1
|
Paloncýová M, Valério M, Dos Santos RN, Kührová P, Šrejber M, Čechová P, Dobchev DA, Balsubramani A, Banáš P, Agarwal V, Souza PCT, Otyepka M. Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery. Mol Pharm 2025; 22:1110-1141. [PMID: 39879096 PMCID: PMC11881150 DOI: 10.1021/acs.molpharmaceut.4c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing. This review presents currently available computational methods for LNC investigation, screening, and design. The state-of-the-art physics-based approaches are described, with the focus on molecular dynamics simulations in all-atom and coarse-grained resolution. Their strengths and weaknesses are discussed, highlighting the aspects necessary for obtaining reliable results in the simulations. Furthermore, a machine learning, i.e., data-based learning, approach to the design of lipid-mediated API delivery is introduced. The data produced by the experimental and theoretical approaches provide valuable insights. Processing these data can help optimize the design of LNCs for better performance. In the final section of this Review, state-of-the-art of computer simulations of LNCs are reviewed, specifically addressing the compatibility of experimental and computational insights.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Mariana Valério
- Laboratoire
de Biologie et Modélisation de la Cellule, CNRS, UMR 5239,
Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre Blaise
Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
| | | | - Petra Kührová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Martin Šrejber
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Petra Čechová
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | | | - Akshay Balsubramani
- mRNA Center
of Excellence, Sanofi, Waltham, Massachusetts 02451, United States
| | - Pavel Banáš
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Vikram Agarwal
- mRNA Center
of Excellence, Sanofi, Waltham, Massachusetts 02451, United States
| | - Paulo C. T. Souza
- Laboratoire
de Biologie et Modélisation de la Cellule, CNRS, UMR 5239,
Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale
Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Centre Blaise
Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon, France
| | - Michal Otyepka
- Regional
Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- IT4Innovations,
VŠB − Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
2
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
3
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim KY, Pasolli HA, Phan S, Lippincott-Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532310. [PMID: 36993370 PMCID: PMC10054968 DOI: 10.1101/2023.03.13.532310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Guadalupe C Garcia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92097
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn VA 20147
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
4
|
Lipids in Mitochondrial Macroautophagy: Phase Behavior of Bilayers Containing Cardiolipin and Ceramide. Int J Mol Sci 2023; 24:ijms24065080. [PMID: 36982156 PMCID: PMC10049649 DOI: 10.3390/ijms24065080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Cardiolipin (CL) is a key lipid for damaged mitochondrial recognition by the LC3/GABARAP human autophagy proteins. The role of ceramide (Cer) in this process is unclear, but CL and Cer have been proposed to coexist in mitochondria under certain conditions. Varela et al. showed that in model membranes composed of egg sphingomyelin (eSM), dioleoyl phosphatidylethanolamine (DOPE), and CL, the addition of Cer enhanced the binding of LC3/GABARAP proteins to bilayers. Cer gave rise to lateral phase separation of Cer-rich rigid domains but protein binding took place mainly in the fluid continuous phase. In the present study, a biophysical analysis of bilayers composed of eSM, DOPE, CL, and/or Cer was attempted to understand the relevance of this lipid coexistence. Bilayers were studied by differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy. Upon the addition of CL and Cer, one continuous phase and two segregated ones were formed. In bilayers with egg phosphatidylcholine instead of eSM, in which the binding of LC3/GABARAP proteins hardly increased with Cer in the former study, a single segregated phase was formed. Assuming that phase separation at the nanoscale is ruled by the same principles acting at the micrometer scale, it is proposed that Cer-enriched rigid nanodomains, stabilized by eSM:Cer interactions formed within the DOPE- and CL-enriched fluid phase, result in structural defects at the rigid/fluid nanointerfaces, thus hypothetically facilitatingLC3/GABARAP protein interaction.
Collapse
|
5
|
Corey RA, Harrison N, Stansfeld PJ, Sansom MSP, Duncan AL. Cardiolipin, and not monolysocardiolipin, preferentially binds to the interface of complexes III and IV. Chem Sci 2022; 13:13489-13498. [PMID: 36507170 PMCID: PMC9682889 DOI: 10.1039/d2sc04072g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
The mitochondrial electron transport chain comprises a series of protein complexes embedded in the inner mitochondrial membrane that generate a proton motive force via oxidative phosphorylation, ultimately generating ATP. These protein complexes can oligomerize to form larger structures called supercomplexes. Cardiolipin (CL), a conical lipid, unique within eukaryotes to the inner mitochondrial membrane, has proven essential in maintaining the stability and function of supercomplexes. Monolysocardiolipin (MLCL) is a CL variant that accumulates in people with Barth syndrome (BTHS). BTHS is caused by defects in CL biosynthesis and characterised by abnormal mitochondrial bioenergetics and destabilised supercomplexes. However, the mechanisms by which MLCL causes pathogenesis remain unclear. Here, multiscale molecular dynamics characterise the interactions of CL and MLCL with yeast and mammalian mitochondrial supercomplexes containing complex III (CIII) and complex IV (CIV). Coarse-grained simulations reveal that both CL and MLCL bind to sites at the interface between CIII and CIV of the supercomplex. Free energy perturbation calculations show that MLCL interaction is weaker than that of CL and suggest that interaction with CIV drives this difference. Atomistic contact analyses show that, although interaction with CIII is similar for CL and MLCL, CIV makes more contacts with CL than MLCL, demonstrating that CL is a more successful "glue" between the two complexes. Simulations of the human CIII2CIV supercomplex show that this interface site is maintained between species. Our study suggests that MLCL accumulation in people with BTHS disrupts supercomplex stability by formation of relatively weak interactions at the interface lipid binding site.
Collapse
Affiliation(s)
- Robin A Corey
- Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Noah Harrison
- Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Philllp J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
6
|
Fu L, Li X, Zhang S, Dong Y, Fang W, Gao L. Polymyxins induce lipid scrambling and disrupt the homeostasis of Gram-negative bacteria membrane. Biophys J 2022; 121:3486-3498. [PMID: 35964158 PMCID: PMC9515121 DOI: 10.1016/j.bpj.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Polymyxins are increasingly used as the last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, efforts to address the resistance in superbugs are compromised by a poor understanding of the bactericidal modes because high-resolution detection of the cell structure is still lacking. By performing molecular dynamics simulations at a coarse-grained level, here we show that polymyxin B (PmB) disrupts Gram-negative bacterial membranes by altering lipid homeostasis and asymmetry. We found that the binding of PmBs onto the asymmetric outer membrane (OM) loosens the packing of lipopolysaccharides (LPS) and induces unbalanced bending torque between the inner and outer leaflets, which in turn triggers phospholipids to flip from the inner leaflet to the outer leaflet to compensate for the stress deformation. Meanwhile, some LPSs may be detained on the inner membrane (IM). Then, the lipid-scrambled OM undergoes phase separation. Defects are created at the boundaries between LPS-rich domains and phospholipid-rich domains, which consequently facilitate the uptake of PmB across the OM. Finally, PmBs target LPSs detained on the IM and similarly perturb the IM. This lipid Scramble, membrane phase Separation, and peptide Translocation model depicts a novel mechanism by which polymyxins kill bacteria and sheds light on developing a new generation of polymyxins or antibiotic adjuvants with improved killing activities and higher therapeutic indices.
