1
|
Nelson PM, Sherrill CD. pyVPT2: Interoperable software for anharmonic vibrational frequency calculations. J Chem Phys 2025; 162:032501. [PMID: 39820337 DOI: 10.1063/5.0251445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
We present pyVPT2, a program to perform second-order vibrational perturbation theory (VPT2) computations to obtain anharmonic vibrational frequencies. This program is written in Python and can utilize any of the several quantum chemistry programs that have been interfaced to the QCEngine project of the Molecular Sciences Software Institute (MolSSI). The requisite single point energy, gradient, or Hessian computations can be automatically performed in a distributed-parallel fashion by optionally using the MolSSI's QCFractal software. With pyVPT2, VPT2 anharmonic frequencies can now be computed using quantum chemistry programs that lack their own VPT2 capabilities.
Collapse
Affiliation(s)
- Philip M Nelson
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
2
|
Puzzarini C, Alessandrini S. Carbamic acid and its dimer: A computational study. J Comput Chem 2024; 45:2501-2512. [PMID: 38970400 DOI: 10.1002/jcc.27442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 07/08/2024]
Abstract
A recent work by Marks et al. on the formation of carbamic acid in NH 3 -CO 2 interstellar ices pointed out its stability in the gas phase and the concomitant production of its dimer. Prompted by these results and the lack of information on these species, we have performed an accurate structural, energetic and spectroscopic investigation of carbamic acid and its dimer. For the former, the structural and spectroscopic characterization employed composite schemes based on coupled cluster (CC) calculations that account for the extrapolation to the complete basis set limit and core correlation effects. A first important outcome is the definitive confirmation of the nonplanarity of carbamic acid, then followed by an accurate estimate of its rotational and vibrational spectroscopy parameters. As far as the carbamic acid dimer is concerned, the investigation started from the identification of its most stable forms. For them, structure and vibrational properties have been evaluated using density functional theory, while a composite scheme rooted in CC theory has been employed for the energetic characterization. Our results allowed us to provide a better interpretation of the feature observed in the recent experiment mentioned above.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Silvia Alessandrini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Xu R, Jiang Z, Yang Q, Bloino J, Biczysko M. Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers. J Comput Chem 2024; 45:1846-1869. [PMID: 38682874 DOI: 10.1002/jcc.27377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Collapse
Affiliation(s)
- Ruiqin Xu
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| | | | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czechia
| | - Julien Bloino
- Classe di Scienze, Scuola Normale Superiore, Pisa, Italy
| | - Malgorzata Biczysko
- Department of Physics, College of Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
4
|
Nelson PM, Glick ZL, Sherrill CD. Approximating large-basis coupled-cluster theory vibrational frequencies using focal-point approximations. J Chem Phys 2023; 159:094104. [PMID: 37655773 DOI: 10.1063/5.0168608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023] Open
Abstract
The focal-point approximation can be used to estimate a high-accuracy, slow quantum chemistry computation by combining several lower-accuracy, faster computations. We examine the performance of focal-point methods by combining second-order Møller-Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] for the calculation of harmonic frequencies and that of fundamental frequencies using second-order vibrational perturbation theory (VPT2). In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster portion of the computation. The predicted harmonic and fundamental frequencies were compared with the experimental values for a set of 20 molecules containing up to six atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T + d)Z with CBS-extrapolated MP2 has mean absolute errors vs experiment of only 7.3 cm-1 for the fundamental frequencies, which are essentially the same as the mean absolute error for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q + d)Z and aug-cc-pV(5 + d)Z basis sets. However, for H2O, the focal-point procedure requires only 3% of the computation time as the extrapolated CCSD(T) result, and the cost savings will grow for larger molecules.
Collapse
Affiliation(s)
- Philip M Nelson
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
5
|
Barone V. DFT Meets Wave-Function Composite Methods for Characterizing Cytosine Tautomers in the Gas Phase. J Chem Theory Comput 2023; 19:4970-4981. [PMID: 37479680 PMCID: PMC10413851 DOI: 10.1021/acs.jctc.3c00465] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 07/23/2023]
Abstract
A general strategy for the accurate computation of structural and spectroscopic properties of biomolecule building blocks in the gas phase has been further improved and validated with a special reference to tautomeric equilibria. The main improvements concern the use of the cc-pVTZ-F12 basis set in both DFT and CCSD(T)-F12 computations, the inclusion of core-valence correlation in geometry optimizations by double hybrid functionals, and the use of the cc-pVQZ-F12 basis set for complete basis set extrapolation at the MP2-F12 level. The resulting model chemistry is applied to the challenging problem of cytosine tautomers in the gas phase. The results are in remarkable agreement with experiment concerning both rotational and vibrational spectroscopic parameters and permit their unbiased interpretation in terms of structural and thermochemical features. Together with the intrinsic interest of the studied molecule, the accuracy of the results obtained at reasonable cost without any empirical parameter suggests that the proposed composite method can be profitably employed for accurate investigations of other molecular bricks of life.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore
di Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
6
|
Fayaz A, Banik S, Kanchan Roy T. The importance of electron correlations on vibrational anharmonicities and potential energy surfaces. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Falbo E, Fusè M, Lazzari F, Mancini G, Barone V. Integration of Quantum Chemistry, Statistical Mechanics, and Artificial Intelligence for Computational Spectroscopy: The UV-Vis Spectrum of TEMPO Radical in Different Solvents. J Chem Theory Comput 2022; 18:6203-6216. [PMID: 36166322 PMCID: PMC9558374 DOI: 10.1021/acs.jctc.2c00654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/30/2022]
Abstract
The ongoing integration of quantum chemistry, statistical mechanics, and artificial intelligence is paving the route toward more effective and accurate strategies for the investigation of the spectroscopic properties of medium-to-large size chromophores in condensed phases. In this context we are developing a novel workflow aimed at improving the generality, reliability, and ease of use of the available computational tools. In this paper we report our latest developments with specific reference to unsupervised atomistic simulations employing non periodic boundary conditions (NPBC) followed by clustering of the trajectories employing optimized feature spaces. Next accurate variational computations are performed for a representative point of each cluster, whereas intracluster fluctuations are taken into account by a cheap yet reliable perturbative approach. A number of methodological improvements have been introduced including, e.g., more realistic reaction field effects at the outer boundary of the simulation sphere, automatic definition of the feature space by continuous perception of solute-solvent interactions, full account of polarization and charge transfer in the first solvation shell, and inclusion of vibronic contributions. After its validation, this new approach has been applied to the challenging case of solvatochromic effects on the UV-vis spectra of a prototypical nitroxide radical (TEMPO) in different solvents. The reliability, effectiveness, and robustness of the new platform is demonstrated by the remarkable agreement with experiment of the results obtained through an unsupervised approach characterized by a strongly reduced computational cost as compared to that of conventional quantum mechanics and molecular mechanics models without any accuracy reduction.
