occurred unchanged for the past three billion years, which we expect to support the knowledge-based design of artificial water-splitting systems.
Collapse
Affiliation(s)
- Paul Greife
- Department of Physics, Freie Universität, Berlin, Germany
| | | | - Matteo Capone
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Daniele Narzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Holger Dau
- Department of Physics, Freie Universität, Berlin, Germany.
| |
Collapse
|
24
|
Luo W, Wu S, Jiang Y, Xu P, Zou J, Qian J, Zhou X, Ge Y, Nie H, Yang Z. Efficient Electrocatalytic Nitrate Reduction to Ammonia Based on DNA-Templated Copper Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18928-18939. [PMID: 37014152 DOI: 10.1021/acsami.3c00511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In alkaline solutions, the electrocatalytic conversion of nitrates to ammonia (NH3) (NO3RR) is hindered by the sluggish hydrogenation step due to the lack of protons on the electrode surface, making it a grand challenge to synthesize NH3 at a high rate and selectivity. Herein, single-stranded deoxyribonucleic acid (ssDNA)-templated copper nanoclusters (CuNCs) were synthesized for the electrocatalytic production of NH3. Because ssDNA was involved in the optimization of the interfacial water distribution and H-bond network connectivity, the water-electrolysis-induced proton generation was enhanced on the electrode surface, which facilitated the NO3RR kinetics. The activation energy (Ea) and in situ spectroscopy studies adequately demonstrated that the NO3RR was exothermic until NH3 desorption, indicating that, in alkaline media, the NO3RR catalyzed by ssDNA-templated CuNCs followed the same reaction path as the NO3RR in acidic media. Electrocatalytic tests further verified the efficiency of ssDNA-templated CuNCs, which achieved a high NH3 yield rate of 2.62 mg h-1 cm-2 and a Faraday efficiency of 96.8% at -0.6 V vs reversible hydrogen electrode. The results of this study lay the foundation for engineering catalyst surface ligands for the electrocatalytic NO3RR.
Collapse
Affiliation(s)
- Wenjie Luo
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Shilu Wu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yingyang Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Peng Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jinxuan Zou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
25
|
Tunnel dynamics of quinone derivatives and its coupling to protein conformational rearrangements in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148951. [PMID: 36509126 DOI: 10.1016/j.bbabio.2022.148951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Respiratory complex I in mitochondria and bacteria catalyzes the transfer of electrons from NADH to quinone (Q). The free energy available from the reaction is used to pump protons and to establish a membrane proton electrochemical gradient, which drives ATP synthesis. Even though several high-resolution structures of complex I have been resolved, how Q reduction is linked with proton pumping, remains unknown. Here, microsecond long molecular dynamics (MD) simulations were performed on Yarrowia lipolytica complex I structures where Q molecules have been resolved in the ~30 Å long Q tunnel. MD simulations of several different redox/protonation states of Q reveal the coupling between the Q dynamics and the restructuring of conserved loops and ion pairs. Oxidized quinone stabilizes towards the N2 FeS cluster, a binding mode not previously described in Yarrowia lipolytica complex I structures. On the other hand, reduced (and protonated) species tend to diffuse towards the Q binding sites closer to the tunnel entrance. Mechanistic and physiological relevance of these results are discussed.
Collapse
|
26
|
Structures of the intermediates in the catalytic cycle of mitochondrial cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148933. [PMID: 36403794 DOI: 10.1016/j.bbabio.2022.148933] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
|
27
|
Sazanov LA. From the 'black box' to 'domino effect' mechanism: what have we learned from the structures of respiratory complex I. Biochem J 2023; 480:319-333. [PMID: 36920092 PMCID: PMC10212512 DOI: 10.1042/bcj20210285] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 03/16/2023]
Abstract
My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant 'black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm ('domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues.
Collapse
Affiliation(s)
- Leonid A. Sazanov
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
28
|
Cryo-EM structure and function of S. pombe complex IV with bound respiratory supercomplex factor. Commun Chem 2023; 6:32. [PMID: 36797353 PMCID: PMC9935853 DOI: 10.1038/s42004-023-00827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Fission yeast Schizosaccharomyces pombe serves as model organism for studying higher eukaryotes. We combined the use of cryo-EM and spectroscopy to investigate the structure and function of affinity purified respiratory complex IV (CIV) from S. pombe. The reaction sequence of the reduced enzyme with O2 proceeds over a time scale of µs-ms, similar to that of the mammalian CIV. The cryo-EM structure of CIV revealed eleven subunits as well as a bound hypoxia-induced gene 1 (Hig1) domain of respiratory supercomplex factor 2 (Rcf2). These results suggest that binding of Rcf2 does not require the presence of a CIII-CIV supercomplex, i.e. Rcf2 is a component of CIV. An AlphaFold-Multimer model suggests that the Hig1 domains of both Rcf1 and Rcf2 bind at the same site of CIV suggesting that their binding is mutually exclusive. Furthermore, the differential functional effect of Rcf1 or Rcf2 is presumably caused by interactions of CIV with their different non-Hig1 domain parts.
