1
|
Askarniya Z, Cichocki Ł, Makowiec S, Wang C, Boczkaj G. Degradation of dicamba - A persistent herbicide - By combined application of formic acid and UV as an advanced reduction process. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:137984. [PMID: 40179786 DOI: 10.1016/j.jhazmat.2025.137984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/05/2025]
Abstract
The degradation of dicamba as a persistent herbicide was studied with the combined application of UV and formic acid (FA) as a novel advanced reduction process (ARP). The effects of key parameters of FA concentration, dissolved organic matter, and inorganic anions were studied. A 97 % degradation and 94 % dechlorination of dicamba were obtained through the combination of UV and FA (UV-FA) at a dicamba concentration of 0.023 mM and FA concentration of 0.123 M. With respect to the dechlorination, at a dicamba concentration of 0.23 mM, FA concentration of 0.123 M, and pH of 2, chloride concentration of 12.4 mg/L and 5.2 mg/L was obtained for ARP (UV-FA) and sole UV in acidic condition, respectively. Scavenging test using Methyl viologen (MV2 +) as a scavenger for reductive radicals including carboxyl anion radicals (CO2•¯) led to a decrease in the chloride concentration to 1.7 mg/L, revealing the importance of this radical in the dechlorination of dicamba. Inorganic anions (CO32¯ and SO42¯) had a slightly positive effect on the degradation of dicamba and led to an increase in degradation to 99 %, while they had a negative effect on the dechlorination by 7 % and 30 %, respectively. Due to the turbidity induced by dissolved organic matters (DOM), a moderate decrease in degradation by 39 % and dechlorination by 30 % was observed. The existence of five intermediates identified by GC-MS technique confirmed the proposed mechanism of dicamba degradation via ARP. Reductive degradation of dicamba mainly consists of processes based on CO2•¯, including single electron transfer process and radical-nucleophilic aromatic substitution (SRN) reactions, demonstrating the capability of this ARP for the effective degradation of dicamba.
Collapse
Affiliation(s)
- Zahra Askarniya
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Łukasz Cichocki
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Kuimov VA, Malysheva SF, Belogorlova NA, Fattakhov RI, Albanov AI, Bagryanskaya IY, Tikhonov NI, Trofimov BA. Straightforward Superbase-Mediated Reductive O-Phosphorylation of Aromatic and Heteroaromatic Ketones with Red Phosphorus in the Superbase Suspension KOH/DMSO(H 2O). Molecules 2025; 30:1367. [PMID: 40142143 PMCID: PMC11946803 DOI: 10.3390/molecules30061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
It was shown for the first time that diaryl(hetaryl)ketones are capable of directly phosphorylating with red phosphorus in the superbase suspension KOH/DMSO(H2O) at 85 °C for 1.5 h to afford potassium bis(diaryl(hetaryl)methyl)phosphates that were earlier inaccessible in a yield of up to 45%. The ESR data demonstrate that unlike previously published phosphorylation with elemental phosphorus, this new phosphorylation reaction proceeds via a single electron transfer from polyphospide anions to diaryl(hetaryl)ketones. This is the first example of the C-O-P bond generation during the phosphorylation with elemental phosphorus in strongly basic media, which usually provides C-P bond formation.
Collapse
Affiliation(s)
- Vladimir A. Kuimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Svetlana F. Malysheva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Natalia A. Belogorlova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Ruslan I. Fattakhov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Alexander I. Albanov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikolay I. Tikhonov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| | - Boris A. Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russia; (V.A.K.); (S.F.M.); (N.A.B.); (R.I.F.); (A.I.A.); (N.I.T.)
| |
Collapse
|
3
|
Zhang J, Luo X, Zhang J, Li C. Total Synthesis of DMOA-Derived Meroterpenoids: Achieving Selectivity in the Synthesis of (+)-Berkeleyacetal D and (+)-Peniciacetal I. J Am Chem Soc 2025; 147:5933-5942. [PMID: 39903500 DOI: 10.1021/jacs.4c15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The synthesis of complex natural products requires efficient control over chemoselectivity, stereoselectivity, and regioselectivity. Berkeleyacetals, a subfamily of 3,5-dimethylorsellinic acid (DMOA)-derived meroterpenoids, pose substantial synthetic challenges due to their densely functionalized and highly oxidized architectures, which have constrained synthetic efforts. Here, we present the first total synthesis of this class of DMOA-derived meroterpenoids, specifically (+)-berkeleyacetal D and (+)-peniciacetal I. Our approach features a chemoselective deprotonation followed by an intramolecular single-electron transfer (SET) from an enolate to an alkyl bromide, enabling the construction of the 2,3-dihydrofuran ring in berkeleyacetal D. Additional selective transformations include an endo-selective intramolecular Diels-Alder reaction, chemoselective methylations and semihydrogenation of [3]dendralene, and a solvent-controlled diastereoselective epoxidation. Beyond providing a synthetic route to these densely congested natural products, our study offers mechanistic insights into achieving selectivity in the assembly of architecturally demanding molecules.
Collapse
Affiliation(s)
- Jianpeng Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaotong Luo
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Jingfu Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Wild U, Engels E, Hübner O, Kaifer E, Himmel HJ. Redox-Induced Aromatic Substitution: A Study on Guanidino-Functionalized Aromatics. Chemistry 2024; 30:e202403080. [PMID: 39387154 DOI: 10.1002/chem.202403080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Aromatic substitution of redox-active aromatic compounds could be initiated by a preceding redox step. We report on the different reaction pathways of such redox-induced substitution (RIAS) reactions between a redox-active guanidino-functionalized aromatic molecule (GFA) and an amine or guanidine. Oxidation of the GFA leads to an umpolung of the guanidine from a nucleophile to an electrophile and thereby enables addition of the amine or guanidine. Several examples are given, demonstrating the use of redox substitution in synthetic chemistry, e. g. for the convenient synthesis of novel N-heteropolycyclic molecules and unsymmetrically-substituted aromatics.
Collapse
Affiliation(s)
- Ute Wild
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eliane Engels
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Olaf Hübner
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Williams AW, Gilmore KM. Transition-Metal Free Amination and Hydrodefluorination of Aryl Fluorides Promoted by Solvated Electrons. Chemistry 2024; 30:e202403410. [PMID: 39325980 DOI: 10.1002/chem.202403410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Cross-coupling reactions for constructing C-N bonds represent a pivotal advancement in chemical science. Traditional methodologies, including nucleophilic aromatic substitution (SNAr) and transition metal-catalyzed cross-couplings, have limitations concerning aryl scope, reliance on toxic and costly transition-metal catalysts, and issues related to atom economy and waste generation from ligands and additives. In this work, we introduce a novel method for aminating neutral, electron-rich, and electron-deficient aryl halides, eliminating the need for transition metals. Our approach involves the activation of aryl halides using solvated electrons generated from granulated lithium and sonication. This serves as a sustainable source of reducing power, facilitating the efficient formation of C-N bonds under near ambient conditions. Competitive selectivity studies between halide and ester functionalities were explored. Reaction scope and conducted mechanistic studies which supported the proposed radical-nucleophilic substitution (SRN1) mechanism for the reaction. Notably, the developed reaction has a highly competitive reductive dehalogenation pathway during the C-N coupling reaction, and this mechanistic divergency was thoroughly explored. This work not only broadens the scope of C-N coupling reactions which typically employs aryl bromides and iodides and rarely aryl fluorides which is also equally abundant, but also introduces a new way to do C-N coupling reactions using solvated electrons.