Collapse
Affiliation(s)
- Emanuele Falbo
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Fusè
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
- Dipartimento
di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federico Lazzari
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giordano Mancini
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
8
|
Park W, Filatov (Gulak) M, Sadiq S, Gerasimov I, Lee S, Joo T, Choi CH. A Plausible Mechanism of Uracil Photohydration Involves an Unusual Intermediate. J Phys Chem Lett 2022; 13:7072-7080. [PMID: 35900137 PMCID: PMC9358713 DOI: 10.1021/acs.jpclett.2c01694] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/11/2022] [Indexed: 05/28/2023]
Abstract
It is well-known that photolysis of pyrimidine nucleobases, such as uracil, in an aqueous environment results in the formation of hydrate as one of the main products. Although several hypotheses regarding photohydration have been proposed in the past, e.g., the zwitterionic and "hot" ground-state mechanisms, its detailed mechanism remains elusive. Here, theoretical nonadiabatic simulations of the uracil photodynamics reveal the formation of a highly energetic but kinetically stable intermediate that features a half-chair puckered pyrimidine ring and a strongly twisted intracyclic double bond. The existence and the kinetic stability of the intermediate are confirmed by a variety of computational chemistry methods. According to the simulations, the unusual intermediate is mainly formed almost immediately (∼50-200 fs) upon photoabsorption and survives long enough to engage in a hydration reaction with a neighboring water. A plausible mechanism of uracil photohydration is proposed on the basis of the modeling of nucleophilic insertion of water into the twisted double bond of the intermediate.
Collapse
Affiliation(s)
- Woojin Park
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | | | - Saima Sadiq
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Igor Gerasimov
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Seunghoon Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Taiha Joo
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang 37673, South Korea
| | - Cheol Ho Choi
- Department
of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
9
|
Ceselin G, Salta Z, Bloino J, Tasinato N, Barone V. Accurate Quantum Chemical Spectroscopic Characterization of Glycolic Acid: A Route Toward its Astrophysical Detection. J Phys Chem A 2022; 126:2373-2387. [PMID: 35384666 PMCID: PMC9036519 DOI: 10.1021/acs.jpca.2c01419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The first step to shed light on the abiotic synthesis of biochemical building blocks, and their further evolution toward biological systems, is the detection of the relevant species in astronomical environments, including earthlike planets. To this end, the species of interest need to be accurately characterized from structural, energetic, and spectroscopic viewpoints. This task is particularly challenging when dealing with flexible systems, whose spectroscopic signature is ruled by the interplay of small- and large-amplitude motions (SAMs and LAMs, respectively) and is further tuned by the conformational equilibrium. In such instances, quantum chemical (QC) calculations represent an invaluable tool for assisting the interpretation of laboratory measurements or even observations. In the present work, the role of QC results is illustrated with reference to glycolic acid (CH2OHCOOH), a molecule involved in photosynthesis and plant respiration and a precursor of oxalate in humans, which has been detected in the Murchison meteorite but not yet in the interstellar medium or in planetary atmospheres. In particular, the equilibrium structure of the lowest-energy conformer is derived by employing the so-called semiexperimental approach. Then, accurate yet cost-effective QC calculations relying on composite post-Hartree-Fock schemes and hybrid coupled-cluster/density functional theory approaches are used to predict the structural and ro-vibrational spectroscopic properties of the different conformers within the framework of the second-order vibrational perturbation theory. A purposely tailored discrete variable representation anharmonic approach is used to treat the LAMs related to internal rotations. The computed spectroscopic data, particularly those in the infrared region, complement the available experimental investigations, thus enhancing the possibility of an astronomical detection of this molecule.
Collapse
Affiliation(s)
- Giorgia Ceselin
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Zoi Salta
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| |
Collapse
|
10
|
Abstract
We introduce DMRG[FEAST], a new method for optimizing excited-state many-body wave functions with the density matrix renormalization group (DMRG) algorithm. Our approach applies the FEAST algorithm, originally designed for large-scale diagonalization problems, to matrix product state wave functions. We show that DMRG[FEAST] enables the stable optimization of both low- and high-energy eigenstates, therefore overcoming the limitations of state-of-the-art excited-state DMRG algorithms. We demonstrate the reliability of DMRG[FEAST] by calculating anharmonic vibrational excitation energies of molecules with up to 30 fully coupled degrees of freedom.
Collapse
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna Klára Kelemen
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Sheng M, Silvestrini F, Biczysko M, Puzzarini C. Structural and Vibrational Properties of Amino Acids from Composite Schemes and Double-Hybrid DFT: Hydrogen Bonding in Serine as a Test Case. J Phys Chem A 2021; 125:9099-9114. [PMID: 34623165 DOI: 10.1021/acs.jpca.1c06993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structures, relative stabilities, and vibrational wavenumbers of the two most stable conformers of serine, stabilized by the O-H···N, O-H···O═C and N-H···O-H intramolecular hydrogen bonds, have been evaluated by means of state-of-the-art composite schemes based on coupled-cluster (CC) theory. The so-called "cheap" composite approach (CCSD(T)/(CBS+CV)MP2) allowed determination of accurate equilibrium structures and harmonic vibrational wavenumbers, also pointing out significant corrections beyond the CCSD(T)/cc-pVTZ level. These accurate results stand as a reference for benchmarking selected hybrid and double-hybrid, dispersion-corrected DFT functionals. B2PLYP-D3 and DSDPBEP86 in conjunction with a triple-ζ basis set have been confirmed as effective methodologies for structural and spectroscopic studies of medium-sized flexible biomolecules, also showing intramolecular hydrogen bonding. These best performing double-hybrid functionals have been employed to simulate IR spectra by means of vibrational perturbation theory, also considering hybrid CC/DFT schemes. The best overall agreement with experiment, with mean absolute error of 8 cm-1, has been obtained by combining CCSD(T)/(CBS+CV)MP2 harmonic wavenumbers with B2PLYP-D3/maug-cc-pVTZ anharmonic corrections. Finally, a composite scheme entirely based on CCSD(T) calculations (CCSD(T)/CBS+CV) has been employed for energetics, further confirming that serine II is the most stable conformer, also when zero-point vibrational energy corrections are included.
