1
|
Beckmann R, Schran C, Brieuc F, Marx D. Theoretical infrared spectroscopy of protonated methane isotopologues. Phys Chem Chem Phys 2024; 26:22846-22852. [PMID: 39171731 DOI: 10.1039/d4cp02295e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The vibrational spectroscopy of protonated methane and its mixed hydrogen/deuterium isotopologues remains a challenge to both experimental and computational spectroscopy due to the iconic floppiness of CH5+. Here, we compute the finite-temperature broadband infrared spectra of CH5+ and all its isotopologues, i.e. CHnD5-n+ up to CD5+, from path integral molecular dynamics in conjunction with interactions and dipoles computed consistently at CCSD(T) coupled cluster accuracy. The potential energy and dipole moment surfaces have been accurately represented in full dimensionality in terms of high-dimensional neural networks. The resulting computational efficiency allows us to establish CCSD(T) accuracy at the level of converged path integral simulations. For all six isotopologues, the computed broadband spectra compare very favorably to the available experimental broadband spectra obtained from laser induced reactions action vibrational spectroscopy. The current approach is found to consistently and significantly improve on previous calculations of these broadband vibrational spectra and defines the new cutting-edge for what has been dubbed the "enfant terrible" of molecular spectroscopy in view of its pronounced large-amplitude motion that involves all intramolecular degrees of freedom.
Collapse
Affiliation(s)
- Richard Beckmann
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Christoph Schran
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Fabien Brieuc
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
2
|
Conte R, Aieta C, Cazzaniga M, Ceotto M. A Perspective on the Investigation of Spectroscopy and Kinetics of Complex Molecular Systems with Semiclassical Approaches. J Phys Chem Lett 2024; 15:7566-7576. [PMID: 39024505 DOI: 10.1021/acs.jpclett.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this Perspective we show that semiclassical methods provide a rigorous hierarchical way to study the vibrational spectroscopy and kinetics of complex molecular systems. The time averaged approach to spectroscopy and the semiclassical transition state theory for kinetics, which have been first adopted and then further developed in our group, provide accurate quantum results on rigorous physical grounds and can be applied even when dealing with a large number of degrees of freedom. In spectroscopy, the multiple coherent, divide-and-conquer, and adiabatically switched semiclassical approaches have practically permitted overcoming issues related to the convergence of results. In this Perspective we demonstrate the possibility of studying the semiclassical vibrational spectroscopy of a molecule adsorbed on an anatase (101) surface, a system made of 51 atoms. In kinetics, the semiclassical transition state theory is able to account for anharmonicity and the coupling between the reactive and bound modes. Our group has developed this technique for practical applications involving the study of phenomena like kinetic isotope effect, heavy atom tunneling, and elusive conformer lifetimes. Here, we show that our multidimensional anharmonic quantum approach is able to tackle on-the-fly the thermal kinetic rate constant of a 135 degree-of-freedom system. Overall, semiclassical methods open up the possibility to describe at the quantum mechanical level systems characterized by hundreds of degrees of freedom leading to the accurate spectroscopic and kinetic description of biomolecules and complex molecular systems.
Collapse
Affiliation(s)
- Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Marco Cazzaniga
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
3
|
Yan F, Mukherjee K, Maroncelli M, Kim HJ. Infrared Spectroscopy of Li + Solvation in Diglyme: Ab Initio Molecular Dynamics and Experiment. J Phys Chem B 2023; 127:9191-9203. [PMID: 37820068 PMCID: PMC10614183 DOI: 10.1021/acs.jpcb.3c05612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Infrared (IR) spectra of solutions of the lithium salt LiBF4 in diglyme, CH3O(CH2CH2O)2CH3, are studied via IR spectroscopy and ab initio molecular dynamics (AIMD) simulations. Experiments show that the major effects of LiBF4, compared to neat diglyme, are the appearance of a new broad band in the 250-500 cm-1 frequency region and a broadening and intensity enhancement of the diglyme band in the 900-1150 cm-1 region accompanied by a red-shift. Computational analysis indicates that hindered translational motions of Li+ in its solvation cage are mainly responsible for the new far-IR band, while the changes in the mid-IR are due to Li+-coordination-dependent B-F stretching vibrations of BF4- anions coupled with diglyme vibrations. Molecular motions in these and lower frequency regions are generally correlated, revealing the collective nature of the vibrational dynamics, which involve multiple ions/molecules. Herein, a detailed analysis of these features via AIMD simulations of the spectrum and its components, combined with analysis of the generalized normal modes of the solution components, is presented. Other minor spectral changes as well as diglyme conformational changes induced by the lithium salt are also discussed.
