1
|
Zhou S, Zou H, Huang X, Qi J, Xu Z. Base-promoted regio- and diastereoselective synthesis of tri- and tetra-substituted homoallenyl phosphine oxides via alkynyl enones. Org Biomol Chem 2025. [PMID: 40237441 DOI: 10.1039/d5ob00446b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A novel base-promoted method for hydrophosphinylation of alkynyl enones with secondary phosphine oxides has been developed. Using inexpensive and commercially available potassium carbonate, a variety of functionalized tri-substituted allene products were synthesized with exclusive regio- and diastereoselectivity under mild conditions. Furthermore, a one-pot, two-step, three-component tandem hydrophosphinylation/Heck reaction efficiently produced tetra-substituted homoallenyl phosphine oxides in excellent yields, demonstrating a relatively broad substrate scope.
Collapse
Affiliation(s)
- Shaochan Zhou
- College of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng, Shandong 252000, China.
| | - Haotian Zou
- College of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng, Shandong 252000, China.
| | - Xianqiang Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng, Shandong 252000, China.
| | - Jialin Qi
- College of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng, Shandong 252000, China.
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Yao T, Wang S, Liu Y, Yin G, Li Y. Nickel-Catalyzed 1,1-Carboboration of Polysubstituted Internal Alkenes. Org Lett 2025; 27:3691-3696. [PMID: 40167445 DOI: 10.1021/acs.orglett.5c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Herein, we report a nickel-catalyzed 1,1-carboboration of di- and trisubstituted alkenyl boronates through a chain-walking strategy. This reaction effectively addresses the polarity-mismatch problem via ligand control, enabling the coupling of various carbon-based electrophiles while accommodating a broad range of functional groups. The approach yields diverse tetrasubstituted carbon gem-diboronate derivatives with exceptional regioselectivity. The synthetic utility of this method is further demonstrated through the concise synthesis of high-value bioactive molecules.
Collapse
Affiliation(s)
- Tong Yao
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Shiyang Wang
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
3
|
Teng H, Zhi Q, Zhang Y, Zheng C, Chen J, Liang Z, Yu X, Zhang Y, Zhang J. One-pot synthesis of a highly active single-atom Pd catalyst for the Heck reaction. Chem Commun (Camb) 2025; 61:5770-5773. [PMID: 40123567 DOI: 10.1039/d5cc00796h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A two-dimensional nitrogen-doped graphene-supported palladium single-atom catalyst (Pd SACs/NG) was successfully, precisely and concisely synthesized by a one-pot method. We report for the first time that 2D Pd SACs/NG oriented towards the Heck reaction achieved catalytic efficiency with a TON up to 133 256, significantly outperforming the commercial Pd(CH3COO)2 and Pd/C catalysts, surpassing previous reports.
Collapse
Affiliation(s)
- Hui Teng
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Qingyun Zhi
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yiming Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Chengyou Zheng
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Jie Chen
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Zhenjiang Liang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Xinghua Yu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China.
| | - Yujun Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, P. R. China.
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China.
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
4
|
Chen W, Sohail M, Veeranna Y, Yang Y, Bengali AA, Zhou HC, Madrahimov ST. N-Alkylation through the Borrowing Hydrogen Pathway Catalyzed by the Metal-Organic Framework-Supported Iridium-Monophosphine Complex. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17775-17782. [PMID: 38627901 PMCID: PMC11955943 DOI: 10.1021/acsami.4c02143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 03/28/2025]
Abstract
Further development in the area of medicinal chemistry requires facile and atom-economical C-N bond formation from readily accessible precursors using recyclable and reusable catalysts with low process toxicity. In this work, direct N-alkylation of amines with alcohols is performed with a series of Ir-phosphine-functionalized metal-organic framework (MOF) heterogeneous catalysts. The grafted monophosphine-Ir complexes were studied comprehensively to illustrate the ligand-dependent reactivity. The afforded MOF catalysts exhibited high reactivity and selectivity toward N-alkylamine product formation, especially UiO-66-PPh2-Ir, which showed 90% conversion after recycling with no catalyst residue remaining in the product after the reaction. Furthermore, analyses of the active catalyst, mechanistic studies, control experiments, and H2 adsorption tests are consistent with the conclusion that immobilization of the iridium complex on the MOF support enables the formation of the iridium-monophosphine complex and enhances its stability during the reaction. To illustrate the potential of the catalyst for application in medicinal chemistry, two pharmaceutical precursors were synthesized with up to 99% conversion and selectivity.
Collapse
Affiliation(s)
- Wenmiao Chen
- Department
of Arts and Science, Texas A&M University
at Qatar, Education City,
Post Office Box 23874, Doha, Qatar
- School
of Materials Science and Engineering, China
University of Petroleum (East China) Qingdao, Shandong 266580, People’s Republic
of China
| | - Muhammad Sohail
- Department
of Arts and Science, Texas A&M University
at Qatar, Education City,
Post Office Box 23874, Doha, Qatar
- Department
of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
| | - Yempally Veeranna
- Department
of Arts and Science, Texas A&M University
at Qatar, Education City,
Post Office Box 23874, Doha, Qatar
| | - Yihao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Ashfaq A. Bengali
- Department
of Arts and Science, Texas A&M University
at Qatar, Education City,
Post Office Box 23874, Doha, Qatar
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United
States
| | - Sherzod T. Madrahimov
- Department
of Arts and Science, Texas A&M University
at Qatar, Education City,
Post Office Box 23874, Doha, Qatar
| |
Collapse
|
5
|
Tong X, Ren L, Wang Y, Zhang D, Li J, Xia C. Visible-Light-Induced Tandem Nickel-Catalyzed Heck Cyclization/Self-Promoted [2+2] Intermolecular Cycloaddition. Org Lett 2025; 27:2775-2781. [PMID: 40071539 DOI: 10.1021/acs.orglett.5c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Visible-light-induced transition metal (TM) catalysis has emerged as a new paradigm to discover unprecedented transformations. The reported nickel species as TM photocatalysts are mainly involved in the homolysis of Ni(II) complex or alkyl halide activation. Herein, we describe that the photoexcited nickel species could facilitate Heck cyclization by accelerating the anti-β-hydride elimination. Meanwhile, a tandem visible-light-induced substrate self-promoted intermolecular [2+2] photocycloaddition without the assistance of additional photocatalysts was discovered.
Collapse
Affiliation(s)
- Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Linlin Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Yonggong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Derun Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| | - Jianwei Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
6
|
Das M, Guha A, Mukherjee A, Bhattacharya S. C-Halogen Bond Activation by Ruthenium(0): Application in Synthesis and Catalysis. Inorg Chem 2025; 64:4773-4778. [PMID: 40025699 DOI: 10.1021/acs.inorgchem.4c05379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Activation of the C-X (X = I, Br, Cl) bond in four N-aryl benzaldimine ligands (L1-L4), bearing halogen atoms at both the ortho-positions of the phenyl ring in the benzaldimine fragment, was successfully brought about via interaction of these ligands with the electron-rich Ru(0) center in [Ru(CO)3(PPh3)2], leading to the formation of four cyclometalated complexes of ruthenium(II) (C1-C4). Crystal structures of all of the complexes were determined. The demonstrated ability of the Ru(0) center in [Ru(CO)3(PPh3)2] to activate the C-halogen bond was also exploited in catalytic Suzuki-type C-C cross-coupling reactions between aryl halides and aryl boronic acids.
Collapse
Affiliation(s)
- Mintu Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Abhik Guha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Aparajita Mukherjee
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
7
|
Li C, Cheng Y, Pang F, Yan X, Huang Z, Wang X, Wang X, Li Y, Wang J, Xu H. Halogenation of arenes using alkali metal halides/Fe(NO 3) 3·9H 2O at room temperature. RSC Adv 2025; 15:8523-8528. [PMID: 40109924 PMCID: PMC11920861 DOI: 10.1039/d5ra00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
A simple, efficient and environmentally friendly methodology for the halodecarboxylation of anisole analogues using Fe(NO3)3·9H2O/KBr or NaI at room temperature was developed. In this method, most substrates with an electron-donating group afforded corresponding products in good to excellent yields, whereas those with an electron-withdrawing group afforded low to moderate yields. More importantly, this protocol was also applicable for gram-scale synthesis. It is hoped that this methodology will be highly useful in organic synthesis.