Collapse
Affiliation(s)
- Anietie W Williams
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd, Storrs, CT, 06269
| | - Kerry M Gilmore
- Department of Chemistry, University of Connecticut, 55 N Eagleville Rd, Storrs, CT, 06269
| |
Collapse
|
6
|
Nishikata T. α-Halocarbonyls as a Valuable Functionalized Tertiary Alkyl Source. ChemistryOpen 2024; 13:e202400108. [PMID: 38989712 DOI: 10.1002/open.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
This review introduces the synthetic organic chemical value of α-bromocarbonyl compounds with tertiary carbons. This α-bromocarbonyl compound with a tertiary carbon has been used primarily only as a radical initiator in atom transfer radical polymerization (ATRP) reactions. However, with the recent development of photo-radical reactions (around 2010), research on the use of α-bromocarbonyl compounds as tertiary alkyl radical precursors became popular (around 2012). As more examples were reported, α-bromocarbonyl compounds were studied not only as radicals but also for their applications in organometallic and ionic reactions. That is, α-bromocarbonyl compounds act as nucleophiles as well as electrophiles. The carbonyl group of α-bromocarbonyl compounds is also attractive because it allows the skeleton to be converted after the reaction, and it is being applied to total synthesis. In our survey until 2022, α-bromocarbonyl compounds can be used to perform a full range of reactions necessary for organic synthesis, including multi-component reactions, cross-coupling, substitution, cyclization, rearrangement, stereospecific reactions, asymmetric reactions. α-Bromocarbonyl compounds have created a new trend in tertiary alkylation, which until then had limited reaction patterns in organic synthesis. This review focuses on how α-bromocarbonyl compounds can be used in synthetic organic chemistry.
Collapse
Affiliation(s)
- Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
7
|
Gahlot S, Schmitt JL, Chevalier A, Villa M, Roy M, Ceroni P, Lehn JM, Gingras M. "The Sulfur Dance" Around Arenes and Heteroarenes - the Reversible Nature of Nucleophilic Aromatic Substitutions. Chemistry 2024; 30:e202400231. [PMID: 38289151 DOI: 10.1002/chem.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 02/20/2024]
Abstract
We disclose the features of a category of reversible nucleophilic aromatic substitutions in view of their significance and generality in dynamic aromatic chemistry. Exchange of sulfur components surrounding arenes and heteroarenes may occur at 25 °C, in a process that one may call a "sulfur dance". These SNAr systems present their own features, apart from common reversible reactions utilized in dynamic covalent chemistry (DCC). By varying conditions, covalent dynamics may operate to provide libraries of thiaarenes with some selectivity, or conversion of a hexa(thio)benzene asterisk into another one. The reversible nature of SNAr is confirmed by three methods: a convergence of the products distribution in reversible SNAr systems, a related product redistribution between two per(thio)benzenes by using a thiolate promoter, and from kinetic/thermodynamic data. A four-component dynamic covalent system further illustrates the thermodynamically-driven formation of a thiacalix[2]arene[2]pyrimidine by sulfur component exchanges. This work stimulates the implementation of reversible SNAr in aromatic chemistry and in DCC.
Collapse
Affiliation(s)
- Sapna Gahlot
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| | - Jean-Louis Schmitt
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Aline Chevalier
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marco Villa
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Myriam Roy
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, 75005, Paris, France
| | - Paola Ceroni
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| |
Collapse
|
8
|
Thushara R, Koga N, Suresh CH. Gold(I) Catalysis in Alkyne-Alkene Reactions: A Systematic Exploration through Molecular Electrostatic Potential Analysis. Inorg Chem 2024. [PMID: 39226218 DOI: 10.1021/acs.inorgchem.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Gold catalysis enables selective chemical transformations with catalytic activity tunable through ligand selection. This study uses the density functional theory (DFT) to explore the impact of phosphine ligands (PR3) on gold(I)-catalyzed alkyne-alkene cyclobutene formation. We analyze the following key steps: (i) PR3-Au+ complexation, (ii) alkyne binding, (iii) alkene binding, (iv) C-C coupling transition state, (v) cyclobutene formation transition state, and (vi) cyclobutene dissociation. Molecular electrostatic potential (MESP) analysis provided a deeper understanding of electronic effects and revealed a strong correlation between the change in MESP at the gold nucleus (ΔNVAu+) upon complex formation with various ligands and the corresponding complexation energy, as well as between the change in MESP at the alkyne carbon (ΔVC) and the C-C coupling step activation barrier. This establishes MESP as a powerful tool for understanding ligand influence on catalysis. Our findings suggest that electron-donating phosphine ligands, combined with electron-withdrawing alkyne substituents, enhance catalyst turnover, promote cyclobutene product dissociation from the gold(I) complex, and facilitate catalyst regeneration. Solvent effects also play a crucial role. Bulky XPhos, JohnPhos, and CyJohnPhos ligands enhance gold(I) catalysis via steric protection, electron donation, and catalyst regeneration efficiency. In conclusion, this study provides insights into ligand effects in gold(I)-catalyzed cyclobutene formation, guiding future catalyst design.