Collapse
Affiliation(s)
- Fangyong Yan
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kallol Mukherjee
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hyung J. Kim
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Kim HJ. Spectroscopic and Chemical Properties of Ionic Liquids: Computational Study. CHEM REC 2023; 23:e202300075. [PMID: 37166396 DOI: 10.1002/tcr.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Indexed: 05/12/2023]
Abstract
A brief account is given of highlights of our computational efforts - often in collaboration with experimental groups - to understand spectroscopic and chemical properties of ionic liquids (ILs). Molecular dynamics, including their inhomogeneous character, responsible for key spectral features observed in dielectric absorption, infra-red (IR) and fluorescence correlation spectroscopy (FCS) measurements are elucidated. Mechanisms of chemical processes involving imidazolium-based ILs are illustrated for CO2 capture and related reactions, transesterification of cellulose, and Au nanocluster-catalyzed Suzuki cross-coupling reaction with attention paid to differing roles of IL ions. A comparison with experiments is also made.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Kraka E, Quintano M, La Force HW, Antonio JJ, Freindorf M. The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. J Phys Chem A 2022; 126:8781-8798. [DOI: 10.1021/acs.jpca.2c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Hunter W. La Force
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Juliana J. Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| |
Collapse
|
6
|
Yan F, Mukherjee K, Maroncelli M, Kim HJ. Infrared Spectroscopy of Li + Solvation in EmimBF 4 and in Propylene Carbonate: Ab Initio Molecular Dynamics and Experiment. J Phys Chem B 2022; 126:9643-9662. [DOI: 10.1021/acs.jpcb.2c06326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fangyong Yan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kallol Mukherjee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hyung J. Kim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Buimaga-Iarinca L, Morari C. Calculation of infrared spectra for adsorbed molecules from the dipole autocorrelation function. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Galimberti DR. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. J Chem Theory Comput 2022; 18:6217-6230. [PMID: 36112978 PMCID: PMC9558311 DOI: 10.1021/acs.jctc.2c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/29/2022]
Abstract
The paper illustrates the Activity Weighted Velocities (AWV) methodology to compute Vibrational Circular Dichroism (VCD) anharmonic spectra from Density Functional Theory (DFT) molecular dynamics. AWV calculates the spectra by the Fourier Transform of the time correlation functions of velocities, weighted by specific observables: the Atomic Polar Tensors (APTs) and the Atomic Axial Tensors (AATs). Indeed, AWV shows to correctly reproduce the experimental spectra for systems in the gas and liquid phases, both in the case of weakly and strongly interacting systems. The comparison with the experimental spectra is striking especially in the fingerprint region, as demonstrated by the three benchmark systems discussed: (1S)-Fenchone in the gas phase, (S)-(-)-Propylene oxide in the liquid phase, and (R)-(-)-2-butanol in the liquid phase. The time evolution of APTs and AATs can be adequately described by a linear combination of the tensors of a small set of appropriate reference structures, strongly reducing the computational cost without compromising accuracy. Additionally, AWV allows the partition of the spectral signal in its molecular components without any expensive postprocessing and any localization of the charge density or the wave function.
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
9
|
Gaigeot MP. Some opinions on MD-based vibrational spectroscopy of gas phase molecules and their assembly: An overview of what has been achieved and where to go. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119864. [PMID: 34052762 DOI: 10.1016/j.saa.2021.119864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
We hereby review molecular dynamics simulations for anharmonic gas phase spectroscopy and provide some of our opinions of where the field is heading. With these new directions, the theoretical IR/Raman spectroscopy of large (bio)-molecular systems will be more easily achievable over longer time-scale MD trajectories for an increase in accuracy of the MD-IR and MD-Raman calculated spectra. With the new directions presented here, the high throughput 'decoding' of experimental IR/Raman spectra into 3D-structures should thus be possible, hence advancing e.g. the field of MS-IR for structural characterization by spectroscopy. We also review the assignment of vibrational spectra in terms of anharmonic molecular modes from the MD trajectories, and especially introduce our recent developments based on Graph Theory algorithms. Graph Theory algorithmic is also introduced in this review for the identification of the molecular 3D-structures sampled over MD trajectories.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France.
