1
|
Orrú CD, Groveman BR, Hughson AG, Barrio T, Isiofia K, Race B, Ferreira NC, Gambetti P, Schneider DA, Masujin K, Miyazawa K, Ghetti B, Zanusso G, Caughey B. Sensitive detection of pathological seeds of α-synuclein, tau and prion protein on solid surfaces. PLoS Pathog 2024; 20:e1012175. [PMID: 38640117 PMCID: PMC11062561 DOI: 10.1371/journal.ppat.1012175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/01/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024] Open
Abstract
Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.
Collapse
Affiliation(s)
- Christina D. Orrú
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bradley R. Groveman
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tomás Barrio
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, France
| | - Kachi Isiofia
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Natalia C. Ferreira
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David A. Schneider
- Animal Disease Research Unit, USDA-ARS, Pullman, Washington, United States of America
| | - Kentaro Masujin
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kohtaro Miyazawa
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity (LNII), Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
2
|
Bartz JC, Benavente R, Caughey B, Christensen S, Herbst A, Hoover EA, Mathiason CK, McKenzie D, Morales R, Schwabenlander MD, Walsh DP. Chronic Wasting Disease: State of the Science. Pathogens 2024; 13:138. [PMID: 38392876 PMCID: PMC10892334 DOI: 10.3390/pathogens13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervid species, both free-ranging and captive populations. As the geographic range continues to expand and disease prevalence continues to increase, CWD will have an impact on cervid populations, local economies, and ecosystem health. Mitigation of this "wicked" disease will require input from many different stakeholders including hunters, landowners, research biologists, wildlife managers, and others, working together. The NC1209 (North American interdisciplinary chronic wasting disease research consortium) is composed of scientists from different disciplines involved with investigating and managing CWD. Leveraging this broad breadth of expertise, the Consortium has created a state-of-the-science review of five key aspects of CWD, including current diagnostic capabilities for detecting prions, requirements for validating these diagnostics, the role of environmental transmission in CWD dynamics, and potential zoonotic risks associated with CWD. The goal of this review is to increase stakeholders', managers', and decision-makers' understanding of this disease informed by current scientific knowledge.
Collapse
Affiliation(s)
- Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA;
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
| | - Byron Caughey
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Sonja Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA;
| | - Allen Herbst
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA;
| | - Edward A. Hoover
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Candace K. Mathiason
- Prion Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.A.H.); (C.K.M.)
| | - Debbie McKenzie
- Department of Biological Sciences, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M9, Canada;
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.B.); (R.M.)
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Marc D. Schwabenlander
- Minnesota Center for Prion Research and Outreach, Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | | |
Collapse
|
3
|
Carlson CM, Thomas S, Keating MW, Soto P, Gibbs NM, Chang H, Wiepz JK, Austin AG, Schneider JR, Morales R, Johnson CJ, Pedersen JA. Plants as vectors for environmental prion transmission. iScience 2023; 26:108428. [PMID: 38077138 PMCID: PMC10700824 DOI: 10.1016/j.isci.2023.108428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024] Open
Abstract
Prions cause fatal neurodegenerative diseases and exhibit remarkable durability, which engenders a wide array of potential exposure scenarios. In chronic wasting disease of deer, elk, moose, and reindeer and in scrapie of sheep and goats, prions are transmitted via environmental routes and the ability of plants to accumulate and subsequently transmit prions has been hypothesized, but not previously demonstrated. Here, we establish the ability of several crop and other plant species to take up prions via their roots and translocate them to above-ground tissues from various growth media including soils. We demonstrate that plants can accumulate prions in above-ground tissues to levels sufficient to transmit disease after oral ingestion by mice. Our results suggest plants may serve as vectors for prion transmission in the environment-a finding with implications for wildlife conservation, agriculture, and public health.
