1
|
Kaur P, Tyagi V. Merging Electrosynthesis and Biocatalysis to Access Sulfur-Based Chiral α-Fluorinated Carboxylic Acids. J Org Chem 2025; 90:5378-5392. [PMID: 40241286 DOI: 10.1021/acs.joc.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
We describe a sustainable process to synthesize chiral sulfur-based organofluorine compounds by integrating electrosynthesis and biocatalysis within a single vessel while using water as a solvent. In this context, differently substituted 2-fluoro-3-mercaptopropionic acids have been synthesized in good isolated yields using thiophenols and fluorine-containing α,β-unsaturated alkenes. In addition, molecular docking and control experiments were carried out that suggest the formation of radical species during the electrolysis and participation of the lipase active site during the biocatalysis. The scalability and applicability of the developed protocol have been illustrated through the synthesis of a key intermediate of the MMP-3 inhibitor and by performing a gram-scale reaction. Further, the compatibility of the lipase enzyme with electricity highlights the promising potential of enzymatic electrosynthesis in advancing environmentally friendly organic transformations.
Collapse
Affiliation(s)
- Parmjeet Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Vikas Tyagi
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
2
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Self-Sufficient CYP102 Family Provides New Insights into Their Biochemistry. Int J Mol Sci 2025; 26:2161. [PMID: 40076785 PMCID: PMC11900375 DOI: 10.3390/ijms26052161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Cytochromes P450 are a superfamily of heme-containing monooxygenases involved in a variety of oxidative metabolic reactions, primarily catalyzing the insertion of an oxygen atom into a C-H bond. CYP102 represents the first example of a bacterial P450 that can be classified as a type II (eukaryotic-like) P450 and functions as a catalytically self-sufficient enzyme. These unique features have made CYP102 an attractive system for studying P450 structure and function. However, an overall picture of the specific amino acid residues that are crucial to the functioning of CYP102 and the effect of mutations on the P450 structure and catalysis is yet to be reported. Such an approach will aid protein engineering approaches used to improve this enzyme. To address this research knowledge gap, we have investigated 105 CYP102 crystal structures in this study. We demonstrate that the CYP102 active site is highly dynamic and flexible. Amino acid residues that play critical roles in substrate binding, orientation, and anchoring were identified. Mutational studies highlighted the roles of amino acids and provided possible bioengineering improvement strategies for CYP102. Decoy molecules are a promising agent for deceiving CYP102 and permitting non-native substrates into the active site. Ru(II)-diimine photosensitizers and zinc/cobalt (III) sepulchrate (Co(III)Sep) could be used as alternative electron sources. The present study serves as a reference for understanding the structure-functional analysis of CYP102 family members precisely and of P450 enzymes in general. Significantly, this work contributes to the effort to develop an improved CYP102 enzyme, thereby advancing the field of P450 research and potentially leading to new industrial applications.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
3
|
You Y, Zhang XJ, Xiao W, Kunthic T, Xiang Z, Xu C. Unified enantiospecific synthesis of drimane meroterpenoids enabled by enzyme catalysis and transition metal catalysis. Chem Sci 2024; 15:19307-19314. [PMID: 39568920 PMCID: PMC11575645 DOI: 10.1039/d4sc06060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
Merging the advantages of biocatalysis and chemocatalysis in retrosynthetic analysis can significantly improve the efficiency and selectivity of natural product synthesis. Here, we describe a unified approach for the synthesis of drimane meroterpenoids by combining heterologous biosynthesis, enzymatic hydroxylation, and transition metal catalysis. In phase one, drimenol was produced by engineering a biosynthetic pathway in Escherichia coli. Cytochrome P450BM3 from Bacillus megaterium was engineered to catalyze the C-3 hydroxylation of drimenol. By means of nickel-catalyzed reductive coupling, six drimane meroterpenoids (+)-hongoquercins A and B, (+)-ent-chromazonarol, 8-epi-puupehenol, (-)-pelorol, and (-)-mycoleptodiscin A were synthesized in a concise and enantiospecific manner. This strategy offers facile access to the congeners of the drimane meroterpenoid family and lays the foundation for activity optimization.
Collapse
Affiliation(s)
- Yipeng You
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
| | - Xue-Jie Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center Guangqiao Road, Guangming District Shenzhen 518132 P. R. China
| | - Chen Xu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
| |
Collapse
|
4
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
5
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Lappe A, Luelf UJ, Keilhammer M, Bokel A, Urlacher VB. Bacterial cytochrome P450 enzymes: Semi-rational design and screening of mutant libraries in recombinant Escherichia coli cells. Methods Enzymol 2023; 693:133-170. [PMID: 37977729 DOI: 10.1016/bs.mie.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bacterial cytochromes P450 (P450s) have been recognized as attractive targets for biocatalysis and protein engineering. They are soluble cytosolic enzymes that demonstrate higher stability and activity than their membrane-associated eukaryotic counterparts. Many bacterial P450s possess broad substrate spectra and can be produced in well-known expression hosts like Escherichia coli at high levels, which enables quick and convenient mutant libraries construction. However, the majority of bacterial P450s interacts with two auxiliary redox partner proteins, which significantly increase screening efforts. We have established recombinant E. coli cells for screening of P450 variants that rely on two separate redox partners. In this chapter, a case study on construction of a selective P450 to synthesize a precursor of several chemotherapeutics, (-)-podophyllotoxin, is described. The procedure includes co-expression of P450 and redox partner genes in E. coli with subsequent whole-cell conversion of the substrate (-)-deoxypodophyllotoxin in 96-deep-well plates. By omitting the chromatographic separation while measuring mass-to-charge ratios specific for the substrate and product via MS in so-called multiple injections in a single experimental run (MISER) LC/MS, the analysis time could be drastically reduced to roughly 1 min per sample. Screening results were verified by using isolated P450 variants and purified redox partners.
