1
|
Chen B, Mao J, Xu K, Liu L, Lin W, Guo YW, Wu R, Wang C, Xu B. Mining coral-derived terpene synthases and mechanistic studies of the coral biflorane synthase. SCIENCE ADVANCES 2025; 11:eadv0805. [PMID: 40009671 PMCID: PMC11864185 DOI: 10.1126/sciadv.adv0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
Biflorane diterpenoids are unique natural products often seen in marine animals. Recent studies have reported a small number of biflorane synthases. However, the catalytic mechanism and structural basis for biflorane formation remain unclear. To address these issues, we conducted genome mining of terpene synthases from the sea whip coral Paramuricea clavata, resulting in the discovery of a biflorane synthase PcTS1. We performed a series of isotope labeling, crystallography, quantum mechanics/molecular mechanics calculations, and mutagenesis studies toward PcTS1 to investigate the mechanism. Isotopic labeling studies, together with calculations, elucidate a cascade of 1,10-cyclization, 1,3-hydride shift, 1,6-cyclization, 1,2-hydride shift, 2,6-cyclization, cyclopropane ring opening, and deprotonation by the generated pyrophosphate, forming the biflorane scaffold. Crystallography, quantum mechanics/molecular mechanics, and mutagenesis studies confirmed the cascade and produced different terpene scaffolds. Our work demonstrated the mechanism of marine biflorane formation, elucidated the second crystal structure of a coral terpene synthase, and realized the terpene skeleton expansion.
Collapse
Affiliation(s)
- Bao Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jingjing Mao
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
- Nanjing Drum Tower Hospital, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lijun Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Wei Lin
- Nanjing Drum Tower Hospital, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chengyuan Wang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| |
Collapse
|
2
|
Sun Y, Wang LL, Han JH, Zhou HP, Pan QQ, Zhao ZW, Liu XM, Su ZM. A theoretical comparison of different third component content in ternary organic solar cells. Phys Chem Chem Phys 2025; 27:1949-1959. [PMID: 39745252 DOI: 10.1039/d4cp02120g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Ternary solar cells have been rapidly developed in the realm of organic solar cells (OSCs). The incorporation of a third component into a cell results in a complicated active layer morphology, and the relation of this morphology to power conversion efficiency remains elusive. In this work, two ternary active layers, B1:Y7 (10 wt%):BO-4Cl and B1:Y7 (50 wt%):BO-4Cl are constructed, and the reasons for the differences in PCE caused by varying the Y7 content are investigated using theoretical calculations. Firstly, four groups of binary complexes (B1:BO-4Cl-10 wt%, B1:BO-4Cl-50 wt%, B1:Y7-10 wt%, B1:Y7-50 wt%) were examined using molecular dynamics simulation and the stacking patterns of the complexes could mainly be categorized into three groups (IC-T, IC-BDT, IC-RHD). The results showed that with an increase of the Y7 content, the proportion of IC-T stacking decreased while IC-BDT stacking increased. Moreover, the properties of each stacking pattern were calculated and IC-T stacking was found to have a greater charge separation coupling and rate, and a smaller interaction energy. With more IC-T stacking, the number of charge transfer (CT) states and CT mechanisms in B1:BO-4Cl-10 wt% and B1:Y7-10 wt% improves the PCE of B1:Y7 (10 wt%):BO-4Cl. For the trimers, a greater number of CT states and CT pathways can also facilitate efficient charge separation in B1:Y7 (10 wt%):BO-4Cl. Additionally, this work provides basic knowledge of the influence that the third component content on cell performance, providing theoretical instruction for experimental work based on Y-series non-fullerene acceptor materials.
Collapse
Affiliation(s)
- Ying Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
| | - Li-Li Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
| | - Jin-Hong Han
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
| | - Hai-Ping Zhou
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
| | - Qing-Qing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
| | - Zhi-Wen Zhao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Xing-Man Liu
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun, 130022, China.