Collapse
Affiliation(s)
- Mingzhu Sheng
- International Centre for Quantum and Molecular Structures, Physics Department, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Filippo Silvestrini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, Physics Department, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Cristina Puzzarini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
12
|
Ozaki Y, Beć KB, Morisawa Y, Yamamoto S, Tanabe I, Huck CW, Hofer TS. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem Soc Rev 2021; 50:10917-10954. [PMID: 34382961 DOI: 10.1039/d0cs01602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. and Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
13
|
Hanson-Heine MWD. Reduced Two-Electron Interactions in Anharmonic Molecular Vibrational Calculations Involving Localized Normal Coordinates. J Chem Theory Comput 2021; 17:4383-4391. [PMID: 34087068 DOI: 10.1021/acs.jctc.1c00314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spatially localized vibrational normal mode coordinates are shown to reduce the importance of calculating the full set of two-electron terms in the molecular electronic Schrödinger equation. Electron correlation and dispersion interactions become less significant in (E,E)-1,3,5,7-octatetraene vibrational self-consistent field calculations when displacing remote atoms along multiple coordinates. Electron correlation interactions between spatially remote modes are also found to be less important compared to their corresponding uncorrelated interaction terms. Attenuation of the Coulomb operator indicates that the two-electron terms between remote electrons become less important for accurately describing the strongly contributing mode-coupling terms between sets of localized vibrational modes.
Collapse
|
14
|
Yang Q, Fusè M, Bloino J, Barone V. Interplay of stereo-electronic, vibronic and environmental effects in tuning the chiroptical properties of an Ir(III) cyclometalated N-heterocyclic carbene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119631. [PMID: 33761386 DOI: 10.1016/j.saa.2021.119631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Chiroptical spectra are among the most suitable techniques for investigating the ground and excited electronic states of chiral systems, but their interpretation is not straightforward and strongly benefits from quantum chemical simulations, provided that the employed computational model is sufficiently accurate and deals properly with stereo-electronic, vibrational averaging and environmental effects. Since the synergy among all these effects is only rarely accounted for, especially for large and flexible organometallic systems, the main aim of this contribution is to illustrate the latest developments of computational approaches rooted into the density functional theory for describing stereo-electronic effects and complemented by effective techniques to deal with vibrational modulation effects and solvatochromic shifts. In this connection, chiral iridium complexes offer an especially suitable case study in view of their bright phosphorescence, which is particularly significant for building effective light emitting diodes (OLEDs) and biomarkers and can be finely tuned by the nature of the metal ligands. For instance, a recently synthesized family of cycloiridiated complexes, KC and KD, bearing a pentahelicenic N-heterocyclic carbene (KB), has shown an enhanced long-lasting, bright phosphorescence. Deeper insights into the still unclear nature and origin of the enhancement could be gained by the interpretation of the chiroptical spectra, which is quite challenging in view of the presence of two sources of chirality, the chiral center on Ir and the chiral axis related to the helicene ligand, in addition to the relativistic effects related to the presence of the Ir center. At the same time, the large dimensions of KC and KD hamper the use of the most sophisticated (but prohibitively expensive) computational models, so that more approximate approaches must be validated on a suitable model compound. To this end, after optimizing the computational scheme on a model system devoid of the helicene moiety (KA), we have performed a comprehensive investigation of the KC and KD spectra, whose interpretation is further aided by novel graphical tools. The discussion and analysis of the results will not be focused on the theoretical background, but, rather, on practical details (specific functional, basis set, vibronic model, solvent regime) with the aim of providing general guidelines for the use of last-generation computational spectroscopy tools also by non-specialists.
Collapse
Affiliation(s)
- Qin Yang
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
15
|
Barone V, Puzzarini C. Looking for the bricks of the life in the interstellar medium: The fascinating world of astrochemistry. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024600021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The discovery in the interstellar medium of molecules showing a certain degree of complexity, and in particular those with a prebiotic character, has attracted great interest. A complex chemistry takes place in space, but the processes that lead to the production of molecular species are a matter of intense discussion, the knowledge still being at a rather primitive stage. Debate on the origins of interstellar molecules has been further stimulated by the identification of biomolecular building blocks, such as nucleobases and amino acids, in meteorites and comets. Since many of the molecules found in space play a role in the chemistry of life, the issue of their molecular genesis and evolution might be related to the profound question of the origin of life itself. Understanding the underlying chemical processes, including the production, reactions and destruction of compounds, requires the concomitant study of spectroscopy, gas-phase reactivity, and heterogeneous processes on dust-grains. The aim of this contribution is to provide a general view of a complex and multifaceted challenge, while focusing on the role played by molecular spectroscopy and quantum-chemical computations. In particular, the derivation of the molecular spectroscopic features and the investigation of gas-phase formation routes of prebiotic species in the interstellar medium are addressed from a computational point of view.
Collapse
|
16
|
Nejad A, Crittenden DL. On the separability of large-amplitude motions in anharmonic frequency calculations. Phys Chem Chem Phys 2020; 22:20588-20601. [PMID: 32966420 DOI: 10.1039/d0cp03515g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear vibrational theories based upon the Watson Hamiltonian are ubiquitous in quantum chemistry, but are generally unable to model systems in which the wavefunction can delocalise over multiple energy minima, i.e. molecules that have low-energy torsion and inversion barriers. In a 2019 Chemical Reviews article, Puzzarini et al. note that a common workaround is to simply decouple these problematic modes from all other vibrations in the system during anharmonic frequency calculations. They also point out that this approximation can be "ill-suited", but do not quantify the errors introduced. In this work, we present the first systematic investigation into how separating out or constraining torsion and inversion vibrations within potential energy surface (PES) expansions affects the accuracy of computed fundamental wavenumbers for the remaining vibrational modes, using a test set of 19 tetratomic molecules for which high quality analytic potential energy surfaces and fully-coupled anharmonic reference fundamental frequencies are available. We find that the most effective and efficient strategy is to remove the mode in question from the PES expansion entirely. This introduces errors of up to +10 cm-1 in stretching fundamentals that would otherwise couple to the dropped mode, and ±5 cm-1 in all other fundamentals. These errors are approximately commensurate with, but not necessarily additional to, errors due to the choice of electronic structure model used in constructing spectroscopically accurate PES.