Collapse
Affiliation(s)
- Alessa Lappe
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - U Joost Luelf
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirco Keilhammer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ansgar Bokel
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Zhang Z, Wu QY, Ge Y, Huang ZY, Hong R, Li A, Xu JH, Yu HL. Hydroxylases involved in terpenoid biosynthesis: a review. BIORESOUR BIOPROCESS 2023; 10:39. [PMID: 38647640 PMCID: PMC10992849 DOI: 10.1186/s40643-023-00656-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/10/2023] [Indexed: 04/25/2024] Open
Abstract
Terpenoids are pervasive in nature and display an immense structural diversity. As the largest category of plant secondary metabolites, terpenoids have important socioeconomic value in the fields of pharmaceuticals, spices, and food manufacturing. The biosynthesis of terpenoid skeletons has made great progress, but the subsequent modifications of the terpenoid framework are poorly understood, especially for the functionalization of inert carbon skeleton usually catalyzed by hydroxylases. Hydroxylase is a class of enzymes that plays an important role in the modification of terpenoid backbone. This review article outlines the research progress in the identification, molecular modification, and functional expression of this class of enzymes in the past decade, which are profitable for the discovery, engineering, and application of more hydroxylases involved in the plant secondary metabolism.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Qing-Yang Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Ge
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aitao Li
- School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
9
|
Permana D, Kitaoka T, Ichinose H. Conversion and synthesis of chemicals catalyzed by fungal cytochrome P450 monooxygenases: A review. Biotechnol Bioeng 2023. [PMID: 37139574 DOI: 10.1002/bit.28411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Cytochrome P450s (also called CYPs or P450s) are a superfamily of heme-containing monooxygenases. They are distributed in all biological kingdoms. Most fungi have at least two P450-encoding genes, CYP51 and CYP61, which are housekeeping genes that play important roles in the synthesis of sterols. However, the kingdom fungi is an interesting source of numerous P450s. Here, we review reports on fungal P450s and their applications in the bioconversion and biosynthesis of chemicals. We highlight their history, availability, and versatility. We describe their involvement in hydroxylation, dealkylation, oxygenation, C═C epoxidation, C-C cleavage, C-C ring formation and expansion, C-C ring contraction, and uncommon reactions in bioconversion and/or biosynthesis pathways. The ability of P450s to catalyze these reactions makes them promising enzymes for many applications. Thus, we also discuss future prospects in this field. We hope that this review will stimulate further study and exploitation of fungal P450s for specific reactions and applications.
Collapse
Affiliation(s)
- Dani Permana
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (Badan Riset dan Inovasi Nasional (BRIN)), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Bandung, Indonesia
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
10
|
Wang M, Zhou X, Wang Z, Chen Y. Enzyme-catalyzed allylic oxidation reactions: A mini-review. Front Chem 2022; 10:950149. [PMID: 36046724 PMCID: PMC9420900 DOI: 10.3389/fchem.2022.950149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chiral allylic oxidized products play an increasingly important role in the pharmaceutical, agrochemical, and pharmaceutical industries. Biocatalytic C–H oxyfunctionalization to synthesize allylic oxidized products has attracted great attention in recent years, with the ability to simplify synthetic approaches toward complex compounds. As a result, scientists have found some new enzymes and mutants through techniques of gene mining and enzyme-directed evolution in recent years. This review summarizes the recent developments in biocatalytic selective oxidation of olefins by different kinds of biocatalysts.
Collapse
Affiliation(s)
- Maoyao Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaojian Zhou
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhongqiang Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yongzheng Chen,
| |
Collapse
|
11
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
12
|
Li F, Deng H, Renata H. Remote B-Ring Oxidation of Sclareol with an Engineered P450 Facilitates Divergent Access to Complex Terpenoids. J Am Chem Soc 2022; 144:7616-7621. [PMID: 35452234 DOI: 10.1021/jacs.2c02958] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Though chiral pool synthesis is widely accepted as a powerful strategy in complex molecule synthesis, the effectiveness of the approach is intimately linked to the range of available chiral building blocks and the functional groups they possess. To date, there is still a pressing need for new remote functionalization methods that would allow the installation of useful chemical handles on these building blocks to enable a broader spectrum of synthetic manipulations. Herein, we report the engineering of a P450BM3 variant for the regioselective C-H oxidation of sclareol at C6. The synthetic utility of the resulting product was demonstrated in a formal synthesis of ansellone B, the first total synthesis of the 2,3-seco-labdane excolide B, and a model study toward (+)-pallavicinin.
Collapse
Affiliation(s)
- Fuzhuo Li
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Heping Deng
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
13
|
Karasawa M, Yonemura K, Stanfield JK, Suzuki K, Shoji O. Ein Designeraußenmembranprotein fördert die Aufnahme von Täuschmolekülen in einen auf Zytochrom P450BM3 beruhenden Ganzzellbiokatalysator. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Masayuki Karasawa
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Kai Yonemura
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Kazuto Suzuki
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
| | - Osami Shoji
- Department of Chemistry Graduate School of Science Universität Nagoya Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho Chiyoda-ku, Tokio 102-0075 Japan
| |
Collapse
|
14
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
15
|
Karasawa M, Yonemura K, Stanfield JK, Suzuki K, Shoji O. Designer Outer Membrane Protein Facilitates Uptake of Decoy Molecules into a Cytochrome P450BM3-Based Whole-Cell Biocatalyst. Angew Chem Int Ed Engl 2021; 61:e202111612. [PMID: 34704327 DOI: 10.1002/anie.202111612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/11/2022]
Abstract
We report an OmpF loop deletion mutant, which improves the cellular uptake of external additives into an Escherichia coli whole-cell biocatalyst. Through co-expression of the OmpF mutant with wild-type P450BM3 in the presence of decoy molecules, the yield of the whole-cell biotransformation of benzene could be considerably improved. Notably, with C7AM-Pip-Phe the yield duodecupled from 5.7% to 70%, with 80% phenol selectivity. The benzylic hydroxylation of alkyl- and cycloalkylbenzenes was also examined, and with the aid of decoy molecules, propylbenzene and tetralin were converted to 1-hydroxylated products with 78% yield and 94% ( R ) ee for propylbenzene and 92% yield and 94% ( S ) ee for tetralin. Our results suggest that both the decoy molecule and substrate traverse the artificial channel, synergistically boosting whole-cell bioconversions.
