1
|
Palumbo CT, Ouellette ET, Zhu J, Román-Leshkov Y, Stahl SS, Beckham GT. Accessing monomers from lignin through carbon-carbon bond cleavage. Nat Rev Chem 2024; 8:799-816. [PMID: 39367248 DOI: 10.1038/s41570-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Lignin, the heterogeneous aromatic macromolecule found in the cell walls of vascular plants, is an abundant feedstock for the production of biochemicals and biofuels. Many valorization schemes rely on lignin depolymerization, with decades of research focused on accessing monomers through C-O bond cleavage, given the abundance of β-O-4 bonds in lignin and the large number of available C-O bond cleavage strategies. Monomer yields are, however, invariably lower than desired, owing to the presence of recalcitrant C-C bonds whose selective cleavage remains a major challenge in catalysis. In this Review, we highlight lignin C-C cleavage reactions, including those of linkages arising from biosynthesis (β-1, β-5, β-β and 5-5) and industrial processing (5-CH2-5 and α-5). We examine multiple approaches to C-C cleavage, including homogeneous and heterogeneous catalysis, photocatalysis and biocatalysis, to identify promising strategies for further research and provide guidelines for definitive measurements of lignin C-C bond cleavage.
Collapse
Affiliation(s)
- Chad T Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Erik T Ouellette
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Jie Zhu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shannon S Stahl
- Department of Chemistry. Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA.
- Center for Bioenergy Innovation, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Meng Y, Li J, Liu H, Wu H, Li H. Visible-light-mediated metal-free regioselective oxidative C-C bond cleavage of lignin dimers to aromatic acids. Chem Commun (Camb) 2024; 60:1642-1645. [PMID: 38235970 DOI: 10.1039/d3cc05958h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The upgrading of lignin is a sustainable and promising pathway for fossil-based aromatic compounds but always faces low selectivity. Herein, a metal-free photocatalyst, 2,4,6-triphenylpyrylium tetrafluoroborate (TPP), was illustrated to remarkably facilitate the regioselective oxidative Cα-Cβ bond cleavage of β-1 and β-O-4 lignin alcohol/ketone models into aromatic acids (92-99% yields) under visible-light irradiation at room temperature without any additive/co-catalyst, which was enabled by the synergistic effect of Cβ-H⋯C(TPP) interaction and·˙O2-/1O2 species. The synergy of the catalyst-substrate interaction and active species offers a reference for the enhancive and selective transformation of polymeric biomass and complex molecules.
Collapse
Affiliation(s)
- Ye Meng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Jie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Huan Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Hongguo Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, College of Pharmacy & Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
3
|
Xu J, Meng J, Hu Y, Liu Y, Lou Y, Bai W, Dou S, Yu H, Wang S. Electrocatalytic Lignin Valorization into Aromatic Products via Oxidative Cleavage of C α-C β Bonds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0288. [PMID: 38111679 PMCID: PMC10726294 DOI: 10.34133/research.0288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Lignin is the most promising candidate for producing aromatic compounds from biomass. However, the challenge lies in the cleavage of C-C bonds between lignin monomers under mild conditions, as these bonds have high dissociation energy. Electrochemical oxidation, which allows for mild cleavage of C-C bonds, is considered an attractive solution. To achieve low-energy consumption in the valorization of lignin, the use of highly efficient electrocatalysts is essential. In this study, a meticulously designed catalyst consisting of cobalt-doped nickel (oxy)hydroxide on molybdenum disulfide heterojunction was developed. The presence of molybdenum in a high valence state promoted the adsorption of tert-butyl hydroperoxide, leading to the formation of critical radical intermediates. In addition, the incorporation of cobalt doping regulated the electronic structure of nickel, resulting in a lower energy barrier. As a result, the heterojunction catalyst demonstrated a selectivity of 85.36% for cleaving the Cα-Cβ bond in lignin model compound, achieving a substrate conversion of 93.69% under ambient conditions. In addition, the electrocatalyst depolymerized 49.82 wt% of soluble fractions from organosolv lignin (OL), resulting in a yield of up to 13 wt% of aromatic monomers. Significantly, the effectiveness of the prepared electrocatalyst was also demonstrated using industrial Kraft lignin (KL). Therefore, this research offers a practical approach for implementing electrocatalytic oxidation in lignin refining.
Collapse
Affiliation(s)
- Jianing Xu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Juan Meng
- School of Resources and Environmental Engineering,
Jiangsu University of Technology, Changzhou 213001, China
| | - Yi Hu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Wenjing Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Shuo Dou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Xu X, Dai S, Xu S, Zhu Q, Li Y. Efficient Photocatalytic Cleavage of Lignin Models by a Soluble Perylene Diimide/Carbon Nitride S-Scheme Heterojunction. Angew Chem Int Ed Engl 2023; 62:e202309066. [PMID: 37675642 DOI: 10.1002/anie.202309066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
3,4,9,10-Perylenetetracarboxylic dianhydride (PDI) is one of the best n-type organic semiconductors and an ideal light-driven catalyst for lignin depolymerization. However, the charge localization effect and the excessively strong intermolecular aggregation trend in PDI result in rapid electron-hole (e- -h+ ) recombination, which limits photocatalytic performance. Herein, polymeric carbon nitride/polyhedral oligomeric silsesquioxane PDI (p-CN/P-PDI) S-scheme heterojunction photocatalyst was prepared by the solvent evaporation-deposition method for C-C bond selective cleavage of lignin β-O-4 model. Based on the material characterization results, the synergic role of polyhedral oligomeric silsesquioxane (POSS) and S-scheme heterojunction maintains appropriate aggregation domains, achieves better solar light utilization, faster charge-transfer efficiency, and greater redox capacity. Notably, the 3 % p-CN/P-PDI heterostructure exhibits a remarkable enhancement in cleavage conversion efficiency, achieving approximately 16.42 and 2.57 times higher conversion rates compared to polyhedral oligomeric silsesquioxane modified PDI (POSS-PDI) and polymeric carbon nitride (p-CN), respectively.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Shuqi Dai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Shuai Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Qi Zhu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| | - Yuliang Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710064, P. R. China
| |
Collapse
|
5
|
Xu X, Wang H, Tan CH, Ye X. Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2022; 3:74-91. [PMID: 37035284 PMCID: PMC10080730 DOI: 10.1021/acsorginorgau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.