Collapse
Affiliation(s)
- Arman Nejad
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany.
| | - Deborah L Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
17
|
Pandey A, Poirier B. Plumbing Potentials for Molecules with Up To Tens of Atoms: How to Find Saddle Points and Fix Leaky Holes. J Phys Chem Lett 2020; 11:6468-6474. [PMID: 32687368 DOI: 10.1021/acs.jpclett.0c01435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potential energy surfaces (PESs) play an indispensable role in molecular dynamics but are notoriously difficult to flesh out properly in large-dimensional spaces. In particular, the undetected presence of PES holes, i.e., unphysical saddle points beyond which the potential energy drops arbitrarily, can have devastating effects on both classical and quantum dynamics calculations. In this study, the Crystal algorithm is developed as a tool for efficiently and accurately finding PES holes, as well as legitimate saddle points, even in very large-dimensional configuration spaces. The approach is applied to three large-dimensional PESs for molecular systems of current interest: uracil, naphthalene, and formic acid dimer. Low-lying PES holes are discovered and located for the first two systems-including naphthalene, for which no holes were previously suspected, to the best of our knowledge. Likewise, the double-well, double-proton-transfer isomerization saddle point for formic acid dimer is also located.
Collapse
Affiliation(s)
- Ankit Pandey
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
18
|
Green JA, Improta R. Vibrations of the guanine-cytosine pair in chloroform: an anharmonic computational study. Phys Chem Chem Phys 2020; 22:5509-5522. [PMID: 32104818 DOI: 10.1039/c9cp06373k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We compute at the anharmonic level the vibrational spectra of the Watson-Crick dimer formed by guanosine (G) and cytidine (C) in chloroform, together with those of G, C and the most populated GG dimer. The spectra for deuterated and partially deuterated GC are also computed. We use DFT calculations, with B3LYP and CAM-B3LYP as reference functionals. Solvent effects from chloroform are included via the Polarizable Continuum Model (PCM), and by performing tests on models including up two chloroform molecules. Both B3LYP and CAM-B3LYP calculations reproduce the shape of the experimental spectra well in the fingerprint region (1500-1700 cm-1) and in the N-H stretching region (2800-3600 cm-1), with B3LYP providing better quantitative agreement with experiments. According to our calculations, the N-H amido streching mode of G falls at ∼2900 cm-1, while the N-H amino of G and C falls at ∼3100 cm-1 when hydrogen-bonded, or ∼3500 cm-1 when free. Overtone and combination bands strongly contribute to the absorption band at ∼3300 cm-1. Inclusion of bulk solvent effects significantly increases the accuracy of the computed spectra, while solute-solvent interactions have a smaller, though still noticeable, effect. Some key aspects of the anharmonic treatment of strongly vibrationally coupled supermolecular systems and the related methodological issues are also discussed.
Collapse
Affiliation(s)
- James A Green
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| |
Collapse
|
19
|
A never-ending story in the sky: The secrets of chemical evolution. Phys Life Rev 2020; 32:59-94. [DOI: 10.1016/j.plrev.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/13/2023]
|
20
|
Khaikin LS, Ageev GG, Rykov AN, Grikina OE, Shishkov IF, Kochikov IV, Kuznetsov VV, Makhova NN, Bukalov SS, Leites LA. Equilibrium molecular structure and spectra of 6-methyl-1,5-diazabicyclo[3.1.0]hexane: joint analysis of gas phase electron diffraction, quantum chemistry, and spectroscopic data. Phys Chem Chem Phys 2020; 22:22477-22492. [PMID: 32996973 DOI: 10.1039/d0cp04005c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The equilibrium geometry of the boat conformation (Cs point group symmetry) of the 6-methyl-1,5-diazabicyclo[3.1.0]hexane (MDABH) molecule, absolutely dominating under normal conditions, was studied by the gas-phase electron diffraction (GED) method at 20 °C with the involvement of NMR, IR, and Raman spectroscopic data and quantum chemical calculations. The potential function of ring-puckering deformation for the MDABH bicyclic system was calculated at the MP2/aug-cc-pVTZ and B3LYP/cc-pVTZ levels. It was found by MP2 calculation that the total energy of the boat conformation is 3.52 kcal mol-1 lower than that of the chair conformation. For the first time, we recorded the IR and Raman spectra for liquid samples of MDABH and assigned their peculiarities only to boat conformation vibrations using the Pulay technique of scaling quantum chemical force fields. In the case of the chair form, transferability of the refined scale factors was used for reliable prediction of the location of its fundamental frequencies. According to the joint structural analysis of the above data, the most important equilibrium geometric re-parameters for the boat conformation of the MDABH molecule were determined to be (bond lengths in Å; angles in degrees, Cs symmetry): C2N1 = 1.466(2), C2C3 = 1.523(2), N1N5 = 1.512(2), C6N1 = 1.440(2), C6C7 = 1.487(2), ∠C2N1N5 = 106.1(2), ∠N1C2C3) = 110.2(4), ∠C2C3C4 = 99.9(4), ∠N1N5C6 = 58.3(1), ∠N1C6N5 = 63.3(1), ∠N1C6C7 = 114.9(6), ∠C6N1C2 = 111.8(1), ∠N5N1C2C3 = 17.3(1), ∠N1C2C3C4 = -26.8(2), θ = C2C3C4/C2N1N5C4 = -26.2(3), φ = N1C6N5/C2N1N5C4 = 74.0(1). Comparison of these and earlier results showed that the NN bond length in the diaziridine ring is very weakly dependent on the cis- or trans-arrangement of substituents at the nitrogen atoms.