Collapse
Affiliation(s)
- Ramakrishnan Thushara
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nobuaki Koga
- Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
| | - Cherumuttathu H Suresh
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Joseph E, Brar DS, Stuhlsatz G, Tunge JA. Transition metal-free decarboxylative olefination of carboxylic acid salts. Chem Sci 2024; 15:9353-9360. [PMID: 38903232 PMCID: PMC11186341 DOI: 10.1039/d4sc01905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
The cost-effective and efficient synthesis of alkenes is highly significant due to their extensive applications in both synthetic and polymer industries. A transition metal-free approach has been devised for the chemoselective olefination of carboxylic acid salts. This modular approach provides direct access to valuable electron-deficient styrenes in moderate to good yields. Detailed mechanistic studies suggest anionic decarboxylation is followed by halogen ion transfer. This halogen transfer leads to an umpolung of reactant electronics, allowing for a rate-limiting rebound elimination.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Deshkanwar S Brar
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Gaven Stuhlsatz
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas 1567 Irving Hill Road Lawrence Kansas USA
| |
Collapse
|
10
|
Lei X, Wang Y, Ma S, Jiao P. Purple Light-Promoted Coupling of Bromopyridines with Grignard Reagents via SET. J Org Chem 2024; 89:7148-7155. [PMID: 38718346 DOI: 10.1021/acs.joc.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Alkyl- and arylpyridines and 2,2'-bipyridines are conventionally prepared by Minisci reactions of pyridines and transition metal-catalyzed coupling reactions of halopyridines. Herein, purple light-promoted radical coupling reactions of 2- or 4-bromopyridines with Grignard reagents in Et2O or a mixture of Et2O and tetrahydrofuran in regular glassware without the need for a transition metal catalyst were disclosed for the first time. Methyl, primary and secondary alkyl, cycloalkyl, aryl, heteroaryl, pyridyl, and alkynyl Grignard reagents were compatible with the protocol. As a result, alkyl- and arylpyridines and 2,2'-bipyridines were easily prepared. Single electron transfer from the Grignard reagent to bromopyridine was stimulated by purple light. An electron extruded from the dimerization of the Grignard reagent worked as the catalyst. Light on/off experiments indicated that constant irradiation was required for product formation. Studies of radical clock substrates verified the involvement of a pyridyl radical from bromopyridine and the noninvolvement of an alkyl or aryl radical from the Grignard reagent. The available proof supports a photoinduced SRN mechanism for the new coupling reactions.
Collapse
Affiliation(s)
- Xingyu Lei
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yihan Wang
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shanshan Ma
- Institute of Rural Revitalization (Institute of Medicine and Health Care), Dezhou University, No. 566 West University Road, Dezhou 253023, China
| | - Peng Jiao
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
11
|
Guo Y, Wang Z, Chen Y, Chao F, Xu Y, Qu LL, Wu FG, Dong X. Ultrabright Green-Emissive Nanodots for Precise Biological Visualization. NANO LETTERS 2024; 24:2264-2272. [PMID: 38324803 DOI: 10.1021/acs.nanolett.3c04520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Developing general methods to fabricate water-dispersible and biocompatible fluorescent probes will promote different biological visualization applications. Herein, we report a metal-facilitated method to fabricate ultrabright green-emissive nanodots via the one-step solvothermal treatment of rose bengal, ethanol, and various metal ions. These metal-doped nanodots show good water dispersity, ultrahigh photoluminescence quantum yields (PLQYs) (e.g., the PLQY of Fe-doped nanodots (FeNDs) was ∼97%), and low phototoxicity. Owing to the coordination effect of metal ions, the FeNDs realize glutathione detection with outstanding properties. Benefiting from the high endoplasmic reticulum (ER) affinity of the chloride group, the FeNDs can act as an ER tracker with long ER imaging capacity (FeNDs: >24 h; commercial ER tracker: ∼1 h) and superb photostability and can achieve tissue visualization in living Caenorhabditis elegans. The metal-doped nanodots represent a general nanodot preparation method and may shed new light on diverse biological visualization uses.
Collapse
Affiliation(s)
- Yuxin Guo
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Zihao Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Furong Chao
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Yin Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
12
|
Minami Y, Imamura S, Matsuyama N, Nakajima Y, Yoshida M. Catalytic thiolation-depolymerization-like decomposition of oxyphenylene-type super engineering plastics via selective carbon-oxygen main chain cleavages. Commun Chem 2024; 7:37. [PMID: 38378901 PMCID: PMC10879179 DOI: 10.1038/s42004-024-01120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
As the effective use of carbon resources has become a pressing societal issue, the importance of chemical recycling of plastics has increased. The catalytic chemical decomposition for plastics is a promising approach for creating valuable products under efficient and mild conditions. Although several commodity and engineering plastics have been applied, the decompositions of stable resins composed of strong main chains such as polyamides, thermoset resins, and super engineering plastics are underdeveloped. Especially, super engineering plastics that have high heat resistance, chemical resistance, and low solubility are nearly unexplored. In addition, many super engineering plastics are composed of robust aromatic ethers, which are difficult to cleave. Herein, we report the catalytic depolymerization-like chemical decomposition of oxyphenylene-based super engineering plastics such as polyetheretherketone and polysulfone using thiols via selective carbon-oxygen main chain cleavage to form electron-deficient arenes with sulfur functional groups and bisphenols. The catalyst combination of a bulky phosphazene base P4-tBu with inorganic bases such as tripotassium phosphate enabled smooth decomposition. This method could be utilized with carbon- or glass fiber-enforced polyetheretherketone materials and a consumer resin. The sulfur functional groups in one product could be transformed to amino and sulfonium groups and fluorine by using suitable catalysts.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Sae Imamura
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nao Matsuyama
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
13
|
Rivas CJ, Mena LD, Baumgartner MT, Jimenez LB. Bay-Substitution of Perylene Bisimides with Bidentate Nucleophiles: The Case of Aryloxide Anions. J Org Chem 2024; 89:2764-2770. [PMID: 38271990 DOI: 10.1021/acs.joc.3c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In this study, we delve into the regioselectivity of nucleophilic reactions involving brominated perylene bisimides (PBIs) and various bidentate aryloxide anions, previously associated with an SRN1 mechanism. We present herein a new perspective, suggesting that a single-electron-transfer aromatic nucleophilic substitution (SeT-SNAr) mechanism is a more plausible scenario. Our study reveals the favorable impact of photostimulation on reaction yields, making our method a convenient approach for accessing O-arylated PBIs.
Collapse
Affiliation(s)
- Carlos J Rivas
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria. Córdoba, X5000HUA, Argentina
- INFIQC, Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET-UNC), Haya de la Torre s/n, Ciudad Universitaria. Córdoba, X5000HUA, Argentina
| | - Leandro D Mena
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria. Córdoba, X5000HUA, Argentina
- INFIQC, Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET-UNC), Haya de la Torre s/n, Ciudad Universitaria. Córdoba, X5000HUA, Argentina
| | - María T Baumgartner
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria. Córdoba, X5000HUA, Argentina
- INFIQC, Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET-UNC), Haya de la Torre s/n, Ciudad Universitaria. Córdoba, X5000HUA, Argentina
| | - Liliana B Jimenez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria. Córdoba, X5000HUA, Argentina
- INFIQC, Instituto de Investigaciones en Fisicoquímica de Córdoba (CONICET-UNC), Haya de la Torre s/n, Ciudad Universitaria. Córdoba, X5000HUA, Argentina
| |
Collapse
|
14
|
Keita H, Meek SJ. Synthesis of Quaternary and Tertiary Carbon-Substituted Arenes by Lewis Base Promoted Site-Selective Coupling with Allylic Nucleophiles. Angew Chem Int Ed Engl 2023; 62:e202306277. [PMID: 37350059 PMCID: PMC10529890 DOI: 10.1002/anie.202306277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
A practical method for the preparation of quaternary and tertiary allyl-substituted heteroarenes by site-selective couplings of heteroaryl nitriles and allylic nucleophiles is disclosed. Transformations utilize readily accessible stable reagents, proceed in the presence of a Lewis base activator, and undergo aryl-C(sp3 ) quaternary and tertiary carbon formation with high γ-selectivity (up to >98 : 2 γ : α).