Collapse
Affiliation(s)
- Xinru Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Li P, Lu Y, Li X, Ren J, Jiang Z, Jiang B, Wu W. Comparison of the Degradation Performance of Seven Different Choline Chloride-Based DES Systems on Alkaline Lignin. Polymers (Basel) 2022; 14:5100. [PMID: 36501493 PMCID: PMC9740465 DOI: 10.3390/polym14235100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Lignin is a natural polymer second only to cellulose in natural reserves, whose structure is an aromatic macromolecule composed of benzene propane monomers connected by chemical bonds such as carbon-carbon bonds and ether bonds. Degradation is one of the ways to achieve the high-value conversion of lignin, among which the heating degradation of lignin by deep eutectic solvent (DES) can be an excellent green degradation method. In this study, choline chloride (CC) was used as the hydrogen bond acceptor, and urea (UR), ethylene glycol (GC), glycerol (GE), acetic acid (AA), formic and acetic mixed acid (MA), oxalic acid (OX), and p-toluenesulfonic acid (TA) were used as hydrogen bond donors to degrade lignin. NMR hydrogen spectroscopy was used for the simple and rapid determination of phenolic hydroxyl groups in lignin. FT-IR spectroscopy was used to characterize the changes of functional groups of lignin during DES treatment. GPC observed the molecular weight of lignin after degradation and found a significant increase in the homogeneity (1.6-2.0) and a significant decrease in the molecular weight Mw (2478-4330) of the regenerated lignin. It was found that acidic DES was more effective in depolymerizing alkaline lignin, especially for the toluene-choline chloride. Seven DES solutions were recovered, and it was found that the recovery of DES still reached more than 80% at the first recovery.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan Lu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengwei Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Kesharwani N, Chaudhary N, Haldar C. Synthesis and characterization of Merrifield resin and graphene oxide supported air stable oxidovanadium(IV) radical complexes for the catalytic oxidation of light aliphatic alcohols. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Mechanistic study on the depolymerization of typical lignin-derived oligomers catalyzed by Pd/NbOPO4. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zhang Z, Yin G, Andrioletti B. Advances in value-added aromatics by oxidation of lignin with transition metal complexes. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00498-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wang Z, Hao M, Li X, Zhang B, Jiao M, Chen BZ. Promising and efficient lignin degradation versatile strategy based on DFT calculations. iScience 2022; 25:103755. [PMID: 35141502 PMCID: PMC8810403 DOI: 10.1016/j.isci.2022.103755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022] Open
Abstract
The extraction of higher-value products from lignin degradations under mild conditions is a challenge. Previous research reported efficient two-step oxidation and reduction strategies for lignin degradation, which has great significance to lignin degradation. In this paper, the mechanism about the C-O bond cleavage of lignin with and without Cα oxidations has been studied systematically. Our calculation results show that the degradation of anionized lignin with Cα oxidations is kinetically and thermodynamically feasible. In addition, the calculations predict that the anionized lignin compounds without Cα oxidation also could be degraded under mild conditions. Moreover, we propose special lignin catalytic degradation systems containing the characteristic structure of "double hydrogen bonds." The double hydrogen bonds structure could further decrease the energy barriers of the C-O bond cleavage reaction. This provides a versatile strategy to design novel lignin degradation.
Collapse
Affiliation(s)
- Zichen Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Mingtian Hao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Xiaoyu Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Beibei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Mingyang Jiao
- Shandong Energy Institute, Qingdao 266101, Shandong, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Bo-Zhen Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Zhu Q, Nocera DG. Catalytic C(β)–O Bond Cleavage of Lignin in a One-Step Reaction Enabled by a Spin-Center Shift. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qilei Zhu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| |
Collapse
|
12
|
Selective C–C Bond Cleavage in Diols and Lignin Models: High-Throughput Screening of Metal Oxide-Anchored Vanadium in Mesoporous Silica. Catalysts 2021. [DOI: 10.3390/catal11080901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The development of selective and robust heterogeneous oxidation catalysts is an enabling technology for conversion of biomass-derived platform chemicals. Vanadium active sites were incorporated into the structure of mesoporous silica via an ultra-fast, one-pot synthesis method based on microwave-assisted heating. In addition, Al/Ti/Zr/Ce anchoring ions were introduced in order to minimize vanadium leaching and better control its dispersion. The supported V-(Al/Ti/Zr/Ce)-MCM-41 composite materials were assessed as catalysts for aerobic C–C bond cleavage of simple models for lignin (1,2-diphenyl-2-methoxyethanol) and sugar-derived polyalcohols (meso-hydrobenzoin). The TiIV ions proved to be the best anchors to prevent V leaching, while AlIII and ZrIV ions were the best to improve selective conversion of the substrates. The active sites in these catalysts are shown to be 2D VOx layers stabilized on the anchors. In a screen of twelve solvents, weakly polar solvents like toluene were found to be most suitable for this reaction, as was environmentally friendly ethyl acetate. The above properties, together with the high selectivity for C–C bond cleavage, advocate for a heterogeneous catalytic pathway, intrinsically different from that reported previously for molecular oxovanadium (V) catalysts.