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Fang D, Zhang Z, Zhai J, Guo B, Li P, Liu X, Song J, Xie S, Wu R, Zhao Y, Wang C. Enzymatic-related network of catalysis, polyamine, and tumors for acetylpolyamine oxidase: from calculation to experiment. Chem Sci 2024; 15:2867-2882. [PMID: 38404376 PMCID: PMC10882482 DOI: 10.1039/d3sc06037c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024] Open
Abstract
The regulation of enzymes and development of polyamine analogs capable of controlling the dynamics of endogenous polyamines to achieve anti-tumor effects is one of the biggest challenges in polyamine research. However, the root of the problem remains unsolved. This study represents a significant milestone as it unveils, for the first time, the comprehensive catalytic map of acetylpolyamine oxidase that includes chemical transformation and product release kinetics, by utilizing multiscale simulations with over six million dynamical snapshots. The transportation of acetylspermine is strongly exothermic, and high binding affinity of enzyme and reactant is observed. The transfer of hydride from polyamine to FAD is the rate-limiting step, via an H-shift coupled electron transfer mechanism. The two products are released in a detour stepwise mechanism, which also impacts the enzymatic efficiency. Inspired by these mechanistic insights into enzymatic catalysis, we propose a novel strategy that regulates the polyamine level and catalytic progress through the action of His64. Directly suppressing APAO by mutating His64 further inhibited growth and migration of tumor cells and tumor tissue in vitro and in vivo. Therefore, the network connecting microcosmic and macroscopic scales opens up new avenues for designing polyamine compounds and conducting anti-tumor research in the future.
Collapse
Affiliation(s)
- Dong Fang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
- School of Pharmacy, Henan University Kaifeng 475000 P. R. China
| | - Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Jihang Zhai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Baolin Guo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago Chicago Illinois 60660 USA
| | - Xiaoyuan Liu
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Jinshuai Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Songqiang Xie
- School of Pharmacy, Henan University Kaifeng 475000 P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University Kaifeng 475000 P. R. China
| |
Collapse
|
4
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
5
|
Zhang F, Zeng T, Wu R. QM/MM Modeling Aided Enzyme Engineering in Natural Products Biosynthesis. J Chem Inf Model 2023; 63:5018-5034. [PMID: 37556841 DOI: 10.1021/acs.jcim.3c00779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural products and their derivatives are widely used across various industries, particularly pharmaceuticals. Modern engineered biosynthesis provides an alternative way of producing and meeting the growing need for diverse natural products. Natural enzymes, on the other hand, often exhibit unsatisfactory catalytic characteristics and necessitate further enzyme engineering modifications. QM/MM, as a powerful and extensively used computational tool in the field of enzyme catalysis, has been increasingly applied in rational enzyme engineering over the past decade. In this review, we summarize recent advances in QM/MM computational investigation on enzyme catalysis and enzyme engineering for natural product biosynthesis. The challenges and perspectives for future QM/MM applications aided enzyme engineering in natural product biosynthesis will also be discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Tao Zeng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Li Z, Zhang L, Xu K, Jiang Y, Du J, Zhang X, Meng LH, Wu Q, Du L, Li X, Hu Y, Xie Z, Jiang X, Tang YJ, Wu R, Guo RT, Li S. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase. Nat Commun 2023; 14:4001. [PMID: 37414771 PMCID: PMC10325987 DOI: 10.1038/s41467-023-39706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Diterpene synthase VenA is responsible for assembling venezuelaene A with a unique 5-5-6-7 tetracyclic skeleton from geranylgeranyl pyrophosphate. VenA also demonstrates substrate promiscuity by accepting geranyl pyrophosphate and farnesyl pyrophosphate as alternative substrates. Herein, we report the crystal structures of VenA in both apo form and holo form in complex with a trinuclear magnesium cluster and pyrophosphate group. Functional and structural investigations on the atypical 115DSFVSD120 motif of VenA, versus the canonical Asp-rich motif of DDXX(X)D/E, reveal that the absent second Asp of canonical motif is functionally replaced by Ser116 and Gln83, together with bioinformatics analysis identifying a hidden subclass of type I microbial terpene synthases. Further structural analysis, multiscale computational simulations, and structure-directed mutagenesis provide significant mechanistic insights into the substrate selectivity and catalytic promiscuity of VenA. Finally, VenA is semi-rationally engineered into a sesterterpene synthase to recognize the larger substrate geranylfarnesyl pyrophosphate.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Jieke Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, Shandong, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Qile Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yuechan Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xukai Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
7
|
Zhang F, Wang Y, Yue J, Zhang R, Hu YE, Huang R, Ji AJ, Hess BA, Liu Z, Duan L, Wu R. Discovering a uniform functional trade-off of the CBC-type 2,3-oxidosqualene cyclases and deciphering its chemical logic. SCIENCE ADVANCES 2023; 9:eadh1418. [PMID: 37285431 DOI: 10.1126/sciadv.adh1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Many functionally promiscuous plant 2,3-oxidosqualene cyclases (OSCs) have been found, but complete functional reshaping is rarely reported. In this study, we have identified two new plant OSCs: a unique protostadienol synthase (AoPDS) and a common cycloartenol synthase (AoCAS) from Alisma orientale (Sam.) Juzep. Multiscale simulations and mutagenesis experiments revealed that threonine-727 is an essential residue responsible for protosta-13 (17),24-dienol biosynthesis in AoPDS and that the F726T mutant completely reshapes the native function of AoCAS into a PDS function to yield almost exclusively protosta-13 (17),24-dienol. Unexpectedly, various native functions were uniformly reshaped into a PDS function by introducing the phenylalanine → threonine substitution at this conserved position in other plant and non-plant chair-boat-chair-type OSCs. Further computational modeling elaborated the trade-off mechanisms of the phenylalanine → threonine substitution that leads to the PDS activity. This study demonstrates a general strategy for functional reshaping by using a plastic residue based on the decipherment of the catalytic mechanism.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Yunpeng Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Jingyang Yue
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Rongrong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Yong-Er Hu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Ruoshi Huang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Ai-Jia Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - B Andes Hess
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Lixin Duan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Chen K, Zhang M, Ye M, Qiao X. Site-directed mutagenesis and substrate compatibility to reveal the structure-function relationships of plant oxidosqualene cyclases. Nat Prod Rep 2021; 38:2261-2275. [PMID: 33988197 DOI: 10.1039/d1np00015b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to May 2020Oxidosqualene cyclases (OSCs) catalyze one of the most complex polycyclization reactions in nature, using the linear 2,3-oxidosqualene to generate an array of triterpene skeletons in plants. Despite the structural diversity of the products, the protein sequences of plant OSCs are highly conserved, where a few key amino acids could govern the product selectivity. Due to the absence of crystal structures, site-directed mutagenesis and substrate structural modification become key approaches to understand the cyclization mechanism. In this review, 98 mutation sites in 25 plant OSCs have been summarized, and the conserved key residues have been identified by sequence alignment. Structure-function relationships are further discussed. Meanwhile, the substrate selectivity has been summarized to probe the active site cavity of plant OSCs. A total of 77 references are included.