Collapse
Affiliation(s)
- Masayuki Karasawa
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Kai Yonemura
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Joshua Kyle Stanfield
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Kazuto Suzuki
- Nagoya University: Nagoya Daigaku, Chemistry, Science & Agricultural Building SA601, Furo-cho, Chikusa-ku, 464-8602, Nagoya-shi, JAPAN
| | - Osami Shoji
- Nagoya University, Graduate School of Science, Furo, Chikusa,, 464-8602, Nagoya, JAPAN
| |
Collapse
|
16
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:16962-16993. [PMID: 38505660 PMCID: PMC10946893 DOI: 10.1002/ange.202014931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 03/21/2024]
Abstract
AbstractDie Enzymkatalyse gewinnt zunehmend an Bedeutung in der Synthesechemie. Die durch Bioinformatik und Enzym‐Engineering stetig wachsende Zahl von Biokatalysatoren eröffnet eine große Vielfalt selektiver Reaktionen. Insbesondere für späte Funktionalisierungsreaktionen ist die Biokatalyse ein geeignetes Werkzeug, das oftmals der konventionellen De‐novo‐Synthese überlegen ist. Enzyme haben sich als nützlich erwiesen, um funktionelle Gruppen direkt in komplexe Molekülgerüste einzuführen sowie für die rasche Diversifizierung von Substanzbibliotheken. Biokatalytische Oxyfunktionalisierungen, Halogenierungen, Methylierungen, Reduktionen und Amidierungen sind von besonderem Interesse, da diese Strukturmotive häufig in Pharmazeutika vertreten sind. Dieser Aufsatz gibt einen Überblick über die Stärken und Schwächen der enzymkatalysierten späten Modifizierungen durch native und optimierte Enzyme in der Synthesechemie. Ebenso werden wichtige Beispiele in der Wirkstoffentwicklung hervorgehoben.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGötheborgSchweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNVereinigtes Königreich
| |
Collapse
|
17
|
Romero E, Jones BS, Hogg BN, Rué Casamajo A, Hayes MA, Flitsch SL, Turner NJ, Schnepel C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew Chem Int Ed Engl 2021; 60:16824-16855. [PMID: 33453143 PMCID: PMC8359417 DOI: 10.1002/anie.202014931] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Enzyme catalysis is gaining increasing importance in synthetic chemistry. Nowadays, the growing number of biocatalysts accessible by means of bioinformatics and enzyme engineering opens up an immense variety of selective reactions. Biocatalysis especially provides excellent opportunities for late-stage modification often superior to conventional de novo synthesis. Enzymes have proven to be useful for direct introduction of functional groups into complex scaffolds, as well as for rapid diversification of compound libraries. Particularly important and highly topical are enzyme-catalysed oxyfunctionalisations, halogenations, methylations, reductions, and amide bond formations due to the high prevalence of these motifs in pharmaceuticals. This Review gives an overview of the strengths and limitations of enzymatic late-stage modifications using native and engineered enzymes in synthesis while focusing on important examples in drug development.
Collapse
Affiliation(s)
- Elvira Romero
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Bethan S. Jones
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Bethany N. Hogg
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Arnau Rué Casamajo
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Sabine L. Flitsch
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Nicholas J. Turner
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Christian Schnepel
- School of ChemistryThe University of ManchesterManchester Institute of Biotechnology131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
18
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Alwaseem H, Giovani S, Crotti M, Welle K, Jordan CT, Ghaemmaghami S, Fasan R. Comprehensive Structure-Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C-H Functionalization. ACS CENTRAL SCIENCE 2021; 7:841-857. [PMID: 34079900 PMCID: PMC8161485 DOI: 10.1021/acscentsci.0c01624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 05/03/2023]
Abstract
The plant-derived sesquiterpene lactone micheliolide was recently found to possess promising antileukemic activity, including the ability to target and kill leukemia stem cells. Efforts toward improving the biological activity of micheliolide and investigating its mechanism of action have been hindered by the paucity of preexisting functional groups amenable for late-stage derivatization of this molecule. Here, we report the implementation of a probe-based P450 fingerprinting strategy to rapidly evolve engineered P450 catalysts useful for the regio- and stereoselective hydroxylation of micheliolide at two previously inaccessible aliphatic positions in this complex natural product. Via P450-mediated chemoenzymatic synthesis, a broad panel of novel micheliolide analogs could thus be obtained to gain structure-activity insights into the effect of C2, C4, and C14 substitutions on the antileukemic activity of micheliolide, ultimately leading to the discovery of "micheliologs" with improved potency against acute myelogenic leukemia cells. These late-stage C-H functionalization routes could be further leveraged to generate a panel of affinity probes for conducting a comprehensive analysis of the protein targeting profile of micheliolide in leukemia cells via chemical proteomics analyses. These studies introduce new micheliolide-based antileukemic agents and shed new light onto the biomolecular targets and mechanism of action of micheliolide in leukemia cells. More broadly, this work showcases the value of the present P450-mediated C-H functionalization strategy for streamlining the late-stage diversification and elucidation of the biomolecular targets of a complex bioactive molecule.
Collapse
Affiliation(s)
- Hanan Alwaseem
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Simone Giovani
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michele Crotti
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Kevin Welle
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
| | - Craig T. Jordan
- Department
of Hematology, School of Medicine, University
of Colorado, Aurora, Colorado 80045, United
States
| | - Sina Ghaemmaghami
- Mass
Spectrometry Resource Laboratory, University
of Rochester Medical School, Rochester, New York 14627, United States
- Department
of Biology, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
20
|
David F, Davis AM, Gossing M, Hayes MA, Romero E, Scott LH, Wigglesworth MJ. A Perspective on Synthetic Biology in Drug Discovery and Development-Current Impact and Future Opportunities. SLAS DISCOVERY 2021; 26:581-603. [PMID: 33834873 DOI: 10.1177/24725552211000669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.