Collapse
|
29
|
Kim Y, Barulin A, Kim S, Lee LP, Kim I. Recent advances in quantum nanophotonics: plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:413-439. [PMID: 39635391 PMCID: PMC11501129 DOI: 10.1515/nanoph-2022-0542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2024]
Abstract
The fundamental understanding of molecular quantum electrodynamics via the strong light-matter interactions between a nanophotonic cavity and quantum emitters opens various applications in quantum biology, biophysics, and chemistry. However, considerable obstacles to obtaining a clear understanding of coupling mechanisms via reliable experimental quantifications remain to be resolved before this field can truly blossom toward practical applications in quantitative life science and photochemistry. Here, we provide recent advancements of state-of-the-art demonstrations in plexcitonic and vibro-polaritonic strong couplings and their applications. We highlight recent studies on various strong coupling systems for altering chemical reaction landscapes. Then, we discuss reports dedicated to the utilization of strong coupling methods for biomolecular sensing, protein functioning studies, and the generation of hybrid light-matter states inside living cells. The strong coupling regime provides a tool for investigating and altering coherent quantum processes in natural biological processes. We also provide an overview of new findings and future avenues of quantum biology and biochemistry.
Collapse
Affiliation(s)
- Yangkyu Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Aleksandr Barulin
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Sangwon Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA02115, USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA94720, USA
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
30
|
Wikström M, Djurabekova A, Sharma V. On the role of ubiquinone in the proton translocation mechanism of respiratory complex I. FEBS Lett 2023; 597:224-236. [PMID: 36180980 DOI: 10.1002/1873-3468.14506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 01/26/2023]
Abstract
Complex I converts oxidoreduction energy into a proton electrochemical gradient across the inner mitochondrial or bacterial cell membrane. This gradient is the primary source of energy for aerobic synthesis of ATP. Oxidation of reduced nicotinamide adenine dinucleotide (NADH) by ubiquinone (Q) yields NAD+ and ubiquinol (QH2 ), which is tightly coupled to translocation of four protons from the negatively to the positively charged side of the membrane. Electrons from NADH oxidation reach the iron-sulfur centre N2 positioned near the bottom of a tunnel that extends circa 30 Å from the membrane domain into the hydrophilic domain of the complex. The tunnel is occupied by ubiquinone, which can take a distal position near the N2 centre or proximal positions closer to the membrane. Here, we review important structural, kinetic and thermodynamic properties of ubiquinone that define its role in complex I function. We suggest that this function exceeds that of a mere substrate or electron acceptor and propose that ubiquinone may be the redox element of complex I coupling electron transfer to proton translocation.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| | | | - Vivek Sharma
- HiLIFE Institute of Biotechnology, University of Helsinki, Finland.,Department of Physics, University of Helsinki, Finland
| |
Collapse
|
31
|
Stuchebrukhov AA, Hayashi T. Single protonation of the reduced quinone in respiratory complex I drives four-proton pumping. FEBS Lett 2023; 597:237-245. [PMID: 36251339 PMCID: PMC9877130 DOI: 10.1002/1873-3468.14518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
Complex I is a key proton-pumping enzyme in bacterial and mitochondrial respiratory electron transport chains. Using quantum chemistry and electrostatic calculations, we have examined the pKa of the reduced quinone QH-/QH2 in the catalytic cavity of complex I. We find that pKa (QH-/QH2) is very high, above 20. This means that the energy of a single protonation reaction of the doubly reduced quinone (i.e. the reduced semiquinone QH-) is sufficient to drive four protons across the membrane with a potential of 180 mV. Based on these calculations, we propose a possible scheme of redox-linked proton pumping by complex I. The model explains how the energy of the protonation reaction can be divided equally among four pumping units of the pump, and how a single proton can drive translocation of four additional protons in multiple pumping blocks.