Collapse
Affiliation(s)
- Leonid S Khaikin
- Chemistry Department, M. V. Lomonosov Moscow State University, 1 Leninsky Gory, 119991, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Puzzarini C, Barone V. The challenging playground of astrochemistry: an integrated rotational spectroscopy - quantum chemistry strategy. Phys Chem Chem Phys 2020; 22:6507-6523. [PMID: 32163090 DOI: 10.1039/d0cp00561d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While it is now well demonstrated that the interstellar medium (ISM) is characterized by a diverse and complex chemistry, a significant number of features in radioastronomical spectra are still unassigned and call for new laboratory efforts, which are increasingly based on integrated experimental and computational strategies. In parallel, the identification of an increasing number of molecules containing more than five atoms and at least one carbon atom (the so-called "interstellar" complex organic molecules), which can play a relevant role in the chemistry of life, raises the additional issue of how these species can be produced in the typical harsh conditions of the ISM. On these grounds, this perspective aims to present an integrated rotational spectroscopy - quantum chemistry approach for supporting radioastronomical observations and a computational strategy for contributing to the elucidation of chemical reactivity in the interstellar space.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, I-56126, Italy
| |
Collapse
|
22
|
Beć KB, Grabska J, Ozaki Y, Czarnecki MA, Huck CW. Simulated NIR spectra as sensitive markers of the structure and interactions in nucleobases. Sci Rep 2019; 9:17398. [PMID: 31758033 PMCID: PMC6874539 DOI: 10.1038/s41598-019-53827-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
Near-infrared (near-IR; NIR) spectroscopy is continuously advancing in biophysical and biochemical fields of investigation. For instance, recent progresses in NIR hyperspectral imaging of biological systems may be noted. However, interpretation of NIR bands for biological samples is difficult and creates a considerable barrier in exploring the full potential of NIR spectroscopy in bioscience. For this reason, we carried out a systematic study of NIR spectra of adenine, cytosine, guanine, and thymine in polycrystalline state. Interpretation of NIR spectra of these nucleobases was supported by anharmonic vibrational analysis using Deperturbed Vibrational Second-Order Perturbation Theory (DVPT2). A number of molecular models of nucleobases was applied to study the effect of the inter-molecular interactions on the NIR spectra. The accuracy of simulated NIR spectra appears to depend on the intra-layer interactions; in contrast, the inter-layer interactions are less influential. The best results were achieved by combining the simulated spectra of monomers and dimers. It is of particular note that in-plane deformation bands are far more populated than out-of-plane ones and the importance of ring modes is relatively small. This trend is in contrast to that observed in mid-IR region. As shown, the local, short-range chemical neighborhood of nucleobase molecules influence their NIR spectra more considerably. This suggests that NIR spectra are more sensitive probe of the nucleobase pairing than mid-IR ones. The obtained results allow, for the first time, to construct a frequency correlation table for NIR spectra of purines and pyrimidines.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Mirosław A Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Christan W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| |
Collapse
|
23
|
Gabas F, Di Liberto G, Ceotto M. Vibrational investigation of nucleobases by means of divide and conquer semiclassical dynamics. J Chem Phys 2019; 150:224107. [PMID: 31202241 DOI: 10.1063/1.5100503] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we report a computational study of the vibrational features of four different nucleobases employing the divide-and-conquer semiclassical initial value representation molecular dynamics method. Calculations are performed on uracil, cytosine, thymine, and adenine. Results show that the overall accuracy with respect to experiments is within 20 wavenumbers, regardless of the dimensionality of the nucleobase. Vibrational estimates are accurate even in the complex case of cytosine, where two relevant conformers are taken into account. These results are promising in the perspective of future studies on more complex systems, such as nucleotides or nucleobase pairs.
Collapse
Affiliation(s)
- Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
24
|
Puzzarini C, Bloino J, Tasinato N, Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem Rev 2019; 119:8131-8191. [DOI: 10.1021/acs.chemrev.9b00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
25
|
DFT modelling of the infrared spectra for the isolated and the micro-hydrated forms of uracil. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2431-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Puzzarini C, Tasinato N, Bloino J, Spada L, Barone V. State-of-the-art computation of the rotational and IR spectra of the methyl-cyclopropyl cation: hints on its detection in space. Phys Chem Chem Phys 2019; 21:3431-3439. [PMID: 30110028 DOI: 10.1039/c8cp04629h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent measurements by the Cassini Ion Neutral Mass Spectrometer demonstrated the presence of numerous carbocations in Titan's upper atmosphere. In [Ali et al., Planet. Space Sci., 2013, 87, 96], an analysis of these measurements revealed the formation of the three-membered cyclopropenyl cation and its methyl derivatives. As a starting point of a future coordinated effort of laboratory experiments, quantum-chemical calculations, and astronomical observations, in the present work the molecular structure and spectroscopic properties of the methyl-cyclopropenyl cation have been investigated by means of state-of-the-art computational approaches in order to simulate its rotational and infrared spectra. Rotational parameters have been predicted with an expected accuracy better than 0.1% for rotational constants and on the order of 1-2% for centrifugal-distortion terms. As for the infrared spectrum, despite the challenge of a large amplitude motion, fundamental transitions have been computed to a good accuracy, i.e., the uncertainties are expected to be smaller than 5-10 wavenumbers.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", University of Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
| | | | | | | | | |
Collapse
|
27
|
Braud I, Zamith S, Cuny J, Zheng L, L’Hermite JM. Size-dependent proton localization in hydrated uracil clusters: A joint experimental and theoretical study. J Chem Phys 2019; 150:014303. [DOI: 10.1063/1.5044481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Isabelle Braud
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Linjie Zheng
- Laboratoire de Chimie et Physique Quantiques (LCPQ/IRSAMC) UMR5626, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jean-Marc L’Hermite
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC) UMR5589, Université de Toulouse and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
28
|
Ma X, Di Liberto G, Conte R, Hase WL, Ceotto M. A quantum mechanical insight into SN2 reactions: Semiclassical initial value representation calculations of vibrational features of the Cl−⋯CH3Cl pre-reaction complex with the VENUS suite of codes. J Chem Phys 2018; 149:164113. [DOI: 10.1063/1.5054399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xinyou Ma
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Giovanni Di Liberto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
29
|
Thomas PS, Carrington T, Agarwal J, Schaefer HF. Using an iterative eigensolver and intertwined rank reduction to compute vibrational spectra of molecules with more than a dozen atoms: Uracil and naphthalene. J Chem Phys 2018; 149:064108. [DOI: 10.1063/1.5039147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Phillip S. Thomas
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Jay Agarwal
- Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602-0525, USA
| | - Henry F. Schaefer
- Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602-0525, USA
| |
Collapse
|
30
|
Fornaro T, Brucato JR, Feuillie C, Sverjensky DA, Hazen RM, Brunetto R, D'Amore M, Barone V. Binding of Nucleic Acid Components to the Serpentinite-Hosted Hydrothermal Mineral Brucite. ASTROBIOLOGY 2018; 18:989-1007. [PMID: 30048146 DOI: 10.1089/ast.2017.1784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adsorption of nucleic acid components onto the serpentinite-hosted hydrothermal mineral brucite has been investigated experimentally by determining the equilibrium adsorption isotherms in aqueous solution. Thermodynamic characterization of the adsorption data has been performed using the extended triple-layer model (ETLM) to establish a model for the stoichiometry and equilibrium constants of surface complexes. Infrared characterization of the molecule-mineral complexes has helped gain insight into the molecular functional groups directly interacting with the mineral surface. Quantum mechanical calculations have been carried out to identify the possible complexes formed on surfaces by nucleic acid components and their binding configurations on mineral surfaces, both in the presence of water molecules and in water-free conditions. The results indicate that brucite favors adsorption of nucleotides with respect to nucleosides and nucleobases from dilute aqueous environments. The surface of this mineral is able to induce well-defined orientations of the molecules through specific molecule-mineral interactions. This result suggests plausible roles of the mineral brucite in assisting prebiotic molecular self-organization. Furthermore, the detection of the infrared spectroscopic features of such building blocks of life adsorbed on brucite at very low degrees of coverage provides important support to life detection investigations.