Collapse
Affiliation(s)
- Hawa Keita
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, Chapel Hill, NC, USA
| | - Simon J Meek
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Su Q, Gao H, Qin G, Jiang Y, Xiao T. Controlled Synthesis of α-CF 2H or α-CF 2Cl Styrenes from the Same Precursors: Dehydrazinative Hydrogenation or Chlorination of 3,3-Difluoroallyl Hydrazines. J Org Chem 2023. [PMID: 37262306 DOI: 10.1021/acs.joc.3c00355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
By carefully choosing the reaction conditions, we have developed the controllable FeCl3- or CuCl2-mediated dehydrazinative hydrogenation or chlorination of 3,3-difluoroallyl hydrazines to access α-CF2H or α-CF2Cl styrenes. The current reaction provides for the first time a facile method for the direct and selective synthesis of α-CF2H and α-CF2Cl styrenes starting from the same precursors, which is easy to scale up and displays a broad substrate scope and good functional group tolerance. Moreover, product derivatization experiments demonstrated that the resulting α-CF2Cl styrenes are practical and versatile building blocks for the diversified synthesis of fluorinated molecules.
Collapse
Affiliation(s)
- Qinshuang Su
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming, Yunnan 650500, P. R. China
| | - Haotian Gao
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming, Yunnan 650500, P. R. China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming, Yunnan 650500, P. R. China
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming, Yunnan 650500, P. R. China
| | - Tiebo Xiao
- Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Chenggong District, Kunming, Yunnan 650500, P. R. China
| |
Collapse
|
16
|
Duff L, Meakin H, Richardson A, Greener AJ, Smith GWA, Ocaña I, Chechik V, James MJ. Denitrative Hydroxylation of Unactivated Nitroarenes. Chemistry 2023; 29:e202203807. [PMID: 36594445 DOI: 10.1002/chem.202203807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 01/04/2023]
Abstract
A one-step method for the conversion of nitroarenes into phenols under operationally simple, transition-metal-free conditions is described. This denitrative functionalization protocol provides a concise and economical alternative to conventional three-step synthetic sequences. Experimental and computational studies suggest that nitroarenes may be substituted by an electron-catalysed radical-nucleophilic substitution (SRN 1) chain mechanism.
Collapse
Affiliation(s)
- Lee Duff
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Harry Meakin
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Adam Richardson
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Andrew J Greener
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - George W A Smith
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Ivan Ocaña
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Victor Chechik
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Michael J James
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
17
|
Halder I, Nair AM, Giri S, Volla CMR. Diphenyl Ditelluride: An Unconventional Reducing Agent in the Sulfonylative Cascade of Alkynyl Cyclohexadienones. Org Lett 2023; 25:826-831. [PMID: 36722745 DOI: 10.1021/acs.orglett.2c04367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report a reductive hydrazo-sulfonylative difunctionalization cascade of alkynyl cyclohexadienones employing PhTeTePh as an uncommon reducing agent. Diphenyl ditelluride is a commercially available solid with a good solubility profile in most organic solvents, and this is the first report illustrating it as a reducing agent. The protocol afforded a variety of difunctionalized dihydrochromenones and dihydrobenzofuranones in good yields under relatively mild conditions. The reactions were scalable, and mechanistic studies were conducted to probe the reaction mechanism. Additionally, photophysical studies of the products were carried out, which revealed that they had significant absorption (400-450 nm) and emission (520-570 nm) in the visible region.
Collapse
Affiliation(s)
- Indranil Halder
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samyadev Giri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
Minami Y, Matsuyama N, Takeichi Y, Watanabe R, Mathew S, Nakajima Y. Depolymerization of robust polyetheretherketone to regenerate monomer units using sulfur reagents. Commun Chem 2023; 6:14. [PMID: 36697710 PMCID: PMC9873933 DOI: 10.1038/s42004-023-00814-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Super engineering plastics, high-performance thermoplastic resins such as polyetheretherketone, and polyphenylene sulfide have been utilized in industries, owing to their high thermal stability and mechanical strength. However, their robustness hinders their depolymerization to produce monomers and low-weight molecules. Presently, chemical recycling for most super engineering plastics remains relatively unexplored. Herein, we report the depolymerization of insoluble polyetheretherketone using sulfur nucleophiles via carbon-oxygen bond cleavages to form benzophenone dithiolate and hydroquinone. Treatment with organic halides converted only the former products to afford various dithiofunctionalized benzophenones. The depolymerization proceeded as a solid-liquid reaction in the initial phase. Therefore, this method was not affected by the shape of polyetheretherketone, e.g., pellets or films. Moreover, this depolymerization method was applicable to carbon- or glass fiber-enforced polyetheretherketone material. The depolymerized product, dithiofunctionalized benzophenones, could be converted into diiodobenzophenone, which was applicable to the polymerization.
Collapse
Affiliation(s)
- Yasunori Minami
- grid.208504.b0000 0001 2230 7538Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan ,grid.419082.60000 0004 1754 9200PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Nao Matsuyama
- grid.208504.b0000 0001 2230 7538Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Yasuo Takeichi
- grid.136593.b0000 0004 0373 3971Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Ryota Watanabe
- grid.208504.b0000 0001 2230 7538Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Siby Mathew
- grid.208504.b0000 0001 2230 7538Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Yumiko Nakajima
- grid.208504.b0000 0001 2230 7538Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| |
Collapse
|
19
|
Li MY, Li J, Gu A, Nong XM, Zhai S, Yue ZY, Feng CG, Liu Y, Lin GQ. Solvent-free and catalyst-free direct alkylation of alkenes. GREEN CHEMISTRY 2023; 25:7073-7078. [DOI: 10.1039/d3gc02685j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A convenient method for synthesizing trisubstituted alkenes through direct alkylation of alkenes was achieved under solvent-free and catalyst-free conditions. This reaction highlighted by a low E-factor and a high atom- and step-economy.
Collapse
Affiliation(s)
- Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai Frontiers Science Center for Traditional Chinese Medicine Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Chen S, Pillitteri S, Fron E, Van Meervelt L, Van der Eycken EV, Sharma UK. Visible-Light-Induced Cascade Difunctionalization of Indoles Enabled by the Synergy of Photoredox and Photoexcited Ketones: Direct Access to Alkylated Pyrrolophenanthridones. Org Lett 2022; 24:9386-9391. [PMID: 36525615 DOI: 10.1021/acs.orglett.2c03697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we describe a methodology to construct polycyclic pyrrolophenanthridones with an (amino)alkyl side chain that involves visible-light-induced decarboxylative radical addition for the intermolecular dearomatization of indoles and subsequent photoinduced C(sp2)-X bond activation via photoexcited ketones for an intramolecular cyclization cascade. Carboxylic acids serve both as a radical source toward indole dearomatization and as reductants to initiate an electron transfer with photoexcited N-acylindole derivatives in the reaction toward pyrrolophenantridone skeletons, which occurs under mild reaction conditions with good functional group tolerance.