Collapse
Affiliation(s)
- Caicui Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Yao Cheng
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Fudan Pang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Xiushuo Yan
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Zhengtao Huang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Xinmei Wang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Xiaodan Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Yiying Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Brain Science Research Transformation in Tropical Environment of Hainan Province, School of Basic Medicine and Life Sciences, Hainan Medical University Haikou China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University Haikou 571127 China
| |
Collapse
|
8
|
Sun S, Sun S, Zi W. Palladium-catalyzed enantioselective β-hydride elimination for the construction of remote stereocenters. Nat Commun 2025; 16:2227. [PMID: 40044712 PMCID: PMC11882921 DOI: 10.1038/s41467-025-57437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The β-H elimination is a crucial elementary step in transition-metal catalysis, but controlling the stereochemistry of this process has been underdeveloped. The limited works reported so far have only focused on creating axial chirality in allenes, and no report has been able to build central chirality using asymmetric β-H elimination. In this study, we report a Trost ligand-enabled enantioselective desymmetric β-H elimination reaction from π-allyl-Pd. This transformation provides rapid access to cyclohexenes bearing a C4-remoted stereocenter, and total synthesis of (-)-oleuropeic acid and (-)-7-hydroxyterpineol is demonstrated. Computational studies have shown that the β-H elimination is the rate-determining step, and the non-covalent interactions between the amide moiety of the Trost ligand and the benzene and cyclohexane moieties of the substrate play a key role in stereocontrol during the β-H elimination.
Collapse
Affiliation(s)
- Shaozi Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shengnan Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China.
| |
Collapse
|
9
|
Kamanina OA, Rybochkin PV, Borzova DV, Soromotin VN, Galushko AS, Kashin AS, Ivanova NM, Zvonarev AN, Suzina NE, Holicheva AA, Boiko DA, Arlyapov VA, Ananikov VP. Sustainable catalysts in a short time: harnessing bacteria for swift palladium nanoparticle production. NANOSCALE 2025; 17:5289-5300. [PMID: 39878071 DOI: 10.1039/d4nr03661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Adapting biological systems for nanoparticle synthesis opens an orthogonal Green direction in nanoscience by reducing the reliance on harsh chemicals and energy-intensive procedures. This study addresses the challenge of efficient catalyst preparation for organic synthesis, focusing on the rapid formation of palladium (Pd) nanoparticles using bacterial cells as a renewable and eco-friendly support. The preparation of catalytically active nanoparticles on the bacterium Paracoccus yeei VKM B-3302 represents a more suitable approach to increase the reaction efficiency due to its resistance to metal salts. We introduce an efficient method that significantly reduces the preparation time of Pd nanoparticles on Paracoccus yeei bacteria to only 7 min, greatly accelerating the process compared with traditional methods. Our findings reveal the major role of live bacterial cells in the formation and stabilization of Pd nanoparticles, which exhibit high catalytic activity in the Mizoroki-Heck reaction. This method not only ensures high yields of the desired product but also offers a greener and more sustainable alternative to conventional catalytic processes. The rapid preparation and high efficiency of this biohybrid catalyst opens new perspectives for the application of biosupported nanoparticles in organic synthesis and a transformative sustainable pathway for chemical production processes.
Collapse
Affiliation(s)
| | | | | | | | - Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
| | - Alexey S Kashin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
| | - Nina M Ivanova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
| | - Anton N Zvonarev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia E Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | | | - Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
| | | | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
- Organic Chemistry Department, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| |
Collapse
|
10
|
Iizumi K, Yamaguchi J. Transformative reactions in nitroarene chemistry: C-N bond cleavage, skeletal editing, and N-O bond utilization. Org Biomol Chem 2025; 23:1746-1772. [PMID: 39831336 DOI: 10.1039/d4ob01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SNAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as ipso-substitution SNAr reactions, have been extensively explored. Interactions between ortho-nitro groups and neighboring substituents also provide unique opportunities for selective transformations. However, beyond these well-established processes, direct transformations of nitro groups have been relatively limited. In recent years, significant advancements have been made in alternative methodologies for nitro group transformations. This review focuses on the latest progress in novel transformations of nitroarenes, with emphasis on three major categories: (i) functional group transformations involving C-N bond cleavage in nitroarenes, (ii) skeletal editing via nitrene intermediates generated by N-O bond cleavage, and (iii) the utilization of nitroarenes as an oxygen source through N-O bond cleavage. These developments under-score the expanding utility of nitroarenes in modern organic synthesis.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
11
|
Durfy CS, Huang M, Zurakowski JA, Boyle PD, Drover MW. Ring strain governs transmetalation behaviour at a tucked-in iron complex. Chem Commun (Camb) 2025; 61:3323-3326. [PMID: 39853132 DOI: 10.1039/d4cc06176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Studies that independently investigate [M]-C transmetalation reactions using two different metals are uncommon and yet understanding this reactivity is important to unlocking new synthetic approaches and product classes. Here, we show that the strained [Fe]-C complex, [(η6-C5Me4-CH2)Fe(diphosphine)] undergoes transmetalation with rhodium(I) and iridium(I) diolefin salts, leading to rapid Fe-C(sp3) bond cleavage and M-C(sp3) (M = Rh or Ir) bond generation.
Collapse
Affiliation(s)
- Connor S Durfy
- Department of Chemistry, Western University, 1151 Richmond St, London, ON, N8K 3G6, Canada.
| | - Michelle Huang
- Department of Chemistry, Western University, 1151 Richmond St, London, ON, N8K 3G6, Canada.
| | - Joseph A Zurakowski
- Department of Chemistry, Western University, 1151 Richmond St, London, ON, N8K 3G6, Canada.
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Paul D Boyle
- Department of Chemistry, Western University, 1151 Richmond St, London, ON, N8K 3G6, Canada.
| | - Marcus W Drover
- Department of Chemistry, Western University, 1151 Richmond St, London, ON, N8K 3G6, Canada.
| |
Collapse
|
12
|
Xu Z, Geng T, Du J, Zuo Y, Hu X, Liu L, Shi Z, Huang H. Visible-light-mediated radical difunctionalization of alkenes with aromatic aldehydes. Org Biomol Chem 2025. [PMID: 39957547 DOI: 10.1039/d4ob02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We have developed a visible-light-mediated three-component tandem reaction of aromatic aldehydes with acrylates using a Hantzsch ester as the hydrogen atom transfer reagent, generating diethyl pentanedioate products in a one-pot synthesis. The reaction facilitates direct formation of acyl groups from the corresponding aldehydes, which are subsequently coupled successively to two molecules of acrylate in a Giese addition.
Collapse
Affiliation(s)
- Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Tao Geng
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoxiao Hu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Lin Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhiqiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
13
|
Wang S, Ning L, Mao T, Zhou Y, Pu M, Feng X, Dong S. Anti-Markovnikov hydroallylation reaction of alkenes via scandium-catalyzed allylic C‒H activation. Nat Commun 2025; 16:1423. [PMID: 39915462 PMCID: PMC11802871 DOI: 10.1038/s41467-025-56602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Compared with rare-earth (RE)…heteroatom interaction, RE…π interaction, frequently used in facilitating regio- and stereoselectivity of olefin polymerizations, is seldomly used to trigger catalytic C - H functionalization. Here, we describe a direct anti-Markovnikov hydroallylation reaction of styrene derivatives with 1-aryl-2-alkyl alkenes and α-alkenes by use of RE…π interaction. This protocol provides a straightforward and atom-efficient route for the synthesis of valuable chain elongated internal alkenes (65 examples, up to 99% yield, > 19:1 E/Z ratio). The reaction proceeds via an allylic Csp3‒H activation pathway initiated by site-selective deprotonation with the assistance of cationic imidazolin-2-iminato scandium alkyl species followed by alkene insertion into the resulting scandium-allyl bond. A catalytic amount of Lewis base additives, such as amine and tetrahydrofuran (THF) show significant effects on the reactivity and E/Z selectivity. The reaction mechanism is elucidated by experimental studies and theoretical calculations.