Collapse
Affiliation(s)
- Teresa Fornaro
- 1 Geophysical Laboratory, Carnegie Institution for Science , Washington, District of Columbia, United States
- 2 INAF-Astrophysical Observatory of Arcetri , Firenze, Italy
- 3 Scuola Normale Superiore , Pisa, Italy
| | - John R Brucato
- 2 INAF-Astrophysical Observatory of Arcetri , Firenze, Italy
| | - Cécile Feuillie
- 4 Louvain Institute of Biomolecular Science and Technology, University Catholique de Louvain , Louvain-la-Neuve, Belgium
| | - Dimitri A Sverjensky
- 5 Department of Earth and Planetary Sciences, Johns Hopkins University , Baltimore, Maryland, United States
| | - Robert M Hazen
- 1 Geophysical Laboratory, Carnegie Institution for Science , Washington, District of Columbia, United States
| | - Rosario Brunetto
- 6 Institut d'Astrophysique Spatiale, UMR8617 CNRS-Univ. Paris-Sud, Université Paris-Saclay , Orsay, France
| | | | | |
Collapse
|
31
|
Ghafur O, Crane SW, Ryszka M, Bockova J, Rebelo A, Saalbach L, De Camillis S, Greenwood JB, Eden S, Townsend D. Ultraviolet relaxation dynamics in uracil: Time-resolved photoion yield studies using a laser-based thermal desorption source. J Chem Phys 2018; 149:034301. [DOI: 10.1063/1.5034419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Omair Ghafur
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stuart W. Crane
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Michal Ryszka
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Jana Bockova
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Andre Rebelo
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
- CEFITEC, Departamento de Física, FCT–Universidade NOVA de Lisboa, P-2829-516 Caparica, Portugal
| | - Lisa Saalbach
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Simone De Camillis
- School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Jason B. Greenwood
- School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Samuel Eden
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Dave Townsend
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
32
|
Di Liberto G, Conte R, Ceotto M. "Divide and conquer" semiclassical molecular dynamics: A practical method for spectroscopic calculations of high dimensional molecular systems. J Chem Phys 2018; 148:014307. [PMID: 29306274 DOI: 10.1063/1.5010388] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We extensively describe our recently established "divide-and-conquer" semiclassical method [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)] and propose a new implementation of it to increase the accuracy of results. The technique permits us to perform spectroscopic calculations of high-dimensional systems by dividing the full-dimensional problem into a set of smaller dimensional ones. The partition procedure, originally based on a dynamical analysis of the Hessian matrix, is here more rigorously achieved through a hierarchical subspace-separation criterion based on Liouville's theorem. Comparisons of calculated vibrational frequencies to exact quantum ones for a set of molecules including benzene show that the new implementation performs better than the original one and that, on average, the loss in accuracy with respect to full-dimensional semiclassical calculations is reduced to only 10 wavenumbers. Furthermore, by investigating the challenging Zundel cation, we also demonstrate that the "divide-and-conquer" approach allows us to deal with complex strongly anharmonic molecular systems. Overall the method very much helps the assignment and physical interpretation of experimental IR spectra by providing accurate vibrational fundamentals and overtones decomposed into reduced dimensionality spectra.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
33
|
Rotational and Infrared Spectroscopy of Ethanimine: A Route toward Its Astrophysical and Planetary Detection. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4357/aaa899] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Chandramouli B, Del Galdo S, Mancini G, Tasinato N, Barone V. Tailor-made computational protocols for precise characterization of small biological building blocks using QM and MM approaches. Biopolymers 2018. [DOI: 10.1002/bip.23109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Balasubramanian Chandramouli
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Compunet, Istituto Italiano di Tecnologia, via Morego 30; Genova Italy
| | - Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3; Pisa 56127 Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7; Pisa 56126 Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3; Pisa 56127 Italy
| |
Collapse
|
35
|
Krasnoshchekov SV, Schutski RS, Craig NC, Sibaev M, Crittenden DL. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes. J Chem Phys 2018; 148:084102. [DOI: 10.1063/1.5020295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sergey V. Krasnoshchekov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russian Federation
| | | | - Norman C. Craig
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, USA
| | - Marat Sibaev
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
36
|
Hanson-Heine MWD. Reduced Basis Set Dependence in Anharmonic Frequency Calculations Involving Localized Coordinates. J Chem Theory Comput 2018; 14:1277-1285. [PMID: 29385338 DOI: 10.1021/acs.jctc.7b01075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Localized normal coordinates are known to be effective in speeding up anharmonic frequency calculations by reducing the complexity of the nuclear Hamiltonian and wave function. Displacing atoms in localized coordinates can also cause relatively small changes in the electronic structure, which can be exploited for further computational efficiency improvements during ab initio electronic structure calculations of the potential energy surface by reducing the electronic basis set dependence. Three different schemes for reducing the basis set dependence have been investigated in this work. These include combining localized coordinate schemes with general mixed basis sets, distance based force-field reductions, and using coordinate specific basis sets. The importance of accurately describing electronic interactions is found to diminish both for multicoordinate terms involving the displacement of remote atoms and when describing the interactions between more remote atoms within specific coordinates.