Collapse
Affiliation(s)
| | - Tomoyuki Hayashi
- Department of Chemistry, University of California, Davis, CA 95616
| |
Collapse
|
32
|
Chen X, Jiang Z, Liang L, Li YF, Huang CZ, Gao PF. Dark-Field Imaging Monitoring of Adenosine Triphosphate in Live Cells by Au NBPs@ZIF-8 Nanoprobes. Anal Chem 2022; 94:18107-18113. [PMID: 36521880 DOI: 10.1021/acs.analchem.2c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monitoring the fluctuation of adenosine triphosphate (ATP) level in living cells could promote the understanding of metabolic pathways and cell biology. Here, we proposed a highly sensitive, selective, and biocompatible nanoprobe with core-shell structure, namely Au NBPs@ZIF-8 composed by gold nanobipyramids (Au NBPs) and zeolitic imidazolate framework-8 (ZIF-8), for monitoring intracellular ATP level fluctuation in living cells. Because the coordination between ATP and Zn2+ (the metal node of ZIF-8) was much stronger than that between 2-methylimidazole and Zn2+, which caused the decomposition of the ZIF-8 shell and the exposure of Au NBPs in the presence of ATP, it led to the change of the localized surface plasmon resonance scattering properties of nanoprobes under dark-field microscopy. Tricolor (RGB) analysis showed that R/G value had a good linear relationship with the ATP concentrations in the range of 10 μM to 4 mM (R2 = 0.999) with a detection limit of 5.28 μM. This ATP sensing platform also exhibited excellent selectivity in complex intracellular interfering substances. Besides, we realized intracellular ATP real-time imaging in HeLa cells and observed the ATP level fluctuation under dark-field microscopy. The method mentioned here could be further applied for delivery of therapeutics for biomedical applications.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhongwei Jiang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ling Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
33
|
Fan HH, Fang SB, Chang YC, Huang ST, Huang CH, Chang PR, Chang WC, Yang LTL, Lin PC, Cheng HY. Effects of colonization-associated gene yqiC on global transcriptome, cellular respiration, and oxidative stress in Salmonella Typhimurium. J Biomed Sci 2022; 29:102. [PMID: 36457101 PMCID: PMC9714038 DOI: 10.1186/s12929-022-00885-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND yqiC is required for colonizing the Salmonella enterica serovar Typhimurium (S. Typhimurium) in human cells; however, how yqiC regulates nontyphoidal Salmonella (NTS) genes to influence bacteria-host interactions remains unclear. METHODS The global transcriptomes of S. Typhimurium yqiC-deleted mutant (ΔyqiC) and its wild-type strain SL1344 after 2 h of in vitro infection with Caco-2 cells were obtained through RNA sequencing to conduct comparisons and identify major yqiC-regulated genes, particularly those involved in Salmonella pathogenicity islands (SPIs), ubiquinone and menaquinone biosynthesis, electron transportation chains (ETCs), and carbohydrate/energy metabolism. A Seahorse XFp Analyzer and assays of NADH/NAD+ and H2O2 were used to compare oxygen consumption and extracellular acidification, glycolysis parameters, adenosine triphosphate (ATP) generation, NADH/NAD+ ratios, and H2O2 production between ΔyqiC and SL1344. RESULTS After S. Typhimurium interacts with Caco-2 cells, yqiC represses gene upregulation in aspartate carbamoyl transferase, type 1 fimbriae, and iron-sulfur assembly, and it is required for expressing ilvB operon, flagellin, tdcABCD, and dmsAB. Furthermore, yqiC is required for expressing mainly SPI-1 genes and specific SPI-4, SPI-5, and SPI-6 genes; however, it diversely regulates SPI-2 and SPI-3 gene expression. yqiC significantly contributes to menD expression in menaquinone biosynthesis. A Kyoto Encyclopedia of Genes and Genomes analysis revealed the extensive association of yqiC with carbohydrate and energy metabolism. yqiC contributes to ATP generation, and the analyzer results demonstrate that yqiC is required for maintaining cellular respiration and metabolic potential under energy stress and for achieving glycolysis, glycolytic capacity, and glycolytic reserve. yqiC is also required for expressing ndh, cydA, nuoE, and sdhB but suppresses cyoC upregulation in the ETC of aerobically and anaerobically grown S. Typhimurium; priming with Caco-2 cells caused a reversed regulation of yiqC toward upregulation in these ETC complex genes. Furthermore, yqiC is required for maintaining NADH/NAD+ redox status and H2O2 production. CONCLUSIONS Specific unreported genes that were considerably regulated by the colonization-associated gene yqiC in NTS were identified, and the key role and tentative mechanisms of yqiC in the extensive modulation of virulence factors, SPIs, ubiquinone and menaquinone biosynthesis, ETCs, glycolysis, and oxidative stress were discovered.