Collapse
Affiliation(s)
- Christina M. Carlson
- Cellular and Molecular Biology Program, University of Wisconsin – Madison, Madison, WI 53706, USA
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Samuel Thomas
- Department of Soil Science, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Matthew W. Keating
- Department of Civil and Environmental Engineering, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicole M. Gibbs
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Haeyoon Chang
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Jamie K. Wiepz
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Annabel G. Austin
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay R. Schneider
- U.S. Geological Survey National Wildlife Health Center, Madison, WI 53711, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | | | - Joel A. Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Duc HM, Hutchinson M, Flory GA, Ngan PH, Son HM, Hung LV, Hoa TTK, Lan NT, Lam TQ, Rozeboom D, Remmenga MD, Vuolo M, Miknis R, Burns A, Flory R. Viability of African Swine Fever Virus with the Shallow Burial with Carbon Carcass Disposal Method. Pathogens 2023; 12:pathogens12040628. [PMID: 37111514 PMCID: PMC10140975 DOI: 10.3390/pathogens12040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious swine disease with high mortality. In many countries, culling pigs infected and exposed to the ASF virus is mandatory to control the disease, which poses a real challenge in the disposal of large numbers of carcasses during ASF outbreaks. Shallow burial with carbon (SBC) Thanks ew mortality disposal method developed from deep burial and composting. The present study investigates the effectiveness of SBC in disposing of ASF virus-infected pigs. The real-time PCR results showed that DNA of the ASF virus was still detected in bone marrow samples on day 56, while the virus isolation test revealed that the infectious ASF virus was destroyed in both spleen and bone marrow samples on day 5. Interestingly, decomposition was found to occur rapidly in these shallow burial pits. On day 144, only large bones were found in the burial pit. In general, the results of this study indicated that SBC is a potential method for the disposal of ASF-infected carcasses; however, further studies are needed to provide more scientific evidence for the efficacy of SBC in different environment conditions.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Mark Hutchinson
- Maine Food and Agriculture Center, University of Maine Cooperative Extension, Orono, ME 04473, USA
| | - Gary A Flory
- G.A. Flory Consulting, Mt. Crawford, VA 22841, USA
| | - Pham Hong Ngan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Le Van Hung
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Tran Thi Khanh Hoa
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Nguyen Thi Lan
- Department of Pathoglogy, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Truong Quang Lam
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Dale Rozeboom
- Department of Animal Science, Michigan State University Cooperative Extension, Lansing, MI 48824, USA
| | - Marta D Remmenga
- Center for Epidemiology and Animal Health, Veterinary Service, U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Matthew Vuolo
- Center for Epidemiology and Animal Health, Veterinary Service, U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Robert Miknis
- U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Amira Burns
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
| | - Renée Flory
- English Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Burgener KR, Lichtenberg SS, Lomax A, Storm DJ, Walsh DP, Pedersen JA. Diagnostic testing of chronic wasting disease in white-tailed deer (Odocoileus virginianus) by RT-QuIC using multiple tissues. PLoS One 2022; 17:e0274531. [PMID: 36383520 PMCID: PMC9668146 DOI: 10.1371/journal.pone.0274531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease affecting cervids (deer, elk, moose). Current methods to monitor individual disease state include highly invasive antemortem rectal biopsy or postmortem brain biopsy. Efficient, sensitive, and selective antemortem and postmortem testing of populations would increase knowledge of the dynamics of CWD epizootics as well as provide a means to track CWD progression into previously unaffected areas. Here, we analyzed the presence of CWD prions in skin samples from two easily accessed locations (ear and belly) from 30 deceased white-tailed deer (Odocoileus viginianus). The skin samples were enzymatically digested and analyzed by real-time quaking-induced conversion (RT-QuIC). The diagnostic sensitivity of the ear and belly skin samples were both 95%, and the diagnostic specificity of the ear and belly skin were both 100%. Additionally, the location of the skin biopsy on the ear does not affect specificity or sensitivity. These results demonstrate the efficacy of CWD diagnosis with skin biopsies using RT-QuIC. This method could be useful for large scale antemortem population testing.