| |
Collapse
|
10
|
Gámez F, Avilés-Moreno JR, Berden G, Oomens J, Martínez-Haya B. Proton in the ring: spectroscopy and dynamics of proton bonding in macrocycle cavities. Phys Chem Chem Phys 2021; 23:21532-21543. [PMID: 34549205 DOI: 10.1039/d1cp03033g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proton bond is a paradigmatic quantum molecular interaction and a major driving force of supramolecular chemistry. The ring cavities of crown ethers provide an intriguing environment, promoting competitive proton sharing with multiple coordination anchors. This study shows that protons confined in crown ether cavities form dynamic bonds that migrate to varying pairs of coordinating atoms when allowed by the flexibility of the macrocycle backbone. Prototypic native crown ethers (12-crown-4, 15-crown-5 and 18-crown-6) and aza-crown ethers (cyclen, 1-aza-18-crown-6 and hexacyclen) are investigated. For each system, Infrared action spectroscopy experiments and ab initio Molecular Dynamics computations are employed to elucidate the structural effects associated with proton diffusion and its entanglement with the conformational and vibrational dynamics of the protonated host.
Collapse
Affiliation(s)
- Francisco Gámez
- Department of Physical Chemistry, Universidad de Granada, Avenida de la Fuente Nueva s/n, 18071, Granada, Spain
| | - Juan R Avilés-Moreno
- Department of Applied Physical Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Bruno Martínez-Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013 Seville, Spain.
| |
Collapse
|
11
|
Galimberti DR, Sauer J. Chemically Accurate Vibrational Free Energies of Adsorption from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites. J Chem Theory Comput 2021; 17:5849-5862. [PMID: 34459582 PMCID: PMC8444336 DOI: 10.1021/acs.jctc.1c00519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present a methodology
to compute, at reduced computational cost,
Gibbs free energies, enthalpies, and entropies of adsorption from
molecular dynamics. We calculate vibrational partition functions from
vibrational energies, which we obtain from the vibrational density
of states by projection on the normal modes. The use of a set of well-chosen
reference structures along the trajectories accounts for the anharmonicities
of the modes. For the adsorption of methane, ethane, and propane in
the H-CHA zeolite, we limit our treatment to a set of vibrational
modes localized at the adsorption site (zeolitic OH group) and the
alkane molecule interacting with it. Only two short trajectories (1–20
ps) are required to reach convergence (<1 kJ/mol) for the thermodynamic
functions. The mean absolute deviations from the experimentally measured
values are 2.6, 2.8, and 4.7 kJ/mol for the Gibbs free energy, the
enthalpy, and the entropy term (−TΔS),
respectively. In particular, the entropy terms show a major improvement
compared to the harmonic approximation and almost reach the accuracy
of the previous use of anharmonic frequencies obtained with curvilinear
distortions of individual modes. The thermodynamic functions so obtained
follow the trend of the experimental values for methane, ethane, and
propane, and the Gibbs free energy of adsorption at experimental conditions
is correctly predicted to change from positive for methane (5.9 kJ/mol)
to negative for ethane (−4.8 kJ/mol) and propane (−7.1
kJ/mol).
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institut für Chemie, Humboldt-Universität, Unter den Linden 6, 10117 Berlin, Germany.,Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität, Unter den Linden 6, 10117 Berlin, Germany
| |
Collapse
|
12
|
Aieta C, Micciarelli M, Bertaina G, Ceotto M. Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine. Nat Commun 2020; 11:4348. [PMID: 32859910 PMCID: PMC7455743 DOI: 10.1038/s41467-020-18211-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022] Open
Abstract
The interpretation of molecular vibrational spectroscopic signals in terms of atomic motion is essential to understand molecular mechanisms and for chemical characterization. The signals are usually assigned after harmonic normal mode analysis, even if molecular vibrations are known to be anharmonic. Here we obtain the quantum anharmonic vibrational eigenfunctions of the 11-atom protonated glycine molecule and we calculate the density distribution of its nuclei and its geometry parameters, for both the ground and the O-H stretch excited states, using our semiclassical method based on ab initio molecular dynamics trajectories. Our quantum mechanical results describe a molecule elongated and more flexible with respect to what previously thought. More importantly, our method is able to assign each spectral peak in vibrational spectroscopy by showing quantitatively how normal modes involving different functional groups cooperate to originate that spectroscopic signal. The method will possibly allow for a better rationalization of experimental spectroscopy.