Collapse
Affiliation(s)
- Hung-Hao Fan
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412955.e0000 0004 0419 7197Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shiuh-Bin Fang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chu Chang
- grid.412896.00000 0000 9337 0481Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Tung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Hung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Pei-Ru Chang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Lauderdale Tsai-Ling Yang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Chun Lin
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| | - Hung-Yen Cheng
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| |
Collapse
|
34
|
Tan K, Zhang Q, Wang Q, Gong X, Yu S, Li R, Liu X, Wang F. Functional Zeolitic Imidazolate Framework for Robust l-Deoxyribozyme-Based Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204858. [PMID: 36216588 DOI: 10.1002/smll.202204858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Programmable chiral biocatalysis represents a promising therapeutic strategy for its high stereospecific control over various biotransformations (e.g., chiral Aβ isomerization) of living entities yet is rarely explored. With an extraordinary resistance to nuclease digestion, the non-natural left-handed deoxyribozyme (l-DNAzyme) therapy is constrained by inefficient delivery/release and insufficient cofactors supply. Herein, an efficient adenosine triphosphate (ATP)-stimulated disassembly of l-histidine (l-His)-integrated ZIF-8 (l-His-ZIF-8) is reported for sustaining the l-DNAzyme-amplified photodynamic therapy. This self-sufficient l-therapeutic platform can intelligently release the l-DNAzyme probe and simultaneously supply l-His DNAzyme cofactors via endogenous ATP. Then, the intrinsic microRNA-21 catalyzes the generation of robust l-DNAzyme via the catalytic hybridization reaction for activating the photosensitizer with multiplied guaranteed therapeutic operation. This l-therapeutic strategy opens up great prospects for more precise diagnosis and customized gene silencing-based therapy.
Collapse
Affiliation(s)
- Kaiyue Tan
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingqing Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qing Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xue Gong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shanshan Yu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruomeng Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| |
Collapse
|
35
|
Król S, Fedotovskaya O, Högbom M, Ädelroth P, Brzezinski P. Electron and proton transfer in the M. smegmatis III 2IV 2 supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148585. [PMID: 35753381 DOI: 10.1016/j.bbabio.2022.148585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The M. smegmatis respiratory III2IV2 supercomplex consists of a complex III (CIII) dimer flanked on each side by a complex IV (CIV) monomer, electronically connected by a di-heme cyt. cc subunit of CIII. The supercomplex displays a quinol oxidation‑oxygen reduction activity of ~90 e-/s. In the current work we have investigated the kinetics of electron and proton transfer upon reaction of the reduced supercomplex with molecular oxygen. The data show that, as with canonical CIV, oxidation of reduced CIV at pH 7 occurs in three resolved components with time constants ~30 μs, 100 μs and 4 ms, associated with the formation of the so-called peroxy (P), ferryl (F) and oxidized (O) intermediates, respectively. Electron transfer from cyt. cc to the primary electron acceptor of CIV, CuA, displays a time constant of ≤100 μs, while re-reduction of cyt. cc by heme b occurs with a time constant of ~4 ms. In contrast to canonical CIV, neither the P → F nor the F → O reactions are pH dependent, but the P → F reaction displays a H/D kinetic isotope effect of ~3. Proton uptake through the D pathway in CIV displays a single time constant of ~4 ms, i.e. a factor of ~40 slower than with canonical CIV. The slowed proton uptake kinetics and absence of pH dependence are attributed to binding of a loop from the QcrB subunit of CIII at the D proton pathway of CIV. Hence, the data suggest that function of CIV is modulated by way of supramolecular interactions with CIII.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
36
|