Collapse
Affiliation(s)
- Kate R. Burgener
- Molecular and Environmental Toxicology Program, University of Wisconsin–Madison, Madison, Wisconsin, United Sates of America
| | - Stuart S. Lichtenberg
- Department of Soil Science, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Aaron Lomax
- Department of Soil Science, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Daniel J. Storm
- Wisconsin Department of Natural Resources, Eau Claire, Wisconsin, United States of America
| | - Daniel P. Walsh
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Joel A. Pedersen
- Molecular and Environmental Toxicology Program, University of Wisconsin–Madison, Madison, Wisconsin, United Sates of America
- Department of Soil Science, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Duc HM, Ngan PH, Son HM, Lan NT, Van Hung L, Ha CTT, Hoa NT, Lam TQ, Van Thang N, Flory GA, Hutchinson M. The use of composting for the disposal of African swine fever virus infected swine carcasses. Transbound Emerg Dis 2022; 69:e3036-e3044. [PMID: 35830975 DOI: 10.1111/tbed.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
African swine fever (ASF) has been considered as one of the most important and devastating swine diseases with high mortality rates. Since effective vaccines and treatment are not available, mass euthanasia of infected and exposed pigs has been known to be the best measure to control ASF. Although composting has been proved to be a safe method for the rapid disposal of animal carcasses during outbreaks, there is no information about the effect of composting on the viability of ASF virus in swine carcasses. This study investigates the survival of the ASF virus in swine carcasses during composting. The findings suggested that the DNA of the ASF virus was detected in all samples tested. On the contrary, infectious ASF virus particles were rapidly destroyed at day 3. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Head, Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Pham Hong Ngan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Nguyen Thi Lan
- Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Le Van Hung
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Cam Thi Thu Ha
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Nguyen Thi Hoa
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Truong Quang Lam
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Nguyen Van Thang
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Gary A Flory
- President, Director of Operations, G.A. Flory Consulting, Mt. Crawford, Virginia, USA
| | - Mark Hutchinson
- Extension Professor, University of Maine Cooperative Extension, Orono, Maine, USA
| |
Collapse
|
7
|
Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu XP, Ostrikov KK, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard SM, Tanaka H, Liu DW, Yan D, Yusupov M. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3135118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Matsuura Y, Ishikawa Y, Murayama Y, Yokoyama T, Somerville RA, Kitamoto T, Mohri S. Eliminating transmissibility of bovine spongiform encephalopathy by dry-heat treatment. J Gen Virol 2020; 101:136-142. [PMID: 31718739 DOI: 10.1099/jgv.0.001335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) prion is more resistant to heat inactivation compared to other prions, but the effect of heat inactivation has been reported to differ depending on the BSE-contaminated tissue state or heating type. We aimed to evaluate the secure level of inactivation of original BSE transmissibility by dry-heating. Cattle tissues affected with BSE were subjected to dry-heat treatment for 20 min at various temperatures ranging from 150 to 1000 °C. To assess the inactivation effect, we conducted protein misfolding cyclic amplification (PMCA) and follicular dendritic cell (FDC) assays in transgenic mice expressing bovine prion protein genes. Under dry-heating at 600 °C or higher, BSE cattle tissues lost their transmissibility in transgenic mice. In contrast, transmissibility was detected in the cattle tissues treated at temperatures of 400 °C or lower through the FDC assay combined with PMCA. In this study, we confirmed that transmissibility was eliminated in BSE-affected cattle tissues by dry-heating at 600 °C or higher.
Collapse
Affiliation(s)
- Yuichi Matsuura
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yukiko Ishikawa
- Present address: International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Yuichi Murayama
- Present address: Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.,National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Takashi Yokoyama
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Robert A Somerville
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PS, UK
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shirou Mohri
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan.,Department of Neurological Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
9
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
10
|
Phan HTM, Bartz JC, Ayers J, Giasson BI, Schubert M, Rodenhausen KB, Kananizadeh N, Li Y, Bartelt-Hunt SL. Adsorption and decontamination of α-synuclein from medically and environmentally-relevant surfaces. Colloids Surf B Biointerfaces 2018; 166:98-107. [PMID: 29550546 PMCID: PMC5911191 DOI: 10.1016/j.colsurfb.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 11/20/2022]
Abstract
The assembly and accumulation of α-synuclein fibrils are implicated in the development of several neurodegenerative disorders including multiple system atrophy and Parkinson's disease. Pre-existing α-synuclein fibrils can recruit and convert soluble non-fibrillar α-synuclein to the fibrillar form similar to what is observed in prion diseases. This raises concerns regarding attachment of fibrillary α-synuclein to medical instruments and subsequent exposure of patients to α-synuclein similar to what has been observed in iatrogenic transmission of prions. Here, we evaluated adsorption and desorption of α-synuclein to two surfaces: stainless steel and a gold surface coated with a 11-Amino-1-undecanethiol hydrochloride self-assembled-monolayer (SAM) using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. α-Synuclein was found to attach to both surfaces, however, increased α-synuclein adsorption was observed onto the positively charged SAM surface compared to the stainless steel surface. Dynamic light scattering data showed that larger α-synuclein fibrils were preferentially attached to the stainless steel surface when compared with the distributions in the original α-synuclein solution and on the SAM surface. We determined that after attachment, introduction of a 1N NaOH solution could completely remove α-synuclein adsorbed on the stainless steel surface while α-synuclein was retained on the SAM surface. Our results indicate α-synuclein can bind to multiple surface types and that decontamination is surface-dependent.