Collapse
Affiliation(s)
- Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Marco Micciarelli
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Gianluca Bertaina
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy.
| |
Collapse
|
13
|
Brehm M, Thomas M, Gehrke S, Kirchner B. TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 2020; 152:164105. [DOI: 10.1063/5.0005078] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- M. Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - M. Thomas
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - S. Gehrke
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - B. Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
14
|
Bakels S, Gaigeot MP, Rijs AM. Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chem Rev 2020; 120:3233-3260. [PMID: 32073261 PMCID: PMC7146864 DOI: 10.1021/acs.chemrev.9b00547] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Gas-phase, double
resonance IR spectroscopy has proven to be an
excellent approach to obtain structural information on peptides ranging
from single amino acids to large peptides and peptide clusters. In
this review, we discuss the state-of-the-art of infrared action spectroscopy
of peptides in the far-IR and THz regime. An introduction to the field
of far-IR spectroscopy is given, thereby highlighting the opportunities
that are provided for gas-phase research on neutral peptides. Current
experimental methods, including spectroscopic schemes, have been reviewed.
Structural information from the experimental far-IR spectra can be
obtained with the help of suitable theoretical approaches such as
dynamical DFT techniques and the recently developed Graph Theory.
The aim of this review is to underline how the synergy between far-IR
spectroscopy and theory can provide an unprecedented picture of the
structure of neutral biomolecules in the gas phase. The far-IR signatures
of the discussed studies are summarized in a far-IR map, in order
to gain insight into the origin of the far-IR localized and delocalized
motions present in peptides and where they can be found in the electromagnetic
spectrum.
Collapse
Affiliation(s)
- Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Université d'Evry val d'Essonne, Blvd F. Mitterrand, Bât Maupertuis, 91025 Evry, France
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
15
|
Tennyson J, Miller S. Hydrogen molecular ions: H 3+, H 5+ and beyond. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180395. [PMID: 31378175 PMCID: PMC6710892 DOI: 10.1098/rsta.2018.0395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2019] [Indexed: 06/10/2023]
Abstract
Three decades after the spectroscopic detection of H3+ in space, the inspiring developments in physics, chemistry and astronomy of Hn+ (n = 3, 5, 7) systems, which led to this Royal Society Discussion Meeting, are reviewed, the present state of the art as represented by the meeting surveyed and future lines of research considered. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.
Collapse
Affiliation(s)
- Jonathan Tennyson
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Steve Miller
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| |
Collapse
|
16
|
Császár AG, Fábri C, Sarka J. Quasistructural molecules. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University Budapest Hungary
- MTA‐ELTE Complex Chemical Systems Research Group Budapest Hungary
| | - Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University Budapest Hungary
- MTA‐ELTE Complex Chemical Systems Research Group Budapest Hungary
| | - János Sarka
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas USA
| |
Collapse
|
17
|
Gabas F, Di Liberto G, Ceotto M. Vibrational investigation of nucleobases by means of divide and conquer semiclassical dynamics. J Chem Phys 2019; 150:224107. [PMID: 31202241 DOI: 10.1063/1.5100503] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we report a computational study of the vibrational features of four different nucleobases employing the divide-and-conquer semiclassical initial value representation molecular dynamics method. Calculations are performed on uracil, cytosine, thymine, and adenine. Results show that the overall accuracy with respect to experiments is within 20 wavenumbers, regardless of the dimensionality of the nucleobase. Vibrational estimates are accurate even in the complex case of cytosine, where two relevant conformers are taken into account. These results are promising in the perspective of future studies on more complex systems, such as nucleotides or nucleobase pairs.