Collapse
|
13
|
Ellis E, Hinchen DJ, Bleem A, Bu L, Mallinson SJB, Allen MD, Streit BR, Machovina MM, Doolin QV, Michener WE, Johnson CW, Knott BC, Beckham GT, McGeehan JE, DuBois JL. Engineering a Cytochrome P450 for Demethylation of Lignin-Derived Aromatic Aldehydes. JACS AU 2021; 1:252-261. [PMID: 34467290 PMCID: PMC8395679 DOI: 10.1021/jacsau.0c00103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 05/12/2023]
Abstract
Biological funneling of lignin-derived aromatic compounds is a promising approach for valorizing its catalytic depolymerization products. Industrial processes for aromatic bioconversion will require efficient enzymes for key reactions, including demethylation of O-methoxy-aryl groups, an essential and often rate-limiting step. The recently characterized GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the O-methoxy-aryl group in guaiacol. Here, we evaluate a series of engineered GcoA variants for their ability to demethylate o-and p-vanillin, which are abundant lignin depolymerization products. Two rationally designed, single amino acid substitutions, F169S and T296S, are required to convert GcoA into an efficient catalyst toward the o- and p-isomers of vanillin, respectively. Gain-of-function in each case is explained in light of an extensive series of enzyme-ligand structures, kinetic data, and molecular dynamics simulations. Using strains of Pseudomonas putida KT2440 already optimized for p-vanillin production from ferulate, we demonstrate demethylation by the T296S variant in vivo. This work expands the known aromatic O-demethylation capacity of cytochrome P450 enzymes toward important lignin-derived aromatic monomers.
Collapse
Affiliation(s)
- Emerald
S. Ellis
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - Daniel J. Hinchen
- Centre
for Enzyme Innovation, School of Biological Sciences, Institute of
Biological and Biomedical Sciences, University
of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Alissa Bleem
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lintao Bu
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sam J. B. Mallinson
- Centre
for Enzyme Innovation, School of Biological Sciences, Institute of
Biological and Biomedical Sciences, University
of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Mark D. Allen
- Centre
for Enzyme Innovation, School of Biological Sciences, Institute of
Biological and Biomedical Sciences, University
of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Bennett R. Streit
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - Melodie M. Machovina
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - Quinlan V. Doolin
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - William E. Michener
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Christopher W. Johnson
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Brandon C. Knott
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - John E. McGeehan
- Centre
for Enzyme Innovation, School of Biological Sciences, Institute of
Biological and Biomedical Sciences, University
of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Jennifer L. DuBois
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| |
Collapse
|
14
|
do Pim WD, Mendonça FG, Brunet G, Facey GA, Chevallier F, Bucher C, Baker RT, Murugesu M. Anion-Dependent Catalytic C-C Bond Cleavage of a Lignin Model within a Cationic Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:688-695. [PMID: 33356092 DOI: 10.1021/acsami.0c19212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of heterogeneous catalysts capable of selectively converting lignin model compounds into products of added value offers an exciting avenue to explore in the production of renewable chemical feedstocks. The use of metal-organic frameworks (MOFs) in such chemical transformations relies largely on the presence of accessible open metal sites found within highly porous networks that simultaneously allow for fast transport and strong interactions with desired substrates. Here, we present the first systematic study on the modulation of catalytic performance of a cationic framework, [Cu2(L)(H2O)2](NO3)2·5.5H2O (L = 1,1'-bis(3,5-dicarboxylatophenyl)-4,4'-bipyridinium), achieved through the exchange of anionic guests. Remarkably, the catalytic activity proves to be highly anion-dependent, with a nearly 10-fold increase toward the aerobic C-C bond cleavage of a lignin model compound when different anionic species are incorporated within the MOF. Moreover, we demonstrate that the cationic nature of the MOF, imparted by the incorporation of viologen moieties within the linker, tunes the electrophilicity of the active copper(II) sites, resulting in stronger interactions with the substrate. As such, the copper-based framework exhibits enhanced catalytic performance when compared to its neutral counterpart, emphasizing the appeal of charged frameworks for use as green heterogeneous catalysts.
Collapse
Affiliation(s)
- Walace D do Pim
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Fernanda G Mendonça
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gabriel Brunet
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Glenn A Facey
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Floris Chevallier
- Université Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allee d'Italie, 69364 Lyon, France
| | - Christophe Bucher
- Université Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 Allee d'Italie, 69364 Lyon, France
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
15
|
Kim SA, Kim SE, Kim YK, Jang HY. Copper-Catalyzed Oxidative Cleavage of the C-C Bonds of β-Alkoxy Alcohols and β-1 Compounds. ACS OMEGA 2020; 5:31684-31691. [PMID: 33344820 PMCID: PMC7745431 DOI: 10.1021/acsomega.0c04162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Copper-catalyzed aerobic oxidation conditions were employed to promote the C-C bond cleavage of β-alkoxy alcohols and β-1 compounds (lignin model compounds). Besides these compounds, various 1,2 and 1,3-diols were successfully converted to aldehydes. We propose the Cu(I)-catalyzed mechanism explaining the C-C cleavage of these 1,2 and 1,3-dihydroxy compounds and β-alkoxy alcohols based on XPS data. Although our reaction conditions do not include large excess of bases and elaborated ligand-modified catalysts, copper salts with/without Me-TBD show good catalytic activities for C-C bond cleavage of various lignin model compounds.