Collapse
Affiliation(s)
- Hanh T M Phan
- Department of Civil Engineering, University of Nebraska-Lincoln, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, United States
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, United States
| | - Jacob Ayers
- Department of Neuroscience, University of Florida, United States
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, United States
| | - Mathias Schubert
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, United States
| | - Keith B Rodenhausen
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, United States; Biolin Scientific, Inc., Paramus, NJ, United States
| | - Negin Kananizadeh
- Department of Civil Engineering, University of Nebraska-Lincoln, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, United States
| | - Yusong Li
- Department of Civil Engineering, University of Nebraska-Lincoln, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, United States; Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, United States.
| |
Collapse
|
11
|
Dehydration of Prions on Environmentally Relevant Surfaces Protects Them from Inactivation by Freezing and Thawing. J Virol 2018; 92:JVI.02191-17. [PMID: 29386284 DOI: 10.1128/jvi.02191-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/24/2018] [Indexed: 11/20/2022] Open
Abstract
Chronic wasting disease (CWD) is an emerging prion disease in North America. Recent identification of CWD in wild cervids from Norway raises the concern of the spread of CWD in Europe. CWD infectivity can enter the environment through live animal excreta and carcasses where it can bind to soil. Well-characterized hamster prion strains and CWD field isolates in unadsorbed or soil-adsorbed forms that were either hydrated or dehydrated were subjected to repeated rounds of freezing and thawing. We found that 500 cycles of repeated freezing and thawing of hydrated samples significantly decreased the abundance of PrPSc and reduced protein misfolding cyclic amplification (PMCA) seeding activity that could be rescued by binding to soil. Importantly, dehydration prior to freezing and thawing treatment largely protected PrPSc from degradation, and the samples maintained PMCA seeding activity. We hypothesize that redistribution of water molecules during the freezing and thawing process alters the stability of PrPSc aggregates. Overall, these results have significant implications for the assessment of prion persistence in the environment.IMPORTANCE Prions excreted into the environment by infected animals, such as elk and deer infected with chronic wasting disease, persist for years and thus facilitate horizontal transmission of the disease. Understanding the fate of prions in the environment is essential to control prion disease transmission. The significance of our study is that it provides information on the possibility of prion degradation and inactivation under natural weathering processes. This information is significant for remediation of prion-contaminated environments and development of prion disease control strategies.
Collapse
|
12
|
Abstract
Chronic wasting disease (CWD) affects cervids and is the only known prion disease readily transmitted among free-ranging wild animal populations in nature. The increasing spread and prevalence of CWD among cervid populations threaten the survival of deer and elk herds in North America, and potentially beyond. This review focuses on prion ecology, specifically that of CWD, and the current understanding of the role that the environment may play in disease propagation. We recount the discovery of CWD, discuss the role of the environment in indirect CWD transmission, and consider potentially relevant environmental reservoirs and vectors. We conclude by discussing how understanding the environmental persistence of CWD lends insight into transmission dynamics and potential management and mitigation strategies.
Collapse
|
13
|
Pilot-Scale Bio-Augmented Aerobic Composting of Excavated Foot-And-Mouth Disease Carcasses. SUSTAINABILITY 2017. [DOI: 10.3390/su9030445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Kim Y, Rodriguez AE, Nowzari H. The Risk of Prion Infection through Bovine Grafting Materials. Clin Implant Dent Relat Res 2016; 18:1095-1102. [PMID: 26856530 DOI: 10.1111/cid.12391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bovine-derived grafting materials are frequently used in a variety of bone augmentation techniques. The aim of this paper is to assess the unique safety issue of bovine-derived grafting materials that is rarely addressed in dental literature: risk of bovine spongiform encephalopathy (BSE). METHODS The validity of the current BSE diagnostic methods, surveillance and epidemiological trends in affected countries, and BSE infectivity in bovine bone before and after manufacturing processing were reviewed and analyzed. RESULTS Prion screening has significant limits. Humans are not safe from the infection of prion disease of other species. Prions can and do break the species barrier. There is evidence there may be tens of thousands of infectious carriers in the western countries alone. This raises concern about the potential for perpetuation of infection via medical procedures. CONCLUSION The limited ability to screen prions within the animal genome, along with a long latency period to manifestation of the disease (1 to over 50 years) in infected patients, provides a framework for discussing posible long-term risks of the xenografts that are used so extensively in dentistry. We suggest abolishing the use of bovine bone.