Collapse
Affiliation(s)
- Shiyu Wang
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu, 610064, China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu, 610064, China
| | - Tao Mao
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu, 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu, 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu, 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu, 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education, College of Chemistry Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
14
|
Mondal A, Breitwieser K, Danés S, Grünwald A, Heinemann FW, Morgenstern B, Müller F, Haumann M, Schütze M, Kass D, Ray K, Munz D. π-Lewis Base Activation of Carbonyls and Hexafluorobenzene. Angew Chem Int Ed Engl 2025; 64:e202418738. [PMID: 39714412 DOI: 10.1002/anie.202418738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
We report hitherto elusive side-on η2-bonded palladium(0) carbonyl (anthraquinone, benzaldehyde) and arene (benzene, hexafluorobenzene) palladium(0) complexes and present the catalytic hydrodefluorination of hexafluorobenzene by cyclohexene. The comparison with respective cyclohexene, pyridine and tetrahydrofuran complexes reveals that the experimental ligand binding strengths follow the order THF
Collapse
Affiliation(s)
- Aditesh Mondal
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Kevin Breitwieser
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Sergi Danés
- Departament de Química, Institut de Química Computacional I Catàlisi, Universitat de Girona, c/m. Aurelia Capmany 69, 17003, Girona, Spain
| | - Annette Grünwald
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
- Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058, Erlangen, Germany
| | - Frank W Heinemann
- Inorganic and General Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058, Erlangen, Germany
| | - Bernd Morgenstern
- Solid State Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| | - Frank Müller
- Experimental Physics and Center for Biophysics, Saarland University, Campus E2.9, D-66123, Saarbrücken, Germany
| | - Michael Haumann
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Maximilian Schütze
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, D-66123, Saarbrücken, Germany
| |
Collapse
|
15
|
Yang Y, Shi J, Liu C, Liu Q, Yang J, Tong X, Lu J, Wu J. Engineered Polymeric Carbon Nitride for Photocatalytic Diverse Functionalization of Electronic-Rich Alkenes. Angew Chem Int Ed Engl 2025; 64:e202417099. [PMID: 39582385 DOI: 10.1002/anie.202417099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Engineered polymeric carbon nitride represents a promising class of metal-free semiconductor photocatalysts for organic synthesis. Herein, we utilized engineered polymeric carbon nitride nanosheets, which exhibit an increased specific surface area and band gap due to enhanced quantum confinement from vacancy enrichment. These nanosheets serve as a heterogeneous organic semiconductor photocatalyst to facilitate diverse functionalizations of electron-rich alkenes, including arylsulfonylation, aminodifluoroalkylation, and oxytrifluoromethylation. This catalytic system operates under mild conditions, offering excellent functional group compatibility and high yields. Additionally, the catalyst demonstrates outstanding recyclability and efficiency in flow reactors, highlighting its significant potential for industrial applications.
Collapse
Affiliation(s)
- Youqing Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, Huaibei Normal University, Huaibei, Anhui, 235000, P.R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jiwei Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Tianjin University International Campus of, Tianjin University Binhai New City, Fuzhou, 350207, P. R. China
| | - Chenguang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Qiong Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou, 510070, P. R. China
| | - Jian Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Xiaogang Tong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| |
Collapse
|
16
|
Mori H, Sakurada A, Sawamura M, Masuda Y. Photocatalytic Alkene-Migrative Chain Elongation of 2-Phosphinostyrenes with Aldehydes. Org Lett 2025; 27:439-443. [PMID: 39731550 DOI: 10.1021/acs.orglett.4c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
The photocatalytic alkene-migrative chain elongation reaction of 2-phosphinostyrenes with aldehydes under mild conditions in response to blue light was demonstrated. A broad range of aldehydes, both aliphatic and aromatic, participated in this reaction to afford alkene-phosphine oxides in a Z-selective manner. Mechanistic experiments suggested the formation of benzophospholene-based ylide intermediates via photocatalytic cyclization of phosphinostyrenes followed by solvent-mediated proton transfer under base-free reaction conditions.
Collapse
Affiliation(s)
- Haruna Mori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ayaka Sakurada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yusuke Masuda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
17
|
Dos Santos NR, Schober JV, Laconsay CJ, Palazzo AM, Kuhn L, Chu A, Hanks B, Hanson K, Wu J, Alabugin IV. Assembly of Pyrenes through a Quadruple Photochemical Cascade: Blocking Groups Allow Diversion from the Double Mallory Path to Photocyclization at the Bay Region. J Am Chem Soc 2025; 147:1074-1091. [PMID: 39729355 DOI: 10.1021/jacs.4c14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We present a six-step cascade that converts 1,3-distyrylbenzenes (bis-stilbenes) into nonsymmetric pyrenes in 40-60% yields. This sequence merges photochemical steps, E,Z-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design. An unusual aspect of this cascade is that the same photochemical process (the Mallory reaction) is first promoted and then blocked in different stages within a photochemical cascade. The use of blocking groups is the key feature that makes simple bis-stilbenes suitable substrates for directed double cyclization. While the first stilbene subunit undergoes a classic Mallory photocyclization to form a phenanthrene intermediate, the next ring-forming step is diverted from the conventional Mallory path into a photocyclization of the remaining alkene at the phenanthrene's bay region. Although earlier literature suggested that this reaction is unfavorable, we achieved this diversion via incorporation of blocking groups to prevent the Mallory photocyclization. The two photocyclizations are assisted by the relief of the excited state antiaromaticity. Reaction selectivity is controlled by substituent effects and the interplay between photochemical and radical reactivity. Furthermore, the introduction of donor substituents at the pendant styrene group can further extend this photochemical cascade through a radical 1,2-aryl migration. Rich photophysical and supramolecular properties of the newly substituted pyrenes illustrate the role of systematic variations in the structure of this classic chromophore for excited state engineering.
Collapse
Affiliation(s)
- Nikolas R Dos Santos
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - João Vitor Schober
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Croix J Laconsay
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Alexandria M Palazzo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Angel Chu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Benjamin Hanks
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Judy Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
18
|
Goel K, Satyanarayana G. A rapid pathway to molecular complexity: a palladium-catalyzed six-fold domino process to access polycyclic frameworks. Chem Commun (Camb) 2025; 61:536-539. [PMID: 39651541 DOI: 10.1039/d4cc05380j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Herein, we present a hitherto unexplored efficient strategy for rapidly constructing structurally constrained and intriguing polycyclic frameworks with two adjacent quaternary centers. Remarkably, this becomes possible through palladium-catalyzed six-fold domino crossover annulations of simple 1,2-bis(2-bromoaryl)ethynes and 1,2-diarylethynes. Notably, this approach demonstrates the synthesis of both C2-symmetric and unsymmetric polycyclic products.
Collapse
Affiliation(s)
- Komal Goel
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
19
|
Prabhakaran M, Sanjana R, Parthasarathy K. Ruthenium-catalyzed Heck coupling of 3-arylidene-oxindoles with alkenes: a facile synthesis of 3-allylidene-2(3 H)-oxindoles. Org Biomol Chem 2024; 22:9348-9352. [PMID: 39469997 DOI: 10.1039/d4ob01072h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
A simple and efficient Ru(II)-catalyzed olefination of 3-(arylbenzylidene)indolin-2-ones with alkenes is described. This is an atom and step-economical strategy with a wide substrate scope, good functional group tolerance, and suitability for gram scale synthesis. A plausible mechanism is also proposed for this synthetic transformation involving the formation of a 5-membered ruthenacycle and insertion of the alkene followed by β-hydride elimination to deliver the desired product.
Collapse
Affiliation(s)
- Mohan Prabhakaran
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India.
| | - Ramesh Sanjana
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India.
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India.
| |
Collapse
|
20
|
Shit M, Mahapatra M, Sepay N, Sinha C, Dutta B, Hedayetullah Mir M. Highly Efficient Detection of Pd 2+ in Aqueous Medium by an Elusive Mn(II) Coordination Polymer. Chemistry 2024; 30:e202402425. [PMID: 39297522 DOI: 10.1002/chem.202402425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 11/01/2024]
Abstract
Herein, we report the synthesis of a Mn(II)-based coordination polymer (CP); and its structure, phase consistency and thermal stability have been established by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD) and thermalgravimetric analysis (TGA) respectively. This is the first example of paramgnetic Mn(II)-based CP that acts as pH-dependent emitting material [λem=525 nm (pH=2.0-4.0) and 450 nm (pH=5.0-12.0)]. Its emission is quenched by Pd2+ in aqueous medium in presence of other thirteen cations with reasonably low pH-dependent limits of detection (LODs) [21.178 ppb (pH=3), 15.005 ppb (pH=7.0) and 59.940 ppb (pH=10.0)] as described by well-established mechanism. Therefore, urgency of such stable sensor remains high in regard to the environmental pollution.