Collapse
Affiliation(s)
- Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
9
|
Spencer TA, Ditchfield R. A simpler method affords evaluation of π stabilization by phenylalanine of several biochemical carbocations. Org Biomol Chem 2020; 18:7597-7607. [PMID: 32955057 DOI: 10.1039/d0ob01565b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Carbocations are important intermediates in the biosynthesis of terpenes and steroids, and it is challenging to try to understand how these relatively unstable species survive even transiently during biochemical reactions. Carbocation-π interaction with aromatic amino acid residues is an important factor in helping to stabilize these positively charged species. However, the short lifetimes of these active site carbocations makes experimental evaluation of the stabilization afforded by such interaction impossible. Computational studies, however, have provided some insight into this phenomenon. Herein we report a simple, computationally efficient method to estimate such stabilization energies afforded by phenylalanine to biochemical carbocation intermediates. A model is constructed in which the biochemical carbocation is replaced by an appropriate carbocation mimic (t-butyl or dimethylallyl). This substitute carbocation is then aligned with an ethylbenzene serving as a surrogate for each proximate phenylalanine in a geometry that replicates as closely as possible the orientation of that phenylalanine using measurements made on an X-ray structure of an enzyme active site in which a carbocation surrogate is bound. Density functional theory computations on such models were then used to yield estimates of stabilization energies. Application of this method to the tertiary carbocation formed in the reaction catalyzed by geranyl diphosphate C-methyl transferase gave a stabilization energy (-12.3 kcal mol-1) that was essentially identical to that obtained previously by analysis of a much more computationally demanding model of the active site. As a check on the accuracy of the simpler method, it was applied with similar success to the farnesyl cation formed in the reaction catalyzed by aristolochene synthase that is stabilized by cation-π interaction with two phenylalanines. Application of this method is also described to estimate carbocation-π stabilization, by the same two phenylalanines, of the final carbocation intermediate leading to aristolochene through analysis of the X-ray structure of an inhibitor of that carbocation bound in the active site of aristolochene synthase. Finally, the stabilization, by either of two phenylalanines, of six carbocation intermediates in the oxidosqualene cyclase-catalyzed formation of lanosterol is estimated by comparable analysis of an X-ray structure of that reaction product bound in the enzyme active site.
Collapse
Affiliation(s)
- Thomas A Spencer
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA.
| | | |
Collapse
|
10
|
Exploring the catalytic cascade of cembranoid biosynthesis by combination of genetic engineering and molecular simulations. Comput Struct Biotechnol J 2020; 18:1819-1829. [PMID: 32695274 PMCID: PMC7365961 DOI: 10.1016/j.csbj.2020.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/04/2022] Open
Abstract
While chemical steps involved in bioactive cembranoid biosynthesis have been examined, the corresponding enzymatic mechanisms leading to their formation remain elusive. In the tobacco plant, Nicotiana tabacum, a putative cembratriene-ol synthase (CBTS) initiates the catalytic cascade that lead to the biosynthesis of cembratriene-4,6-diols, which displays antibacterial- and anti-proliferative activities. We report here on structural homology models, functional studies, and mechanistic explorations of this enzyme using a combination of biosynthetic and computational methods. This approach guided us to develop an efficient de novo production of five bioactive non- and monohydroxylated cembranoids. Our homology models in combination with quantum and classical simulations suggested putative principles of the CBTS catalytic cycle, and provided a possible rationale for the formation of premature olefinic side products. Moreover, the functional reconstruction of a N. tabacum-derived class II P450 with a cognate CPR, obtained by transcriptome mining provided for production of bioactive cembratriene-4,6-diols. Our combined findings provide mechanistic insights into cembranoid biosynthesis, and a basis for the sustainable industrial production of highly valuable bioactive cembranoids.