Collapse
Affiliation(s)
- Yeoungsug Kim
- Private practice, K-205, Banpodong 929, Sechogu, Seoul, Korea
| | - Angel Emmanuel Rodriguez
- Resident, Periodontology and Oral Biology Program, Henry M. Goldman School of Dental Medicine, Boston University
| | - Hessam Nowzari
- Private practice, 120 South Spalding Drive, Suite 201, Beverly Hills, CA, 90212, USA
| |
Collapse
|
15
|
Belay ED, Schonberger LB, Brown P, Priola SA, Chesebro B, Will RG, Asher DM. Disinfection and Sterilization of Prion-Contaminated Medical Instruments. Infect Control Hosp Epidemiol 2015; 31:1304-6; author reply 1306-8. [DOI: 10.1086/657579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Bovine Spongiform Encephalopathy. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Okoroma EA, Purchase D, Garelick H, Morris R, Neale MH, Windl O, Abiola OO. Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PLoS One 2013; 8:e68099. [PMID: 23874511 PMCID: PMC3712960 DOI: 10.1371/journal.pone.0068099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/24/2013] [Indexed: 12/01/2022] Open
Abstract
The prion agent is notoriously resistant to common proteases and conventional sterilisation procedures. The current methods known to destroy prion infectivity such as incineration, alkaline and thermal hydrolysis are harsh, destructive, environmentally polluting and potentially hazardous, thus limit their applications for decontamination of delicate medical and laboratory devices, remediation of prion contaminated environment and for processing animal by-products including specified risk materials and carcases. Therefore, an environmentally friendly, non-destructive enzymatic degradation approach is highly desirable. A feather-degrading Bacillus licheniformis N22 keratinase has been isolated which degraded scrapie prion to undetectable level of PrPSc signals as determined by Western Blot analysis. Prion infectivity was verified by ex vivo cell-based assay. An enzymatic formulation combining N22 keratinase and biosurfactant derived from Pseudomonas aeruginosa degraded PrPSc at 65°C in 10 min to undetectable level -. A time-course degradation analysis carried out at 50°C over 2 h revealed the progressive attenuation of PrPSc intensity. Test of residual infectivity by standard cell culture assay confirmed that the enzymatic formulation reduced PrPSc infectivity to undetectable levels as compared to cells challenged with untreated standard scrapie sheep prion (SSBP/1) (p-value = 0.008 at 95% confidence interval). This novel enzymatic formulation has significant potential application for prion decontamination in various environmentally friendly systems under mild treatment conditions.
Collapse
Affiliation(s)
- Emeka A. Okoroma
- Department of Natural Sciences, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Diane Purchase
- Department of Natural Sciences, School of Science and Technology, Middlesex University, London, United Kingdom
- * E-mail:
| | - Hemda Garelick
- Department of Natural Sciences, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Roger Morris
- School of Biomedical Sciences, King’s College London, London, United Kingdom
| | - Michael H. Neale
- Animal Health and Veterinary Laboratories Agency (AHVLA), Surrey, United Kingdom
| | - Otto Windl
- Animal Health and Veterinary Laboratories Agency (AHVLA), Surrey, United Kingdom
| | - Oduola O. Abiola
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
18
|
Kim Y, Nowzari H, Rich SK. Risk of prion disease transmission through bovine-derived bone substitutes: a systematic review. Clin Implant Dent Relat Res 2011; 15:645-53. [PMID: 22171533 DOI: 10.1111/j.1708-8208.2011.00407.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Despite the causal association between variant Creutzfeldt - Jakob disease and bovine spongiform encephalopathy (BSE), bovine origin graft materials are widely used during dental surgical procedures. The aim of this study was to assess the risk of BSE transmission through anorganic bovine bone substitutes. METHODS Electronic database of MEDLINE was searched to identify relevant studies regarding our focused questions, presence of BSE prion infectivity in raw bovine bone, BSE prion inactivation by bone substitute manufacturing process, protein contents in anorganic bovine bone substitutes, and validity of current BSE diagnostic methods. Search terms yielded 1,704 titles. After title/abstract screening and duplicates removal, 36 full-text articles were screened for inclusion. RESULTS A total of 16 studies were included in the final analysis. No eligible studies were identified regarding the efficacy of BSE prion inactivation by the treatments used for anorganic bovine bone manufacturing. BSE infectivity and PrP(Sc) , pathological prion, were detected in bovine bone marrow and serum samples. Proteins were detected in Tutoplast® (bovine), Bio-Oss®, and tibia samples treated at the similar condition for Bio-Oss deproteinization. Inconsistent results of different BSE diagnostic tests were not unusual findings (Iwata et al. 2006; Arnold et al. 2007; Murayama et al. 2010), and a study by Balkema-Buschmann and colleagues showed an apparent discrepancy between BSE infectivity and detection of PrP(27-30), the current surrogate marker for prion disease infectivity. CONCLUSION This review indicates that bovine-derived graft biomaterials may carry a risk of prion transmission to patients.