Collapse
Affiliation(s)
- Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xiangyuan Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yi Dong
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| |
Collapse
|
7
|
Kleinwächter I, Mohr B, Joppe A, Hellmann N, Bereau T, Osiewacz HD, Schneider D. CLiB - a novel cardiolipin-binder isolated via data-driven and in vitro screening. RSC Chem Biol 2022; 3:941-954. [PMID: 35866160 PMCID: PMC9257654 DOI: 10.1039/d2cb00125j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiolipin, the mitochondria marker lipid, is crucially involved in stabilizing the inner mitochondrial membrane and is vital for the activity of mitochondrial proteins and protein complexes. Directly targeting cardiolipin by a chemical-biology approach and thereby altering the cellular concentration of "available" cardiolipin eventually allows to systematically study the dependence of cellular processes on cardiolipin availability. In the present study, physics-based coarse-grained free energy calculations allowed us to identify the physical and chemical properties indicative of cardiolipin selectivity and to apply these to screen a compound database for putative cardiolipin-binders. The membrane binding properties of the 22 most promising molecules identified in the in silico approach were screened in vitro, using model membrane systems finally resulting in the identification of a single molecule, CLiB (CardioLipin-Binder). CLiB clearly affects respiration of cardiolipin-containing intact bacterial cells as well as of isolated mitochondria. Thus, the structure and function of mitochondrial membranes and membrane proteins might be (indirectly) targeted and controlled by CLiB for basic research and, potentially, also for therapeutic purposes.
Collapse
Affiliation(s)
- Isabel Kleinwächter
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 17 55128 Mainz Germany
| | - Bernadette Mohr
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam Amsterdam The Netherlands
| | - Aljoscha Joppe
- Institute for Molecular Biosciences, J. W. Goethe University Frankfurt am Main Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 17 55128 Mainz Germany
| | - Tristan Bereau
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam Amsterdam The Netherlands
| | - Heinz D Osiewacz
- Institute for Molecular Biosciences, J. W. Goethe University Frankfurt am Main Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 17 55128 Mainz Germany
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 17 55128 Mainz Germany
| |
Collapse
|
8
|
MacDermott-Opeskin HI, Panizza A, Eijkelkamp BA, O'Mara ML. Dynamics of the Acinetobacter baumannii inner membrane under exogenous polyunsaturated fatty acid stress. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183908. [PMID: 35276227 DOI: 10.1016/j.bbamem.2022.183908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/11/2022] [Accepted: 03/05/2022] [Indexed: 01/04/2023]
Abstract
Exogenous polyunsaturated fatty acids (PUFAs) are readily incorporated into the synthesis pathways of A. baumannii membrane phospholipids, where they contribute to reduced bacterial fitness and increased antimicrobial susceptibility. Here we examine the impact of PUFA membrane modification on membrane organisation and biophysical properties using coarse grained MARTINI simulations of chemically representative membrane models developed from mass-spectrometry datasets of an untreated, arachidonic acid (AA) treated and docosahexaenoic acid (DHA) treated A. baumannii membranes. Enzymatic integration of AA or DHA into phospholipids of the A. baumannii membrane resulted in modulation of membrane biophysical properties. Membrane thickness decreased slightly following PUFA treatment, concomitant with changes in the lateral area per lipid of each lipid headgroup class. PUFA treatment resulted in a decrease in membrane ordering and an increase in lipid lateral diffusion. Changes in lateral membrane organisation were observed in the PUFA treated membranes, with a concurrent increase in ordered cardiolipin domains and disordered PUFA-containing domains. Notably, separation between ordered and disordered domains was enhanced and was more pronounced for DHA relative to AA, providing a possible mechanism for greater antimicrobial action of DHA relative to AA observed experimentally. Furthermore, the membrane active antimicrobial, pentamidine, preferentially adsorbs to cardiolipin domains of the A. baumannii model membranes. This interaction, and membrane penetration of pentamidine, was enhanced following PUFA treatment. Cumulatively, this work explores the wide-ranging effects of PUFA incorporation on the A. baumannii membrane and provides a molecular basis for bacterial inner membrane disruption by PUFAs.
Collapse
Affiliation(s)
- Hugo I MacDermott-Opeskin
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Alessandra Panizza
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia
| | - Bart A Eijkelkamp
- Molecular Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
9
|
Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC-LH1 supercomplex. Nat Commun 2022; 13:1977. [PMID: 35418573 PMCID: PMC9007983 DOI: 10.1038/s41467-022-29563-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
The reaction center (RC) and light-harvesting complex 1 (LH1) form a RC-LH1 core supercomplex that is vital for the primary reactions of photosynthesis in purple phototrophic bacteria. Some species possess the dimeric RC-LH1 complex with a transmembrane polypeptide PufX, representing the largest photosynthetic complex in anoxygenic phototrophs. However, the details of the architecture and assembly mechanism of the RC-LH1 dimer are unclear. Here we report seven cryo-electron microscopy (cryo-EM) structures of RC-LH1 supercomplexes from Rhodobacter sphaeroides. Our structures reveal that two PufX polypeptides are positioned in the center of the S-shaped RC-LH1 dimer, interlocking association between the components and mediating RC-LH1 dimerization. Moreover, we identify another transmembrane peptide, designated PufY, which is located between the RC and LH1 subunits near the LH1 opening. PufY binds a quinone molecule and prevents LH1 subunits from completely encircling the RC, creating a channel for quinone/quinol exchange. Genetic mutagenesis, cryo-EM structures, and computational simulations provide a mechanistic understanding of the assembly and electron transport pathways of the RC-LH1 dimer and elucidate the roles of individual components in ensuring the structural and functional integrity of the photosynthetic supercomplex.