Saura P, Riepl D, Frey DM, Wikström M, Kaila VRI. Electric fields control water-gated proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 2022; 119:e2207761119. [PMID: 36095184 PMCID: PMC9499568 DOI: 10.1073/pnas.2207761119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome c oxidase (CcO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O2 reduction into proton pumping. Here we show that CcO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways. By combining large-scale quantum chemical density functional theory (DFT) calculations with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations and atomistic molecular dynamics (MD) explorations, we find that reduction of the electron donor, heme a, leads to dissociation of an arginine (Arg438)-heme a3 D-propionate ion-pair. This ion-pair dissociation creates a strong electric field of up to 1 V Å-1 along a water-mediated proton array leading to a transient proton loading site (PLS) near the active site. Protonation of the PLS triggers the reduction of the active site, which in turn aligns the electric field vectors along a second, "chemical," proton pathway. We find a linear energy relationship of the proton transfer barrier with the electric field strength that explains the effectivity of the gating process. Our mechanism shows distinct similarities to principles also found in other energy-converting enzymes, suggesting that orientated electric fields generally control enzyme catalysis.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel M. Frey
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
37
|
Kravchuk V, Petrova O, Kampjut D, Wojciechowska-Bason A, Breese Z, Sazanov L. A universal coupling mechanism of respiratory complex I. Nature 2022; 609:808-814. [DOI: 10.1038/s41586-022-05199-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
|
38
|
Di Trani JM, Moe A, Riepl D, Saura P, Kaila VRI, Brzezinski P, Rubinstein JL. Structural basis of mammalian complex IV inhibition by steroids. Proc Natl Acad Sci U S A 2022; 119:e2205228119. [PMID: 35858451 PMCID: PMC9335260 DOI: 10.1073/pnas.2205228119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/18/2022] [Indexed: 01/21/2023] Open
Abstract
The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Agnes Moe
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
39
|
Wang P, Leontyev I, Stuchebrukhov AA. Mechanical Allosteric Couplings of Redox-Induced Conformational Changes in Respiratory Complex I. J Phys Chem B 2022; 126:4080-4088. [PMID: 35612955 DOI: 10.1021/acs.jpcb.2c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We apply linear response theory to calculate mechanical allosteric couplings in respiratory complex I between the iron sulfur cluster N2, located in the catalytic cavity, and the membrane part of the enzyme, separated from it by more than 50 Å. According to our hypothesis, the redox reaction of ubiquinone in the catalytic cavity of the enzyme generates an unbalanced charge that via repulsion of the charged redox center N2 produces local mechanical stress that transmits into the membrane part of the enzyme where it induces proton pumping. Using coarse-grained simulations of the enzyme, we calculated mechanistic allosteric couplings that reveal the pathways of the mechanical transmission of the stress along the enzyme. The results shed light on the recent experimental studies where a stabilization of the enzyme with an introduced disulfide bridge resulted in the abolishing of proton pumping. Simulation of the disulfide bond action indicates a dramatic change of the mechanistic coupling pathways in line with experimental findings.
Collapse
Affiliation(s)
- Panyue Wang
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Igor Leontyev
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexei A Stuchebrukhov
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
40
|
Kampjut D, Sazanov LA. Structure of respiratory complex I – An emerging blueprint for the mechanism. Curr Opin Struct Biol 2022; 74:102350. [PMID: 35316665 PMCID: PMC7613608 DOI: 10.1016/j.sbi.2022.102350] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I.
Collapse
|
41
|
Djurabekova A, Galemou Yoga E, Nyman A, Pirttikoski A, Zickermann V, Haapanen O, Sharma V. Docking and molecular simulations reveal a quinone binding site on the surface of respiratory complex I. FEBS Lett 2022; 596:1133-1146. [PMID: 35363885 DOI: 10.1002/1873-3468.14346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
The first component of the mitochondrial electron transport chain is respiratory complex I. Several high-resolution structures of complex I from different species have been resolved. However, despite these significant achievements, the mechanism of redox-coupled proton pumping remains elusive. Here, we combined atomistic docking, molecular dynamics simulations and site-directed mutagenesis on respiratory complex I from Yarrowia lipolytica to identify a quinone (Q) binding site on its surface near the horizontal amphipathic helices of ND1 and NDUFS7 subunits. The surface-bound Q makes stable interactions with conserved charged and polar residues, including the highly conserved Arg72 from the NDUFS7 subunit. The binding and dynamics of a Q molecule at the surface-binding site raises interesting possibilities about the mechanism of complex I, which are discussed.