Collapse
Affiliation(s)
- Yeoungsug Kim
- Resident, Advanced Education in Periodontics Program, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA professor, Clinical Dentistry and director, Advanced Education in Periodontics Program, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA associate professor, Advanced Education in Periodontics Program, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
19
|
Gwyther CL, Williams AP, Golyshin PN, Edwards-Jones G, Jones DL. The environmental and biosecurity characteristics of livestock carcass disposal methods: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:767-78. [PMID: 21216585 DOI: 10.1016/j.wasman.2010.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 11/12/2010] [Accepted: 12/01/2010] [Indexed: 05/05/2023]
Abstract
Livestock mortalities represent a major waste stream within agriculture. Many different methods are used throughout the world to dispose of these mortalities; however within the European Union (EU) disposal options are limited by stringent legislation. The legal disposal options currently available to EU farmers (primarily rendering and incineration) are frequently negatively perceived on both practical and economic grounds. In this review, we assess the potential environment impacts and biosecurity risks associated with each of the main options used for disposal of livestock mortalities in the world and critically evaluate the justification for current EU regulations. Overall, we conclude that while current legislation intends to minimise the potential for on-farm pollution and the spread of infectious diseases (e.g. transmissible spongiform encephalopathies, bacterial pathogens), alternative technologies (e.g. bioreduction, anaerobic digestion) may provide a more cost-effective, practical and biosecure mechanism for carcass disposal as well as having a lower environmental footprint. Further social, environmental and economic research is therefore warranted to assess the holistic benefits of alternative approaches for carcass disposal in Europe, with an aim to provide policy-makers with robust knowledge to make informed decisions on future legislation.
Collapse
Affiliation(s)
- Ceri L Gwyther
- School of Environment, Natural Resources and Geography, College of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | | | | | | | | |
Collapse
|
20
|
Smith CB, Booth CJ, Pedersen JA. Fate of prions in soil: a review. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:449-461. [PMID: 21520752 PMCID: PMC3160281 DOI: 10.2134/jeq2010.0412] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prions are the etiological agents of transmissible spongiform encephalopathies (TSSEs), a class of fatal neurodegenerative diseases affecting humans and other mammals. The pathogenic prion protein is a misfolded form of the host-encoded prion protein and represents the predominant, if not sole, component of the infectious agent. Environmental routes of TSE transmission areimplicated in epizootics of sheep scrapie and chronic wasting disease (CWD) of deer, elk, and moose. Soil represents a plausible environmental reservoir of scrapie and CWD agents, which can persist in the environment for years. Attachment to soil particles likely influences the persistence and infectivity of prions in the environment. Effective methods to inactivate TSE agents in soil are currently lacking, and the effects of natural degradation mechanisms on TSE infectivity are largely unknown. An improved understanding of the processes affecting the mobility, persistence, and bioaviailability of prions in soil is needed for the management of TSE-contaminated environments.
Collapse
Affiliation(s)
- Christen B. Smith
- Environmental Chemistry and Technology Program, Univ. of Wisconsin, 1525 Observatory Dr., Madison, WI 53706
| | - Clarissa J. Booth
- Molecular and Environmental Toxicology Center, Univ. of Wisconsin, 1525 Observatory Dr., Madison, WI 53706
| | | |
Collapse
|
21
|
Saunders SE, Bartz JC, Vercauteren KC, Bartelt-Hunt SL. Enzymatic digestion of chronic wasting disease prions bound to soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4129-4135. [PMID: 20450190 PMCID: PMC2885836 DOI: 10.1021/es903520d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chronic wasting disease (CWD) and sheep scrapie can be transmitted via indirect environmental routes, and it is known that soil can serve as a reservoir of prion infectivity. Given the strong interaction between the prion protein (PrP) and soil, we hypothesized that binding to soil enhances prion resistance to enzymatic digestion, thereby facilitating prion longevity in the environment and providing protection from host degradation. We characterized the performance of a commercially available subtilisin enzyme, Prionzyme, to degrade soil-bound and unbound CWD and HY TME PrP as a function of pH, temperature, and treatment time. The subtilisin enzyme effectively degraded PrP adsorbed to a wide range of soils and soil minerals below the limits of detection. Signal loss occurred rapidly at high pH (12.5) and within 7 days under conditions representative of the natural environment (pH 7.4, 22 degrees C). We observed no apparent difference in enzyme effectiveness between bound and unbound CWD PrP. Our results show that although adsorbed prions do retain relative resistance to enzymatic digestion compared with other brain homogenate proteins, they can be effectively degraded when bound to soil. Our results also suggest a topical application of a subtilisin enzyme solution may be an effective decontamination method to limit disease transmission via environmental "hot spots" of prion infectivity.