Collapse
|
37
|
De La Pierre M, Pouchan C. Ab initio periodic modelling of the vibrational spectra of molecular crystals: the case of uracil. Theor Chem Acc 2018. [DOI: 10.1007/s00214-017-2191-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Krasnoshchekov SV, Craig NC, Koroleva LA, Stepanov NF. Anharmonic vibrational analysis of s-trans and s-cis conformers of acryloyl fluoride using numerical-analytic Van Vleck operator perturbation theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:66-79. [PMID: 28800431 DOI: 10.1016/j.saa.2017.07.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/22/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
A new gas-phase infrared (IR) spectrum of acryloyl fluoride (ACRF, CH2CHCFO) with a resolution of 0.1cm-1 in the range 4000-450cm-1 was measured. Theoretical ab initio molecular structures, full quartic potential energy surfaces (PES), and cubic surfaces of dipole moments and polarizability tensor components (electro-optical properties, EOP) of the s-trans and s-cis conformers of the ACRF were calculated by the second-order Møller-Plesset electronic perturbation theory with a correlation consistent Dunning triple-ζ basis set. The numerical-analytic implementation of the second-order operator canonical Van Vleck perturbation theory was employed for predicting anharmonic IR and Raman scattering (RS) spectra of ACRF. To improve the anharmonic predictions, harmonic frequencies were replaced by their counterparts evaluated with the higher-level CCSD(T)/cc-pVTZ model, to form a "hybrid" PES. The original operator representation of the Hamiltonian is analytically reduced to a quasi-diagonal form, integrated in the harmonic oscillator basis and diagonalized to account for strong resonance couplings. Double canonical transformations of EOP expansions enabled prediction of integral intensities of both fundamental and multi-quanta transitions in IR/RS spectra. Enhanced band shape analysis reinforced the assignments. A thorough interpretation of the new IR experimental spectra and existing matrix-isolation literature data for the mixture of two conformers of ACRF was accomplished, and a number of assignments clarified.
Collapse
Affiliation(s)
- Sergey V Krasnoshchekov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russian Federation.
| | - Norman C Craig
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, USA
| | - Lidiya A Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russian Federation
| | - Nikolay F Stepanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russian Federation
| |
Collapse
|
39
|
Licari D, Fusè M, Salvadori A, Tasinato N, Mendolicchio M, Mancini G, Barone V. Towards the SMART workflow system for computational spectroscopy. Phys Chem Chem Phys 2018; 20:26034-26052. [DOI: 10.1039/c8cp03417f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Is it possible to convert highly specialized research in the field of computational spectroscopy into robust and user-friendly aids to experiments and industrial applications?
Collapse
Affiliation(s)
- Daniele Licari
- Scuola Normale Superiore
- 56126 Pisa
- Italy
- Istituto Italiano di Tecnologia
- 16163 Genova
| | | | | | | | | | | | | |
Collapse
|
40
|
Biczysko M, Bloino J, Puzzarini C. Computational challenges in Astrochemistry. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malgorzata Biczysko
- International Center for Quantum and Molecular Structures, College of SciencesShanghai University Shanghai China
| | - Julien Bloino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetalliciUOS di Pisa, Area della Ricerca CNR Pisa Italy
- Scuola Normale Superiore Classe di Scienze, Pisa Italy
| | - Cristina Puzzarini
- Department of Chemistry “Giacomo Ciamician”University of Bologna Bologna Italy
| |
Collapse
|
41
|
Study of molecular structure, anharmonic vibrational dynamic and electronic properties of sulindac using spectroscopic techniques integrated with quantum chemical calculations. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Spectroscopic Characterization of Key Aromatic and Heterocyclic Molecules: A Route toward the Origin of Life. ACTA ACUST UNITED AC 2017; 154. [DOI: 10.3847/1538-3881/aa7d54] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Gabas F, Conte R, Ceotto M. On-the-Fly ab Initio Semiclassical Calculation of Glycine Vibrational Spectrum. J Chem Theory Comput 2017; 13:2378-2388. [PMID: 28489368 PMCID: PMC5472367 DOI: 10.1021/acs.jctc.6b01018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present an on-the-fly ab initio semiclassical study of vibrational
energy levels of glycine, calculated by Fourier transform of the wavepacket
correlation function. It is based on a multiple coherent states approach
integrated with monodromy matrix regularization for chaotic dynamics.
All four lowest-energy glycine conformers are investigated by means
of single-trajectory semiclassical spectra obtained upon classical
evolution of on-the-fly trajectories with harmonic zero-point energy.
For the most stable conformer I, direct dynamics trajectories are
also run for each vibrational mode with energy equal to the first
harmonic excitation. An analysis of trajectories evolved up to 50 000
atomic time units demonstrates that, in this time span, conformers
II and III can be considered as isolated species, while conformers
I and IV show a pretty facile interconversion. Therefore, previous
perturbative studies based on the assumption of isolated conformers
are often reliable but might be not completely appropriate in the
case of conformer IV and conformer I for which interconversion occurs
promptly.
Collapse
Affiliation(s)
- Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano , via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
44
|
Ma Y, Knecht S, Reiher M. Multiconfigurational Effects in Theoretical Resonance Raman Spectra. Chemphyschem 2017; 18:384-393. [PMID: 27933695 PMCID: PMC5324552 DOI: 10.1002/cphc.201601072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/06/2016] [Indexed: 01/26/2023]
Abstract
We analyze resonance Raman spectra of the nucleobase uracil in the short‐time approximation calculated with multiconfigurational methods. We discuss the importance of static electron correlation by means of density‐matrix renormalization group self‐consistent field (DMRG‐SCF) calculations. Our DMRG‐SCF results reveal that a minimal active orbital space that leads to a qualitatively correct description of the resonance Raman spectrum of uracil should encompass parts of the σ/σ* bonding/anti‐bonding orbitals of the pyrimidine ring. We trace these findings back to the considerable entanglement between the σ/σ* bonding/anti‐bonding as well as valence π/π* orbitals in the excited‐state electronic structure of uracil, which indicates non‐negligible non‐dynamical correlation effects that are less pronounced in the electronic ground state.