Collapse
Affiliation(s)
- Florian David
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew M Davis
- Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Michael Gossing
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A Hayes
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elvira Romero
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louis H Scott
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
21
|
Chakrabarty S, Wang Y, Perkins JC, Narayan ARH. Scalable biocatalytic C-H oxyfunctionalization reactions. Chem Soc Rev 2020; 49:8137-8155. [PMID: 32701110 PMCID: PMC8177087 DOI: 10.1039/d0cs00440e] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalytic C-H oxyfunctionalization reactions have garnered significant attention in recent years with their ability to streamline synthetic routes toward complex molecules. Consequently, there have been significant strides in the design and development of catalysts that enable diversification through C-H functionalization reactions. Enzymatic C-H oxygenation reactions are often complementary to small molecule based synthetic approaches, providing a powerful tool when deployable on preparative-scale. This review highlights key advances in scalable biocatalytic C-H oxyfunctionalization reactions developed within the past decade.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
22
|
Biocatalytic allylic hydroxylation of unsaturated triterpenes and steroids by Bacillus megaterium CGMCC 1.1741. Bioorg Chem 2020; 99:103826. [DOI: 10.1016/j.bioorg.2020.103826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/16/2020] [Accepted: 04/05/2020] [Indexed: 11/18/2022]
|
23
|
Sun W, Xue H, Liu H, Lv B, Yu Y, Wang Y, Huang M, Li C. Controlling Chemo- and Regioselectivity of a Plant P450 in Yeast Cell toward Rare Licorice Triterpenoid Biosynthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wentao Sun
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Haijie Xue
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Hu Liu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yang Yu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Ying Wang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland United Kingdom
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
- Key Lab of Industrial Biocatalysis Ministry of Education, Department of Chemical Engineering, Tsinghua University, Haidian District, Beijing 100084, P.R. China
| |
Collapse
|
24
|
Sarkar MR, Bell SG. Complementary and selective oxidation of hydrocarbon derivatives by two cytochrome P450 enzymes of the same family. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01040e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytochrome P450 enzymes CYP101B1 and CYP101C1, from a Novosphingobium bacterium, can efficiently hydroxylate hydrocarbon derivatives containing a carbonyl moiety. Cyclic ketones (C9 to C15) were oxidised with contrasting yet high selectivity.
Collapse
Affiliation(s)
| | - Stephen G. Bell
- Department of Chemistry
- University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
25
|
Directed evolution of carbon–hydrogen bond activating enzymes. Curr Opin Biotechnol 2019; 60:29-38. [DOI: 10.1016/j.copbio.2018.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
|
26
|
Production of metabolites of the anti-cancer drug noscapine using a P450 BM3 mutant library. ACTA ACUST UNITED AC 2019; 24:e00372. [PMID: 31516852 PMCID: PMC6728265 DOI: 10.1016/j.btre.2019.e00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022]
Abstract
Mutants of P450BM3 can metabolise noscapine. Noscapine is N-demethylated with high selectivity. The metabolites produced are of interest for drug development. The profile of metabolites generated resembles that of mammalian CYP3A4.
Cytochrome P450 enzymes are a promising tool for the late-stage diversification of lead drug candidates and can provide an alternative route to structural modifications that are difficult to achieve with synthetic chemistry. In this study, a library of P450BM3 mutants was produced using site-directed mutagenesis and the enzymes screened for metabolism of the opium poppy alkaloid noscapine, a drug with anticancer activity. Of the 18 enzyme mutants screened, 12 showed an ability to metabolise noscapine that was not present in the wild-type enzyme. Five noscapine metabolites were detected by LC-MS/MS, with the major metabolite for all mutants being N-demethylated noscapine. The highest observed regioselectivity for N-demethylation was 88%. Two hydroxylated metabolites, a catechol and two C-C cleavage products were also detected. P450-mediated production of hydroxylated and N-demethylated noscapine structures may be useful for the development of noscapine analogues with improved biological activity. The variation in substrate turnover, coupling efficiency and product distribution between the active mutants was considered alongside in silico docking experiments to gain insight into structural and functional effects of the introduced mutations. Selected mutants were identified as targets for further mutagenesis to improve activity and when coupled with an optimised process may provide a route for the preparative-scale production of noscapine metabolites.
Collapse
|
27
|
Abstract
A set of dual functional small molecules (DFSMs) containing different amino acids has been synthesized and employed together with three different variants of the cytochrome P450 monooxygenase P450BM3 from Bacillus megaterium in H2O2-dependent oxidation reactions. These DFSMs enhance P450BM3 activity with hydrogen peroxide as an oxidant, converting these enzymes into formal peroxygenases. This system has been employed for the catalytic epoxidation of styrene and in the sulfoxidation of thioanisole. Various P450BM3 variants have been evaluated in terms of activity and selectivity of the peroxygenase reactions.
Collapse
|
28
|
Sun W, Qin L, Xue H, Yu Y, Ma Y, Wang Y, Li C. Novel trends for producing plant triterpenoids in yeast. Crit Rev Biotechnol 2019; 39:618-632. [DOI: 10.1080/07388551.2019.1608503] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Wentao Sun
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijie Xue
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yang Yu
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yihua Ma
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Ying Wang
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
29
|
Sarkar MR, Dasgupta S, Pyke SM, Bell SG. Selective biocatalytic hydroxylation of unactivated methylene C-H bonds in cyclic alkyl substrates. Chem Commun (Camb) 2019; 55:5029-5032. [PMID: 30968888 DOI: 10.1039/c9cc02060h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytochrome P450 monooxygenase CYP101B1 from Novosphingobium aromaticivorans selectively hydroxylated methylene C-H bonds in cycloalkyl rings. Cycloketones and cycloalkyl esters containing C6, C8, C10 and C12 rings were oxidised with high selectively on the opposite side of the ring to the carbonyl substituent. Cyclodecanone was oxidised to oxabicycloundecanol derivatives in equilibrium with the hydroxycyclodecanones.