Collapse
Affiliation(s)
- Samuel E Saunders
- Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, Nebraska 68588, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Bovine spongiform encephalopathy is an infectious disease of cattle that is transmitted through the consumption of meat-and-bone meal from infected cattle. The etiologic agent is an aberrant isoform of the native cellular prion protein that is a normal component of neurologic tissue. There currently are no approved tests that can detect BSE in live cattle.
Collapse
Affiliation(s)
- Jane L Harman
- Food Safety and Inspection Service, Office of Public Health Science, USDA, 1400 Independence Ave SW, Washington, DC 20250, USA
| | | |
Collapse
|
23
|
Saunders SE, Bartelt-Hunt SL, Bartz JC. Prions in the environment: occurrence, fate and mitigation. Prion 2008; 2:162-9. [PMID: 19242120 PMCID: PMC2658766 DOI: 10.4161/pri.2.4.7951] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/26/2009] [Indexed: 11/19/2022] Open
Abstract
Scrapie and CWD are horizontally transmissible, and the environment likely serves as a stable reservoir of infectious prions, facilitating a sustained incidence of CWD in free-ranging cervid populations and complicating efforts to eliminate disease in captive herds. Prions will enter the environment through mortalities and/or shedding from live hosts. Unfortunately, a sensitive detection method to identify prion contamination in environmental samples has not yet been developed. An environmentally-relevant prion model must be used in experimental studies. Changes in PrP(Sc) structure upon environmental exposure may be as significant as changes in PrP(Sc) quantity, since the structure can directly affect infectivity and disease pathology. Prions strongly bind to soil and remain infectious. Conformational changes upon adsorption, competitive sorption and potential for desorption and transport all warrant further investigation. Mitigation of contaminated carcasses or soil might be accomplished with enzyme treatments or composting in lieu of incineration.
Collapse
Affiliation(s)
- Samuel E Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska 68182-0178, USA
| | | | | |
Collapse
|
24
|
Saunders SE, Bartz JC, Telling GC, Bartelt-Hunt SL. Environmentally-relevant forms of the prion protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6573-9. [PMID: 18800532 PMCID: PMC4480922 DOI: 10.1021/es800590k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Scrapie and chronic wasting disease (CWD) are prion diseases of particular environmental concern as they are horizontally transmissible and can remain infectious after years in the environment. Recent evidence suggests that the N-terminus of PrPSC, the infectious conformation of the prion protein, plays an important role in the mechanism of sorption to soil particles. We hypothesize that, in a prion-infected animal carcass, a portion of the N-terminus of PrPSc could be cleaved by proteinases in the brain at ordinary temperatures. Hamster (HY transmissible mink encephalopathy-infected), transgenic mice (CWD-infected), and elk (CWD-infected) brain homogenates were incubated at 22 and 37 degrees C for up to 1 month and then analyzed by Western blot using N-terminal and middle region monoclonal anti-PrP antibodies. For all three systems, there was a very faint or undetectable N-terminal PrP signal after 35 days at both temperatures, which indicates that full-length PrPSc might be rare in the brain matter of animal carcasses. Future studies on prion-soil interactions should therefore consider N-terminal-degraded PrPSc in addition to the full-length form. Both mouse and elk CWD PrPSc demonstrated greater resistance to degradation than HY TME PrPSc. This indicates that the transgenic mouse-CWD model is a good surrogate for natural CWD prions, but that other rodent prion models might not accurately represent CWD prion fate in the environment.
Collapse
Affiliation(s)
- Samuel E. Saunders
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Glenn C. Telling
- Department of Microbiology, Immunology and Molecular Genetics, Department of Neurology, Sanders Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shannon L. Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, Nebraska, United States of America
| |
Collapse
|
25
|
Wiggins RC. Prion stability and infectivity in the environment. Neurochem Res 2008; 34:158-68. [PMID: 18483857 DOI: 10.1007/s11064-008-9741-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/02/2008] [Indexed: 02/07/2023]
Abstract
The biology of normal prion protein and the property of infectivity observed in abnormal folding conformations remain thinly characterized. However, enough is known to understand that prion proteins stretch traditional views of proteins in biological systems. Numerous investigators are resolving details of the novel mechanism of infectivity, which appears to feature a protein-only, homologous replication of misfolded isoforms. Many other features of prion biology are equally extraordinary. This review focuses on the status of infectious prions in various natural and man-made environments. The picture that emerges is that prion proteins are durable under extreme conditions of environmental exposure that are uncommon in biological phenomena, and this durability offers the potential for environmental reservoirs of persistent infectivity lasting for years. A recurrent theme in prion research is a propensity for these proteins to bind to mineral and metal surfaces, and several investigators have provided evidence that the normal cellular functions of prion protein may include metalloprotein interactions. This structural propensity for binding to mineral and metal ions offers the hypothesis that prion polypeptides are intrinsically predisposed to non-physiological folding conformations that would account for their environmental durability and persistent infectivity. Similarly, the avidity of binding and potency of prion infectivity from environmental sources also offers a recent hypothesis that prion polypeptides bound to soil minerals are actually more infectious than studies with purified polypeptides would predict. Since certain of the prion diseases have a history of epidemics in economically important animal species and have the potential to transmit to humans, urgency is attached to understanding the environmental transmission of prion diseases and the development of protocols for their containment and inactivation.