Collapse
|
10
|
Luchini A, Cavasso D, Radulescu A, D'Errico G, Paduano L, Vitiello G. Structural Organization of Cardiolipin-Containing Vesicles as Models of the Bacterial Cytoplasmic Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8508-8516. [PMID: 34213914 DOI: 10.1021/acs.langmuir.1c00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The bacterial cytoplasmic membrane is the innermost bacterial membrane and is mainly composed of three different phospholipid species, i.e., phosphoethanolamine (PE), phosphoglycerol (PG), and cardiolipin (CL). In particular, PG and CL are responsible for the negative charge of the membrane and are often the targets of cationic antimicrobial agents. The growing resistance of bacteria toward the available antibiotics requires the development of new and more efficient antibacterial drugs. In this context, studying the physicochemical properties of the bacterial cytoplasmic membrane is pivotal for understanding drug-membrane interactions at the molecular level as well as for designing drug-testing platforms. Here, we discuss the preparation and characterization of PE/PG/CL vesicle suspensions, which contain all of the main lipid components of the bacterial cytoplasmic membrane. The vesicle suspensions were characterized by means of small-angle neutron scattering, dynamic light scattering, and electron paramagnetic spectroscopy. By combining solution scattering and spectroscopy techniques, we propose a detailed description of the impact of different CL concentrations on the structure and dynamics of the PE/PG bilayer. CL induces the formation of thicker bilayers, which exhibit higher curvature and are overall more fluid. The experimental results contribute to shed light on the structure and dynamics of relevant model systems of the bacterial cytoplasmic membrane.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Domenico Cavasso
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-85747 Garching bei München, Germany
| | - Gerardino D'Errico
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Luigi Paduano
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
11
|
Joubert F, Puff N. Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems. MEMBRANES 2021; 11:membranes11070465. [PMID: 34201754 PMCID: PMC8306996 DOI: 10.3390/membranes11070465] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria are known as the powerhouse of eukaryotic cells. Energy production occurs in specific dynamic membrane invaginations in the inner mitochondrial membrane called cristae. Although the integrity of these structures is recognized as a key point for proper mitochondrial function, less is known about the mechanisms at the origin of their plasticity and organization, and how they can influence mitochondria function. Here, we review the studies which question the role of lipid membrane composition based mainly on minimal model systems.
Collapse
Affiliation(s)
- Frédéric Joubert
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, UMR 8237, 75005 Paris, France;
| | - Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physique, 75005 Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot-Paris 7, UMR 7057 CNRS, 75013 Paris, France
- Correspondence:
| |
Collapse
|
12
|
Fu L, Wan M, Zhang S, Gao L, Fang W. Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer. Biophys J 2019; 118:138-150. [PMID: 31812355 DOI: 10.1016/j.bpj.2019.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Multidrug-resistant Gram-negative bacteria have increased the prevalence of a variety of serious diseases in modern times. Polymyxins are used as the last-line therapeutic options for the treatment of infections. However, the mechanism of action of polymyxins remains in dispute. In this work, we used a coarse-grained molecular dynamics simulation to investigate the mechanism of the cationic antimicrobial peptide polymyxin B (PmB) interacting with both the inner and outer membrane models of bacteria. Our results show that the binding of PmB disturbs the outer membrane by displacing the counterions, decreasing the orientation order of the lipopolysaccharide tail, and creating more lipopolysaccharide packing defects. Upon binding onto the inner membrane, in contrast to the traditional killing mechanism that antimicrobial peptides usually use to induce holes in the membrane, PmBs do not permeabilize the inner membrane but stiffen it by filling up the lipid packing defect, increasing the lipid tail order and the membrane bending rigidity as well as restricting the lipid diffusion. PmBs also mediate intermembrane contact and adhesion. These joint effects suggest that PmBs deprive the biological activity of Gram-negative bacteria by sterilizing the cell.
Collapse
Affiliation(s)
- Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Mingwei Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Corey RA, Vickery ON, Sansom MSP, Stansfeld PJ. Insights into Membrane Protein-Lipid Interactions from Free Energy Calculations. J Chem Theory Comput 2019; 15:5727-5736. [PMID: 31476127 PMCID: PMC6785801 DOI: 10.1021/acs.jctc.9b00548] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Integral membrane proteins are regulated
by specific interactions
with lipids from the surrounding bilayer. The structures of protein–lipid
complexes can be determined through a combination of experimental
and computational approaches, but the energetic basis of these interactions
is difficult to resolve. Molecular dynamics simulations provide the
primary computational technique to estimate the free energies of these
interactions. We demonstrate that the energetics of protein–lipid
interactions may be reliably and reproducibly calculated using three
simulation-based approaches: potential of mean force calculations,
alchemical free energy perturbation, and well-tempered metadynamics.
We employ these techniques within the framework of a coarse-grained
force field and apply them to both bacterial and mammalian membrane
protein–lipid systems. We demonstrate good agreement between
the different techniques, providing a robust framework for their automated
implementation within a pipeline for annotation of newly determined
membrane protein structures.
Collapse
Affiliation(s)
- Robin A Corey
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| | - Owen N Vickery
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| | - Mark S P Sansom
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| | - Phillip J Stansfeld
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| |
Collapse
|
14
|
Wilson BA, Ramanathan A, Lopez CF. Cardiolipin-Dependent Properties of Model Mitochondrial Membranes from Molecular Simulations. Biophys J 2019; 117:429-444. [PMID: 31349988 PMCID: PMC6697365 DOI: 10.1016/j.bpj.2019.06.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/30/2023] Open
Abstract
Cardiolipin is an anionic lipid found in the mitochondrial membranes of eukaryotes ranging from unicellular microorganisms to metazoans. This unique lipid contributes to various mitochondrial functions, including metabolism, mitochondrial membrane fusion and/or fission dynamics, and apoptosis. However, differences in cardiolipin content between the two mitochondrial membranes, as well as dynamic fluctuations in cardiolipin content in response to stimuli and cellular signaling events, raise questions about how cardiolipin concentration affects mitochondrial membrane structure and dynamics. Although cardiolipin’s structural and dynamic roles have been extensively studied in binary mixtures with other phospholipids, the biophysical properties of cardiolipin in higher number lipid mixtures are still not well resolved. Here, we used molecular dynamics simulations to investigate the cardiolipin-dependent properties of ternary lipid bilayer systems that mimic the major components of mitochondrial membranes. We found that changes to cardiolipin concentration only resulted in minor changes to bilayer structural features but that the lipid diffusion was significantly affected by those alterations. We also found that cardiolipin position along the bilayer surfaces correlated to negative curvature deflections, consistent with the induction of negative curvature stress in the membrane monolayers. This work contributes to a foundational understanding of the role of cardiolipin in altering the properties in ternary lipid mixtures composed of the major mitochondrial phospholipids, providing much-needed insights to help understand how cardiolipin concentration modulates the biophysical properties of mitochondrial membranes.
Collapse
Affiliation(s)
- Blake A Wilson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Arvind Ramanathan
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Health Data Sciences Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Carlos F Lopez
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
15
|
Boyd KJ, Alder NN, May ER. Molecular Dynamics Analysis of Cardiolipin and Monolysocardiolipin on Bilayer Properties. Biophys J 2019; 114:2116-2127. [PMID: 29742405 DOI: 10.1016/j.bpj.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/04/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial lipid cardiolipin (CL) contributes to the spatial protein organization and morphological character of the inner mitochondrial membrane. Monolysocardiolipin (MLCL), an intermediate species in the CL remodeling pathway, is enriched in the multisystem disease Barth syndrome. Despite the medical relevance of MLCL, a detailed molecular description that elucidates the structural and dynamic differences between CL and MLCL has not been conducted. To this end, we performed comparative atomistic molecular dynamics studies on bilayers consisting of pure CL or MLCL to elucidate similarities and differences in their molecular and bulk bilayer properties. We describe differential headgroup dynamics and hydrogen bonding patterns between the CL variants and show an increased cohesiveness of MLCL's solvent interfacial region, which may have implications for protein interactions. Finally, using the coarse-grained Martini model, we show that substitution of MLCL for CL in bilayers mimicking mitochondrial composition induces drastic differences in bilayer mechanical properties and curvature-dependent partitioning behavior. Together, the results of this work reveal differences between CL and MLCL at the molecular and mesoscopic levels that may underpin the pathomechanisms of defects in cardiolipin remodeling.