Collapse
Affiliation(s)
- Su Chen
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Serena Pillitteri
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Eduard Fron
- Core Facility for Advanced Spectroscopy, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.,People's Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, RU-117198 Moscow, Russia
| | - Upendra K Sharma
- Laboratory for Organic and Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
21
|
Panferova LI, Zubkov MO, Kosobokov MD, Dilman AD. Light-Promoted Dearylation of Perfluorinated Aryl Sulfides with N-Heterocyclic Carbene–Borane. Org Lett 2022; 24:8559-8563. [DOI: 10.1021/acs.orglett.2c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liubov I. Panferova
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Prospekt 47, 119991 Moscow, Russian Federation
| | - Mikhail O. Zubkov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Prospekt 47, 119991 Moscow, Russian Federation
| | - Mikhail D. Kosobokov
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Prospekt 47, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky Prospekt 47, 119991 Moscow, Russian Federation
| |
Collapse
|
22
|
Boratyński PJ. Stereoselective Domino Rearrangement peri-Annulation of Cinchona Alkaloid Derivatives with 8-Bromo-1-naphthyl Grignard. J Org Chem 2022; 87:11602-11607. [PMID: 35998654 PMCID: PMC9442652 DOI: 10.1021/acs.joc.2c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The unexpected domino coupling and rearrangement of the Cinchona alkaloid skeleton has been found to occur in the
reaction of 9-chloro-9-deoxy-alkaloids with Grignards from peri-dihalogenonaphthalene. The cyclization and migration
of the central quinuclidinylmethyl group (C9) from position C-4′
to position C-3′ of quinoline formed a novel chiral ring system
of 5-aza-7H-benzo[no]tetraphene,
yielding products of unlike configuration. The proposed
reaction pathway involves radical intermediates.
Collapse
Affiliation(s)
- Przemysław J Boratyński
- Department of Organic and Medicinal Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 26, Wrocław 50-370, Poland
| |
Collapse
|
23
|
Borioni J, Baumgartner MT, Puiatti M, Jimenez LB. 1-Substituted Perylene Derivatives by Anionic Cyclodehydrogenation: Analysis of the Reaction Mechanism. ACS OMEGA 2022; 7:21860-21867. [PMID: 35785287 PMCID: PMC9245103 DOI: 10.1021/acsomega.2c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Perylene derivatives constitute a promising class of compounds with technological applications mainly due to their optoelectronic properties. One mechanism proposed to synthesize them, starting from binaphthyl derivatives, is anionic cyclodehydrogenation (under reductive conditions). However, the scope of this reaction is limited. In the present study, we report a theoretical and experimental analysis of this particular reaction mechanism for its use in the synthesis of 1-substituted perylenes. Different substituents at position 2 of 1,1'-binaphthalene were evaluated: -OCH3, -OSi(CH3)2C(CH3)3, and -N(CH3)2. Based on density functional theory (DFT) calculations on the proposed mechanism, we suggest that the cyclization takes place from binaphthyl dianion instead of its radical anion. This dianion has an open-shell diradical nature, and this could be the species that was detected by EPR in previous studies. The O-substituted derivatives could not afford the perylene derivatives since their radical anions fragment and the necessary binaphthyl dianion could not be formed. On the other hand, 49% of N,N-dimethylperylen-1-amine was obtained starting from the N-substituted 2-binapthyl derivative as a substrate, employing a simpler experimental methodology.
Collapse
|
24
|
Rapid formation of Csp3–Csp3 bonds through copper-catalyzed decarboxylative Csp3–H functionalization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Ball LT, Swan C, Maggi L, Park M, Taylor S, Shepherd W. Generation of Thiyl Radicals from Air-Stable, Odorless Thiophenol Surrogates: Application to Visible-Light-Promoted C–S Cross-Coupling. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe synthetic versatility of thiophenols is offset by their air-sensitivity and foul odor. It is demonstrated that S-aryl isothiouronium salts can be used as precursors to thiyl radicals, extending the practical benefits of these air-stable, odorless salts from ionic to single electron manifolds. The isothiouronium salts are accessed via Ni-catalyzed cross-coupling of (hetero)aryl iodides and thiourea and are isolated as free-flowing solids following anion exchange. Judicious choice of a redox-innocent counteranion enables use of these convenient thiophenol surrogates in radical processes, as is exemplified by the synthesis of non-symmetrical diaryl thioethers via light-promoted S-arylation.
Collapse
|
26
|
Bonesi SM, Protti S, Capucciati A, Fagnoni M. Photogenerated aryl mesylate and aryl diethyl phosphate radical cations: a time-resolved spectroscopy investigation. NEW J CHEM 2022. [DOI: 10.1039/d2nj01755e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced electron transfer reaction of selected aryl sulfonates and phosphates with K2S2O8 in a MeCN water (9 : 1) mixture has been investigated by LFP experiments.
Collapse
Affiliation(s)
- Sergio M. Bonesi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET—Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
| | | | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
| |
Collapse
|
27
|
Li H, Liu Y, Chiba S. Leveraging of Sulfur Anions in Photoinduced Molecular Transformations. JACS AU 2021; 1:2121-2129. [PMID: 34977884 PMCID: PMC8715496 DOI: 10.1021/jacsau.1c00363] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 05/25/2023]
Abstract
This perspective describes recent advances in the use of sulfur anions to promote molecular transformations under irradiation with visible light. The topics are classified by the following reaction modes performed by the key sulfur anions: (1) C-S coupling via electron donor-acceptor (EDA) interactions, (2) photoinduced molecular transformation via sulfur anion EDA catalysis, (3) sulfur anions as photoredox and hydrogen atom transfer (HAT) catalysts, and 4) dithiocarbamate and xanthate as nucleophilic catalysts for photoinduced radical cascade reactions.