Collapse
Affiliation(s)
- Richard C Wiggins
- National Health and Environmental Effects Research Laboratory, US EPA/Office of Research and Development, MD B305-02, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
26
|
Ma X, Benson CH, McKenzie D, Aiken JM, Pedersen JA. Adsorption of pathogenic prion protein to quartz sand. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:2324-30. [PMID: 17438782 DOI: 10.1021/es062122i] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Management responses to prion diseases of cattle, deer, and elk create a significant need for safe and effective disposal of infected carcasses and other materials. Furthermore, soil may contribute to the horizontal transmission of sheep scrapie and cervid chronic wasting disease by serving as an environmental reservoirforthe infectious agent. As an initial step toward understanding prion mobility in porous materials such as soil and landfilled waste, the influence of pH and ionic strength (l) on pathogenic prion protein (PrPsc) properties (viz. aggregation state and zeta-potential) and adsorption to quartz sand was investigated. The apparent average isoelectric point of PrPsc aggregates was 4.6. PrPsc aggregate size was largest between pH 4 and 6, and increased with increasing l at pH 7. Adsorption to quartz sand was maximal near the apparent isoelectric point of PrPsc aggregates and decreased as pH either declined or increased. PrPsc adsorption increased as suspension l increased, and reached an apparent plateau at l approximately 0.1 M. While trends with pH and l in PrPsc attachment to quartz surfaces were consistent with predictions based on Born-DLVO theory, non-DLVO forces appeared to contribute to adsorption at pH 7 and 9 (l = 10 mM). Our findings suggest that disposal strategies that elevate pH (e.g., burial in lime or fly ash), may increase PrPsc mobility. Similarly, PrPsc mobility may increase as a landfill ages, due to increases in pH and decreases in l of the leachate.
Collapse
Affiliation(s)
- Xin Ma
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
27
|
Georgsson G, Sigurdarson S, Brown P. Infectious agent of sheep scrapie may persist in the environment for at least 16 years. J Gen Virol 2006; 87:3737-3740. [PMID: 17098992 DOI: 10.1099/vir.0.82011-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2-3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14-21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheep-house that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.
Collapse
Affiliation(s)
- Gudmundur Georgsson
- Institute for Experimental Pathology, University of Iceland, Keldur v/vesturlandsveg, IS-112 Reykjavík, Iceland
| | | | | |
Collapse
|
28
|
Rigou P, Rezaei H, Grosclaude J, Staunton S, Quiquampoix H. Fate of prions in soil: adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:1497-503. [PMID: 16568762 DOI: 10.1021/es0516965] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Prions, the infectious agents thought to be responsible for transmissible spongiform encephalopathies, may contaminate soils and have been reported to persist there for years. We have studied the adsorption and desorption of a model recombinant prion protein on montmorillonite and natural soil samples in order to elucidate mechanisms of prion retention in soils. Clay minerals, such as montmorillonite, are known to be strong adsorbents for organic molecules, including proteins. Montmorillonite was found to have a large and selective adsorption capacity for both the normal and the aggregated prion protein. Adsorption occurred mainly via the N-terminal domain of the protein. Incubation with standard buffers and detergents did not desorb the full length protein from montmorillonite, emphasizing the largely irreversible trapping of prion protein by this soil constituent. An original electroelution method was developed to extract prion protein from both montmorillonite and natural soil samples, allowing quantification when coupled with rapid prion detection tests. This easy-to-perform method produced concentrated prion protein extracts and allowed detection of protein at levels as low as 0.2 ppb in natural soils.
Collapse
Affiliation(s)
- Peggy Rigou
- Virologie et Immunologie Moléculaires, INRA, F-78352 Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|