Collapse
Affiliation(s)
- Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
16
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 468] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
17
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
18
|
Elías-Wolff F, Lindén M, Lyubartsev AP, Brandt EG. Curvature sensing by cardiolipin in simulated buckled membranes. SOFT MATTER 2019; 15:792-802. [PMID: 30644502 DOI: 10.1039/c8sm02133c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cardiolipin is a non-bilayer phospholipid with a unique dimeric structure. It localizes to negative curvature regions in bacteria and is believed to stabilize respiratory chain complexes in the highly curved mitochondrial membrane. Cardiolipin's localization mechanism remains unresolved, because important aspects such as the structural basis and strength for lipid curvature preferences are difficult to determine, partly due to the lack of efficient simulation methods. Here, we report a computational approach to study curvature preferences of cardiolipin by simulated membrane buckling and quantitative modeling. We combine coarse-grained molecular dynamics with simulated buckling to determine the curvature preferences in three-component bilayer membranes with varying concentrations of cardiolipin, and extract curvature-dependent concentrations and lipid acyl chain order parameter profiles. Cardiolipin shows a strong preference for negative curvatures, with a highly asymmetric chain order parameter profile. The concentration profiles are consistent with an elastic model for lipid curvature sensing that relates lipid segregation to local curvature via the material constants of the bilayers. These computations constitute new steps to unravel the molecular mechanism by which cardiolipin senses curvature in lipid membranes, and the method can be generalized to other lipids and membrane components as well.
Collapse
Affiliation(s)
- Federico Elías-Wolff
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Martin Lindén
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Erik G Brandt
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
19
|
How cardiolipin peroxidation alters the properties of the inner mitochondrial membrane? Chem Phys Lipids 2018; 214:15-23. [DOI: 10.1016/j.chemphyslip.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/29/2018] [Indexed: 01/16/2023]
|
20
|
Specific cardiolipin-SecY interactions are required for proton-motive force stimulation of protein secretion. Proc Natl Acad Sci U S A 2018; 115:7967-7972. [PMID: 30012626 DOI: 10.1073/pnas.1721536115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of preproteins across the plasma membrane, powered by ATP hydrolysis and the transmembrane proton-motive force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly cardiolipin (CL), a specialized phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific CL binding sites on the Thermotoga maritima SecA-SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry, biochemical analysis, and fluorescence spectroscopy of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional CL binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for CL in the conferral of PMF stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery, and thereby stimulate protein transport, by a hitherto unexplored mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, toward investigation of both the nature and functional implications of protein-lipid interactions.
Collapse
|
21
|
Su J, Thomas AS, Grabietz T, Landgraf C, Volkmer R, Marrink SJ, Williams C, Melo MN. The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1292-1300. [PMID: 29501607 DOI: 10.1016/j.bbamem.2018.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling.
Collapse
Affiliation(s)
- Juanjuan Su
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Ann S Thomas
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Tanja Grabietz
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Siewert J Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Manuel N Melo
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
22
|
Cardiolipin dynamics and binding to conserved residues in the mitochondrial ADP/ATP carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1035-1045. [PMID: 29366674 PMCID: PMC5988563 DOI: 10.1016/j.bbamem.2018.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
Abstract
Cardiolipin in eukaryotes is found in the mitochondrial inner membrane, where it interacts with membrane proteins and, although not essential, is necessary for the optimal activity of a number of proteins. One of them is the mitochondrial ADP/ATP carrier, which imports ADP into the mitochondrion and exports ATP. In the crystal structures, cardiolipin is bound to three equivalent sites of the ADP/ATP carrier, but its role is unresolved. Conservation of residues at these cardiolipin binding sites across other members of the mitochondrial carrier superfamily indicates cardiolipin binding is likely to be important for the function of all mitochondrial carriers. Multiscale simulations were performed in a cardiolipin-containing membrane to investigate the dynamics of cardiolipin around the yeast and bovine ADP/ATP carriers in a lipid bilayer and the properties of the cardiolipin-binding sites. In coarse-grain simulations, cardiolipin molecules bound to the carriers for longer periods of time than phosphatidylcholine and phosphatidylethanolamine lipids—with timescales in the tens of microseconds. Three long-lived cardiolipin binding sites overlapped with those in the crystal structures of the carriers. Other shorter-lived cardiolipin interaction sites were identified in both membrane leaflets. However, the timescales of the interactions were of the same order as phosphatidylcholine and phosphatidylethanolamine, suggesting that these sites are not specific for cardiolipin binding. The calculation of lipid binding times and the overlap of the cardiolipin binding sites between the structures and simulations demonstrate the potential of multiscale simulations to investigate the dynamics and behavior of lipids interacting with membrane proteins. Coarse-grained models of AAC in mixed lipid bilayers were simulated. Three long-lived cardiolipin sites correspond to those in the crystal structures. No other long-lived binding sites were observed for cardiolipin or other phospholipids. Trimethylation of Lys-51 of AAC had no effect on cardiolipin interactions.
Collapse
|
23
|
Malhotra K, Modak A, Nangia S, Daman TH, Gunsel U, Robinson VL, Mokranjac D, May ER, Alder NN. Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50. SCIENCE ADVANCES 2017; 3:e1700532. [PMID: 28879236 PMCID: PMC5580885 DOI: 10.1126/sciadv.1700532] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/04/2017] [Indexed: 05/07/2023]
Abstract
The phospholipid cardiolipin mediates the functional interactions of proteins that reside within energy-conserving biological membranes. However, the molecular basis by which this lipid performs this essential cellular role is not well understood. We address this role of cardiolipin using the multisubunit mitochondrial TIM23 protein transport complex as a model system. The early stages of protein import by this complex require specific interactions between the polypeptide substrate receptor, Tim50, and the membrane-bound channel-forming subunit, Tim23. Using analyses performed in vivo, in isolated mitochondria, and in reductionist nanoscale model membrane systems, we show that the soluble receptor domain of Tim50 interacts with membranes and with specific sites on the Tim23 channel in a manner that is directly modulated by cardiolipin. To obtain structural insights into the nature of these interactions, we obtained the first small-angle x-ray scattering-based structure of the soluble Tim50 receptor in its entirety. Using these structural insights, molecular dynamics simulations combined with a range of biophysical measurements confirmed the role of cardiolipin in driving the association of the Tim50 receptor with lipid bilayers with concomitant structural changes, highlighting the role of key structural elements in mediating this interaction. Together, these results show that cardiolipin is required to mediate specific receptor-channel associations in the TIM23 complex. Our results support a new working model for the dynamic structural changes that occur within the complex during transport. More broadly, this work strongly advances our understanding of how cardiolipin mediates interactions among membrane-associated proteins.