Collapse
Affiliation(s)
- Haoyu Li
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yuliang Liu
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shunsuke Chiba
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
28
|
Mąkosza M. Does Nucleophilic Substitution in Nitroarenes Proceed via Single Electron Transfer (SET)? European J Org Chem 2021. [DOI: 10.1002/ejoc.202101017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mieczysław Mąkosza
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw 42 Poland
| |
Collapse
|
29
|
Alam S, Karim R, Khan A, Pal AK, Maruani A. Copper‐Catalyzed Preparation of Alkenylboronates and Arylboronates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Safiul Alam
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Rejaul Karim
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Aminur Khan
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Amarta Kumar Pal
- Centre for Advance Studies in Chemistry North-Eastern Hill University Mawlai Campus Shillong 793022 India
| | - Antoine Maruani
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 Université de Paris UFR Biomédicale 45 rue des Saints Pères Paris 75006 France
| |
Collapse
|
30
|
Greener AJ, Ubysz P, Owens-Ward W, Smith G, Ocaña I, Whitwood AC, Chechik V, James MJ. Radical-anion coupling through reagent design: hydroxylation of aryl halides. Chem Sci 2021; 12:14641-14646. [PMID: 34881017 PMCID: PMC8580057 DOI: 10.1039/d1sc04748e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
The design and development of an oxime-based hydroxylation reagent, which can chemoselectively convert aryl halides (X = F, Cl, Br, I) into phenols under operationally simple, transition-metal-free conditions is described. Key to the success of this approach was the identification of a reducing oxime anion which can interact and couple with open-shell aryl radicals. Experimental and computational studies support the proposed radical-nucleophilic substitution chain mechanism.
Collapse
Affiliation(s)
- Andrew J Greener
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Patrycja Ubysz
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Will Owens-Ward
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - George Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Ivan Ocaña
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Adrian C Whitwood
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Victor Chechik
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Michael J James
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
31
|
Yu D, To WP, Liu Y, Wu LL, You T, Ling J, Che CM. Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chem Sci 2021; 12:14050-14058. [PMID: 34760188 PMCID: PMC8565399 DOI: 10.1039/d1sc04258k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
The photo-induced cleavage of C(sp2)-Cl bonds is an appealing synthetic tool in organic synthesis, but usually requires the use of high UV light, photocatalysts and/or photosensitizers. Herein is described a direct photo-induced chloroarene activation with UVA/blue LEDs that can be used in the reductive Heck cyclization of indoles and without the use of a photocatalyst or photosensitizer. The indole compounds examined display room-temperature phosphorescence. The photochemical reaction tolerates a panel of functional groups including esters, alcohols, amides, cyano and alkenes (27 examples, 50-88% yields), and can be used to prepare polycyclic compounds and perform the functionalization of natural product analogues in moderate to good yields. Mechanistic experiments, including time-resolved absorption spectroscopy, are supportive of photo-induced electron transfer between the indole substrate and DIPEA, with the formation of radical intermediates in the photo-induced dearomatization reaction.
Collapse
Affiliation(s)
- Daohong Yu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Tingjie You
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jesse Ling
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| |
Collapse
|
32
|
Wang S, Wang H, König B. Light-Induced Single-Electron Transfer Processes involving Sulfur Anions as Catalysts. J Am Chem Soc 2021; 143:15530-15537. [PMID: 34542279 DOI: 10.1021/jacs.1c07785] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoredox catalysis has evolved as an attractive approach to enable a wide variety of chemical reactions with high selectivity under mild conditions. The development of novel photocatalytic systems is key to obtaining new reactivity and improving their catalytic performances. In this context, cost-effective organic anion-based photocatalysts have recently attracted increasing interest. In particular, sulfur-based anionic catalysts are of interest due to their unique redox properties. This Perspective highlights and discusses recent advances in light-induced single-electron-transfer processes directly involving sulfur anions as catalysts. The content of this Perspective is organized along the different photoinduced electron-transfer pathways between catalysts and substrates.
Collapse
Affiliation(s)
- Shun Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Hua Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
33
|
Reidl TW, Bandar JS. Lewis Basic Salt-Promoted Organosilane Coupling Reactions with Aromatic Electrophiles. J Am Chem Soc 2021; 143:11939-11945. [PMID: 34314159 PMCID: PMC8510683 DOI: 10.1021/jacs.1c05764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lewis basic salts promote benzyltrimethylsilane coupling with (hetero)aryl nitriles, sulfones, and chlorides as a new route to 1,1-diarylalkanes. This method combines the substrate modularity and selectivity characteristic of cross-coupling with the practicality of a base-promoted protocol. In addition, a Lewis base strategy enables a complementary scope to existing methods, employs stable and easily prepared organosilanes, and achieves selective arylation in the presence of acidic functional groups. The utility of this method is demonstrated by the synthesis of pharmaceutical analogues and its use in multicomponent reactions.
Collapse
Affiliation(s)
- Tyler W. Reidl
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
34
|
Bai J, Wang T, Dai B, Liu Q, Yu P, Jia T. Radical Anion Promoted Chemoselective Cleavage of Csp 2-S Bond Enables Formal Cross-Coupling of Aryl Methyl Sulfones with Alcohols. Org Lett 2021; 23:5761-5765. [PMID: 34292755 DOI: 10.1021/acs.orglett.1c01926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel formal cross-coupling of aryl methyl sulfones and alcohols affording alkyl aryl ethers via an SRN1 pathway is developed. Two marketed antitubercular drugs were efficiently prepared employing this approach as the key step. A dimsyl-anion initiated radical chain process was revealed as the major pathway. DFT calculations indicate that the formation of a radical anion via nucleophilic addition of alkoxide to the aryl radical is the key step in determining the observed chemoselectivity.