Collapse
Affiliation(s)
- Manik Shit
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Manas Mahapatra
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
- Centre for Education and Research on Macromolecules (CERM), CESAM Research Units, Department of Chemistry, University of Liege, Liege, Belgium
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata, 700017, India
| | - Chittaranjan Sinha
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India
| | - Basudeb Dutta
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Department of Chemistry, Aliah University, New Town, Kolkata, 700160, India
| | | |
Collapse
|
21
|
Sanaa H, Touil S, Durandetti M, Samarat A. Efficient Synthesis of Novel Phostone and Phostam Derivatives via Regioselective Intramolecular Heck Cyclizations of (2-Iodobenzyl)buta-1,3-dienylphosphonates, (2-Iodophenyl)buta-1,3-dienylphosphonates, and N-(2-Iodophenyl)- P-buta-1,3-dienylphosphonamidates. ACS OMEGA 2024; 9:44542-44548. [PMID: 39524664 PMCID: PMC11541441 DOI: 10.1021/acsomega.4c06616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Here, we report the intramolecular Heck cross-coupling of 1,3-dienylphosphonates, affording unique and regioselective access to unprecedented benzofused phostone and phostam derivatives. The reactions proceeded under operationally simple and mild conditions with a wide substrate scope.
Collapse
Affiliation(s)
- Hamdi Sanaa
- Faculty
of Sciences of Bizerte, LR18ES11, Laboratory of Hetero-Organic Compounds
and Nanostructured Materials, University
of Carthage, Bizerte 7021, Tunisia
- Univ
Rouen Normandie, INSA Rouen, CNRS, Normandie Univ, COBRA UMR6014, Rouen F-76000, France
| | - Soufiane Touil
- Faculty
of Sciences of Bizerte, LR18ES11, Laboratory of Hetero-Organic Compounds
and Nanostructured Materials, University
of Carthage, Bizerte 7021, Tunisia
| | - Muriel Durandetti
- Univ
Rouen Normandie, INSA Rouen, CNRS, Normandie Univ, COBRA UMR6014, Rouen F-76000, France
| | - Ali Samarat
- Faculty
of Sciences of Bizerte, LR18ES11, Laboratory of Hetero-Organic Compounds
and Nanostructured Materials, University
of Carthage, Bizerte 7021, Tunisia
| |
Collapse
|
22
|
Medgyesi Z, Mika LT. Characterization and Application of Cyrene as a Biomass-Based Solvent for Homogeneous Heck-Coupling Reaction. Chempluschem 2024; 89:e202400379. [PMID: 38980081 DOI: 10.1002/cplu.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024]
Abstract
Cyrene, a renewable, non-toxic substance having negligible vapor pressure, even at high temperatures, was proposed as a reaction medium for homogeneous Pd-catalyzed Heck-coupling reactions. It was first characterized by its temperature-dependent physicochemical properties, i. e., vapor pressure, density, surface tension, heat capacity, and viscosity, the key parameters of its reaction and process chemistry. Its refractive indices in the function of temperature were also determined. Hereafter, the effect of reaction parameters (Pd source, nature of the base, the water content of the reaction mixture, leaving group (-I, -Br, -Cl, and -OTf of aromatic substrates) on Pd-catalyzed Heck-coupling reaction was investigated using iodobenzene and styrene as model substrates. Subsequently, 4-substituted iodobenzene and styrene derivatives were applied to investigate the effect of electronic parameters on the reaction efficiency and functional group tolerance. To demonstrate the applicability of the system, thirteen stilbene derivatives were isolated with good to high yields and purity (>95 %) using 0.2 mol % of Pd, 1.5 eq. of Et3N as a base, in 1 mL of Cyrene for 2 h at 100 °C.
Collapse
Affiliation(s)
- Zoltán Medgyesi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - László T Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| |
Collapse
|
23
|
Patel AR, Maity G, Pati TK, Adak L, Cioffi CL, Banerjee S. Hybrid Pd 0.1Cu 0.9Co 2O 4 nano-flakes: a novel, efficient and reusable catalyst for the one-pot heck and Suzuki couplings with simultaneous transesterification reactions under microwave irradiation. Front Chem 2024; 12:1496234. [PMID: 39539394 PMCID: PMC11557397 DOI: 10.3389/fchem.2024.1496234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
We report the fabrication of a novel spinel-type Pd₀.₁Cu₀.₉Co₂O₄ nano-flake material designed for Mizoroki-Heck and Suzuki coupling-cum-transesterification reactions. The Pd₀.₁Cu₀.₉Co₂O₄ material was synthesized using a simple co-precipitation method, and its crystalline phase and morphology were characterized through powder XRD, UV-Vis, FESEM, and EDX studies. This material demonstrated excellent catalytic activity in Mizoroki-Heck and Suzuki cross-coupling reactions, performed in the presence of a mild base (K₂CO₃), ethanol as the solvent, and microwave irradiation under ligand-free conditions. Notably, the Heck coupling of acrylic esters proceeded concurrently with transesterification using various alcohols as solvents. The catalyst exhibited remarkable stability under reaction conditions and could be recycled and reused up to ten times while maintaining its catalytic integrity.
Collapse
Affiliation(s)
- Ashok Raj Patel
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gurupada Maity
- Department of Physics, School of Basic and Applied Science, Galgotias University, Greater Noida, India
| | - Tanmay K. Pati
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Laksmikanta Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, India
| | | | - Subhash Banerjee
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
24
|
Wu YM, Ma XL, Li FY, Huang CC, Gao L, Zhang Y, Pan YM, He MX, Mo ZY. Dearomative Cyclization/Spirocyclization via Electrochemical Reductive Hydroarylation of Nonactivated Arenes. Org Lett 2024; 26:8993-8998. [PMID: 39400289 DOI: 10.1021/acs.orglett.4c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
An electrochemical cyclization/spirocyclization hydroarylation via reductive dearomatization of a series of nonactivated arenes including N-substituted indoles, indole-3-carboxamide derivatives, and iodo-substituted benzamides is described. This protocol boasts high atom efficiency, broad substrate applicability, and excellent selectivity. Utilizing a simple undivided cell, various nonactivated arenes undergo cyclization/spirocyclization through the intramolecular addition of aryl radicals to an aromatic ring, yielding 50 indolines, spirocyclizative hydroarylation products, and phenanthridinones.
Collapse
Affiliation(s)
- Yi-Miao Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Fang-Yao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Chun-Chan Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Lei Gao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Zu-Yu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin 541199, People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
25
|
Jing J, Hu Y, Tian Z, Wang Y, Yao L, Qiu L, Ackermann L, Karaghiosoff K, Li J. C-S-Selective Stille-Coupling Enables Stereodefined Alkene Synthesis. Angew Chem Int Ed Engl 2024; 63:e202408211. [PMID: 39076073 DOI: 10.1002/anie.202408211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
A palladium-catalyzed highly C-S-selective Stille cross-coupling between aryl thianthrenium salts and tri- or tetrasubstituted alkenyl stannanes is described. Herein, critical challenges including site- and chemoselectivity control are well addressed through C-H thianthrenation and C-S alkenylation, thereby providing an expedient access to stereodefined tri- and tetrasubstituted alkenes in a stereoretentive fashion. Indeed, the palladium-catalyzed Stille-alkenylation of poly(pseudo)halogenated arenes displays privileged capability to differentiate C-S over C-I, C-Br, C-Cl bonds, as well as oxygen-based triflates (C-OTf), tosylates (C-OTs), carbamates and sulfamates under mild reaction conditions. Sequential and multiple cross-couplings via selective C-X functionalization should be widely applicable for increasing functional molecular complexity. Modular installation of stereospecific alkene motifs into pharmaceuticals illustrated the synthetic application of the present protocol in drug discovery.