Collapse
|
11
|
Diao H, Chen N, Wang K, Zhang F, Wang YH, Wu R. Biosynthetic Mechanism of Lanosterol: A Completed Story. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongjuan Diao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Nanhao Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kai Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Yong-Heng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
12
|
Zhang F, An T, Tang X, Zi J, Luo HB, Wu R. Enzyme Promiscuity versus Fidelity in Two Sesquiterpene Cyclases (TEAS versus ATAS). ACS Catal 2019. [DOI: 10.1021/acscatal.9b05051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyue An
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Xiaowen Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiachen Zi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Hai-Bin Luo
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Sato H, Narita K, Minami A, Yamazaki M, Wang C, Suemune H, Nagano S, Tomita T, Oikawa H, Uchiyama M. Theoretical Study of Sesterfisherol Biosynthesis: Computational Prediction of Key Amino Acid Residue in Terpene Synthase. Sci Rep 2018; 8:2473. [PMID: 29410538 PMCID: PMC5802712 DOI: 10.1038/s41598-018-20916-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
The cyclization mechanisms involved in the biosynthesis of sesterterpenes are not fully understood. For example, there are two plausible reaction pathways for sesterfisherol biosynthesis, which differ in the order of ring cyclization: A-D-B/C (Path a) and A-B-C/D (Path b). It is difficult to capture intermediates of terpene cyclization, which is a complex, domino-type reaction, and so here we employed a combination of experimental and computational methods. Density functional theory calculations revealed unexpected intermediates and transition states, and implied that C-H···π interaction between a carbocation intermediate and an aromatic residue of sesterfisherol synthase (NfSS) plays a critical role, serving to accelerate the 1,2-H shift (thereby preventing triquinane carbocation formation) and to protect reactive carbocation intermediates from bases such as pyrophosphate or water in the active site. Site-directed mutagenesis of NfSS guided by docking simulations confirmed that phenylalanine F191 is a critical amino acid residue for sesterfisherol synthase, as the F191A mutant of NfSS produces novel sesterterpenes, but not sesterfisherol. Although both pathways are energetically viable, on the basis of our computational and experimental results, NfSS-mediated sesterfisherol biosynthesis appears to proceed via Path a. These findings may also provide new insight into the cyclization mechanisms in related sesterterpene synthases.
Collapse
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Elements Chemistry Laboratory, RIKEN, and RIKEN Center for Sustainable Resource Science (Wako campus), 2-1 Hirosawa, Wako-shi, Saitama-ken, 351-0198, Japan.
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| | - Koji Narita
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Chao Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Elements Chemistry Laboratory, RIKEN, and RIKEN Center for Sustainable Resource Science (Wako campus), 2-1 Hirosawa, Wako-shi, Saitama-ken, 351-0198, Japan
| | - Hironori Suemune
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, 680-8552, Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Elements Chemistry Laboratory, RIKEN, and RIKEN Center for Sustainable Resource Science (Wako campus), 2-1 Hirosawa, Wako-shi, Saitama-ken, 351-0198, Japan.
| |
Collapse
|
14
|
Zhang F, Wang YH, Tang X, Wu R. Catalytic promiscuity of the non-native FPP substrate in the TEAS enzyme: non-negligible flexibility of the carbocation intermediate. Phys Chem Chem Phys 2018; 20:15061-15073. [DOI: 10.1039/c8cp02262c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
By QM(DFT)/MM MD simulations, it has been revealed that the non-native substrate catalytic promiscuity of TEAS (one of the sesquiterpene cyclases) is mostly attributable to its notable conformational flexibility of the branching intermediate bisabolyl cation.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yong-Heng Wang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ruibo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
15
|
Tantillo DJ. Bedeutung der inhärenten Substratreaktivität bei enzymvermittelten Cyclisierungen/Umlagerungen von Carbokationen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702363] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dean J. Tantillo
- Department of Chemistry University of California—Davis 1 Shields Avenue Davis CA 95616 USA
| |
Collapse
|
16
|
Tantillo DJ. Importance of Inherent Substrate Reactivity in Enzyme-Promoted Carbocation Cyclization/Rearrangements. Angew Chem Int Ed Engl 2017; 56:10040-10045. [PMID: 28349600 DOI: 10.1002/anie.201702363] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Indexed: 11/08/2022]
Abstract
The importance of inherent substrate reactivity for terpene synthase enzymes is discussed, with a focus on recent experimental tests of predictions derived from computations on gas-phase reactivity of carbocations.