Collapse
Affiliation(s)
- Yingjin Ma
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Stefan Knecht
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
45
|
Effects of hydrogen bonding with H2O on the resonance Raman spectra of uracil and thymine. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2016.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Fornaro T, Biczysko M, Bloino J, Barone V. Reliable vibrational wavenumbers for C=O and N-H stretchings of isolated and hydrogen-bonded nucleic acid bases. Phys Chem Chem Phys 2016; 18:8479-90. [PMID: 26940362 PMCID: PMC5612391 DOI: 10.1039/c5cp07386c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accurate prediction of vibrational wavenumbers for functional groups involved in hydrogen-bonded bridges remains an important challenge for computational spectroscopy. For the specific case of the C=O and N-H stretching modes of nucleobases and their oligomers, the paucity of experimental reference values needs to be compensated by reliable computational data, which require the use of approaches going beyond the standard harmonic oscillator model. Test computations performed for model systems (formamide, acetamide and their cyclic homodimers) in the framework of the second order vibrational perturbation theory (VPT2) confirmed that anharmonic corrections can be safely computed by global hybrid (GHF) or double hybrid (DHF) functionals, whereas the harmonic part is particularly challenging. As a matter of fact, GHFs perform quite poorly and even DHFs, while fully satisfactory for C=O stretchings, face unexpected difficulties when dealing with N-H stretchings. On these grounds, a linear regression for N-H stretchings has been obtained and validated for the heterodimers formed by 4-aminopyrimidine with 6-methyl-4-pyrimidinone (4APM-M4PMN) and by uracil with water. In view of the good performance of this computational model, we have built a training set of B2PLYP-D3/maug-cc-pVTZ harmonic wavenumbers (including linear regression scaling for N-H) for six-different uracil dimers and a validation set including 4APM-M4PMN, one of the most stable hydrogen-bonded adenine homodimers, as well as the adenine-uracil, adenine-thymine, guanine-cytosine and adenine-4-thiouracil heterodimers. Because of the unfavourable scaling of DHF harmonic wavenumbers with the dimensions of the investigated systems, we have optimized a linear regression of B3LYP-D3/N07D harmonic wavenumbers for the training set, which has been next checked against the validation set. This relatively cheap model, which shows very good agreement with experimental data (average errors of about 10 cm(-1)), paves the route toward a reliable analysis of spectroscopic signatures for larger polynucleotides.
Collapse
Affiliation(s)
- Teresa Fornaro
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Julien Bloino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
47
|
Assmann M, Weinacht T, Matsika S. Surface hopping investigation of the relaxation dynamics in radical cations. J Chem Phys 2016; 144:034301. [DOI: 10.1063/1.4939842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Mariana Assmann
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas Weinacht
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
48
|
Onchoke KK, Chaudhry SN, Ojeda JJ. Vibrational and electronic spectra of 2-nitrobenzanthrone: An experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:402-414. [PMID: 26348130 DOI: 10.1016/j.saa.2015.08.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/18/2015] [Accepted: 08/30/2015] [Indexed: 06/05/2023]
Abstract
The environmental pollutant 2-nitrobenzanthrone (2-NBA) poses human health hazards, and is formed by atmospheric reactions of NOX gases with atmospheric particulates. Though its mutagenic effects have been studied in biological systems, its comprehensive spectroscopic experimental data are scarce. Thus, vibrational and optical spectroscopic analysis (UV-Vis, and fluorescence) of 2-NBA was studied using both experimental and density functional theory employing B3LYP method with 6-311+G(d,p) basis set. The scaled theoretical vibrational frequencies show good agreement to experiment to within ~5 cm(-1) and <20 cm(-1) for frequencies <1800 cm(-1) and 2700-3200 cm(-1), respectively. In addition, predictions of the DFT frequencies below 1800 cm(-1) yield an overall root mean square (RMS) of ±20.1 and ±20.6 cm(-1) for benzanthrone and 2-NBA, respectively. On the basis of normal coordinate analysis complete assignments of harmonic experimental infrared and Raman bands are made. The influence of the nitro group substitution upon the benzanthrone structure and symmetric CH vibrations, and electronic spectra is noted. This study is useful for the development of spectroscopy-mutagenicity relationships in nitrated polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Kefa K Onchoke
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Box 13006 - SFA Station, Nacogdoches, TX, 75962-3006, United States.
| | - Saad N Chaudhry
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Box 13006 - SFA Station, Nacogdoches, TX, 75962-3006, United States
| | - Jorge J Ojeda
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Box 13006 - SFA Station, Nacogdoches, TX, 75962-3006, United States
| |
Collapse
|
49
|
Bloino J, Biczysko M, Barone V. Anharmonic Effects on Vibrational Spectra Intensities: Infrared, Raman, Vibrational Circular Dichroism, and Raman Optical Activity. J Phys Chem A 2015; 119:11862-74. [PMID: 26580121 PMCID: PMC5612400 DOI: 10.1021/acs.jpca.5b10067] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this paper is 2-fold. First, we want to report the extension of our virtual multifrequency spectrometer (VMS) to anharmonic intensities for Raman optical activity (ROA) with the full inclusion of first- and second-order resonances for both frequencies and intensities in the framework of the generalized second-order vibrational perturbation theory (GVPT2) for all kinds of vibrational spectroscopies. Then, from a more general point of view, we want to present and validate the performance of VMS for the parallel analysis of different vibrational spectra for medium-sized molecules (IR, Raman, VCD, ROA) including both mechanical and electric/magnetic anharmonicity. For the well-known methyloxirane benchmark, careful selection of density functional, basis set, and resonance thresholds permitted us to reach qualitative and quantitative agreement between experimental and computed band positions and shapes. Next, the whole series of halogenated azetidinones is analyzed, showing that it is now possible to interpret different spectra in terms of mass, electronegativity, polarizability, and hindrance variation between closely related substituents, chiral spectroscopies being particular effective in this connection.
Collapse
Affiliation(s)
- Julien Bloino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei
Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca CNR, Via G.
Moruzzi 1, I-56124 Pisa, Italy
| | - Malgorzata Biczysko
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei
Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa, Area della Ricerca CNR, Via G.
Moruzzi 1, I-56124 Pisa, Italy
- International Center of Quantum and Molecular Structures,
College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444
China
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa,
Italy
| |
Collapse
|
50
|
Krasnoshchekov SV, Craig NC, Boopalachandran P, Laane J, Stepanov NF. Anharmonic Vibrational Analysis of the Infrared and Raman Gas-Phase Spectra of s-trans- and s-gauche-1,3-Butadiene. J Phys Chem A 2015; 119:10706-23. [DOI: 10.1021/acs.jpca.5b07650] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Norman C. Craig
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | | | - Jaan Laane
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Nikolay F. Stepanov
- Lomonosov Moscow State University, Leninskiye Gory, 119991, Moscow, Russian Federation
| |
Collapse
|