Collapse
|
16
|
Xiao G, Montgomery JRD, Lancefield CS, Panovic I, Westwood NJ. Copper-Mediated Conversion of Complex Ethers to Esters: Enabling Biopolymer Depolymerisation under Mild Conditions. Chemistry 2020; 26:12397-12402. [PMID: 32378750 PMCID: PMC7589252 DOI: 10.1002/chem.202000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Indexed: 11/06/2022]
Abstract
Selective processing of the β-O-4 unit in lignin is essential for the efficient depolymerisation of this biopolymer and therefore its successful integration into a biorefinery set-up. An approach is described in which this unit is modified to incorporate a carboxylic ester with the goal of enabling the use of mild depolymerisation conditions. Inspired by preliminary results using a Cu/TEMPO/O2 system, a protocol was developed that gave the desired β-O-4-containing ester in high yield using certain dimeric model compounds. The optimised reaction conditions were then applied to an oligomeric lignin model system. Extensive 2D NMR analysis demonstrated that analogous chemistry could be achieved with the oligomeric substrate. Mild depolymerisation of the ester-containing oligomer delivered the expected aryl acid monomer.
Collapse
Affiliation(s)
- Ganyuan Xiao
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStChemNorth HaughSt AndrewsFifeKY16 9STUK
| | - James R. D. Montgomery
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStChemNorth HaughSt AndrewsFifeKY16 9STUK
| | - Christopher S. Lancefield
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStChemNorth HaughSt AndrewsFifeKY16 9STUK
| | - Isabella Panovic
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStChemNorth HaughSt AndrewsFifeKY16 9STUK
| | - Nicholas J. Westwood
- School of Chemistry and Biomedical Sciences Research ComplexUniversity of St Andrews and EaStChemNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
17
|
Gao K, Xu M, Cai C, Ding Y, Chen J, Liu B, Xia Y. Cobalt-Catalyzed Reductive C-O Bond Cleavage of Lignin β-O-4 Ketone Models via In Situ Generation of the Cobalt-Boryl Species. Org Lett 2020; 22:6055-6060. [PMID: 32697919 DOI: 10.1021/acs.orglett.0c02117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient and mild method for reductive C-O bond cleavage of lignin β-O-4 ketone models was developed to afford the corresponding ketones and phenols with PDI-CoCl2 as the precatalyst and diboron reagent as the reductant. The synthetic utility of the methodology was demonstrated by depolymerization of a polymeric model and gram-scale transformation. Mechanistic studies suggested that this transformation involves steps of carbonyl insertion, 1,2-Brook type rearrangement, β-oxygen elimination, and rate-limiting regeneration of the catalytic active Co-B species.
Collapse
Affiliation(s)
- Kecheng Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Man Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Cheng Cai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanghao Ding
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bosheng Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
18
|
Cao Y, Zhang C, Tsang DC, Fan J, Clark JH, Zhang S. Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01617] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yang Cao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Cheng Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - James H. Clark
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
19
|
Photocatalytic Cleavage of β- O-4 Ether Bonds in Lignin over Ni/TiO 2. Molecules 2020; 25:molecules25092109. [PMID: 32365962 PMCID: PMC7249180 DOI: 10.3390/molecules25092109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/02/2022] Open
Abstract
It is of great importance to explore the selective hydrogenolysis of β-O-4 linkages, which account for 45–60% of all linkages in native lignin, to produce valued-added chemicals and fuels from biomass employing UV light as catalyst. TiO2 exhibited satisfactory catalytic performances in various photochemical reactions, due to its versatile advantages involving high catalytic activity, low cost and non-toxicity. In this work, 20 wt.% Ni/TiO2 and oxidant PCC (Pyridinium chlorochromate) were employed to promote the cleavage of β-O-4 alcohol to obtain high value chemicals under UV irradiation at room temperature. The Ni/TiO2 photocatalyst can be magnetically recovered and efficiently reused in the following four consecutive recycling tests in the cleavage of β-O-4 ether bond in lignin. Mechanism studies suggested that the oxidation of β-O-4 alcohol to β-O-4 ketone by oxidant PCC first occurred during the reaction, and was followed by the photocatalysis of the obtained β-O-4 ketone to corresponding acetophenone and phenol derivates. Furthermore, the system was tested on a variety of lignin model substrates containing β-O-4 linkage for the generation of fragmentation products in good to excellent results.