Collapse
Affiliation(s)
- Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Giovanni Di Liberto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
18
|
Micciarelli M, Gabas F, Conte R, Ceotto M. An effective semiclassical approach to IR spectroscopy. J Chem Phys 2019; 150:184113. [DOI: 10.1063/1.5096968] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marco Micciarelli
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Fabio Gabas
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
19
|
Gupta PK, Esser A, Forbert H, Marx D. Toward theoretical terahertz spectroscopy of glassy aqueous solutions: partially frozen solute-solvent couplings of glycine in water. Phys Chem Chem Phys 2019; 21:4975-4987. [PMID: 30758388 DOI: 10.1039/c8cp07489e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular-level understanding of THz spectra of aqueous solutions under ambient conditions has been greatly advanced in recent years. Here, we go beyond previous analyses by performing ab initio molecular dynamics simulations of glycine in water with artificially frozen solute or solvent molecules, respectively, while computing the total THz response as well as its decomposition into mode-specific resonances based on the "supermolecular solvation complex" technique. Clamping the water molecules and keeping glycine moving breaks the coupling of glycine to the structural dynamics of the solvent, however, the polarization and dielectric solvation effects in the static solvation cage are still at work since the full electronic structure of the quenched solvent is taken into account. The complementary approach of fixing glycine reveals both the dynamical and electronic response of the solvation cage at the level of its THz response. Moreover, to quantitatively account for the electronic contribution solely due to solvent embedding, the solute species is "vertically desolvated", thus preserving the fully coupled solute-solvent motion in terms of the solute's structural dynamics in solution, while its electronic structure is no longer subject to solute-solvent polarization and charge transfer effects. When referenced to the free simulation of Gly(aq), this three-fold approach allows us to decompose the THz spectral contributions due to the correlated solute-solvent dynamics into entirely structural and purely electronic effects. Beyond providing hitherto unknown insights, the observed systematic changes of THz spectra in terms of peak shifts and lineshape modulations due to conformational freezing and frozen solvation cages might be useful to investigate the solvation of molecules in highly viscous H-bonding solvents such as ionic liquids and even in cryogenic ices as relevant to polar stratospheric and dark interstellar clouds.
Collapse
Affiliation(s)
- Prashant Kumar Gupta
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
20
|
Galimberti DR, Bougueroua S, Mahé J, Tommasini M, Rijs AM, Gaigeot MP. Conformational assignment of gas phase peptides and their H-bonded complexes using far-IR/THz: IR-UV ion dip experiment, DFT-MD spectroscopy, and graph theory for mode assignment. Faraday Discuss 2019; 217:67-97. [DOI: 10.1039/c8fd00211h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graph theory based vibrational modes as new entities for vibrational THz spectroscopy.
Collapse
Affiliation(s)
| | | | - Jérôme Mahé
- LAMBE UMR8587
- Univ Evry
- Université Paris-Saclay
- CNRS
- 91025 Evry
| | - Matteo Tommasini
- Department of Chemistry, Materials, Chemical Engineering “G. Natta” Politecnico di Milano
- 20133 Milano
- Italy
| | - Anouk M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | | |
Collapse
|
21
|
Brehm M, Sebastiani D. Simulating structure and dynamics in small droplets of 1-ethyl-3-methylimidazolium acetate. J Chem Phys 2018; 148:193802. [PMID: 30307180 DOI: 10.1063/1.5010342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate the structure and dynamics of small ionic liquid droplets in gas phase, we performed a DFT-based ab initio molecular dynamics study of several 1-ethyl-3-methylimidazolium acetate clusters in vacuum as well as a bulk phase simulation. We introduce an unbiased criterion for average droplet diameter and density. By extrapolation of the droplet densities, we predict the experimental bulk phase density with a deviation of only a few percent. The hydrogen bond geometry between cations and anions is very similar in droplets and bulk, but the hydrogen bond dynamics is significantly slower in the droplets, becoming slower with increasing system size, with hydrogen bond lifetimes up to 2000 ps. From a normal mode analysis of the trajectories, we identify the modes of the ring proton C-H stretching, which are strongly affected by hydrogen bonding. From analyzing these, we find that the hydrogen bond becomes weaker with increasing system size. The cations possess an increased concentration inside the clusters, whereas the anions show an excess concentration on the outside. Almost all anions point towards the droplet center with their carboxylic groups. Ring stacking is found to be a very important structural motif in the droplets (as in the bulk), but side chain interactions are only of minor importance. By using Voronoi tessellation, we define the exposed droplet surface and find that it consists mainly of hydrogen atoms from the cation's and anion's methyl and ethyl groups. Polar atoms are rarely found on the surface, such that the droplets appear completely hydrophobic on the outside.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie-Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Daniel Sebastiani
- Institut für Chemie-Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Gabas F, Di Liberto G, Conte R, Ceotto M. Protonated glycine supramolecular systems: the need for quantum dynamics. Chem Sci 2018; 9:7894-7901. [PMID: 30542548 PMCID: PMC6237109 DOI: 10.1039/c8sc03041c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/16/2018] [Indexed: 02/02/2023] Open
Abstract
Quantum mechanical simulations unequivocally explain experimental IR spectra of protonated supramolecular systems.