Collapse
Affiliation(s)
- Jing Jing
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Ying Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Zhenfeng Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Yicheng Wang
- School of Life Science and Health Engineering, Jiangnan university, 214122, Wuxi, China
| | - Liqin Yao
- Yixing Traditional Chinese Medicine Hospital, 214200, Yixing, China
| | - Lipeng Qiu
- School of Life Science and Health Engineering, Jiangnan university, 214122, Wuxi, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität-Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, Munich, Germany
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| |
Collapse
|
26
|
Akana-Schneider B, Guo Y, Parnitzke B, Derosa J. Strategies for arene dissociation from transition metal η 6-arene complexes. Dalton Trans 2024. [PMID: 39431334 DOI: 10.1039/d4dt02408g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Transition metal η6-arene complexes have unique properties that facilitate a variety of arene substitution reactions, rendering π-activation a powerful approach for arene functionalization. For decades, these complexes have been studied in the context of coordination chemistry and synthetic methodology via stoichiometric reactivity; one central challenge in expanding the utility of arene functionalization via transition-metal-π-activation is the dissociation of the arene product that remains bound to the transition metal. In this perspective, we highlight representative strategies and methods for the removal and/or exchange of arenes from such complexes. Recent studies that implement these strategies toward catalytic processes are discussed, along with remaining challenges in this area.
Collapse
Affiliation(s)
| | - Yahui Guo
- Boston University, Department of Chemistry, Boston, MA 02215, USA.
| | - Bryan Parnitzke
- Boston University, Department of Chemistry, Boston, MA 02215, USA.
| | - Joseph Derosa
- Boston University, Department of Chemistry, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Zhang TZ, Shen MQ, Zhang Q, Fu MC. Alcohols as Alkyl Electrophiles for Deoxygenative Heck Reaction Enabled by Excited State Pd Catalysis. Org Lett 2024; 26:8890-8898. [PMID: 39356970 DOI: 10.1021/acs.orglett.4c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Here, we present a general method for the photoinduced Pd-catalyzed deoxygenative Heck reaction of vinyl arenes with ortho-iodophenyl-thionocarbonate derived from alcohols. Mechanistic studies reveal that the deoxygenation involves a 5-endo-trig cyclization and fragmentation process, with radical addition identified as the rate-determining step in this transformation. This one-pot procedure demonstrates excellent selectivity for less hindered hydroxyl groups in diols, facilitating late-stage functionalization of complex molecules and scalability to gram-scale synthesis. The protocol highlights significant synthetic potential and can be extended to the cascade 1,1-difunctionalization of isocyanides and the intermolecular radical cascade cyclization of N-arylacrylamides.
Collapse
Affiliation(s)
- Tian-Zhen Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Meng-Qi Shen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Ming-Chen Fu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
28
|
Sankaranarayanan NV, Villuri BK, Nagarajan B, Lewicki S, Das SK, Fisher PB, Desai UR. Design and Synthesis of Small Molecule Probes of MDA-9/Syntenin. Biomolecules 2024; 14:1287. [PMID: 39456220 PMCID: PMC11505911 DOI: 10.3390/biom14101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
MDA-9/Syntenin, a key scaffolding protein and a molecular hub involved in a diverse range of cell signaling responses, has proved to be a challenging target for the design and discovery of small molecule probes. In this paper, we report on the design and synthesis of small molecule ligands of this key protein. Genetic algorithm-based computational design and the five-eight step synthesis of three molecules led to ligands with affinities in the range of 1-3 µM, a 20-60-fold improvement over literature reports. The design and synthesis strategies, coupled with the structure-dependent gain or loss in affinity, afford the deduction of principles that should guide the design of advanced probes of MDA-9/Syntenin.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Sarah Lewicki
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
29
|
Li Y, Peng R, Zhu C. Modular Synthesis of α-Aryl Acrylamido Carboxylic Acids by Triple C-F Bond Cleavage of (Trifluoromethyl)alkenes with Unprotected Amino Acids. Org Lett 2024; 26:8295-8300. [PMID: 39311230 DOI: 10.1021/acs.orglett.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A straightforward and efficient strategy for the construction of tertiary and secondary α-aryl acrylamido carboxylic acids is reported. This N-acrylation protocol of unprotected amino acids is achieved by triple C-F bond cleavage of (trifluoromethyl)alkenes. This method features mild conditions, is operationally simple, is free of transition metals and racemization, can be used on a gram scale, and is compatible with various functional moieties. Mechanistic studies indicate that oxygen atom exchange happens among H2O, NaOH, and amino acids, and the oxygen atom of the amide moiety of the product is incorporated by the ipso-defluorooxylation of (trifluoromethyl)alkene.
Collapse
Affiliation(s)
- Yuqi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Zhang X, Chang M, Ni T, Xu X, Zong L, Li T. Construction of quaternary alkyl motifs through palladium-catalyzed oxidative coupling of 1,3-dicarbonyl compounds with alkenes followed by C-C bond cleavage. Chem Commun (Camb) 2024; 60:10958-10961. [PMID: 39258723 DOI: 10.1039/d4cc03676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A palladium-catalyzed coupling reaction has been developed for the generation of tertiary alkylation products by reacting olefins with diversely functionalized 1,3-dicarbonyls. The reaction involves the tertiary C-H alkylation of 1,3-dicarbonyls with olefins to produce a tertiary alcohol, followed by C-C bond cleavage.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengfan Chang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Tongtong Ni
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xuefeng Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Luyi Zong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
- Henan Tianguan Group Co., Ltd, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
31
|
Timmerman JC, Filiberti S. Stereoselective Synthesis of anti-2,4-Disubstituted Tetrahydrofurans via a Pd-Catalyzed Hayashi-Heck Arylation and Rh-Catalyzed Hydroformylation Sequence. J Org Chem 2024; 89:11796-11801. [PMID: 39087504 DOI: 10.1021/acs.joc.4c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A catalytic, two-step protocol for the expedient synthesis of anti-2,4-disubstituted tetrahydrofurans is described. In the first step, an enantioselective and regioselective Pd-catalyzed Hayashi-Heck arylation was developed using (R)-hexaMeOBiphep to generate 5-aryl-2,3-dihydrofurans. A subsequent Rh-catalyzed hydroformylation step proceeds at low Rh loading with high regio- and diastereoselectivity for the anti-2,4-disubstituted tetrahydrofuran isomer. Key to the development of the hydroformylation reaction was the utilization of either (R)-Me-i-Pr-INDOLphos or (R,R)-Ph-BPE to control the regioselectivity and provide the kinetic product isomer.
Collapse
Affiliation(s)
- Jacob C Timmerman
- Department of Synthetic Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Sara Filiberti
- Department of Synthetic Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
32
|
Petriccone M, Laurent R, Caminade AM, Sebastián RM. Diverse Approaches for the Difunctionalization of PPH Dendrimers, Precise Versus Stochastic: How Does this Influence Catalytic Performance? ACS Macro Lett 2024; 13:853-858. [PMID: 38917088 PMCID: PMC11256758 DOI: 10.1021/acsmacrolett.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Random difunctionalization of dendrimer surfaces, frequently employed in biological applications, provides the advantage of dual functional groups through a synthetic pathway that is simpler compared to precise difunctionalization. However, is the random difunctionalization as efficient as the precise difunctionalization on the surface of dendrimers? This question is unanswered to date because most dendrimer families face challenges in achieving precise functionalization. Polyphosphorhydrazone (PPH) dendrimers present a unique opportunity to obtain precise difunctionalization at each terminal branching point. The work concerning catalysis we report with PPH dendrimers, whether precisely or randomly functionalized, addresses this question. Across PPH dendrimers, from generations 1 to 3, precise functionalization consistently outperforms random functionalization in terms of efficiency. This finding introduces a novel concept in dendrimer science, emphasizing the superiority of precise over random functionalization methodologies. Introducing a groundbreaking concept in the field of dendrimers.
Collapse
Affiliation(s)
- Massimo Petriccone
- Department
of Chemistry, Science Faculty, Universitat
Autònoma de Barcelona, Campus de Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Régis Laurent
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Rosa María Sebastián
- Department
of Chemistry, Science Faculty, Universitat
Autònoma de Barcelona, Campus de Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
33
|
Yao Y, Xu R, Shao W, Tan J, Wang S, Chen S, Zhuang A, Liu X, Jia R. A Novel Nanozyme to Enhance Radiotherapy Effects by Lactic Acid Scavenging, ROS Generation, and Hypoxia Mitigation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403107. [PMID: 38704679 PMCID: PMC11234405 DOI: 10.1002/advs.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Uveal melanoma (UM) is a leading intraocular malignancy with a high 5-year mortality rate, and radiotherapy is the primary approach for UM treatment. However, the elevated lactic acid, deficiency in ROS, and hypoxic tumor microenvironment have severely reduced the radiotherapy outcomes. Hence, this study devised a novel CoMnFe-layered double oxides (LDO) nanosheet with multienzyme activities for UM radiotherapy enhancement. On one hand, LDO nanozyme can catalyze hydrogen peroxide (H2O2) in the tumor microenvironment into oxygen and reactive oxygen species (ROS), significantly boosting ROS production during radiotherapy. Simultaneously, LDO efficiently scavenged lactic acid, thereby impeding the DNA and protein repair in tumor cells to synergistically enhance the effect of radiotherapy. Moreover, density functional theory (DFT) calculations decoded the transformation pathway from lactic to pyruvic acid, elucidating a previously unexplored facet of nanozyme activity. The introduction of this innovative nanomaterial paves the way for a novel, targeted, and highly effective therapeutic approach, offering new avenues for the management of UM and other cancer types.