Collapse
Affiliation(s)
- Ketan Malhotra
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Arnab Modak
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Tyler H. Daman
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Umut Gunsel
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Victoria L. Robinson
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Dejana Mokranjac
- Department of Physiological Chemistry, Biomedical Center Munich, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269–3125, USA
- Corresponding author.
| |
Collapse
|
24
|
Hsu PC, Bruininks BMH, Jefferies D, Cesar Telles de Souza P, Lee J, Patel DS, Marrink SJ, Qi Y, Khalid S, Im W. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J Comput Chem 2017; 38:2354-2363. [PMID: 28776689 DOI: 10.1002/jcc.24895] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pin-Chia Hsu
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Paulo Cesar Telles de Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Yifei Qi
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| |
Collapse
|
25
|
Boyd KJ, Alder NN, May ER. Buckling Under Pressure: Curvature-Based Lipid Segregation and Stability Modulation in Cardiolipin-Containing Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6937-6946. [PMID: 28628337 PMCID: PMC5654595 DOI: 10.1021/acs.langmuir.7b01185] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitochondrial metabolic function is affected by the morphology and protein organization of the mitochondrial inner membrane. Cardiolipin (CL) is a unique tetra-acyl lipid that is involved in the maintenance of the highly curved shape of the mitochondrial inner membrane as well as spatial organization of the proteins necessary for respiration and oxidative phosphorylation. Cardiolipin has been suggested to self-organize into lipid domains due to its inverted conical molecular geometry, though the driving forces for this organization are not fully understood. In this work, we use coarse-grained molecular dynamics simulations to study the mechanical properties and lipid dynamics in heterogeneous bilayers both with and without CL, as a function of membrane curvature. We find that incorporation of CL increases bilayer deformability and that CL becomes highly enriched in regions of high negative curvature. We further show that another mitochondrial inverted conical lipid, phosphatidylethanolamine (PE), does not partition or increase the deformability of the membrane in a significant manner. Therefore, CL appears to possess some unique characteristics that cannot be inferred simply from molecular geometry considerations.
Collapse
|
26
|
Ganesan SJ, Xu H, Matysiak S. Influence of Monovalent Cation Size on Nanodomain Formation in Anionic–Zwitterionic Mixed Bilayers. J Phys Chem B 2017; 121:787-799. [DOI: 10.1021/acs.jpcb.6b10099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sai J. Ganesan
- Fischell
Department of Bioengineering and ‡Biophysics Program, Institute of
Physical Science and Technology, University of Maryland, College
Park, Maryland 20742, United States
| | - Hongcheng Xu
- Fischell
Department of Bioengineering and ‡Biophysics Program, Institute of
Physical Science and Technology, University of Maryland, College
Park, Maryland 20742, United States
| | - Silvina Matysiak
- Fischell
Department of Bioengineering and ‡Biophysics Program, Institute of
Physical Science and Technology, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
27
|
Domański J, Hedger G, Best RB, Stansfeld PJ, Sansom MSP. Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association. J Phys Chem B 2016; 121:3364-3375. [PMID: 27807980 PMCID: PMC5402295 DOI: 10.1021/acs.jpcb.6b08445] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Potential of mean
force (PMF) calculations are used to characterize
the free energy landscape of protein–lipid and protein–protein
association within membranes. Coarse-grained simulations allow binding
free energies to be determined with reasonable statistical error.
This accuracy relies on defining a good collective variable to describe
the binding and unbinding transitions, and upon criteria for assessing
the convergence of the simulation toward representative equilibrium
sampling. As examples, we calculate protein–lipid binding PMFs
for ANT/cardiolipin and Kir2.2/PIP2, using umbrella sampling
on a distance coordinate. These highlight the importance of replica
exchange between windows for convergence. The use of two independent
sets of simulations, initiated from bound and unbound states, provide
strong evidence for simulation convergence. For a model protein–protein
interaction within a membrane, center-of-mass distance is shown to
be a poor collective variable for describing transmembrane helix–helix
dimerization. Instead, we employ an alternative intermolecular distance
matrix RMS (DRMS) coordinate to obtain
converged PMFs for the association of the glycophorin transmembrane
domain. While the coarse-grained force field gives a reasonable Kd for dimerization, the majority of the bound
population is revealed to be in a near-native conformation. Thus,
the combination of a refined reaction coordinate with improved sampling
reveals previously unnoticed complexities of the dimerization free
energy landscape. We propose the use of replica-exchange umbrella
sampling starting from different initial conditions as a robust approach
for calculation of the binding energies in membrane simulations.
Collapse
Affiliation(s)
- Jan Domański
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - George Hedger
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
28
|
Hedger G, Rouse SL, Domański J, Chavent M, Koldsø H, Sansom MSP. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes. Biochemistry 2016; 55:6238-6249. [PMID: 27786441 PMCID: PMC5120876 DOI: 10.1021/acs.biochem.6b00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
The exchange of ADP
and ATP across the inner mitochondrial membrane
is a fundamental cellular process. This exchange is facilitated by
the adenine nucleotide translocase, the structure and function of
which are critically dependent on the signature phospholipid of mitochondria,
cardiolipin (CL). Here we employ multiscale molecular dynamics simulations
to investigate CL interactions within a membrane environment. Using
simulations at both coarse-grained and atomistic resolutions, we identify
three CL binding sites on the translocase, in agreement with those
seen in crystal structures and inferred from nuclear magnetic resonance
measurements. Characterization of the free energy landscape for lateral
lipid interaction via potential of mean force calculations demonstrates
the strength of interaction compared to those of binding sites on
other mitochondrial membrane proteins, as well as their selectivity
for CL over other phospholipids. Extending the analysis to other members
of the family, yeast Aac2p and mouse uncoupling protein 2, suggests
a degree of conservation. Simulation of large patches of a model mitochondrial
membrane containing multiple copies of the translocase shows that
CL interactions persist in the presence of protein–protein
interactions and suggests CL may mediate interactions between translocases.
This study provides a key example of how computational microscopy
may be used to shed light on regulatory lipid–protein interactions.