Collapse
Affiliation(s)
- Jixiang Bai
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shanxi 710069, P.R. China.,Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, P.R. China
| | - Tianxin Wang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, P.R. China
| | - Botao Dai
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, P.R. China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shanxi 710069, P.R. China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, P.R. China
| | - Tiezheng Jia
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
35
|
Dong J, Liu J, Song H, Liu Y, Wang Q. Metal-, Photocatalyst-, and Light-Free Minisci C-H Acetylation of N-Heteroarenes with Vinyl Ethers. Org Lett 2021; 23:4374-4378. [PMID: 34024106 DOI: 10.1021/acs.orglett.1c01310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a mild, operationally simple method for Minisci C-H acetylation of N-heteroarenes using vinyl ethers as robust, inexpensive acetyl sources. The reactions do not require a conventional photocatalysis, electrocatalysis, metal catalysis, light activation, or high temperature. This method is thus significantly more sustainable than previously reported methods in terms of cost, reagent toxicity, and waste generation. This protocol can be expected to obtain medically relevant molecules from abundant feedstock materials.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianhua Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
36
|
Zhang X, Tan CH. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Seifinoferest B, Tanbakouchian A, Larijani B, Mahdavi M. Ullmann‐Goldberg and Buchwald‐Hartwig C−N Cross Couplings: Synthetic Methods to Pharmaceutically Potential N‐Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Behnoush Seifinoferest
- Endocrinology and Metabolism Research Centre Tehran University of Medical Sciences University of Tehran Nejatollahi St Enghelab St Iran
| | - Arezoo Tanbakouchian
- Department of Chemistry, College of Chemistry University of Tehran 16 Azar St Enghelab St Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Centre Tehran University of Medical Sciences University of Tehran Nejatollahi St Enghelab St Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Centre Tehran University of Medical Sciences University of Tehran Nejatollahi St Enghelab St Iran
| |
Collapse
|
38
|
Caldwell ST, O'Byrne SN, Wilson C, Cvetko F, Murphy MP, McCarron JG, Hartley RC. Photoactivated release of membrane impermeant sulfonates inside cells. Chem Commun (Camb) 2021; 57:3917-3920. [PMID: 33871501 PMCID: PMC7611313 DOI: 10.1039/d0cc07713e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photouncaging delivers compounds with high spatial and temporal control to induce or inhibit biological processes but the released compounds may diffuse out. We here demonstrate that sulfonate anions can be photocaged so that a membrane impermeable compound can enter cells, be uncaged by photoirradiation and trapped within the cell. Photocaged sulfonate delivers membrane impermeant compounds to cells.![]()
Collapse
Affiliation(s)
| | - Sean N O'Byrne
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Filip Cvetko
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, CB2 0XY, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, CB2 0XY, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | | |
Collapse
|
39
|
Schmalzbauer M, Marcon M, König B. Excited State Anions in Organic Transformations. Angew Chem Int Ed Engl 2021; 60:6270-6292. [PMID: 33002265 PMCID: PMC7986118 DOI: 10.1002/anie.202009288] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Utilizing light is a smart way to fuel chemical transformations as it allows the energy to be selectively focused on certain molecules. Many reactions involving electronically excited species proceed via open-shell intermediates, which offer novel and unique routes to expand the hitherto used synthetic toolbox in organic chemistry. The direct conversion of non-prefunctionalized, less activated compounds is a highly desirable goal to pave the way towards more sustainable and atom-economic chemical processes. Photoexcited closed-shell anions have been shown to reach extreme potentials in single electron transfer reactions and reveal unusual excited-state reactivity. It is, therefore, surprising that their use as a reagent or photocatalyst is limited to a few examples. In this Review, we briefly discuss the characteristics of anionic photochemistry, highlight pioneering work, and show recent progress which has been made by utilizing photoexcited anionic species in organic synthesis.
Collapse
Affiliation(s)
- Matthias Schmalzbauer
- Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Michela Marcon
- Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| | - Burkhard König
- Faculty of Chemistry and PharmacyUniversity of RegensburgUniversitätsstrasse 3193053RegensburgGermany
| |
Collapse
|
40
|
Feofanov M, Akhmetov V, Takayama R, Amsharov K. Catalyst-Free Synthesis of O-Heteroacenes by Ladderization of Fluorinated Oligophenylenes. Angew Chem Int Ed Engl 2021; 60:5199-5203. [PMID: 32924244 PMCID: PMC7986400 DOI: 10.1002/anie.202007427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Indexed: 01/19/2023]
Abstract
A novel catalyst-free approach to benzoannulated oxygen-containing heterocycles from fluorinated oligophenylenes is reported. Unlike existing methods, the presented reaction does not require an oxygen-containing precursor and relies on an external oxygen source, potassium tert-butoxide, which serves as an O2- synthon. The radical nature of the reaction facilitates nucleophilic substitution even in the presence of strong electron-donating groups and enables de-tert-butylation required for the complete annulation. Also demonstrated is the applicability of the method to introduce five-, six-, and seven-membered rings containing oxygen, whereas multiple annulations also open up a short synthetic path to ladder-type O-heteroacenes and oligodibenzofurans.
Collapse
Affiliation(s)
- Mikhail Feofanov
- Friedrich-Alexander University Erlangen-NuernbergDepartment of Chemistry and PharmacyOrganic Chemistry IINikolaus-Fiebiger Str. 1091058ErlangenGermany
- Institute of ChemistryOrganic ChemistryMartin-Luther-University Halle-WittenbergKurt-Mothes-Strasse 206120HalleGermany
| | - Vladimir Akhmetov
- Friedrich-Alexander University Erlangen-NuernbergDepartment of Chemistry and PharmacyOrganic Chemistry IINikolaus-Fiebiger Str. 1091058ErlangenGermany
- Institute of ChemistryOrganic ChemistryMartin-Luther-University Halle-WittenbergKurt-Mothes-Strasse 206120HalleGermany
| | - Ryo Takayama
- Friedrich-Alexander University Erlangen-NuernbergDepartment of Chemistry and PharmacyOrganic Chemistry IINikolaus-Fiebiger Str. 1091058ErlangenGermany
| | - Konstantin Amsharov
- Friedrich-Alexander University Erlangen-NuernbergDepartment of Chemistry and PharmacyOrganic Chemistry IINikolaus-Fiebiger Str. 1091058ErlangenGermany
- Institute of ChemistryOrganic ChemistryMartin-Luther-University Halle-WittenbergKurt-Mothes-Strasse 206120HalleGermany
- South Ural State Universitypr. Lenina 76454080ChelyabinskRussia
| |
Collapse
|
41
|
Feofanov M, Akhmetov V, Takayama R, Amsharov K. Catalyst‐Free Synthesis of O‐Heteroacenes by Ladderization of Fluorinated Oligophenylenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mikhail Feofanov
- Friedrich-Alexander University Erlangen-Nuernberg Department of Chemistry and Pharmacy Organic Chemistry II Nikolaus-Fiebiger Str. 10 91058 Erlangen Germany
- Institute of Chemistry Organic Chemistry Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Strasse 2 06120 Halle Germany
| | - Vladimir Akhmetov
- Friedrich-Alexander University Erlangen-Nuernberg Department of Chemistry and Pharmacy Organic Chemistry II Nikolaus-Fiebiger Str. 10 91058 Erlangen Germany
- Institute of Chemistry Organic Chemistry Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Strasse 2 06120 Halle Germany
| | - Ryo Takayama
- Friedrich-Alexander University Erlangen-Nuernberg Department of Chemistry and Pharmacy Organic Chemistry II Nikolaus-Fiebiger Str. 10 91058 Erlangen Germany
| | - Konstantin Amsharov
- Friedrich-Alexander University Erlangen-Nuernberg Department of Chemistry and Pharmacy Organic Chemistry II Nikolaus-Fiebiger Str. 10 91058 Erlangen Germany
- Institute of Chemistry Organic Chemistry Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Strasse 2 06120 Halle Germany
- South Ural State University pr. Lenina 76 454080 Chelyabinsk Russia
| |
Collapse
|
42
|
Jean-Louis Luche and the Interpretation of Sonochemical Reaction Mechanisms. Molecules 2021; 26:molecules26030755. [PMID: 33535612 PMCID: PMC7867199 DOI: 10.3390/molecules26030755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Sonochemistry can be broadly defined as the science of chemical and physical transformations produced under the influence of sound. The use of sound energy is rather a young branch of chemistry and does not have the clear definitive rules of other, more established, divisions such as those in cycloaddition reactions or photochemistry. Nevertheless, there are a few guidelines which can help to predict what is going to happen when a reaction mixture is submitted to ultrasonic irradiation. Jean-Louis Luche, formulated some ideas of the mechanistic pathways involved in sonochemistry more than 30 years ago. He introduced the idea of “true” and “false” sonochemical reactions both of which are the result of acoustic cavitation. The difference was that the former involved a free radical component whereas only mechanical effects played a role the latter. The authors of this paper were scientific collaborators and friends of Jean-Louis Luche during those early years and had the chance to discuss and work with him on the mechanisms of sonochemistry. In this paper we will review the original rules (laws) as predicted by Jean-Louis Luche and how they have been further developed and extended in recent years.