Collapse
Affiliation(s)
- Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ru Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Shuhan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
34
|
Rodina D, Vaith J, Paradine SM. Ligand control of regioselectivity in palladium-catalyzed heteroannulation reactions of 1,3-Dienes. Nat Commun 2024; 15:5433. [PMID: 38926361 PMCID: PMC11208576 DOI: 10.1038/s41467-024-49803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Olefin carbofunctionalization reactions are indispensable tools for constructing diverse, functionalized scaffolds from simple starting materials. However, achieving precise control over regioselectivity in intermolecular reactions remains a formidable challenge. Here, we demonstrate that using PAd2nBu as a ligand enables regioselective heteroannulation of o-bromoanilines with branched 1,3-dienes through ligand control. This approach provides regiodivergent access to 3-substituted indolines, showcasing excellent regioselectivity and reactivity across a range of functionalized substrates. To gain further insights into the origin of selectivity control, we employ a data-driven strategy, developing a linear regression model using calculated parameters for phosphorus ligands. This model identifies four key parameters governing regioselectivity in this transformation, paving the way for future methodology development. Additionally, density functional theory calculations elucidate key selectivity-determining transition structures along the reaction pathway, corroborating our experimental observations and establishing a solid foundation for future advancements in regioselective olefin difunctionalization reactions.
Collapse
Affiliation(s)
- Dasha Rodina
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Jakub Vaith
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Shauna M Paradine
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
35
|
Venkatesh R, Narayan AC, Kandasamy J. Synthesis of deoxybenzoins from β-alkoxy styrenes and arylboronic acids via palladium-catalyzed regioselective Heck-arylation reactions. Org Biomol Chem 2024; 22:5193-5197. [PMID: 38864361 DOI: 10.1039/d4ob00616j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Palladium-catalyzed synthesis of deoxybenzoin derivatives from styryl ethers and arylboronic acids is reported. The reaction proceeds under mild conditions in the presence of TEMPO and provides the desired products in good to excellent yields. Simple operation, broad substrate scope, and functional group tolerance are the salient features of the developed methodology.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Aswathi C Narayan
- Department of Chemistry, Pondicherry University, Pondicherry-605014, India.
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
- Department of Chemistry, Pondicherry University, Pondicherry-605014, India.
| |
Collapse
|
36
|
Yao YX, Zhang J, Min X, Qin L, Wei Y, Gao Y, Hu XQ. Expedient access to polysubstituted acrylamides via strain-release-driven dual phosphine and palladium catalysis. Chem Commun (Camb) 2024; 60:6532-6535. [PMID: 38837153 DOI: 10.1039/d4cc01968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Polysubstituted acrylamides are ubiquitous in bioactive molecules and natural products. However, synthetic methods for the assembly of these important motifs remain underdeveloped. Herein, we report the expedient synthesis of structurally diverse and synthetically challenging polysubstituted acrylamides from readily available aromatic amines, cyclopropenones (CpOs), and aryl halides via the synergistic merging of nucleophilic phosphine-mediated amidation and palladium-catalyzed C-H arylation. The reaction is scalable, and some obtained acrylamides proved to be solid state luminogens with obvious aggregation-induced emission (AIE) properties, demonstrating the synthetic potential in drug discovery and material development.
Collapse
Affiliation(s)
- Yu-Xiang Yao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Jing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Xuehong Min
- Equine Science Research and Doping Control Center, Wuhan Business University, Wuhan 430056, China
| | - Lan Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central MinZu University, Wuhan 430074, China.
| |
Collapse
|
37
|
Wang JZ, Mao E, Nguyen JA, Lyon WL, MacMillan DWC. Triple Radical Sorting: Aryl-Alkylation of Alkenes. J Am Chem Soc 2024; 146:15693-15700. [PMID: 38820134 PMCID: PMC11610504 DOI: 10.1021/jacs.4c05744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The cross-coupling of aryl bromides with alkenes can provide access to diverse combinatorial chemical space. Two-component couplings between these partners are well-known, but three-component aryl-functionalizations of unactivated alkenes remain underdeveloped. In particular, the aryl-alkylation of unactivated alkenes would allow for rapid construction of molecular complexity and the expedient exploration of a pharmaceutically relevant and C(sp3)-rich structural landscape. Herein, we report a general approach toward the aryl-alkylation of alkenes through a triple radical sorting mechanism. Over the course of the reaction, a high energy aryl radical, a primary radical, and a hindered alkyl radical are simultaneously formed. Through mediation by a nickel-based catalyst, the three radicals are sorted into productive bond-forming pathways toward the efficient aryl-alkylation of alkenes. A wide range of electronically and sterically differentiated alkenes and aryl radical precursors can be used to access complex scaffolds. This method was further applied to the synthesis of highly substituted semisaturated fused heterocycles.
Collapse
Affiliation(s)
- Johnny Z. Wang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- These authors contributed equally to this work
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- These authors contributed equally to this work
| | - Jennifer A. Nguyen
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - William L. Lyon
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
38
|
Siwawannapong K, Diers JR, Magdaong NCM, Nalaoh P, Kirmaier C, Lindsey JS, Holten D, Bocian DF. Extension of nature's NIR-I chromophore into the NIR-II region. Phys Chem Chem Phys 2024; 26:14228-14243. [PMID: 38690612 DOI: 10.1039/d4cp00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The development of chromophores that absorb in the near-infrared (NIR) region beyond 1000 nm underpins numerous applications in medical and energy sciences, yet also presents substantial challenges to molecular design and chemical synthesis. Here, the core bacteriochlorin chromophore of nature's NIR absorbers, bacteriochlorophylls, has been adapted and tailored by annulation in an effort to achieve absorption in the NIR-II region. The resulting bacteriochlorin, Phen2,1-BC, contains two annulated naphthalene groups spanning meso,β-positions of the bacteriochlorin and the 1,2-positions of the naphthalene. Phen2,1-BC was prepared via a new synthetic route. Phen2,1-BC is an isomer of previously examined Phen-BC, which differs only in attachment via the 1,8-positions of the naphthalene. Despite identical π-systems, the two bacteriochlorins have distinct spectroscopic and photophysical features. Phen-BC has long-wavelength absorption maximum (912 nm), oscillator strength (1.0), and S1 excited-state lifetime (150 ps) much different than Phen2,1-BC (1292 nm, 0.23, and 0.4 ps, respectively). These two molecules and an analogue with intermediate characteristics bearing annulated phenyl rings have unexpected properties relative to those of non-annulated counterparts. Understanding the distinctions requires extending concepts beyond the four-orbital-model description of tetrapyrrole spectroscopic features. In particular, a reduction in symmetry resulting from annulation results in electronic mixing of x- and y-polarized transitions/states, as well as vibronic coupling that together reduce oscillator strength of the long-wavelength absorption manifold and shorten the S1 excited-state lifetime. Collectively, the results suggest a heuristic for the molecular design of tetrapyrrole chromophores for deep penetration into the relatively unutilized NIR-II region.
Collapse
Affiliation(s)
| | - James R Diers
- Department of Chemistry, University of California, Riverside, CA, 92521-0403, USA.
| | | | | | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, MO, 63130-4889, USA.
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695-8204, USA.
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO, 63130-4889, USA.