Collapse
Affiliation(s)
| | - Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Aino Nyman
- Department of Physics, University of Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
42
|
Khaniya U, Mao J, Wei RJ, Gunner MR. Characterizing Protein Protonation Microstates Using Monte Carlo Sampling. J Phys Chem B 2022; 126:2476-2485. [PMID: 35344367 PMCID: PMC8997239 DOI: 10.1021/acs.jpcb.2c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins are polyelectrolytes with acidic and basic amino acids Asp, Glu, Arg, Lys, and His, making up ≈25% of the residues. The protonation state of residues, cofactors, and ligands defines a "protonation microstate". In an ensemble of proteins some residues will be ionized and others neutral, leading to a mixture of protonation microstates rather than in a single one as is often assumed. The microstate distribution changes with pH. The protein environment also modifies residue proton affinity so microstate distributions change in different reaction intermediates or as ligands are bound. Particular protonation microstates may be required for function, while others exist simply because there are many states with similar energy. Here, the protonation microstates generated in Monte Carlo sampling in MCCE are characterized in HEW lysozyme as a function of pH and bacterial photosynthetic reaction centers (RCs) in different reaction intermediates. The lowest energy and highest probability microstates are compared. The ΔG, ΔH, and ΔS between the four protonation states of Glu35 and Asp52 in lysozyme are shown to be calculated with reasonable precision. At pH 7 the lysozyme charge ranges from 6 to 10, with 24 accepted protonation microstates, while RCs have ≈50,000. A weighted Pearson correlation analysis shows coupling between residue protonation states in RCs and how they change when the quinone in the QB site is reduced. Protonation microstates can be used to define input MD parameters and provide insight into the motion of protons coupled to reactions.
Collapse
Affiliation(s)
- Umesh Khaniya
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
| | - Junjun Mao
- Department of Physics, City College of New York, New York, New York 10031, United States
| | - Rongmei Judy Wei
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Chemistry, The Graduate Center, City University of New York, New York, New York 10016, United States
| | - M R Gunner
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, United States.,Department of Chemistry, The Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|
43
|
Deng J, Cui Q. Electronic Polarization Is Essential for the Stabilization and Dynamics of Buried Ion Pairs in Staphylococcal Nuclease Mutants. J Am Chem Soc 2022; 144:4594-4610. [PMID: 35239338 PMCID: PMC9616648 DOI: 10.1021/jacs.2c00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Buried charged residues play important roles in the modulation of protein stabilities and conformational dynamics and make crucial contributions to protein functions. Considering the generally nonpolar nature of protein interior, a key question concerns the contribution of electronic polarization to the stabilization and properties of buried charges. We answer this question by conducting free energy simulations using the latest polarizable CHARMM force field based on Drude oscillators for a series of Staphylococcal nuclease mutants that involve a buried Glu-Lys pair in different titration states and orientations. While a nonpolarizable model suggests that the ionized form of the buried Glu-Lys pair is more than 40 kcal/mol less stable than the charge-neutral form, the two titration states are comparable in stability when electronic polarization is included explicitly, a result better reconcilable with available experimental data. Analysis of free energy components suggests that additional stabilization of the ionized Glu-Lys pair has contributions from both the enhanced salt-bridge strength and stronger interaction between the ion-pair and surrounding protein residues and penetrated water. Despite the stronger direct interaction between Glu and Lys, the ion-pair exhibits considerably larger and faster structural fluctuations when polarization is included, due to compensation of interactions in the cavity. Collectively, observations from this work provide compelling evidence that electronic polarization is essential to the stability, hydration, dynamics, and therefore function of buried charges in proteins. Therefore, our study advocates for the explicit consideration of electronic polarization for mechanistic and engineering studies that implicate buried charged residues, such as enzymes and ion transporters.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
44
|
Chaturvedi A. Reaction Rate Theory-Based Mathematical Approximation for the Amount of Time it Takes For Cellular Respiration to Occur. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2022. [DOI: 10.1515/cmb-2022-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The venerable process of cellular respiration is essential for cells to produce energy from glucose molecules, in order to carry out cellular work. The process is responsible for producing molecules of ATP, a molecule which is thermodynamically coupled with other biochemical and biophysical processes in order to provide energy for such processes to occur. While the process of cellular respiration is essential to biology, one cycle of the process occurs only in a matter of milliseconds, and so, it would be impractical to measure the time it takes for the process to occur through conventional means. Therefore, using concepts from reaction rate theory, particularly Marcus Theory of electron transfer, Michaelis-Menten kinetics for enzymatic catalysis, and the hard-sphere model of collision theory, I formulate and propose a mathematical approximation for the amount of time it takes for cellular respiration to occur. Through this heuristic approach, quantitatively knowing the amount of time it takes for one cycle of cellular respiration to occur could potentially have future applications in biological research.