Collapse
|
43
|
Sample HC, Senge MO. Nucleophilic Aromatic Substitution (S NAr) and Related Reactions of Porphyrinoids: Mechanistic and Regiochemical Aspects. European J Org Chem 2021; 2021:7-42. [PMID: 33519299 PMCID: PMC7821298 DOI: 10.1002/ejoc.202001183] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 12/29/2022]
Abstract
The nucleophilic substitution of aromatic moieties (SNAr) has been known for over 150 years and found wide use for the functionalization of (hetero)aromatic systems. Currently, several "types" of SNAr reactions have been established and notably the area of porphyrinoid macrocycles has seen many uses thereof. Herein, we detail the SNAr reactions of seven types of porphyrinoids with differing number and type of pyrrole units: subporphyrins, norcorroles, corroles, porphyrins, azuliporphyrins, N-confused porphyrins, and phthalocyanines. For each we analyze the substitution dependent upon: a) the type of nucleophile and b) the site of substitution (α, β, or meso). Along with this we evaluate this route as a synthetic strategy for the generation of unsymmetrical porphyrinoids. Distinct trends can be identified for each type of porphyrinoid discussed, regardless of nucleophile. The use of nucleophilic substitution on porphyrinoids is found to often be a cost-effective procedure with the ability to yield complex substituent patterns, which can be conducted in non-anhydrous solvents with easily accessible simple porphyrinoids.
Collapse
Affiliation(s)
- Harry C. Sample
- School of ChemistryTrinity Biomedical Sciences InstituteThe University of Dublin152‐160 Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM‐IAS)Technical University of MunichLichtenbergstrasse 2a85748GarchingGermany
| |
Collapse
|
44
|
Bugaenko DI, Volkov AA, Karchava AV, Yurovskaya MA. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon – carbon and carbon – heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II, VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Collapse
|
45
|
Schmalzbauer M, Marcon M, König B. Photoangeregte Anionen in organischen Reaktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Matthias Schmalzbauer
- Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Michela Marcon
- Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| | - Burkhard König
- Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
46
|
Talukdar R. Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Org Biomol Chem 2020; 18:8294-8345. [PMID: 33020775 DOI: 10.1039/d0ob01652g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of organic and inorganic brominated compounds including molecular bromine have been extensively used as oxidants in many organic photo-redox transformations in recent years, an area of ever growing interest because of greener and milder approaches. The oxidation power of these compounds is utilized through both mechanistic pathways (by hydrogen atom transfer or HAT in the absence of a photocatalyst and a combination of single electron transfer or SET and/or HAT in the presence of a photocatalyst). Not only as terminal oxidants for regeneration of photocatalysts, but brominated reactants have also contributed to the oxidation of the reaction intermediate(s) to carry on the radical chain process in several reactions. Here in this review mainly the non-brominative oxidative product formations are discussed, carried out since the last two decades, skipping the instances where they acted as terminal oxidants only to regenerate photocatalysts. The reactions are used to generate natural products, pharmaceuticals and beyond.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India.
| |
Collapse
|
47
|
Martínez AR, Morales LP, Ojeda ED, Rodríguez MC, Rodríguez-García I. The Proven Versatility of Cp 2TiCl. J Org Chem 2020; 86:1311-1329. [PMID: 33147037 DOI: 10.1021/acs.joc.0c01233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last two decades, titanocene monochloride has been postulated as a monoelectronic transfer reagent capable of catalyzing an important variety of chemical transformations. In this Perspective, our contributions to this growing field of research are summarized and analyzed. Especially known have been our contributions in C-C bond formation reactions, hydrogen-atom transfer from water to radicals, and isomerization reactions, as well as the development of a catalytic cycle that has subsequently allowed the preparation of a great variety of natural terpenes. It is also worth mentioning our contribution in the postulation of this single-electron transfer agent (SET) as a new green catalyst with a broad range of applications in organic and organometallic chemistry. The most significant catalytic processes developed by other research groups are also briefly described, with special emphasis on the reaction mechanisms involved. Finally, a reflection is made on the future trends in the research of this SET, aimed at consolidating this chemical as a new green reagent that will be widely used in fine chemistry, green chemistry, and industrial chemical processes.
Collapse
Affiliation(s)
- Antonio Rosales Martínez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - Laura Pozo Morales
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - Emilio Díaz Ojeda
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | - María Castro Rodríguez
- Department of Chemical Engineering, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain
| | | |
Collapse
|
48
|
Ando S, Tsuzaki M, Ishizuka T. Aryl Ether Syntheses via Aromatic Substitution Proceeding under Mild Conditions. J Org Chem 2020; 85:11181-11189. [PMID: 32786614 DOI: 10.1021/acs.joc.0c01250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, mild conditions for aromatic substitutions during the syntheses of aryl ethers were developed. In the reaction conditions, the choices of solvent, base, and the sequence for the addition of the reagents proved important. A wide variety of alcohols were used directly as nucleophiles and smoothly reacted with aryl chlorides that possessed either a nitro or a cyano group at either the ortho- or para-position. Controlled experiments we performed suggested that the reaction underwent a charge-transfer process mediated by a combination of DMF and tert-BuOK.
Collapse
Affiliation(s)
- Shin Ando
- Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi Chuo-ku, Kumamoto 862-0973, Japan
| | - Marina Tsuzaki
- Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi Chuo-ku, Kumamoto 862-0973, Japan
| | - Tadao Ishizuka
- Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
49
|
Wang W, Wang P, Zhang Q, Du P, Zhang J, Deng H, Jiang H. Construction of S-CF2/ O-CF2 bonds via inter/intramolecular radical nucleophilic substitution reaction. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Ge Y, Qin C, Bai L, Hao J, Liu J, Luan X. A Dearomatization/Debromination Strategy for the [4+1] Spiroannulation of Bromophenols with α,β‐Unsaturated Imines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yicong Ge
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Cheng Qin
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Lu Bai
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Jiamao Hao
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Jingjing Liu
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| | - Xinjun Luan
- Key Laboratory of Synthetic Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710127 China
| |
Collapse
|