IR spectroscopy is one of the most commonly employed techniques to study molecular vibrations and interactions. However, characterization of experimental IR spectra is not always straightforward. This is the case of protonated glycine supramolecular systems like Gly2H+ and (GlyH + nH2), whose IR spectra raise questions which have still to find definitive answers even after theoretical spectroscopy investigations. Specifically, the assignment of the conformer responsible for the spectrum of the protonated glycine dimer (Gly2H+) has led to much controversy and it is still debated, while structural hypotheses formulated to explain the main experimental spectral features of (GlyH + nH2) systems have not been theoretically confirmed. We demonstrate that simulations must account for quantum dynamical effects in order to resolve these open issues. This is achieved by means of our divide-and-conquer semiclassical initial value representation technique, which approximates the quantum dynamics of high dimensional systems with remarkable accuracy and outperforms not only the commonly employed but unfit scaled-harmonic approaches, but also pure classical dynamics simulations. Besides the specific insights concerning the two particular cases presented here, the general conclusion is that, due to the widespread presence of protonated systems in chemistry, quantum dynamics may play a prominent role and should not be totally overlooked even when dealing with large systems including biological structures.
Collapse
Affiliation(s)
- Fabio Gabas
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , 20133 Milano , Italy . ;
| | - Giovanni Di Liberto
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , 20133 Milano , Italy . ;
| | - Riccardo Conte
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , 20133 Milano , Italy . ;
| | - Michele Ceotto
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , 20133 Milano , Italy . ;
| |
Collapse
|
23
|
Di Liberto G, Conte R, Ceotto M. "Divide and conquer" semiclassical molecular dynamics: A practical method for spectroscopic calculations of high dimensional molecular systems. J Chem Phys 2018; 148:014307. [PMID: 29306274 DOI: 10.1063/1.5010388] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We extensively describe our recently established "divide-and-conquer" semiclassical method [M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017)] and propose a new implementation of it to increase the accuracy of results. The technique permits us to perform spectroscopic calculations of high-dimensional systems by dividing the full-dimensional problem into a set of smaller dimensional ones. The partition procedure, originally based on a dynamical analysis of the Hessian matrix, is here more rigorously achieved through a hierarchical subspace-separation criterion based on Liouville's theorem. Comparisons of calculated vibrational frequencies to exact quantum ones for a set of molecules including benzene show that the new implementation performs better than the original one and that, on average, the loss in accuracy with respect to full-dimensional semiclassical calculations is reduced to only 10 wavenumbers. Furthermore, by investigating the challenging Zundel cation, we also demonstrate that the "divide-and-conquer" approach allows us to deal with complex strongly anharmonic molecular systems. Overall the method very much helps the assignment and physical interpretation of experimental IR spectra by providing accurate vibrational fundamentals and overtones decomposed into reduced dimensionality spectra.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
24
|
Esser A, Forbert H, Marx D. Tagging effects on the mid-infrared spectrum of microsolvated protonated methane. Chem Sci 2018; 9:1560-1573. [PMID: 29675201 PMCID: PMC5890325 DOI: 10.1039/c7sc04040g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Although bare protonated methane is by now essentially understood at the level of intramolecular large-amplitude motion, scrambling dynamics and broadband vibrational spectra, the microsolvated species still offer plenty of challenges. One aspect is the effect of the attached solvent molecules on the infrared absorption spectra of microsolvated CH5+ complexes compared to the bare parent molecule. In this study we analyze, based on ab initio molecular dynamics simulations, protonated methane molecules that have been microsolvated with up to three hydrogen molecules, i.e. CH5+·(H2) n . In particular, upon introducing a novel multi-channel maximum entropy methodology described herein, we are able to decompose the infrared spectra of these weakly-bound complexes in the frequency window from 1000 to 4500 cm-1 into additive single mode contributions. Detailed comparisons to the bare CH5+ parent reveal that these perturbed modes encode distinct features that depend on the exact microsolvation pattern. Beyond the specific case, such understanding is relevant to assess tagging artifacts in vibrational spectra of parent molecules based on messenger predissociation action spectroscopy.