Collapse
|
45
|
Gu J, Liu T, Guo R, Zhang L, Yang M. The coupling mechanism of mammalian mitochondrial complex I. Nat Struct Mol Biol 2022; 29:172-182. [PMID: 35145322 DOI: 10.1038/s41594-022-00722-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2023]
Abstract
Mammalian respiratory complex I (CI) is a 45-subunit, redox-driven proton pump that generates an electrochemical gradient across the mitochondrial inner membrane to power ATP synthesis in mitochondria. In the present study, we report cryo-electron microscopy structures of CI from Sus scrofa in six treatment conditions at a resolution of 2.4-3.5 Å, in which CI structures of each condition can be classified into two biochemical classes (active or deactive), with a notably higher proportion of active CI particles. These structures illuminate how hydrophobic ubiquinone-10 (Q10) with its long isoprenoid tail is bound and reduced in a narrow Q chamber comprising four different Q10-binding sites. Structural comparisons of active CI structures from our decylubiquinone-NADH and rotenone-NADH datasets reveal that Q10 reduction at site 1 is not coupled to proton pumping in the membrane arm, which might instead be coupled to Q10 oxidation at site 2. Our data overturn the widely accepted previous proposal about the coupling mechanism of CI.
Collapse
Affiliation(s)
- Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China. .,SUSTech Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, China.
| |
Collapse
|
46
|
Abstract
Electrocatalysis is an indispensable technique for small-molecule transformations, which are essential for the sustainability of society. Electrocatalysis utilizes electricity as an energy source for chemical reactions. Hydrogen is considered the “fuel for the future,” and designing electrocatalysts for hydrogen production has thus become critical. Furthermore, fuel cells are promising energy solutions that require robust electrocatalysts for key fuel cell reactions such as the interconversion of oxygen to water. Concerns regarding the rising concentration of atmospheric carbon dioxide have prompted the search for CO2 conversion methods. One promising approach is the electrochemical conversion of CO2 into commodity chemicals and/or liquid fuels, but such chemistry is highly energy demanding because of the thermodynamic stability of CO2. All of the above-mentioned electrocatalytic processes rely on the selective input of multiple protons (H+) and electrons (e–) to yield the desired products. Biological enzymes evolved in nature to perform such redox catalysis and have inspired the design of catalysts at the molecular and atomic levels. While it is synthetically challenging to mimic the exact biological environment, incorporating functional outer coordination spheres into molecular catalysts has shown promise for advancing multi-H+ and multi-e– electrocatalysis. From this Perspective, herein, catalysts with outer coordination sphere(s) are selected as the inspiration for developing new catalysts, particularly for the reductive conversion of H+, O2, and CO2, which are highly relevant to sustainability. The recent progress in electrocatalysis and opportunities to explore beyond the second coordination sphere are also emphasized.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| |
Collapse
|
47
|
Moe A, Kovalova T, Król S, Yanofsky DJ, Bott M, Sjöstrand D, Rubinstein JL, Högbom M, Brzezinski P. The respiratory supercomplex from C. glutamicum. Structure 2021; 30:338-349.e3. [PMID: 34910901 DOI: 10.1016/j.str.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Corynebacterium glutamicum is a preferentially aerobic gram-positive bacterium belonging to the phylum Actinobacteria, which also includes the pathogen Mycobacterium tuberculosis. In these bacteria, respiratory complexes III and IV form a CIII2CIV2 supercomplex that catalyzes oxidation of menaquinol and reduction of dioxygen to water. We isolated the C. glutamicum supercomplex and used cryo-EM to determine its structure at 2.9 Å resolution. The structure shows a central CIII2 dimer flanked by a CIV on two sides. A menaquinone is bound in each of the QN and QP sites in each CIII and an additional menaquinone is positioned ∼14 Å from heme bL. A di-heme cyt. cc subunit electronically connects each CIII with an adjacent CIV, with the Rieske iron-sulfur protein positioned with the iron near heme bL. Multiple subunits interact to form a convoluted sub-structure at the cytoplasmic side of the supercomplex, which defines a path for proton transfer into CIV.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
48
|
Quinone binding in respiratory complex I: Going through the eye of a needle. The squeeze-in mechanism of passing the narrow entrance of the quinone site. Photochem Photobiol Sci 2021; 21:1-12. [PMID: 34813075 PMCID: PMC8799541 DOI: 10.1007/s43630-021-00113-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/04/2021] [Indexed: 02/02/2023]
Abstract
At the joint between the membrane and hydrophilic arms of the enzyme, the structure of the respiratory complex I reveals a tunnel-like Q-chamber for ubiquinone binding and reduction. The narrow entrance of the quinone chamber located in ND1 subunit forms a bottleneck (eye of a needle) which in all resolved structures was shown to be too small for a bulky quinone to pass through, and it was suggested that a conformational change is required to open the channel. The closed bottleneck appears to be a well-established feature of all structures reported so-far, both for the so-called open and closed states of the enzyme, with no indication of a stable open state of the bottleneck. We propose a squeeze-in mechanism of the bottleneck passage, where dynamic thermal conformational fluctuations allow quinone to get in and out. Here, using molecular dynamics simulations of the bacterial enzyme, we have identified collective conformational changes that open the quinone chamber bottleneck. The model predicts a significant reduction—due to a need for a rare opening of the bottleneck—of the effective bi-molecular rate constant, in line with the available kinetic data. We discuss possible reasons for such a tight control of the quinone passage into the binding chamber and mechanistic consequences for the quinone two-electron reduction.