Collapse
|
20
|
Liu H, Li H, Luo N, Wang F. Visible-Light-Induced Oxidative Lignin C–C Bond Cleavage to Aldehydes Using Vanadium Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03768] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Hongji Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
21
|
Wang M, Wang F. Catalytic Scissoring of Lignin into Aryl Monomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901866. [PMID: 31821648 DOI: 10.1002/adma.201901866] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Lignin is an aromatic polymer, which is the biggest and most sustainable reservoir for aromatics. The selective conversion of lignin polymers into aryl monomers is a promising route to provide aromatics, but it is also a challenging task. Compared to cellulose, lignin remains the most poorly utilized biopolymer due to its complex structure. Although harsh conditions can degrade lignin, the aromatic rings are usually destroyed. This article comprehensively analyzes the challenges facing the scissoring of lignin into aryl monomers and summarizes the recent progress, focusing on the strategies and the catalysts to address the problems. Finally, emphasis is given to the outlook and future directions of this research.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| |
Collapse
|
22
|
Redox-neutral photocatalytic strategy for selective C-C bond cleavage of lignin and lignin models via PCET process. Sci Bull (Beijing) 2019; 64:1658-1666. [PMID: 36659779 DOI: 10.1016/j.scib.2019.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023]
Abstract
It remains challenging to achieve the selective cleavage of C-C bonds in lignin or lignin model compounds to produce aromatic products in high yield and selectivity. We have developed a redox-neutral photocatalytic strategy to accomplish this goal in both β-O-4 and β-1 lignin models at room temperature (RT) via proton-coupled electron transfer (PCET) process without any pretreatments of substrate, by adjusting the alkalinity of base to obtain a lignin models/base PCET pair with a bond dissociation free energy close to 102 kcal/mol. Without breaking down Cβ-Cγ bond and any C-O bonds, this PCET method is 100% atom economy and produces exclusive Cα-Cβ bond cleavage products, such as benzaldehydes (up to 97%) and phenyl ethers (up to 96%), in high to excellent yields and selectivities. Preliminary studies indicated that the PCET strategy is also effective for the depolymerization of native lignin at RT, thus providing significantly important foundation to the depolymerization of lignin.
Collapse
|
23
|
Ru-Catalyzed Oxidative Cleavage of Guaiacyl Glycerol--Guaiacyl Ether-a Representative -O-4 Lignin Model Compound. Catalysts 2019. [DOI: 10.3390/catal9100832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The introduction of efficient and selective catalytic methods for aerobic oxidation of lignin and lignin model compounds to aromatics can extend the role of lignin applications in biorefineries. The current study focussed on the catalytic oxidative transformation of guaiacyl glycerol--guaiacyl ether (GGGE)–a -O-4 lignin model compound to produce basic aromatic compounds (guaiacol, vanillin and vanillic acid) using metal-supported catalysts. Ru/Al2O3, prepared with ruthenium(IV) oxide hydrate, showed the highest yields of the desired products (60%) in acetonitrile in a batch reactor at 160 C and 5-bar of 20% oxygen in argon. Alternative catalysts containing other transition metals (Ag, Fe, Mn, Co and Cu) supported on alumina, and ruthenium catalysts based on alternative supports (silica, spinel, HY zeolite and zirconia) gave significantly lower activities compared to Ru/Al2O3 at identical reaction conditions. Moreover, the Ru/Al2O3 catalyst was successfully reused in five consecutive reaction runs with only a minor decrease in catalytic performance.
Collapse
|
24
|
Lin F, Liu C, Wang X, Hu C, Wu S, Xiao R. Catalytic oxidation of biorefinery corncob lignin via zirconium(IV) chloride and sodium hydroxide in acetonitrile/water: A functionality study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:203-212. [PMID: 31030128 DOI: 10.1016/j.scitotenv.2019.04.224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
In order to realize the efficient utilization of biorefinery corncob lignin, the promising catalytic oxidation strategy was carried out by using ZrCl4 and NaOH as the co-catalyst and dioxygen as the oxidant in MeCN/H2O. GC/MS, GC-FID, and MALDI-TOF/MS were employed to recognize the produced monomers and oligomers, and GPC was used to monitor the molecular weight changes of lignin fragments. In addition, specific structural evolution of corncob lignin during ZrCl4/NaOH-catalyzed oxidation were revealed by quantitative 13C (Q13C) and 2D HSQC NMR techniques. Results showed that the total yields of produced oxidation monomers reached 6.8 wt%, and aromatic aldehydes were the major species, in which vanillin and 4-hydroxybenzaldehyde were the two dominant products. After ZrCl4/NaOH-catalyzed oxidation, the weight-average molecular weight of corncob lignin and its products decreased from 2000 Da to 300 Da after oxidation with 16 h. Moreover, Q13C NMR analysis showed the decrease percentage of CO aliphatic carbons (including methoxyl carbons), the increase percentage of CC aliphatic and carbonyl carbons, and the relative stable percentage of aromatic carbons with reaction prolonged. These results combined with the further confirmation from HSQC indicated the oxidative cleavage of CO aliphatic linkages and removal of methoxy groups within corncob lignin, as well as the formation of CC aliphatic bonds and carbonyl groups. The work presented a comprehensive insight into the catalytic oxidative depolymerization of biorefinery corncob lignin.