Collapse
Affiliation(s)
- Md Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
30
|
Fessner ND. P450 Monooxygenases Enable Rapid Late-Stage Diversification of Natural Products via C-H Bond Activation. ChemCatChem 2019; 11:2226-2242. [PMID: 31423290 PMCID: PMC6686969 DOI: 10.1002/cctc.201801829] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/07/2019] [Indexed: 01/07/2023]
Abstract
The biological potency of natural products has been exploited for decades. Their inherent structural complexity and natural diversity might hold the key to efficiently address the urgent need for the development of novel pharmaceuticals. At the same time, it is that very complexity, which impedes necessary chemical modifications such as structural diversification, to improve the effectiveness of the drug. For this purpose, Cytochrome P450 enzymes, which possess unique abilities to activate inert sp3-hybridised C-H bonds in a late-stage fashion, offer an attractive synthetic tool. In this review the potential of cytochrome P450 enzymes in chemoenzymatic lead diversification is illustrated discussing studies reporting late-stage functionalisations of natural products and other high-value compounds. These enzymes were proven to extend the synthetic toolbox significantly by adding to the flexibility and efficacy of synthetic strategies of natural product chemists, and scientists of other related disciplines.
Collapse
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular BiotechnologyGraz University of Technology, NAWI GrazPetersgasse 148010GrazAustria
| |
Collapse
|
31
|
Cytochrome P450 Monooxygenases in Biotechnology and Synthetic Biology. Trends Biotechnol 2019; 37:882-897. [PMID: 30739814 DOI: 10.1016/j.tibtech.2019.01.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
Cytochromes P450 (P450 or CYP) are heme-containing enzymes that catalyze the introduction of one atom of molecular oxygen into nonactivated C-H bonds, often in a regio- and stereoselective manner. This ability, combined with a tremendous number of accepted substrates, makes P450s powerful biocatalysts. Sixty years after their discovery, P450 systems are recognized as essential bio-bricks in synthetic biology approaches to enable production of high-value complex molecules in recombinant hosts. Recent impressive results in protein engineering led to P450s with tailored properties that are even able to catalyze abiotic reactions. The introduction of P450s in artificial multi-enzymatic cascades reactions and chemo-enzymatic processes offers exciting future perspectives to access novel compounds that cannot be synthesized by nature or by chemical routes.
Collapse
|
32
|
Alnaqeeb M, Mansor KA, Mallah EM, Ghanim BY, Idkaidek N, Qinna NA. Critical pharmacokinetic and pharmacodynamic drug-herb interactions in rats between warfarin and pomegranate peel or guava leaves extracts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:29. [PMID: 30678660 PMCID: PMC6344987 DOI: 10.1186/s12906-019-2436-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND In-depth information of potential drug-herb interactions between warfarin and herbal compounds with suspected anticoagulant blood thinning effects is needed to raise caution of concomitant administration. The current study aimed to investigate the impact of co-administration of pomegranate peel and guava leaves extracts, including their quality markers namely; ellagic acid and quercetin, respectively, on warfarin's in vivo dynamic activity and pharmacokinetic actions, in addition to potential in vitro cytochrome P450 enzymes (CYP) inhibition. METHODS Influence of mentioned extracts and their key constituents on warfarin pharmacodynamic and kinetic actions and CYP activity were evaluated. The pharmacodynamic interactions were studied in Sprague Dawley rats through prothrombin time (PT) and International Normalized Ratio (INR) measurements, while pharmacokinetic interactions were detected in vivo using a validated HPLC method. Furthermore, potential involvement in CYP inhibition was also investigated in vitro on isolated primary rat hepatocytes. RESULTS Preparations of pomegranate peel guava leaf extract, ellagic acid and quercetin in combination with warfarin were found to exert further significant increase on PT and INR values (p < 0.01) than when used alone (p < 0.05). Pomegranate peel extract showed insignificant effects on warfarin pharmacokinetics (p > 0.05), however, its constituent, namely, ellagic acid significantly increased warfarin Cmax (p < 0.05). Guava leaves extract and quercetin resulted in significant increase in warfarin Cmax when compared to control (p < 0.01). Furthermore, guava leaves extract showed a significant effect on changing the AUC, CL and Vz. Significant reduction in CYP2C8, 2C9, and 3A4 was seen upon concomitant use of warfarin with ellagic acid, guava leaves and quercetin, unlike pomegranate that insignificantly affected CYP activities. CONCLUSION All combinations enhanced the anticoagulant activity of warfarin as the results of in vivo and in vitro studies were consistent. The current investigation confirmed serious drug herb interactions between warfarin and pomegranate peel or guava leaf extracts. Such results might conclude a high risk of bleeding from the co-administration of the investigated herbal drugs with warfarin therapy. In addition, the results raise attention to the blood-thinning effects of pomegranate peel and guava leaves when used alone.