Collapse
|
49
|
Chen W, Zheng D, Chen Y, Ruan H, Zhang Y, Chen X, Shen H, Deng L, Cui W, Chen H. Electrospun Fibers Improving Cellular Respiration via Mitochondrial Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104012. [PMID: 34636157 DOI: 10.1002/smll.202104012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Cellular respiration is the prerequisite for cell survival and functions, and mitochondrial function and microcirculation oxygen supply are essential for cellular respiration. However, in diabetic fracture, cellular respiration of bone marrow stem cells (BMSCs) is disrupted because of the dysfunction of mitochondria and microcirculation disorders. Here, the electrospun fibers of GelMA loaded with Hif-1 pathway activator (DFO) are constructed to improve the cellular respiration of BMSCs via protecting mitochondrial function and reconstructing microcirculation. The sequential process of electrospinning and UV crosslinking endowed the electrospun fibers with breathability and the biomechanical properties like the periosteum. In vitro biomolecular experiments showed that by crosslinking grafted polyethylene glycol acrylate liposomes loaded with DFO, the functional electrospun fibers can release DFO locally to activate Hif-1 in BMSCs, which can regulate the balance of Bcl-2/Bax to protect mitochondria and upregulate the expression of VEGF to reconstruct microcirculation. Animal experiments confirmed that the functional electrospun fibers can promote the recovery of diabetic fracture in vivo. These suggested that the functional electrospun fibers can improve cellular respiration for cell survival and functions of BMSCs. This study provides a new treatment strategy for diabetic fracture and other tissue regeneration on basis of cellular respiration improvement.
Collapse
Affiliation(s)
- Wei Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yanru Chen
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200082, P. R. China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Xiuyuan Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
50
|
Heslop KA, Milesi V, Maldonado EN. VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges. Front Physiol 2021; 12:742839. [PMID: 34658929 PMCID: PMC8511398 DOI: 10.3389/fphys.2021.742839] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Most anionic metabolites including respiratory substrates, glycolytic adenosine triphosphate (ATP), and small cations that enter mitochondria, and mitochondrial ATP moving to the cytosol, cross the outer mitochondrial membrane (OMM) through voltage dependent anion channels (VDAC). The closed states of VDAC block the passage of anionic metabolites, and increase the flux of small cations, including calcium. Consequently, physiological or pharmacological regulation of VDAC opening, by conditioning the magnitude of both anion and cation fluxes, is a major contributor to mitochondrial metabolism. Tumor cells display a pro-proliferative Warburg phenotype characterized by enhanced aerobic glycolysis in the presence of partial suppression of mitochondrial metabolism. The heterogeneous and flexible metabolic traits of most human tumors render cells able to adapt to the constantly changing energetic and biosynthetic demands by switching between predominantly glycolytic or oxidative phenotypes. Here, we describe the biological consequences of changes in the conformational state of VDAC for cancer metabolism, the mechanisms by which VDAC-openers promote cancer cell death, and the advantages of VDAC opening as a valuable pharmacological target. Particular emphasis is given to the endogenous regulation of VDAC by free tubulin and the effects of VDAC-tubulin antagonists in cancer cells. Because of its function and location, VDAC operates as a switch to turn-off mitochondrial metabolism (closed state) and increase aerobic glycolysis (pro-Warburg), or to turn-on mitochondrial metabolism (open state) and decrease glycolysis (anti-Warburg). A better understanding of the role of VDAC regulation in tumor progression is relevant both for cancer biology and for developing novel cancer chemotherapies.
Collapse
Affiliation(s)
- Kareem A Heslop
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Veronica Milesi
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, La Plata, Argentina
| | - Eduardo N Maldonado
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|