Collapse
Affiliation(s)
- Fei Lin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chao Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Xing Wang
- Liaoning Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Changsong Hu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Shiliang Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
25
|
Magallanes G, Kärkäs MD, Bosque I, Lee S, Maldonado S, Stephenson CRJ. Selective C–O Bond Cleavage of Lignin Systems and Polymers Enabled by Sequential Palladium-Catalyzed Aerobic Oxidation and Visible-Light Photoredox Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04172] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel Magallanes
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Markus D. Kärkäs
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Irene Bosque
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Sudarat Lee
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Stephen Maldonado
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Syiemlieh I, Asthana M, Asthana SK, Kurbah SD, Koch A, Lal RA. Water soluble new bimetallic catalyst [CuZn(bz)3(bpy)2]PF6 in hydrogen peroxide mediated oxidation of alcohols to aldehydes/ketones and C-N functional groups. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Moon S, Lee Y, Choi S, Hong S, Lee S, Park AHA, Park Y. Spectroscopic Investigation of Thermochemical Depolymerization of Lignin Model Compounds in the Presence of Novel Liquidlike Nanoparticle Organic Hybrid Solvents for Efficient Biomass Valorization. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seokyoon Moon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yunseok Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Soyoung Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sujin Hong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seungin Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Ah-Hyung A. Park
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Lenfest Center for Sustainable Energy, Columbia University, New York, New York 10027, United States
| | - Youngjune Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
28
|
Langeslay RR, Kaphan DM, Marshall CL, Stair PC, Sattelberger AP, Delferro M. Catalytic Applications of Vanadium: A Mechanistic Perspective. Chem Rev 2018; 119:2128-2191. [PMID: 30296048 DOI: 10.1021/acs.chemrev.8b00245] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The chemistry of vanadium has seen remarkable activity in the past 50 years. In the present review, reactions catalyzed by homogeneous and supported vanadium complexes from 2008 to 2018 are summarized and discussed. Particular attention is given to mechanistic and kinetics studies of vanadium-catalyzed reactions including oxidations of alkanes, alkenes, arenes, alcohols, aldehydes, ketones, and sulfur species, as well as oxidative C-C and C-O bond cleavage, carbon-carbon bond formation, deoxydehydration, haloperoxidase, cyanation, hydrogenation, dehydrogenation, ring-opening metathesis polymerization, and oxo/imido heterometathesis. Additionally, insights into heterogeneous vanadium catalysis are provided when parallels can be drawn from the homogeneous literature.
Collapse
Affiliation(s)
- Ryan R Langeslay
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - David M Kaphan
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Christopher L Marshall
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Peter C Stair
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Alfred P Sattelberger
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Massimiliano Delferro
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
29
|
Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes (Basel) 2018. [DOI: 10.3390/pr6080098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
Collapse
|
30
|
Gao R, Li Y, Kim H, Mobley JK, Ralph J. Selective Oxidation of Lignin Model Compounds. CHEMSUSCHEM 2018; 11:2045-2050. [PMID: 29719142 DOI: 10.1002/cssc.201800598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO2 Cl2 (DMSO)2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin.
Collapse
Affiliation(s)
- Ruili Gao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Yanding Li
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Hoon Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Justin K Mobley
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Present address: NMR Center Director, Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0174, USA
| | - John Ralph
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| |
Collapse
|
31
|
Vangeel T, Schutyser W, Renders T, Sels BF. Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions. Top Curr Chem (Cham) 2018; 376:30. [PMID: 29974271 DOI: 10.1007/s41061-018-0207-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023]
Abstract
Lignin valorization has gained increasing attention over the past decade. Being the world's largest source of renewable aromatics, its valorization could pave the way towards more profitable and more sustainable lignocellulose biorefineries. Many lignin valorization strategies focus on the disassembly of lignin into aromatic monomers, which can serve as platform molecules for the chemical industry. Within this framework, the oxidative conversion of lignin is of great interest because it enables the formation of highly functionalized, valuable compounds. This work provides a brief overview and critical discussion of lignin oxidation research. In the first part, oxidative conversion of lignin models and isolated lignin streams is reviewed. The second part highlights a number of challenges with respect to the substrate, catalyst, and operating conditions, and proposes some future directions regarding the oxidative conversion of lignin.
Collapse
Affiliation(s)
- Thijs Vangeel
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Wouter Schutyser
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tom Renders
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bert F Sels
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| |
Collapse
|
32
|
Liu H, Li H, Lu J, Zeng S, Wang M, Luo N, Xu S, Wang F. Photocatalytic Cleavage of C–C Bond in Lignin Models under Visible Light on Mesoporous Graphitic Carbon Nitride through π–π Stacking Interaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00022] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongji Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianmin Lu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Shu Zeng
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Min Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
33
|
Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Top Catal 2018. [DOI: 10.1007/s11244-018-0909-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 2018; 47:852-908. [PMID: 29318245 DOI: 10.1039/c7cs00566k] [Citation(s) in RCA: 923] [Impact Index Per Article: 131.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.
Collapse
Affiliation(s)
- W Schutyser
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
35
|
Fang J, Ye P, Wang M, Wu D, Xu A, Li X. Hydrogenolysis and hydrogenation of β-O-4 ketones by a simple photocatalytic hydrogen transfer reaction. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
37
|
Cheng C, Shen D, Gu S, Luo KH. State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00845k] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Catalytic hydrogenolysis of lignin is overviewed, concerning the cleavage of typical inter-unit linkages and the production of aromatic chemicals.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Dekui Shen
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Sai Gu
- Department of Chemical and Process Engineering
- Faculty of Engineering and Physical Sciences
- University of Surrey
- UK
| | - Kai Hong Luo
- Department of Mechanical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|
38
|
Fang Z, Meier MS. Toward the oxidative deconstruction of lignin: oxidation of β-1 and β-5 linkages. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00409a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Production of monomers and other products from the oxidation of β-1 and β-5 lignin models.