Collapse
Affiliation(s)
- Dean J Tantillo
- Department of Chemistry, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
17
|
Hess BA. Computational studies on the cyclization of squalene to the steroids and hopenes. Org Biomol Chem 2017; 15:2133-2145. [DOI: 10.1039/c7ob00222j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of computational studies of the related biosyntheses of steroids and hopenes reported during the last two decades is presented.
Collapse
Affiliation(s)
- B. Andes Hess
- Department of Chemistry
- Vanderbilt University
- Nashville
- USA
| |
Collapse
|
18
|
Zhang F, Chen N, Zhou J, Wu R. Protonation-Dependent Diphosphate Cleavage in FPP Cyclases and Synthases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
19
|
O'Brien TE, Bertolani SJ, Tantillo DJ, Siegel JB. Mechanistically informed predictions of binding modes for carbocation intermediates of a sesquiterpene synthase reaction. Chem Sci 2016; 7:4009-4015. [PMID: 30155043 PMCID: PMC6013805 DOI: 10.1039/c6sc00635c] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/18/2016] [Indexed: 11/21/2022] Open
Abstract
Sesquiterpenoids comprise a class of terpenoid natural products with thousands of compounds that are highly diverse in structure, generally containing a polycyclic carbon backbone that is constructed by a sesquiterpene synthase. Decades of experimental and computational studies have demonstrated that these enzymes generate a carbocation in the active site, which undergoes a series of structural rearrangements until a product is formed via deprotonation or nucleophile attack. However, for the vast majority of these enzymes the productive binding orientation of the intermediate carbocations has remained unclear. In this work, a method that combines quantum mechanics and computational docking is used to generate an all-atom model of every putative intermediate formed in the context of the enzyme active site for tobacco epi-aristolochene synthase (TEAS). This method identifies a single pathway that links the first intermediate to the last, enabling us to propose the first high-resolution model for the reaction intermediates in the active site of TEAS, and providing testable predictions.
Collapse
Affiliation(s)
- T E O'Brien
- Department of Chemistry , University of California Davis , Davis , California , USA . ;
| | - S J Bertolani
- Department of Chemistry , University of California Davis , Davis , California , USA . ;
| | - D J Tantillo
- Department of Chemistry , University of California Davis , Davis , California , USA . ;
| | - J B Siegel
- Department of Chemistry , University of California Davis , Davis , California , USA . ; .,Department of Biochemistry and Molecular Medicine , University of California Davis , Davis , California , USA.,Genome Center , University of California Davis , Davis , California , USA
| |
Collapse
|
20
|
Kuang M, Zhou J, Wang L, Liu Z, Guo J, Wu R. Binding Kinetics versus Affinities in BRD4 Inhibition. J Chem Inf Model 2015; 55:1926-35. [DOI: 10.1021/acs.jcim.5b00265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ming Kuang
- Guangdong
Metabolic Diseases Research Center of Integrated Chinese and Western
Medicine, Guangdong TCM Key Laboratory against Metabolic Diseases,
Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Laiyou Wang
- Guangdong
Metabolic Diseases Research Center of Integrated Chinese and Western
Medicine, Guangdong TCM Key Laboratory against Metabolic Diseases,
Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zhihong Liu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiao Guo
- Guangdong
Metabolic Diseases Research Center of Integrated Chinese and Western
Medicine, Guangdong TCM Key Laboratory against Metabolic Diseases,
Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
21
|
Flasiński M, Wydro P, Broniatowski M, Hąc-Wydro K, Fontaine P. Crucial Role of the Double Bond Isomerism in the Steroid B-Ring on the Membrane Properties of Sterols. Grazing Incidence X-Ray Diffraction and Brewster Angle Microscopy Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7364-7373. [PMID: 26061794 DOI: 10.1021/acs.langmuir.5b00896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three cholesterol precursors-desmosterol, zymosterol, and lanosterol-were comprehensively characterized in monolayers formed at the air/water interface. The studies were based on registration of the surface pressure (π)-area (A) isotherms complemented with in situ analysis performed with application of modern physicochemical techniques: grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy (BAM). In this approach we were interested in the correlation between molecular structures of the studied sterols found in the cholesterol biosynthetic pathway and their membrane properties. Our results revealed that only desmosterol behaves in Langmuir monolayers comparably to cholesterol, the molecules of which arrange in the monolayers into a hexagonal lattice, while the two remaining sterols possess extremely different properties. We found that molecules of both zymosterol and lanosterol are organized on the water surface in the two-dimensional oblique unit cells despite the fact that they are oriented perpendicular to the monolayer plane. The comparison of chemical structures of the investigated sterols leads to the conclusion that the only structural motive that can be responsible for such unusual behavior is the double bond in the B sterol ring, which is located in desmosterol in a different position from in the other two sterols. This issue, which was neglected in the scientific literature, seems to have crucial importance for sterol activity in biomembranes. We showed that this structural modification in sterol molecules is directly responsible for their adaptation to proper functioning in biomembranes.