Collapse
Affiliation(s)
- George Hedger
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Sarah L Rouse
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,Department of Life Sciences, Imperial College London , London SW7 2AZ, U.K
| | - Jan Domański
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Matthieu Chavent
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K.,D. E. Shaw Research , 120 West 45th Street, 39th Floor, New York, New York 10036, United States
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
29
|
Mehmood S, Corradi V, Choudhury HG, Hussain R, Becker P, Axford D, Zirah S, Rebuffat S, Tieleman DP, Robinson CV, Beis K. Structural and Functional Basis for Lipid Synergy on the Activity of the Antibacterial Peptide ABC Transporter McjD. J Biol Chem 2016; 291:21656-21668. [PMID: 27555327 DOI: 10.1074/jbc.m116.732107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
The lipid bilayer is a dynamic environment that consists of a mixture of lipids with different properties that regulate the function of membrane proteins; these lipids are either annular, masking the protein hydrophobic surface, or specific lipids, essential for protein function. In this study, using tandem mass spectrometry, we have identified specific lipids associated with the Escherichia coli ABC transporter McjD, which translocates the antibacterial peptide MccJ25. Using non-denaturing mass spectrometry, we show that McjD in complex with MccJ25 survives the gas phase. Partial delipidation of McjD resulted in reduced ATPase activity and thermostability as shown by circular dichroism, both of which could be restored upon addition of defined E. coli lipids. We have resolved a phosphatidylglycerol lipid associated with McjD at 3.4 Å resolution, whereas molecular dynamic simulations carried out in different lipid environments assessed the binding of specific lipids to McjD. Combined, our data show a synergistic effect of zwitterionic and negatively charged lipids on the activity of McjD; the zwitterionic lipids provide structural stability to McjD, whereas the negatively charged lipids are essential for its function.
Collapse
Affiliation(s)
- Shahid Mehmood
- From the Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Valentina Corradi
- the Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hassanul G Choudhury
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.,the Membrane Protein Lab.,the Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom, and
| | - Rohanah Hussain
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, United Kingdom
| | - Patrick Becker
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.,the Membrane Protein Lab.,the Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom, and
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, United Kingdom
| | - Severine Zirah
- the Communication Molecules and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Sylvie Rebuffat
- the Communication Molecules and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - D Peter Tieleman
- the Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Carol V Robinson
- From the Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom,
| | - Konstantinos Beis
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom, .,the Membrane Protein Lab.,the Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom, and
| |
Collapse
|
30
|
Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases. Proc Natl Acad Sci U S A 2016; 113:8687-92. [PMID: 27382158 PMCID: PMC4978264 DOI: 10.1073/pnas.1608396113] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme.
Collapse
|
31
|
Hills RD, McGlinchey N. Model parameters for simulation of physiological lipids. J Comput Chem 2016; 37:1112-8. [PMID: 26864972 PMCID: PMC5067697 DOI: 10.1002/jcc.24324] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/19/2015] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
Abstract
Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed-chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid-protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers.
Collapse
Affiliation(s)
- Ronald D Hills
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Ave, Portland, Maine, 04103
| | - Nicholas McGlinchey
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Ave, Portland, Maine, 04103
| |
Collapse
|
32
|
Gorczyca M, Korchowiec B, Korchowiec J, Trojan S, Rubio-Magnieto J, Luis SV, Rogalska E. A Study of the Interaction between a Family of Gemini Amphiphilic Pseudopeptides and Model Monomolecular Film Membranes Formed with a Cardiolipin. J Phys Chem B 2015; 119:6668-79. [PMID: 25959677 DOI: 10.1021/acs.jpcb.5b02575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interaction between five gemini amphiphilic pseudopeptides (GAPs) differing by the length of the central spacer and a model membrane lipid, 1,3-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-glycerol (cardiolipin) were studied with the aim to evaluate their possible antimicrobial properties. To this end, monomolecular films were formed at the air/water interface with pure cardiolipin or cardiolipin/GAPs mixtures; film properties were determined using surface pressure and surface potential measurements, as well as polarization-modulation infrared reflection-absorption spectroscopy. Moreover, to better understand the GAPs-phospholipid interaction at the molecular level, molecular dynamics simulations were performed. The results obtained indicate that the length of the central spacer has an effect on the interaction of GAPs with cardiolipin and on the properties of the lipid film. The GAPs with the longer linkers can be expected to be useful for biological membrane modification and for possible antimicrobial applications.
Collapse
Affiliation(s)
- Marcelina Gorczyca
- †Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Beata Korchowiec
- ‡Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Jacek Korchowiec
- †Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Sonia Trojan
- †Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Jenifer Rubio-Magnieto
- §Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat, s/n, 12071 Castellón, Spain
| | - Santiago V Luis
- §Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avda. Sos Baynat, s/n, 12071 Castellón, Spain
| | - Ewa Rogalska
- ∥Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France
| |
Collapse
|
33
|
Berglund NA, Piggot TJ, Jefferies D, Sessions RB, Bond PJ, Khalid S. Interaction of the antimicrobial peptide polymyxin B1 with both membranes of E. coli: a molecular dynamics study. PLoS Comput Biol 2015; 11:e1004180. [PMID: 25885324 PMCID: PMC4401565 DOI: 10.1371/journal.pcbi.1004180] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/06/2015] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides are small, cationic proteins that can induce lysis of bacterial cells through interaction with their membranes. Different mechanisms for cell lysis have been proposed, but these models tend to neglect the role of the chemical composition of the membrane, which differs between bacterial species and can be heterogeneous even within a single cell. Moreover, the cell envelope of Gram-negative bacteria such as E. coli contains two membranes with differing compositions. To this end, we report the first molecular dynamics simulation study of the interaction of the antimicrobial peptide, polymyxin B1 with complex models of both the inner and outer membranes of E. coli. The results of >16 microseconds of simulation predict that polymyxin B1 is likely to interact with the membranes via distinct mechanisms. The lipopeptides aggregate in the lipopolysaccharide headgroup region of the outer membrane with limited tendency for insertion within the lipid A tails. In contrast, the lipopeptides readily insert into the inner membrane core, and the concomitant increased hydration may be responsible for bilayer destabilization and antimicrobial function. Given the urgent need to develop novel, potent antibiotics, the results presented here reveal key mechanistic details that may be exploited for future rational drug development.
Collapse
Affiliation(s)
- Nils A Berglund
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom; Bioinformatics Institute (A*STAR), Singapore
| | - Thomas J Piggot
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| | | | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore; Department of Biological Sciences, National University of Singapore, Singapore
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
| |
Collapse
|
34
|
Taubert J, Hou B, Risselada HJ, Mehner D, Lünsdorf H, Grubmüller H, Brüser T. TatBC-independent TatA/Tat substrate interactions contribute to transport efficiency. PLoS One 2015; 10:e0119761. [PMID: 25774531 PMCID: PMC4361764 DOI: 10.1371/journal.pone.0119761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
Abstract
The Tat system can transport folded, signal peptide-containing proteins (Tat substrates) across energized membranes of prokaryotes and plant plastids. A twin-arginine motif in the signal peptide of Tat substrates is recognized by TatC-containing complexes, and TatA permits the membrane passage. Often, as in the model Tat systems of Escherichia coli and plant plastids, a third component - TatB - is involved that resembles TatA but has a higher affinity to TatC. It is not known why most TatA dissociates from TatBC complexes in vivo and distributes more evenly in the membrane. Here we show a TatBC-independent substrate-binding to TatA from Escherichia coli, and we provide evidence that this binding enhances Tat transport. First hints came from in vivo cross-linking data, which could be confirmed by affinity co-purification of TatA with the natural Tat substrates HiPIP and NrfC. Two positions on the surface of HiPIP could be identified that are important for the TatA interaction and transport efficiency, indicating physiological relevance of the interaction. Distributed TatA thus may serve to accompany membrane-interacting Tat substrates to the few TatBC spots in the cells.