Collapse
Affiliation(s)
- Zhen Fang
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Mark S. Meier
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| |
Collapse
|
39
|
Johnson BM, Francke R, Little RD, Berben LA. High turnover in electro-oxidation of alcohols and ethers with a glassy carbon-supported phenanthroimidazole mediator. Chem Sci 2017; 8:6493-6498. [PMID: 28989674 PMCID: PMC5628575 DOI: 10.1039/c7sc02482g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/14/2017] [Indexed: 11/21/2022] Open
Abstract
Glassy carbon electrodes covalently modified with a phenanthroimidazole mediator promote electrochemical alcohol and ether oxidation: three orders of magnitude increase in TON, to ∼15 000 in each case, was observed compared with homogeneous mediated reactions.
Glassy carbon electrodes covalently modified with a phenanthroimidazole mediator promote electrochemical alcohol and ether oxidation: three orders of magnitude increase in TON, to ∼15 000 in each case, was observed compared with homogeneous mediated reactions. We propose the deactivation pathways in homogeneous solution are prevented by the immobilization: modified electrode reversibility is increased for a one-electron oxidation reaction. The modified electrodes were used to catalytically oxidize p-anisyl alcohol and 1-((benzyloxy)methyl)-4-methoxybenzene, selectively, to the corresponding benzaldehyde and benzyl ester, respectively.
Collapse
Affiliation(s)
- Bruce M Johnson
- Department of Chemistry , University of California , Davis , CA 95616 , USA .
| | - Robert Francke
- Institut für Chemie , Abteilung Technische Chemie , Universität Rostock , Germany .
| | - R Daniel Little
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , CA 93106 , USA .
| | - Louise A Berben
- Department of Chemistry , University of California , Davis , CA 95616 , USA .
| |
Collapse
|
40
|
Dabral S, Hernández JG, Kamer PCJ, Bolm C. Organocatalytic Chemoselective Primary Alcohol Oxidation and Subsequent Cleavage of Lignin Model Compounds and Lignin. CHEMSUSCHEM 2017; 10:2707-2713. [PMID: 28523820 DOI: 10.1002/cssc.201700703] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/18/2017] [Indexed: 06/07/2023]
Abstract
A one-pot two-step degradation of lignin β-O-4 model compounds initiated by preferred oxidation of the primary over the secondary hydroxyl groups with a TEMPO/DAIB system has been developed [TEMPO=2,2,6,6-tetramethylpiperidine-N-oxyl, DAIB=(diacetoxy)iodobenzene]. The oxidised products are then cleaved by proline-catalysed retro-aldol reactions. This degradation methodology produces simple aromatics in good yields from lignin model compounds at room temperature with an extension to organosolv beech-wood lignin (L1) resulting in known cleavage products.
Collapse
Affiliation(s)
- Saumya Dabral
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Paul C J Kamer
- School of Chemistry, EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife, KY169ST, UK
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| |
Collapse
|
41
|
Bosque I, Magallanes G, Rigoulet M, Kärkäs MD, Stephenson CRJ. Redox Catalysis Facilitates Lignin Depolymerization. ACS CENTRAL SCIENCE 2017; 3:621-628. [PMID: 28691074 PMCID: PMC5492418 DOI: 10.1021/acscentsci.7b00140] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Indexed: 05/06/2023]
Abstract
Lignin is a recalcitrant and underexploited natural feedstock for aromatic commodity chemicals, and its degradation generally requires the use of high temperatures and harsh reaction conditions. Herein we present an ambient temperature one-pot process for the controlled oxidation and depolymerization of this potent resource. Harnessing the potential of electrocatalytic oxidation in conjugation with our photocatalytic cleavage methodology, we have developed an operationally simple procedure for selective fragmentation of β-O-4 bonds with excellent mass recovery, which provides a unique opportunity to expand the existing lignin usage from energy source to commodity chemicals and synthetic building block source.
Collapse
|
42
|
Cheng C, Wang J, Shen D, Xue J, Guan S, Gu S, Luo KH. Catalytic Oxidation of Lignin in Solvent Systems for Production of Renewable Chemicals: A Review. Polymers (Basel) 2017; 9:E240. [PMID: 30970917 PMCID: PMC6432089 DOI: 10.3390/polym9060240] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022] Open
Abstract
Lignin as the most abundant source of aromatic chemicals in nature has attracted a great deal of attention in both academia and industry. Solvolysis is one of the promising methods to convert lignin to a number of petroleum-based aromatic chemicals. The process involving the depolymerization of the lignin macromolecule and repolymerization of fragments is complicated influenced by heating methods, reaction conditions, presence of a catalyst and solvent systems. Recently, numerous investigations attempted unveiling the inherent mechanism of this process in order to promote the production of valuable aromatics. Oxidative solvolysis of lignin can produce a number of the functionalized monomeric or oligomeric chemicals. A number of research groups should be greatly appreciated with regard to their contributions on the following two concerns: (1) the cracking mechanism of inter-unit linkages during the oxidative solvolysis of lignin; and (2) the development of novel catalysts for oxidative solvolysis of lignin and their performance. Investigations on lignin oxidative solvolysis are extensively overviewed in this work, concerning the above issues and the way-forward for lignin refinery.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key Lab of Thermal Energy Conversion and Control of MoE, Southeast University, Nanjing 210096, China.
| | - Jinzhi Wang
- Key Lab of Thermal Energy Conversion and Control of MoE, Southeast University, Nanjing 210096, China.
| | - Dekui Shen
- Key Lab of Thermal Energy Conversion and Control of MoE, Southeast University, Nanjing 210096, China.