Collapse
Affiliation(s)
- Alexander Esser
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| |
Collapse
|
25
|
Esser A, Belsare S, Marx D, Head-Gordon T. Mode specific THz spectra of solvated amino acids using the AMOEBA polarizable force field. Phys Chem Chem Phys 2018; 19:5579-5590. [PMID: 28165073 DOI: 10.1039/c6cp07388c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have used the AMOEBA model to simulate the THz spectra of two zwitterionic amino acids in aqueous solution, which is compared to the results on these same systems using ab initio molecular dynamics (AIMD) simulations. Overall we find that the polarizable force field shows promising agreement with AIMD data for both glycine and valine in water. This includes the THz spectral assignments and the mode-specific spectral decomposition into intramolecular solute motions as well as distinct solute-water cross-correlation modes some of which cannot be captured by non-polarizable force fields that rely on fixed partial charges. This bodes well for future studies for simulating and decomposing the THz spectra for larger solutes such as proteins or polymers for which AIMD studies are presently intractable. Furthermore, we believe that the current study on rather simple aqueous solutions offers a way to systematically investigate the importance of charge transfer, nuclear quantum effects, and the validity of computationally practical density functionals, all of which are needed to fully quantitatively capture complex dynamical motions in the condensed phase.
Collapse
Affiliation(s)
- Alexander Esser
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Saurabh Belsare
- The UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, Department of Bioengineering, Department of Chemical and Biomolecular Engineering, University of California Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Lawson Daku LM. Spin-state dependence of the structural and vibrational properties of solvated iron(ii) polypyridyl complexes from AIMD simulations: aqueous [Fe(bpy)3]Cl2, a case study. Phys Chem Chem Phys 2018; 20:6236-6253. [DOI: 10.1039/c7cp07862e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
LS and HS IR spectra of aqueous [Fe(bpy)3]2+ and corresponding HS–LS difference IR spectrum as obtained from state-of-the-art ab initio molecular dynamics simulations applied to the determination of the structural and vibrational properties of the solvated complex.
Collapse
|
27
|
Imoto S, Forbert H, Marx D. Aqueous TMAO solutions as seen by theoretical THz spectroscopy: hydrophilic versus hydrophobic water. Phys Chem Chem Phys 2018; 20:6146-6158. [DOI: 10.1039/c7cp07003a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All THz resonances of aqueous TMAO solutions are computed and assigned based on ab initio molecular dynamics simulations.
Collapse
Affiliation(s)
- Sho Imoto
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
28
|
Galimberti DR, Milani A, Tommasini M, Castiglioni C, Gaigeot MP. Combining Static and Dynamical Approaches for Infrared Spectra Calculations of Gas Phase Molecules and Clusters. J Chem Theory Comput 2017; 13:3802-3813. [DOI: 10.1021/acs.jctc.7b00471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Daria R. Galimberti
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
- LAMBE
CNRS UMR8587, Université d’Evry val d’Essonne, 91025 Evry, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Alberto Milani
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Matteo Tommasini
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Chiara Castiglioni
- Dip.
Chimica, Materiali, Ing. Chimica “G. Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Marie-Pierre Gaigeot
- LAMBE
CNRS UMR8587, Université d’Evry val d’Essonne, 91025 Evry, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| |
Collapse
|
29
|
Karsten S, Bokarev SI, Aziz SG, Ivanov SD, Kühn O. A time-correlation function approach to nuclear dynamical effects in X-ray spectroscopy. J Chem Phys 2017; 146:224203. [DOI: 10.1063/1.4984930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sven Karsten
- Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock, Germany
| | - Sergey I. Bokarev
- Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock, Germany
| | - Saadullah G. Aziz
- Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sergei D. Ivanov
- Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock, Germany
| | - Oliver Kühn
- Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock, Germany
| |
Collapse
|
30
|
Abstract
Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.
Collapse
Affiliation(s)
- Vitor H Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Luiz F O Faria
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Mauro C C Ribeiro
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo , Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| |
Collapse
|
31
|
Schwörer M, Wichmann C, Tavan P. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water. J Chem Phys 2016; 144:114504. [PMID: 27004884 DOI: 10.1063/1.4943972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.
Collapse
Affiliation(s)
- Magnus Schwörer
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München, Germany
| | - Christoph Wichmann
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München, Germany
| | - Paul Tavan
- Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians Universität München, Oettingenstr. 67, 80538 München, Germany
| |
Collapse
|
32
|
Godtliebsen IH, Christiansen O. Calculating vibrational spectra without determining excited eigenstates: Solving the complex linear equations of damped response theory for vibrational configuration interaction and vibrational coupled cluster states. J Chem Phys 2015; 143:134108. [DOI: 10.1063/1.4932010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
33
|
Thomas M, Brehm M, Hollóczki O, Kelemen Z, Nyulászi L, Pasinszki T, Kirchner B. Simulating the vibrational spectra of ionic liquid systems: 1-ethyl-3-methylimidazolium acetate and its mixtures. J Chem Phys 2015; 141:024510. [PMID: 25028030 DOI: 10.1063/1.4887082] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vibrational spectra of the ionic liquid 1-ethyl-3-methylimidazolium acetate and its mixtures with water and carbon dioxide are calculated using ab initio molecular dynamics simulations, and the results are compared to experimental data. The new implementation of a normal coordinate analysis in the trajectory analyzer TRAVIS is used to assign the experimentally observed bands to specific molecular vibrations. The applied computational approaches prove to be particularly suitable for the modeling of bulk phase effects on vibrational spectra, which are highly important for the discussion of the microscopic structure in systems with a strong dynamic network of intermolecular interactions, such as ionic liquids.