Collapse
Affiliation(s)
- Johannes Taubert
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - Bo Hou
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Denise Mehner
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
| | - Heinrich Lünsdorf
- Helmholtz Centre of Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany
- * E-mail:
| |
Collapse
|
35
|
Kalli AC, Sansom MSP, Reithmeier RAF. Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin. PLoS Comput Biol 2015; 11:e1004123. [PMID: 25729859 PMCID: PMC4346270 DOI: 10.1371/journal.pcbi.1004123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/09/2015] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli UraA H+-uracil symporter is a member of the nucleobase/ascorbate transporter (NAT) family of proteins, and is responsible for the proton-driven uptake of uracil. Multiscale molecular dynamics simulations of the UraA symporter in phospholipid bilayers consisting of: 1) 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC); 2) 1-palmitoyl 2-oleoyl-phosphatidylethanolamine (POPE); and 3) a mixture of 75% POPE, 20% 1-palmitoyl 2-oleoyl-phosphatidylglycerol (POPG); and 5% 1-palmitoyl 2-oleoyl-diphosphatidylglycerol/cardiolipin (CL) to mimic the lipid composition of the bacterial inner membrane, were performed using the MARTINI coarse-grained force field to self-assemble lipids around the crystal structure of this membrane transport protein, followed by atomistic simulations. The overall fold of the protein in lipid bilayers remained similar to the crystal structure in detergent on the timescale of our simulations. Simulations were performed in the absence of uracil, and resulted in a closed state of the transporter, due to relative movement of the gate and core domains. Anionic lipids, including POPG and especially CL, were found to associate with UraA, involving interactions between specific basic residues in loop regions and phosphate oxygens of the CL head group. In particular, three CL binding sites were identified on UraA: two in the inner leaflet and a single site in the outer leaflet. Mutation of basic residues in the binding sites resulted in the loss of CL binding in the simulations. CL may play a role as a “proton trap” that channels protons to and from this transporter within CL-enriched areas of the inner bacterial membrane. Symporters are proteins that are responsible for the co-transport of ions and small molecule solutes across cell membranes. UraA is an example of a symporter, and is responsible for the proton-driven uptake of uracil in bacteria like E. coli. Despite its importance as a member of a large family of nucleobase/ascorbate transporters (NAT) and the existence of structural and functional data, the mechanism by which UraA transports uracil across the bacterial membrane, and in particular the role of its diverse and complex lipid environment in the transport mechanism, remains elusive. In this study, we have used a multiscale computational methodology to examine the dynamics of UraA and to elucidate its interactions with lipids that resemble its native environment in the bacterial inner membrane. Our results demonstrate that negatively-charged lipids in the membrane (phosphatidylglycerol and cardiolipin) associate preferentially with UraA and may play a role in its function. Additionally, our simulations resulted in a closed state of UraA, a likely intermediate in the transport mechanism that may not be readily accessible by experimental methods.
Collapse
Affiliation(s)
- Antreas C. Kalli
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
36
|
Pan J, Cheng X, Sharp M, Ho CS, Khadka N, Katsaras J. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. SOFT MATTER 2015; 11:130-138. [PMID: 25369786 DOI: 10.1039/c4sm02227k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density. Of note, the distance between electron density maxima DHH (39.4 Å) and the hydrocarbon chain thickness 2DC (29.1 Å) of TOCL bilayers were both found to be larger than the corresponding values for dioleoyl phosphatidylcholine (DOPC) bilayers. Conversely, TOCL bilayers have a smaller overall bilayer thickness DB (36.7 Å), primarily due to their smaller headgroup volume per phosphate. SDP analysis yielded a lipid area of 129.8 Å(2), indicating that the cross-sectional area per oleoyl chain in TOCL bilayers (i.e., 32.5 Å(2)) is smaller than that for DOPC bilayers. Multiple sets of MD simulations were performed with the lipid area constrained at different values. The calculated surface tension versus lipid area resulted in a lateral area compressibility modulus KA of 342 mN m(-1), which is slightly larger compared to DOPC bilayers. Model free comparison to experimental scattering data revealed the best simulated TOCL bilayer from which detailed molecular interactions were determined. Specifically, Na(+) cations were found to interact most strongly with the glycerol hydroxyl linkage, followed by the phosphate and backbone carbonyl oxygens. Inter- and intra-lipid interactions were facilitated by hydrogen bonding between the glycerol hydroxyl and phosphate oxygen, but not with the backbone carbonyl. Finally, analysis of the intermediate scattering functions from NSE spectroscopy measurements of TOCL bilayers yielded a bending modulus KC of 1.06 × 10(-19) J, which was larger than that observed in DOPC bilayers. Our results show the physicochemical properties of cardiolin bilayers that may be important in explaining their functionality in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3171-3190. [DOI: 10.1016/j.bbamem.2014.08.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
38
|
The challenges of understanding glycolipid functions: An open outlook based on molecular simulations. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1130-45. [DOI: 10.1016/j.bbalip.2013.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022]
|
39
|
Ge C, Gómez-Llobregat J, Skwark MJ, Ruysschaert JM, Wieslander A, Lindén M. Membrane remodeling capacity of a vesicle-inducing glycosyltransferase. FEBS J 2014; 281:3667-84. [PMID: 24961908 DOI: 10.1111/febs.12889] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/21/2014] [Accepted: 06/19/2014] [Indexed: 11/28/2022]
Abstract
Intracellular vesicles are abundant in eukaryotic cells but absent in the Gram-negative bacterium Escherichia coli. However, strong overexpression of a monotopic glycolipid-synthesizing enzyme, monoglucosyldiacylglycerol synthase from Acholeplasma laidlawii (alMGS), leads to massive formation of vesicles in the cytoplasm of E. coli. More importantly, alMGS provides a model system for the regulation of membrane properties by membrane-bound enzymes, which is critical for maintaining cellular integrity. Both phenomena depend on how alMGS binds to cell membranes, which is not well understood. Here, we carry out a comprehensive investigation of the membrane binding of alMGS by combining bioinformatics methods with extensive biochemical studies, structural modeling and molecular dynamics simulations. We find that alMGS binds to the membrane in a fairly upright manner, mainly by residues in the N-terminal domain, and in a way that induces local enrichment of anionic lipids and a local curvature deformation. Furthermore, several alMGS variants resulting from substitution of residues in the membrane anchoring segment are still able to generate vesicles, regardless of enzymatic activity. These results clarify earlier theories about the driving forces for vesicle formation, and shed new light on the membrane binding properties and enzymatic mechanism of alMGS and related monotopic GT-B fold glycosyltransferases.