Collapse
Affiliation(s)
- Maisa Alnaqeeb
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Airport Road, P.O. Box 961343, Amman, Jordan
| | - Kenza A. Mansor
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Eyad M. Mallah
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y. Ghanim
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
| | - Nasir Idkaidek
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
| | - Nidal A. Qinna
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Airport Road, P.O. Box 961343, Amman, Jordan
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
| |
Collapse
|
33
|
Yan N, Du Y, Liu X, Zhang H, Liu Y, Zhang Z. A Review on Bioactivities of Tobacco Cembranoid Diterpenes. Biomolecules 2019; 9:E30. [PMID: 30654586 PMCID: PMC6359560 DOI: 10.3390/biom9010030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023] Open
Abstract
Cembranoids are carbocyclic diterpenes comprising four isoprene units and are natural products with a parent skeleton consisting of a 14-membered ring. They have gained wide interest in recent years and are a major hotspot in the research of natural product chemistry. Since 1962, various tobacco cembranoid diterpenes have been identified. This review systematically discusses and summarises the excellent antimicrobial, insecticidal, cytotoxic and neuroprotective activities of tobacco cembranoid diterpenes. These compounds show potential to be developed as botanical fungicides, cytotoxic drugs and drugs for the treatment of human immunodeficiency virus, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. However, there are relatively few studies on the structure⁻activity relationship (SAR) of tobacco cembranoid diterpenes. Therefore, future studies should focus on their structural modification, SAR and biogenic relationships.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
34
|
Xiao H, Zhang Y, Wang M. Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis. Trends Biotechnol 2018; 37:618-631. [PMID: 30528904 DOI: 10.1016/j.tibtech.2018.11.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/28/2018] [Accepted: 11/15/2018] [Indexed: 01/29/2023]
Abstract
Terpenoids represent 60% of known natural products, including many drugs and drug candidates, and their biosynthesis is attracting great interest. However, the unknown cytochrome P450s (CYPs) in terpenoid biosynthetic pathways make the heterologous production of related terpenoids impossible, while the slow kinetics of some known CYPs greatly limit the efficiency of terpenoid biosynthesis. Thus, there is a compelling need to discover and engineer CYPs for terpenoid biosynthesis to fully realize their great potential for industrial application. This review article summarizes the current state of CYP discovery and engineering in terpenoid biosynthesis, focusing on recent synthetic biology approaches toward prototyping CYPs in heterologous hosts. We also propose several strategies for further accelerating CYP discovery and engineering.
Collapse
Affiliation(s)
- Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China; Co-first author with equal contribution.
| | - Yue Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Co-first author with equal contribution
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
35
|
Mthethwa BC, Chen W, Ngwenya ML, Kappo AP, Syed PR, Karpoormath R, Yu JH, Nelson DR, Syed K. Comparative Analyses of Cytochrome P450s and Those Associated with Secondary Metabolism in Bacillus Species. Int J Mol Sci 2018; 19:E3623. [PMID: 30453558 PMCID: PMC6275058 DOI: 10.3390/ijms19113623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are among the most catalytically-diverse enzymes, capable of performing enzymatic reactions with chemo-, regio-, and stereo-selectivity. Our understanding of P450s' role in secondary metabolite biosynthesis is becoming broader. Among bacteria, Bacillus species are known to produce secondary metabolites, and recent studies have revealed the presence of secondary metabolite biosynthetic gene clusters (BGCs) in these species. However, a comprehensive comparative analysis of P450s and P450s involved in the synthesis of secondary metabolites in Bacillus species has not been reported. This study intends to address these two research gaps. In silico analysis of P450s in 128 Bacillus species revealed the presence of 507 P450s that can be grouped into 13 P450 families and 28 subfamilies. No P450 family was found to be conserved in Bacillus species. Bacillus species were found to have lower numbers of P450s, P450 families and subfamilies, and a lower P450 diversity percentage compared to mycobacterial species. This study revealed that a large number of P450s (112 P450s) are part of different secondary metabolite BGCs, and also identified an association between a specific P450 family and secondary metabolite BGCs in Bacillus species. This study opened new vistas for further characterization of secondary metabolite BGCs, especially P450s in Bacillus species.
Collapse
Affiliation(s)
- Bongumusa Comfort Mthethwa
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Wanping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mathula Lancelot Ngwenya
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Abidemi Paul Kappo
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
36
|
Le‐Huu P, Rekow D, Krüger C, Bokel A, Heidt T, Schaubach S, Claasen B, Hölzel S, Frey W, Laschat S, Urlacher VB. Chemoenzymatic Route to Oxyfunctionalized Cembranoids Facilitated by Substrate and Protein Engineering. Chemistry 2018; 24:12010-12021. [DOI: 10.1002/chem.201802250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/27/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Priska Le‐Huu
- Institute of BiochemistryHeinrich-Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Dominik Rekow
- Institute of Organic ChemistryUniversity Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Claudia Krüger
- Institute of Organic ChemistryUniversity Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Ansgar Bokel
- Institute of BiochemistryHeinrich-Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Tanja Heidt
- Institute of Organic ChemistryUniversity Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sebastian Schaubach
- Institute of Organic ChemistryUniversity Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Birgit Claasen
- Institute of Organic ChemistryUniversity Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sebastian Hölzel
- Institute of BiochemistryHeinrich-Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sabine Laschat
- Institute of Organic ChemistryUniversity Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Vlada B. Urlacher
- Institute of BiochemistryHeinrich-Heine University Düsseldorf Universitätsstrasse 1 40225 Düsseldorf Germany
| |
Collapse
|
37
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
38
|
Petrović D, Bokel A, Allan M, Urlacher VB, Strodel B. Simulation-Guided Design of Cytochrome P450 for Chemo- and Regioselective Macrocyclic Oxidation. J Chem Inf Model 2018. [PMID: 29522682 DOI: 10.1021/acs.jcim.8b00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Engineering high chemo-, regio-, and stereoselectivity is a prerequisite for enzyme usage in organic synthesis. Cytochromes P450 can oxidize a broad range of substrates, including macrocycles, which are becoming popular scaffolds for therapeutic agents. However, a large conformational space explored by macrocycles not only reduces the selectivity of oxidation but also impairs computational enzyme design strategies based on docking and molecular dynamics (MD) simulations. We present a novel design workflow that uses enhanced-sampling Hamiltonian replica exchange (HREX) MD and focuses on quantifying the substrate binding for suggesting the mutations to be made. This computational approach is applied to P450 BM3 with the aim to shift regioselectively toward one of the numerous possible positions during β-cembrenediol oxidation. The predictions are experimentally tested and the resulting product distributions validate our design strategy, as single mutations led up to 5-fold regioselectivity increases. We thus conclude that the HREX-MD-based workflow is a promising tool for the identification of positions for mutagenesis aiming at P450 enzymes with improved regioselectivity.