Collapse
Affiliation(s)
- Martin Thomas
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Martin Brehm
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstraße 2, 04103 Leipzig, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest, Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, 1111 Budapest, Hungary
| | - Tibor Pasinszki
- Department of Inorganic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, 1117 Budapest, Hungary
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
34
|
Van Yperen-De Deyne A, De Meyer T, Pauwels E, Ghysels A, De Clerck K, Waroquier M, Van Speybroeck V, Hemelsoet K. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics. J Chem Phys 2015; 140:134105. [PMID: 24712778 DOI: 10.1063/1.4869937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.
Collapse
Affiliation(s)
- Andy Van Yperen-De Deyne
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Thierry De Meyer
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Ewald Pauwels
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - An Ghysels
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Karen De Clerck
- Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde, Belgium
| | - Michel Waroquier
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Karen Hemelsoet
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
| |
Collapse
|
35
|
Causà M, D’Amore M, Gentile F, Menendez M, Calatayud M. Electron Localization Function and Maximum Probability Domains analysis of semi-ionic oxides crystals, surfaces and surface defects. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Sun J, Niehues G, Forbert H, Decka D, Schwaab G, Marx D, Havenith M. Understanding THz Spectra of Aqueous Solutions: Glycine in Light and Heavy Water. J Am Chem Soc 2014; 136:5031-8. [DOI: 10.1021/ja4129857] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Sun
- Lehrstuhl für Theoretische Chemie and ‡Lehrstuhl für Physikalische
Chemie II, Ruhr−Universität Bochum, 44780 Bochum, Germany
| | - Gudrun Niehues
- Lehrstuhl für Theoretische Chemie and ‡Lehrstuhl für Physikalische
Chemie II, Ruhr−Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Lehrstuhl für Theoretische Chemie and ‡Lehrstuhl für Physikalische
Chemie II, Ruhr−Universität Bochum, 44780 Bochum, Germany
| | - Dominique Decka
- Lehrstuhl für Theoretische Chemie and ‡Lehrstuhl für Physikalische
Chemie II, Ruhr−Universität Bochum, 44780 Bochum, Germany
| | - Gerhard Schwaab
- Lehrstuhl für Theoretische Chemie and ‡Lehrstuhl für Physikalische
Chemie II, Ruhr−Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie and ‡Lehrstuhl für Physikalische
Chemie II, Ruhr−Universität Bochum, 44780 Bochum, Germany
| | - Martina Havenith
- Lehrstuhl für Theoretische Chemie and ‡Lehrstuhl für Physikalische
Chemie II, Ruhr−Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
37
|
The Bond Analysis Techniques (ELF and Maximum Probability Domains) Application to a Family of Models Relevant to Bio-Inorganic Chemistry. STRUCTURE AND BONDING 2013. [DOI: 10.1007/978-3-642-32750-6_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Ivanov SD, Witt A, Marx D. Theoretical spectroscopy using molecular dynamics: theory and application to CH5+ and its isotopologues. Phys Chem Chem Phys 2013; 15:10270-99. [DOI: 10.1039/c3cp44523b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
VandeVondele J, Tröster P, Tavan P, Mathias G. Vibrational Spectra of Phosphate Ions in Aqueous Solution Probed by First-Principles Molecular Dynamics. J Phys Chem A 2012; 116:2466-74. [DOI: 10.1021/jp211783z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Philipp Tröster
- Lehrstuhl für
Biomolekulare
Optik, Ludwig-Maximilians-Universität München
| | - Paul Tavan
- Lehrstuhl für
Biomolekulare
Optik, Ludwig-Maximilians-Universität München
| | - Gerald Mathias
- Lehrstuhl für
Biomolekulare
Optik, Ludwig-Maximilians-Universität München
| |
Collapse
|