Collapse
Affiliation(s)
- Changrong Ge
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Sweden; Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Belgium; Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
40
|
Seydlová G, Fišer R, Cabala R, Kozlík P, Svobodová J, Pátek M. Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2370-8. [PMID: 23845875 DOI: 10.1016/j.bbamem.2013.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Surfactin is a cyclic lipopeptide antibiotic that disturbs the integrity of the cytoplasmic membrane. In this study, the role of membrane lipids in the adaptation and possible surfactin tolerance of the surfactin producer Bacillus subtilis ATCC 21332 was investigated. During a 1-day cultivation, the phospholipids of the cell membrane were analyzed at the selected time points, which covered both the early and late stationary phases of growth, when surfactin concentration in the medium gradually rose from 2 to 84μmol·l(-1). During this time period, the phospholipid composition of the surfactin producer's membrane (Sf(+)) was compared to that of its non-producing mutant (Sf(-)). Substantial modifications of the polar head group region in response to the presence of surfactin were found, while the fatty acid content remained unaffected. Simultaneously with surfactin production, a progressive accumulation up to 22% of the stress phospholipid cardiolipin was determined in the Sf(+) membrane, whereas the proportion of phosphatidylethanolamine remained constant. At 24h, cardiolipin was found to be the second major phospholipid of the membrane. In parallel, the Laurdan generalized polarization reported an increasing rigidity of the lipid bilayer. We concluded that an enhanced level of cardiolipin is responsible for the membrane rigidification that hinders the fluidizing effect of surfactin. At the same time cardiolipin, due to its negative charge, may also prevent the surfactin-membrane interaction or surfactin pore formation activity.
Collapse
Affiliation(s)
- Gabriela Seydlová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic.
| | | | | | | | | | | |
Collapse
|
41
|
Senille V, Lelievre D, Paquet F, Garnier N, Lamb N, Legrand A, Delmas AF, Landon C. The addressing fragment of mitogaligin: first insights into functional and structural properties. Chembiochem 2013; 14:711-20. [PMID: 23532929 DOI: 10.1002/cbic.201200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 11/07/2022]
Abstract
Mitogaligin is a mitochondrion-targeting protein involved in cell death. The sequence of the protein is unrelated to that of any known pro- or antiapoptotic protein. Mitochondrial targeting is controlled by an internal sequence from residues 31 to 53, and although this sequence is essential and sufficient to provoke cell death, the precise mechanism of action at the mitochondrial membrane remains to be elucidated. Here, by focusing on the [31-53] fragment, we first assessed and confirmed its cell cytotoxicity by microinjection. Subsequently, with the aid of membrane models, we evaluated the impact of the membrane environment on the 3D structure of the peptide and on how the peptide is embedded and oriented within membranes. The fragment is well organized, even though it does not contain a canonical secondary structure, and adopts an interfacial location. Structural comparison with other membrane-interacting Trp-rich peptides demonstrated similarities with the antimicrobial peptide tritrpcidin.
Collapse
Affiliation(s)
- Violette Senille
- Centre de Biophysique Moléculaire, CNRS UPR4301 affiliated to the University of Orléans, Rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Karo J, Peterson P, Vendelin M. Molecular dynamics simulations of creatine kinase and adenine nucleotide translocase in mitochondrial membrane patch. J Biol Chem 2012; 287:7467-76. [PMID: 22241474 PMCID: PMC3293576 DOI: 10.1074/jbc.m111.332320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies.
Collapse
Affiliation(s)
- Jaanus Karo
- Laboratory of Systems Biology, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
| | | | | |
Collapse
|
43
|
Kapla J, Stevensson B, Dahlberg M, Maliniak A. Molecular dynamics simulations of membranes composed of glycolipids and phospholipids. J Phys Chem B 2011; 116:244-52. [PMID: 22122018 DOI: 10.1021/jp209268p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid membranes composed of 1,2-di-(9Z,12Z,15Z)-octadecatrienoyl-3-O-β-D-galactosyl-sn-glycerol or monogalactosyldiacylglycerol (MGDG) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were studied by means of molecular dynamics (MD) computer simulations. Three lipid compositions were considered: 0%, 20%, and 45% MGDG (by mole) denoted as MG-0, MG-20, and MG-45, respectively. The article is focused on the calculation of NMR dipolar interactions, which were confronted with previously reported experimental couplings. Dynamical processes and orientational distributions relevant for the averaging of dipolar interactions were evaluated. Furthermore, several parameters important for characterization of the bilayer structure, molecular organization, and dynamics were investigated. In general, only a minor change in DMPC properties was observed upon the increased MGDG/DMPC ratio, whereas properties related to MGDG undergo a more pronounced change. This effect was ascribed to the fact that DMPC is a bilayer (L(α)) forming lipid, whereas MGDG prefers a reverse hexagonal (H(II)) arrangement.
Collapse
Affiliation(s)
- Jon Kapla
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
44
|
Interaction of α-synuclein with vesicles that mimic mitochondrial membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:512-9. [PMID: 22155643 DOI: 10.1016/j.bbamem.2011.11.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 01/11/2023]
Abstract
α-Synuclein, an intrinsically-disordered protein associated with Parkinson's disease, interacts with mitochondria, but the details of this interaction are unknown. We probed the interaction of α-synuclein and its A30P variant with lipid vesicles by using fluorescence anisotropy and (19)F nuclear magnetic resonance. Both proteins interact strongly with large unilamellar vesicles whose composition is similar to that of the inner mitochondrial membrane, which contains cardiolipin. However, the proteins have no affinity for vesicles mimicking the outer mitochondrial membrane, which lacks cardiolipin. The (19)F data show that the interaction involves α-synuclein's N-terminal region. These data indicate that the middle of the N-terminal region, which contains the KAKEGVVAAAE repeats, is involved in binding, probably via electrostatic interactions between the lysines and cardiolipin. We also found that the strength of α-synuclein binding depends on the nature of the cardiolipin acyl side chains. Eliminating one double bond increases affinity, while complete saturation dramatically decreases affinity. Increasing the temperature increases the binding of wild-type, but not the A30P variant. The data are interpreted in terms of the properties of the protein, cardiolipin demixing within the vesicles upon binding of α-synuclein, and packing density. The results advance our understanding of α-synuclein's interaction with mitochondrial membranes.
Collapse
|
45
|
Khalifat N, Fournier JB, Angelova MI, Puff N. Lipid packing variations induced by pH in cardiolipin-containing bilayers: The driving force for the cristae-like shape instability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2724-33. [DOI: 10.1016/j.bbamem.2011.07.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/04/2011] [Accepted: 07/12/2011] [Indexed: 10/18/2022]
|