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, CA, 92521-0403, USA.
| |
Collapse
|
39
|
Tonon G, Mauceri M, Cavarzerani E, Piccolo R, Santo C, Demitri N, Orian L, Nogara PA, Rocha JBT, Canzonieri V, Rizzolio F, Visentin F, Scattolin T. Unveiling the promising anticancer activity of palladium(II)-aryl complexes bearing diphosphine ligands: a structure-activity relationship analysis. Dalton Trans 2024; 53:8463-8477. [PMID: 38686752 DOI: 10.1039/d4dt00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In continuation of our previous works on the cytotoxic properties of organopalladium compounds, in this contribution we describe the first systematic study of the anticancer activity of Pd(II)-aryl complexes. To this end, we have prepared and thoroughly characterized a wide range of palladium derivatives bearing different diphosphine, aryl and halide ligands, developing, when necessary, specific synthetic protocols. Most of the synthesized compounds showed remarkable cytotoxicity towards ovarian and breast cancer cell lines, with IC50 values often comparable to or lower than that of cisplatin. The most promising complexes ([PdI(Ph)(dppe)] and [PdI(p-CH3-Ph)(dppe)]), characterized by a diphosphine ligand with a low bite angle, exhibited, in addition to excellent cytotoxicity towards cancer cells, low activity on normal cells (MRC5 human lung fibroblasts). Specific immunofluorescence tests (cytochrome c and H2AX assays), performed to clarify the possible mechanism of action of this class of organopalladium derivatives, seemed to indicate DNA as the primary cellular target, whereas caspase 3/7 assays proved that the complex [PdI(Ph)(dppe)] was able to promote intrinsic apoptotic cell death. A detailed molecular docking analysis confirmed the importance of a diphosphine ligand with a reduced bite angle to ensure a strong DNA-complex interaction. Finally, one of the most promising complexes was tested towards patient-derived organoids, showing promising ex vivo cytotoxicity.
Collapse
Affiliation(s)
- Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Matteo Mauceri
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Enrico Cavarzerani
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Rachele Piccolo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Claudio Santo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - João Batista T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCSvia Franco Gallini 2, 33081, Aviano, Italy.
- Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, Trieste, Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCSvia Franco Gallini 2, 33081, Aviano, Italy.
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
40
|
Yi ZY, Wang ZC, Li RN, Li ZH, Duan JJ, Yang XQ, Wang YQ, Chen T, Wang D, Wan LJ. Silver Surface-Assisted Dehydrobrominative Cross-Coupling between Identical Aryl Bromides. J Am Chem Soc 2024. [PMID: 38598684 DOI: 10.1021/jacs.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cross-coupling reactions represent an indispensable tool in chemical synthesis. An intriguing challenge in this field is to achieve selective cross-coupling between two precursors with similar reactivity or, to the limit, the identical molecules. Here we report an unexpected dehydrobrominative cross-coupling between 1,3,5-tris(2-bromophenyl)benzene molecules on silver surfaces. Using scanning tunneling microscopy, we examine the reaction process at the single-molecular level, quantify the selectivity of the dehydrobrominative cross-coupling, and reveal the modulation of selectivity by substrate lattice-related catalytic activity or molecular assembly effect. Theoretical calculations indicate that the dehydrobrominative cross-coupling proceeds via regioselective C-H bond activation of debrominated TBPB and subsequent highly selective C-C coupling of the radical-based intermediates. The reaction kinetics plays an important role in the selectivity for the cross-coupling. This work not only expands the toolbox for chemical synthesis but also provides important mechanistic insights into the selectivity of coupling reactions on the surface.
Collapse
Affiliation(s)
- Zhen-Yu Yi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Cong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruo-Ning Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hao Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Jie Duan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Qing Yang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Zeng Y, Jiang ZT, Xia Y. Selectivity in Rh-catalysis with gem-difluorinated cyclopropanes. Chem Commun (Camb) 2024; 60:3764-3773. [PMID: 38501197 DOI: 10.1039/d4cc00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Small-ring chemistry is a fascinating field in organic chemistry. gem-Difluorinated cyclopropanes, a unique class of cyclopropanes, have garnered significant interest due to their intrinsic high reactivity. In this context, gem-difluorinated cyclopropanes have been extensively investigated as fluoroallylic synthons in Pd-catalyzed ring-opening/cross-coupling reactions for the synthesis of monofluoroalkenes with linear or branched selectivity. In contrast, Rh-catalysis has revealed diverse selectivity in the reaction of gem-difluorinated cyclopropanes, such as regioselectivity, enantioselectivity, and chemoselectivity. This feature article aims to summarize our efforts towards developing Rh-catalyzed reactions of gem-difluorinated cyclopropanes, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
42
|
Li Y, Huang Y, Shen Q, Yu W, Yang Z, Gao Z, Lv F, Bai H, Wang S. Utilizing microbial metabolite in catalytic cascade synthesis of conjugated oligomers for In-Situ regulation of biological activity. Bioorg Chem 2024; 145:107188. [PMID: 38377815 DOI: 10.1016/j.bioorg.2024.107188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Despite the advances of multistep enzymatic cascade reactions, their incorporation with abiotic reactions in living organisms remains challenging in synthetic biology. Herein, we combined microbial metabolic pathways and Pd-catalyzed processes for in-situ generation of bioactive conjugated oligomers. Our biocompatible one-pot coupling reaction utilized the fermentation process of engineered E. coli that converted glucose to styrene, which participated in the Pd-catalyzed Heck reaction for in-situ synthesis of conjugated oligomers. This process serves a great interest in understanding resistance evolution by utilizing the inhibitory activity of the synthesized conjugated oligomers. The approach allows for the in-situ combination of biological metabolism and CC coupling reactions, opening up new possibilities for the biosynthesis of unnatural molecules and enabling the in-situ regulation of the bioactivity of the obtained products.
Collapse
Affiliation(s)
- Yuke Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qi Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Dobbelaere MR, Lengyel I, Stevens CV, Van Geem KM. Rxn-INSIGHT: fast chemical reaction analysis using bond-electron matrices. J Cheminform 2024; 16:37. [PMID: 38553720 PMCID: PMC10980627 DOI: 10.1186/s13321-024-00834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
The challenge of devising pathways for organic synthesis remains a central issue in the field of medicinal chemistry. Over the span of six decades, computer-aided synthesis planning has given rise to a plethora of potent tools for formulating synthetic routes. Nevertheless, a significant expert task still looms: determining the appropriate solvent, catalyst, and reagents when provided with a set of reactants to achieve and optimize the desired product for a specific step in the synthesis process. Typically, chemists identify key functional groups and rings that exert crucial influences at the reaction center, classify reactions into categories, and may assign them names. This research introduces Rxn-INSIGHT, an open-source algorithm based on the bond-electron matrix approach, with the purpose of automating this endeavor. Rxn-INSIGHT not only streamlines the process but also facilitates extensive querying of reaction databases, effectively replicating the thought processes of an organic chemist. The core functions of the algorithm encompass the classification and naming of reactions, extraction of functional groups, rings, and scaffolds from the involved chemical entities. The provision of reaction condition recommendations based on the similarity and prevalence of reactions eventually arises as a side application. The performance of our rule-based model has been rigorously assessed against a carefully curated benchmark dataset, exhibiting an accuracy rate exceeding 90% in reaction classification and surpassing 95% in reaction naming. Notably, it has been discerned that a pivotal factor in selecting analogous reactions lies in the analysis of ring structures participating in the reactions. An examination of ring structures within the USPTO chemical reaction database reveals that with just 35 unique rings, a remarkable 75% of all rings found in nearly 1 million products can be encompassed. Furthermore, Rxn-INSIGHT is proficient in suggesting appropriate choices for solvents, catalysts, and reagents in entirely novel reactions, all within the span of a second, utilizing nothing more than an everyday laptop.
Collapse
Affiliation(s)
- Maarten R Dobbelaere
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 125, 9052, Ghent, Belgium
| | - István Lengyel
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 125, 9052, Ghent, Belgium
- ChemInsights LLC, Dover, DE, 19901, USA
| | - Christian V Stevens
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 125, 9052, Ghent, Belgium.
| |
Collapse
|
44
|
Chen W, Cai P, Zhou HC, Madrahimov ST. Bridging Homogeneous and Heterogeneous Catalysis: Phosphine-Functionalized Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202315075. [PMID: 38135664 DOI: 10.1002/anie.202315075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Phosphine-functionalized metal-organic frameworks (P-MOFs) as an emerging class of coordination polymers, have provided novel opportunities for the development of heterogeneous catalysts. Yet, compared with the ubiquitous phosphine systems in homogeneous catalysis, heterogenization of phosphines in MOFs is still at its early stage. In this Minireview, we summarize the synthetic strategies, characterization and catalytic reactions based on the P-MOFs reported in literature. In particular, various catalytic reactions are discussed in detail in terms of phosphine ligand structure-function relationship, including the potential obstacles for future development. Finally, we discuss the possible solutions, including new types of reactions and techniques as the perspectives for the development of P-MOF catalysts, highlighting the opportunities and challenges.