Collapse
Affiliation(s)
- Michał Flasiński
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Paweł Wydro
- ‡Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Marcin Broniatowski
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- †Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Philippe Fontaine
- §Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
22
|
Zhou J, Wang X, Kuang M, Wang L, Luo HB, Mo Y, Wu R. Protonation-Triggered Carbon-Chain Elongation in Geranyl Pyrophosphate Synthase (GPPS). ACS Catal 2015. [DOI: 10.1021/acscatal.5b00947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xiaoming Wang
- Program in Public Health, College of Healthy Sciences, University of California—Irvine, Irvine, California 92697,United States
| | - Ming Kuang
- Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Laiyou Wang
- Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
23
|
Chen N, Zhao Y, Lu J, Wu R, Cao Z. Mechanistic Insights into the Rate-Limiting Step in Purine-Specific Nucleoside Hydrolase. J Chem Theory Comput 2015; 11:3180-8. [DOI: 10.1021/acs.jctc.5b00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Yuan Zhao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| | - Jianing Lu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Zexing Cao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| |
Collapse
|
24
|
Chen N, Wang S, Smentek L, Hess BA, Wu R. Biosynthetic Mechanism of Lanosterol: Cyclization. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Chen N, Wang S, Smentek L, Hess BA, Wu R. Biosynthetic Mechanism of Lanosterol: Cyclization. Angew Chem Int Ed Engl 2015; 54:8693-6. [DOI: 10.1002/anie.201501986] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/22/2015] [Indexed: 01/15/2023]
|
26
|
Sokkar P, Boulanger E, Thiel W, Sanchez-Garcia E. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems. J Chem Theory Comput 2015; 11:1809-18. [DOI: 10.1021/ct500956u] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pandian Sokkar
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| | - Eliot Boulanger
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
27
|
Zhou J, Xie H, Liu Z, Luo HB, Wu R. Structure–Function Analysis of the Conserved Tyrosine and Diverse π-Stacking among Class I Histone Deacetylases: A QM (DFT)/MM MD Study. J Chem Inf Model 2014; 54:3162-71. [DOI: 10.1021/ci500513n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Hujun Xie
- School
of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035 Zhejiang, P.R. China
| | - Zhihong Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| |
Collapse
|
28
|
Zhao Y, Chen N, Mo Y, Cao Z. A full picture of enzymatic catalysis by hydroxynitrile lyases from Hevea brasiliensis: protonation dependent reaction steps and residue-gated movement of the substrate and the product. Phys Chem Chem Phys 2014; 16:26864-75. [DOI: 10.1039/c4cp04032e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxynitrile lyases (HNLs) defend plants from herbivores and microbial attack by releasing cyanide from hydroxynitriles.
Collapse
Affiliation(s)
- Yuan Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, P. R. China
| | - Nanhao Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006, P. R. China
| | - Yirong Mo
- Department of Chemistry
- Western Michigan University
- Kalamazoo, USA
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005, P. R. China
| |
Collapse
|