| | - Jiangtao Xue
- Jiangsu Frontier Electric Power Technology Co., Ltd., Nanjing 211102, China.
| | - Sipian Guan
- Jiangsu Frontier Electric Power Technology Co., Ltd., Nanjing 211102, China.
| | - Sai Gu
- Department of Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK.
| | - Kai Hong Luo
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
43
|
Hou T, Luo N, Li H, Heggen M, Lu J, Wang Y, Wang F. Yin and Yang Dual Characters of CuOx Clusters for C–C Bond Oxidation Driven by Visible Light. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00629] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tingting Hou
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Nengchao Luo
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Hongji Li
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Marc Heggen
- Ernst
Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter
Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich 52425, Germany
| | - Jianmin Lu
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yehong Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Feng Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
44
|
Zhou ZZ, Liu M, Li CJ. Selective Copper–N-Heterocyclic Carbene (Copper-NHC)-Catalyzed Aerobic Cleavage of β-1 Lignin Models to Aldehydes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00565] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong-zhen Zhou
- Department
of Chemistry and FQRNT Centre for Green Chemistry Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
- School
of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingxin Liu
- Department
of Chemistry and FQRNT Centre for Green Chemistry Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department
of Chemistry and FQRNT Centre for Green Chemistry Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
45
|
Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water. Sci Rep 2017; 7:46172. [PMID: 28387304 PMCID: PMC5384005 DOI: 10.1038/srep46172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/10/2017] [Indexed: 11/12/2022] Open
Abstract
More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds.
Collapse
|
46
|
Gao WJ, Lam CM, Sun BG, Little RD, Zeng CC. Selective electrochemical C O bond cleavage of β-O-4 lignin model compounds mediated by iodide ion. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Liu H, Wang M, Li H, Luo N, Xu S, Wang F. New protocol of copper-catalyzed oxidative C(CO) C bond cleavage of aryl and aliphatic ketones to organic acids using O2 as the terminal oxidant. J Catal 2017. [DOI: 10.1016/j.jcat.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Kärkäs MD, Matsuura BS, Monos TM, Magallanes G, Stephenson CRJ. Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Org Biomol Chem 2016; 14:1853-914. [PMID: 26732312 DOI: 10.1039/c5ob02212f] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of a sustainable, carbon-neutral biorefinery has emerged as a prominent scientific and engineering goal of the 21st century. As petroleum has become less accessible, biomass-based carbon sources have been investigated for utility in fuel production and commodity chemical manufacturing. One underutilized biomaterial is lignin; however, its highly crosslinked and randomly polymerized composition have rendered this biopolymer recalcitrant to existing chemical processing. More recently, insight into lignin's molecular structure has reinvigorated chemists to develop catalytic methods for lignin depolymerization. This review examines the development of transition-metal catalyzed reactions and the insights shared between the homogeneous and heterogeneous catalytic systems towards the ultimate goal of valorizing lignin to produce value-added products.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Bryan S Matsuura
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Timothy M Monos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Gabriel Magallanes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Corey R J Stephenson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
49
|
Jiang YY, Yan L, Yu HZ, Zhang Q, Fu Y. Mechanism of Vanadium-Catalyzed Selective C–O and C–C Cleavage of Lignin Model Compound. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00239] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan-Ye Jiang
- Hefei
National Laboratory for Physical Sciences at the Microscale, iChEM,
CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key
Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Long Yan
- Hefei
National Laboratory for Physical Sciences at the Microscale, iChEM,
CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key
Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hai-Zhu Yu
- Department
of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, People’s Republic of China
| | - Qi Zhang
- Hefei
National Laboratory for Physical Sciences at the Microscale, iChEM,
CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key
Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yao Fu
- Hefei
National Laboratory for Physical Sciences at the Microscale, iChEM,
CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key
Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
50
|
Lohr TL, Li Z, Marks TJ. Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis. Acc Chem Res 2016; 49:824-34. [PMID: 27078085 DOI: 10.1021/acs.accounts.6b00069] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To reduce global reliance on fossil fuels, new renewable sources of energy that can be used with the current infrastructure are required. Biomass represents a major source of renewable carbon based fuel; however, the high oxygen content (∼40%) limits its use as a conventional fuel. To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C-O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. Once selective methods of C-O cleavage are understood and perfected, application to processing real biomass feedstocks such as lignin can be undertaken. This Laboratory previously reported that recyclable "green" lanthanide triflates are excellent catalysts for C-O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C-O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C-O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether C-O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C-O cleavage reaction. This Account reviews recent developments on thermodynamically leveraged tandem catalysis for ether and more recently, ester C-O bond cleavage undertaken at Northwestern University. First, the fundamentals of lanthanide-catalyzed hydroelementation are reviewed, with particular focus on ether C-O bond formation (hydroalkoxylation). Next, the reverse C-O cleavage/retrohydroalkoxylation processes enabled by tandem catalysis are discussed for both ether and ester C-O bond cleavage, including mechanistic and computational analysis. This is followed by recent results using this tandem catalytic strategy toward biomass relevant substrates, including work deconstructing acetylated lignin models, and the production of biodiesel from triglycerides, while bypassing the production of undesired glycerol for more valuable C3 products such as diesters (precursors to diols) in up to 47% selectivity. This Account concludes with future prospects for using this tandem catalytic system under real biomass processing conditions.
Collapse
Affiliation(s)
- Tracy L. Lohr
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Zhi Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tobin J. Marks
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|