Collapse
Affiliation(s)
- Wenmiao Chen
- Division of Arts and Sciences, Texas A&M University Qatar Education City, Doha, Qatar
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Sherzod T Madrahimov
- Division of Arts and Sciences, Texas A&M University Qatar Education City, Doha, Qatar
| |
Collapse
|
45
|
Nong XM, Gu A, Zhai S, Li J, Yue ZY, Li MY, Liu Y. 1,3-diene-based AIEgens: Stereoselective synthesis and applications. iScience 2024; 27:109223. [PMID: 38439978 PMCID: PMC10910282 DOI: 10.1016/j.isci.2024.109223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
In recent years, significant advancements have been made in the synthesis and application of 1,3-dienes. This specific structural motif has garnered significant attention from researchers in materials science and biology due to its unique aggregation-induced emission (AIE) properties and extensive conjugation systems. The luminescent characteristics of these compounds are notably influenced by the geometry of the two double bonds. Therefore, it is essential to consolidate stereoselective synthetic strategies for 1,3-dienes. This comprehensive review seeks to elucidate the diverse techniques employed to attain stereo-control in the synthesis of 1,3-diene-based AIE luminogens (AIEgens). Particular emphasis is placed on comprehending the determinants of stereoselectivity and exploring the array of substrates amenable to these methods. Furthermore, the review underscores the AIE properties exhibited by these compounds and their extensive utility in organic light-emitting diodes (OLEDs), stimuli-responsive materials, sensors, bioimaging, and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
46
|
Tangdenpaisal K, Kheakwanwong W, Ruchirawat S, Ploypradith P. Dihydro-10 H-indeno[1,2- b]benzofurans and Tetrahydroindeno[1,2- c]isochromenes via Stereoselective Intramolecular Carbocation Cascade Cyclization. J Org Chem 2024; 89:2964-2983. [PMID: 38345392 DOI: 10.1021/acs.joc.3c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Nazarov cyclization of the (E)-(2-stilbenyl)methanols under the catalysis of p-TsOH immobilized on silica (PTS-Si) proceeded to give the corresponding indanyl cation with the exclusive trans relationship at the two newly formed adjacent stereogenic centers. The ensuing intramolecular nucleophilic addition by the MOM-protected phenol (m = 0) or benzyl alcohol (m = 1) furnished the Indane-fused benzofuran [5/5] or isochroman [5/6] system, respectively, with the exclusive cis stereocontrol at the two-carbon ring junction. Thus, in a single step, from nonchiral starting materials, the intramolecular cascade carbocation cyclization (CCC) furnished the [5/5] or [5/6] oxygen-containing Indane fused-ring systems in moderate to good yields with excellent stereoselectivity on all three contiguous stereogenic centers.
Collapse
Affiliation(s)
- Kassrin Tangdenpaisal
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
| | - Wichita Kheakwanwong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand 10400
| | - Poonsakdi Ploypradith
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
- Program in Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210
- Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand 10400
| |
Collapse
|
47
|
Isbrandt ES, Chapple DE, Tu NTP, Dimakos V, Beardall AMM, Boyle PD, Rowley CN, Blacquiere JM, Newman SG. Controlling Reactivity and Selectivity in the Mizoroki-Heck Reaction: High Throughput Evaluation of 1,5-Diaza-3,7-diphosphacyclooctane Ligands. J Am Chem Soc 2024; 146:5650-5660. [PMID: 38359357 DOI: 10.1021/jacs.3c14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We report a high throughput evaluation of the Mizoroki-Heck reaction of diverse olefin coupling partners. Comparison of different ligands revealed the 1,5-diaza-3,7-diphosphacyclooctane (P2N2) scaffold to be more broadly applicable than common "gold standard" ligands, demonstrating that this family of readily accessible diphosphines has unrecognized potential in organic synthesis. In particular, two structurally related P2N2 ligands were identified to enable the regiodivergent arylation of styrenes. By simply altering the phosphorus substituent from a phenyl to tert-butyl group, both the linear and branched Mizoroki-Heck products can be obtained in high regioisomeric ratios. Experimental and computational mechanistic studies were performed to further probe the origin of selectivity, which suggests that both ligands coordinate to the metal in a similar manner but that rigid positioning of the phosphorus substituent forces contact with the incoming olefin in a π-π interaction (for P-Ph ligands) or with steric clash (for P-tBu ligands), dictating the regiocontrol.
Collapse
Affiliation(s)
- Eric S Isbrandt
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Devon E Chapple
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Nguyen Thien Phuc Tu
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Victoria Dimakos
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Anne Marie M Beardall
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Paul D Boyle
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Christopher N Rowley
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Johanna M Blacquiere
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
48
|
Sharma H, Ganguly S, Sahana MH, Goswami RK. Stereoselective synthesis of thailandamide A methyl ester. Org Biomol Chem 2024; 22:1409-1419. [PMID: 38285182 DOI: 10.1039/d3ob02107f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A convergent strategy for the stereoselective synthesis of the methyl ester of the structurally challenging and highly labile antibacterial polyene polyketide natural product thailandamide A has been developed. The key steps include the Zincke aldehyde reaction, Stille cross coupling, Negishi reaction, Julia-Kocienski olefination, cross metathesis, and the less explored Pd(I)-based Heck coupling to access different unsaturation bonds. Additionally, Urpi acetal aldol, Evans methylation, and Crimmins acetate aldol reactions were employed to construct four out of six asymmetric centers of the molecule.
Collapse
Affiliation(s)
- Himangshu Sharma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Swapnamoy Ganguly
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Moinul Haque Sahana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
49
|
Huang J, Li T, Lu X, Ma D. Copper-Catalyzed α-Arylation of Nitroalkanes with (Hetero)aryl Bromides/Iodides. Angew Chem Int Ed Engl 2024; 63:e202315994. [PMID: 38151905 DOI: 10.1002/anie.202315994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
α-Aryl substituted nitroalkanes are valuable synthetic building blocks that can be easily converted into α-aryl substituted aldehydes, ketones, carboxylic acids, as well as amines. Herein, an efficient Cu/oxalamide-catalyzed coupling between nitroalkanes and (hetero)aryl halides (Br, I) was developed to direct access highly diverse α-aryl substituted nitroalkanes. Compared with the current state of art, this protocol is more environmentally friendly and practical for synthetic chemists. This approach is characterized by a broad substrate scope on both nitroalkane part (primary nitroalkanes and nitromethane) and sp2 halide part ((hetero)aryl bromides/iodides and alkenyl bromides/iodides). The excellent functional group tolerance was observed, which would enable real world synthetic applications. More importantly, TON of current transformation reached to 3640, when some aryl iodides were used as coupling partners. This represents currently the highest catalyst turnover for transition-metal catalyzed α-arylation of nitroalkanes. Furthermore, the successful application in late-stage modification of complex molecules and synthesis of a known retinoid X receptor (RXR) antagonist exemplified its synthetic potential.
Collapse
Affiliation(s)
- Jianqiang Huang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology (SUSTech), Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Taian Li
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology (SUSTech), Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaobiao Lu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology (SUSTech), Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Dawei Ma
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology (SUSTech), Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
50
|
Kellner-Rogers JS, Wang R, Lambert TH. Diazene-Catalyzed Oxidative Alkyl Halide-Olefin Metathesis. Org Lett 2024; 26:1078-1082. [PMID: 38295157 PMCID: PMC10947577 DOI: 10.1021/acs.orglett.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The first platform for oxidative alkyl halide-olefin metathesis is described. The procedure employs diazenes as catalysts, which effect the cyclization of alkenyl alkyl halides to generate cyclic olefins and carbonyl products. The synthesis of phenanthrene, coumarin, and quinolone derivatives is demonstrated as well as the potential to apply this strategy to other electrophiles.
Collapse
Affiliation(s)
| | - Rina Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Tristan H. Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|