Collapse
Affiliation(s)
- Dušan Petrović
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Ansgar Bokel
- Institute of Biochemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Matthew Allan
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany.,Schreyer Honors College , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Vlada B Urlacher
- Institute of Biochemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
39
|
Rühlmann A, Groth G, Urlacher VB. Characterization of CYP154F1 from Thermobifida fusca YX and Extension of Its Substrate Spectrum by Site-Directed Mutagenesis. Chembiochem 2018; 19:478-485. [PMID: 29266604 DOI: 10.1002/cbic.201700565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Indexed: 11/05/2022]
Abstract
Previous studies on cytochrome P450 monooxygenases (CYP) from family 154 reported their substrate promiscuity and high activity. Hence, herein, the uncharacterized family member CYP154F1 is described. Screening of more than 100 organic compounds revealed that CYP154F1 preferably accepts small linear molecules with a carbon chain length of 8-10 atoms. In contrast to thoroughly characterized CYP154E1, CYP154F1 has a much narrower substrate spectrum and lower activity. A structural alignment of homology models of CYP154F1 and CYP154E1 revealed few differences in the active sites of both family members. By gradual mutagenesis of the CYP154F1 active site towards those of CYP154E1, a key residue accounting for the different activities of both enzymes was identified at position 234. Substitution of T234 for large hydrophobic amino acids led to up to tenfold higher conversion rates of small substrates, such as geraniol. Replacement of T234 by small hydrophobic amino acids, valine or alanine, resulted in mutants with extended substrate spectra. These mutants are able to convert some of the larger substrates of CYP154E1, such as (E)-stilbene and (+)-nootkatone.
Collapse
Affiliation(s)
- Ansgar Rühlmann
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| |
Collapse
|
40
|
Li Y, Qin B, Li X, Tang J, Chen Y, Zhou L, You S. Selective Oxidations of Cyperenoic Acid by Slightly Reshaping the Binding Pocket of Cytochrome P450 BM3. ChemCatChem 2018. [DOI: 10.1002/cctc.201701088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuxin Li
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Bin Qin
- Wuya College of Innovation; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Xiaoqin Li
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Jun Tang
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Yu Chen
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Lina Zhou
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| | - Song You
- School of Life Science and Biopharmaceutics; Shenyang Pharmaceutical University; 103 Wenhua Road, Shenhe District Shenyang 110016 P.R. China
| |
Collapse
|
41
|
Insights into the functional properties of the marneral oxidase CYP71A16 from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:2-10. [PMID: 28734978 DOI: 10.1016/j.bbapap.2017.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The Arabidopsis thaliana gene encoding CYP71A16 is part of the gene cluster for the biosynthesis and modification of the triterpenoid marneral. Previous investigations of A. thaliana have revealed that CYP71A16 catalyzes marneral oxidation, while it also can accept marnerol as substrate. The aim of the present study was to investigate functional properties of CYP71A16 in vitro. For this purpose, heterologous expression of a N-terminally modified version of CYP71A16 was established in Escherichia coli, which yielded up to 50mgL-1 recombinant enzyme. The enzyme was purified and activity was reconstituted in vitro with different redox partners. A heterologous bacterial redox partner system consisting of the flavodoxin YkuN from Bacillus subtilis and the flavodoxin reductase Fpr from E. coli clearly outperformed the cytochrome P450 reductase ATR2 from A. thaliana in supporting the CYP71A16-mediated hydroxylation of marnerol. Substrate binding experiments with CYP71A16 revealed a dissociation constant KD of 225μM for marnerol. CYP71A16 catalyzed the hydroxylation of marnerol to 23-hydroxymarnerol with a KM of 142μM and a kcat of 3.9min-1. Furthermore, GC/MS analysis revealed an as of yet unidentified overoxidation product of this in vitro reaction. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
|
42
|
Shoji O, Yanagisawa S, Stanfield JK, Suzuki K, Cong Z, Sugimoto H, Shiro Y, Watanabe Y. Direct Hydroxylation of Benzene to Phenol by Cytochrome P450BM3 Triggered by Amino Acid Derivatives. Angew Chem Int Ed Engl 2017; 56:10324-10329. [DOI: 10.1002/anie.201703461] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| | - Sota Yanagisawa
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Kazuto Suzuki
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Zhiqi Cong
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Hiroshi Sugimoto
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
- RIKEN SPring-8 Center Harima Institute 1-1-1 Kouto Sayo Hyogo 679–5148 Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center Harima Institute 1-1-1 Kouto Sayo Hyogo 679–5148 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
43
|
Shoji O, Yanagisawa S, Stanfield JK, Suzuki K, Cong Z, Sugimoto H, Shiro Y, Watanabe Y. Direct Hydroxylation of Benzene to Phenol by Cytochrome P450BM3 Triggered by Amino Acid Derivatives. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Osami Shoji
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
| | - Sota Yanagisawa
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Kazuto Suzuki
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Zhiqi Cong
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Hiroshi Sugimoto
- Core Research for Evolutional Science and Technology (Japan) Science and Technology Agency 5 Sanbancho, Chiyoda-ku Tokyo 102-0075 Japan
- RIKEN SPring-8 Center Harima Institute 1-1-1 Kouto Sayo Hyogo 679–5148 Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center Harima Institute 1-1-1 Kouto Sayo Hyogo 679–5148 Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| |
Collapse
|
44
|
Rühlmann A, Antovic D, Müller TJJ, Urlacher VB. Regioselective Hydroxylation of Stilbenes by Engineered Cytochrome P450 fromThermobifida fuscaYX. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ansgar Rühlmann
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; Universitätsstr.1 40225 Düsseldorf Germany
| | - Dragutin Antovic
- Institute of Macromolecular and Organic Chemistry, Chair of Organic Chemistry; Heinrich-Heine University Düsseldorf; Universitätsstr. 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Institute of Macromolecular and Organic Chemistry, Chair of Organic Chemistry; Heinrich-Heine University Düsseldorf; Universitätsstr. 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; Universitätsstr.1 40225 Düsseldorf Germany
| |
Collapse
|
45
|
O'Hanlon JA, Ren X, Morris M, Wong LL, Robertson J. Hydroxylation of anilides by engineered cytochrome P450BM3. Org Biomol Chem 2017; 15:8780-8787. [DOI: 10.1039/c7ob02236k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytochrome P450BM3mutants achieve selectivepara-hydroxylation of substitutedN-sulfonylanilines under mild conditions.
Collapse
Affiliation(s)
- Jack A. O'Hanlon
- Department of Chemistry
- University of Oxford
- Chemistry Research laboratory
- Oxford
- UK
| | - Xinkun Ren
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Melloney Morris
- Syngenta UK
- Jealott's Hill International Research Centre
- Bracknell
- UK
| | - Luet Lok Wong
- Department of Chemistry
- University of Oxford
- Inorganic Chemistry Laboratory
- Oxford
- UK
| | - Jeremy Robertson
- Department of Chemistry
- University of Oxford
- Chemistry Research laboratory
- Oxford
- UK
| |
Collapse
|
46
|
Le-Huu P, Petrović D, Strodel B, Urlacher VB. One-Pot, Two-Step Hydroxylation of the Macrocyclic Diterpenoid β-Cembrenediol Catalyzed by P450 BM3 Mutants. ChemCatChem 2016. [DOI: 10.1002/cctc.201600973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Priska Le-Huu
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; Universitätsstrasse 1, Bldg. 26.42.U1 40225 Düsseldorf Germany
| | - Dušan Petrović
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich-Heine University Düsseldorf; Universitätsstrasse 1 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; Universitätsstrasse 1, Bldg. 26.42.U1 40225 Düsseldorf Germany
| |
Collapse
|
47
|
Tan CY, Hirakawa H, Suzuki R, Haga T, Iwata F, Nagamune T. Immobilization of a Bacterial Cytochrome P450 Monooxygenase System on a Solid Support. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cheau Yuaan Tan
- Department of Bioengineering; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hidehiko Hirakawa
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Risa Suzuki
- Department of Bioengineering; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Biotechnology; Graduate School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya, Aichi 464-8603 Japan
| | - Tomoaki Haga
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Fumiya Iwata
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Teruyuki Nagamune
- Department of Bioengineering; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Chemistry and Biotechnology; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
48
|
Tan CY, Hirakawa H, Suzuki R, Haga T, Iwata F, Nagamune T. Immobilization of a Bacterial Cytochrome P450 Monooxygenase System on a Solid Support. Angew Chem Int Ed Engl 2016; 55:15002-15006. [PMID: 27781345 DOI: 10.1002/anie.201608033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/16/2016] [Indexed: 01/12/2023]
Abstract
Bacterial cytochrome P450s (P450s), which catalyze regio- and stereoselective oxidations of hydrocarbons with high turnover rates, are attractive biocatalysts for fine chemical production. Enzyme immobilization is needed for cost-effective industrial manufacturing. However, immobilization of P450s is difficult because electron-transfer proteins are involved in catalysis and anchoring these can prevent them from functioning as shuttle molecules for carrying electrons. We studied a heterotrimeric protein-mediated co-immobilization of a bacterial P450, and its electron-transfer protein and reductase. Fusion with subunits of a heterotrimeric Sulfolobus solfataricus proliferating cell nuclear antigen (PCNA) enabled immobilization of the three proteins on a solid support. The co-immobilized enzymes catalyzed monooxygenation because the electron-transfer protein fused to PCNA via a single peptide linker retained its electron-transport function.
Collapse
Affiliation(s)
- Cheau Yuaan Tan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hidehiko Hirakawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Risa Suzuki
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Tomoaki Haga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Fumiya Iwata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
49
|
Tyagi V, Alwaseem H, O'Dwyer KM, Ponder J, Li QY, Jordan CT, Fasan R. Chemoenzymatic synthesis and antileukemic activity of novel C9- and C14-functionalized parthenolide analogs. Bioorg Med Chem 2016; 24:3876-3886. [PMID: 27396927 PMCID: PMC5083853 DOI: 10.1016/j.bmc.2016.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Parthenolide is a naturally occurring terpene with promising anticancer properties, particularly in the context of acute myeloid leukemia (AML). Optimization of this natural product has been challenged by limited opportunities for the late-stage functionalization of this molecule without affecting the pharmacologically important α-methylene-γ-lactone moiety. Here, we report the further development and application of a chemoenzymatic strategy to afford a series of new analogs of parthenolide functionalized at the aliphatic positions C9 and C14. Several of these compounds were determined to be able to kill leukemia cells and patient-derived primary AML specimens with improved activity compared to parthenolide, exhibiting LC50 values in the low micromolar range. These studies demonstrate that different O-H functionalization chemistries can be applied to elaborate the parthenolide scaffold and that modifications at the C9 or C14 position can effectively enhance the antileukemic properties of this natural product. The C9-functionalized analogs 22a and 25b were identified as the most interesting compounds in terms of antileukemic potency and selectivity toward AML versus healthy blood cells.
Collapse
Affiliation(s)
- Vikas Tyagi
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Hanan Alwaseem
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Kristen M O'Dwyer
- Department of Hematology/Oncology, University of Rochester, Rochester, NY 14627, United States
| | - Jessica Ponder
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States; Division of Toxicology, University of Colorado, Aurora, CO 80045, United States
| | - Qi Ying Li
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, CO 80045, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
50
|
Reetz MT. What are the Limitations of Enzymes in Synthetic Organic Chemistry? CHEM REC 2016; 16:2449-2459. [DOI: 10.1002/tcr.201600040] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Manfred T. Reetz
- Fachbereich Chemie (15) Philipps-Universität Marburg Hans-Meerwein Straße; 35032 Marburg Germany
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|