1
|
Merian A, Silva A, Wolf S, Frosch T, Frosch T. Ultrasensitive Raman Gas Spectroscopy for Dinitrogen Sensing at the Parts-per-Billion Level. Anal Chem 2024; 96:14884-14890. [PMID: 39231523 PMCID: PMC11412228 DOI: 10.1021/acs.analchem.4c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sensing small changes in the concentration of dinitrogen (N2) is a difficult analytical task. As N2-sensing is crucial for nitrogen cycle research in general and studies of denitrification in particular, researchers went to great lengths to develop techniques like the gas-flow-soil-core method, which achieves a precision of 200 ppb at 20 ppm of N2. Here, we present a Raman gas spectroscopic technique based on high pressure, high laser power, and high-NA signal collection, which achieves a limit of detection (LoD) of 59 ppb N2 and a precision of 27 ppb at 10 ppm of N2. This improves the lowest LoD for N2 reported for Raman gas spectroscopy by 2 orders of magnitude. Furthermore, this constitutes an improvement in precision by 1 order of magnitude compared to the GC-MS-based gas-flow-soil-core method currently established in denitrification research. We show that the presented setup is both stable and tight enough to ensure highly sensitive, precise, and repeatable measurements of N2. As Raman gas spectroscopy is a versatile and comprehensive method, the described technique could be easily expanded to other relevant gases like nitrous oxide or to simultaneous multigas sensing. In summary, our method offers possibilities for N2-sensing and could eventually enable denitrification studies with increased sensitivity and a larger scope.
Collapse
Affiliation(s)
- Andreas Merian
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
| | - Artur Silva
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
| | - Sebastian Wolf
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Timea Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| |
Collapse
|
2
|
Zhao J, Hu Y, Wang J, Gao W, Liu D, Yang M, Chen X, Xie H, He H, Zhang X, Lu C. Greenhouse gas emissions from the growing season are regulated by precipitation events in conservation tillage farmland ecosystems of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174716. [PMID: 39004355 DOI: 10.1016/j.scitotenv.2024.174716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Reducing greenhouse gas (GHG) emissions from agricultural ecosystems is vital to mitigate global warming. Conservation tillage is widely used in farmland management to improve soil quality; however, its effects on soil GHG emissions remain poorly understood, particularly in high-yield areas. Therefore, our study aimed to evaluate the effects of no-tillage (NT) combined with four straw-mulching levels (0 %, 33 %, 67 %, and 100 %) on GHG emission risk and the main influencing factors. We conducted in-situ observations of GHG emissions from soils under different management practices during the maize-growing season in Northeastern China. The results showed that NT0 (705.94 g m-2) reduced CO2 emissions by 18 % compared to ridge tillage (RT, 837.04 g m-2). Different straw mulching levels stimulated N2O emissions after rainfall, particularly under NT combined with 100 % straw mulching (2.89 kg ha-1), which was 45 % higher than that in any other treatments. The CH4 emissions flux among different treatments was nearly zero. Overall, straw mulching levels had no significant effect on the GHG emissions. During the growing season, soil NH4+-N (< 20 mg kg-1) remained low and decreased with the extension of growth stage, whereas soil NO3--N initially increased and then decreased. More importantly, the results of structural equation modeling indicate that: a) organic material input and soil moisture are key factors affecting CO2 emissions, b) nitrogen fertilizer and soil moisture promote N2O emissions, and c) climatic factors exert an inexorable influence on the GHG emissions process. Our conclusions emphasize the necessity of incorporating precipitation-response measures into farmland management to reduce the risk of GHG emissions.
Collapse
Affiliation(s)
- Jinxi Zhao
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanyu Hu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Wanjing Gao
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Deyao Liu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Miaoyin Yang
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hongtu Xie
- Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning 110016, China
| | - Hongbo He
- Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning 110016, China
| | - Xudong Zhang
- Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning 110016, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning 110016, China.
| |
Collapse
|
3
|
Song X, Parker J, Jones SK, Zhang L, Bingham I, Rees RM, Ju X. Labile Carbon from Artificial Roots Alters the Patterns of N 2O and N 2 Production in Agricultural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38329046 DOI: 10.1021/acs.est.3c10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Labile carbon (C) continuously delivered from the rhizosphere profoundly affects terrestrial nitrogen (N) cycling. However, nitrous oxide (N2O) and dinitrogen (N2) production in agricultural soils in the presence of continuous root C exudation with applied N remains poorly understood. We conducted an incubation experiment using artificial roots to continuously deliver small-dose labile C combined with 15N tracers to investigate N2O and N2 emissions in agricultural soils with pH and organic C (SOC) gradients. A significantly negative exponential relationship existed between N2O and N2 emissions under continuous C exudation. Increasing soil pH significantly promoted N2 emissions while reducing N2O emissions. Higher SOC further promoted N2 emissions in alkaline soils. Native soil-N (versus fertilizer-N) was the main source of N2O (average 67%) and N2 (average 80%) emissions across all tested soils. Our study revealed the overlooked high N2 emissions, mainly derived from native soil-N and strengthened by increasing soil pH, under relatively real-world conditions with continuous root C exudation. This highlights the important role of N2O and N2 production from native soil-N in terrestrial N cycling when there is a continuous C supply (e.g., plant-root exudate) and helps mitigate emissions and constrain global budgets of the two concerned nitrogenous gases.
Collapse
Affiliation(s)
- Xiaotong Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - John Parker
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | | | - Limei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ian Bingham
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | - Robert M Rees
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | - Xiaotang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Tian H, Liu J, Zhang Y, Liu Q. Stress response and signalling of a low-temperature bioaugmentation system in decentralized wastewater treatment: Degradation characteristics, community structure, and bioaugmented mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118257. [PMID: 37290305 DOI: 10.1016/j.jenvman.2023.118257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Low temperatures present challenges for stable wastewater treatment operations in cold regions. Low-temperature effective microorganisms (LTEM) were added as a bioaugmentation strategy at a decentralized treatment facility to improve performance. The effects of a low-temperature bioaugmentation system (LTBS) with LTEM at low temperatures (4 °C) on organic pollutant performance, microbial community changes, and the metabolic pathways of functional genes and functional enzymes were studied. To explore the bioaugmentation mechanism of LTBS based on stress response and signalling. The results showed that the start-up time of the LTBS (S2) with LTEM was shorter (8 days) and that it removed COD and NH4+-N at higher rates (87 % and 72 %, respectively) at 4 °C. LTEM effectively degraded complex macromolecular organics into small molecular organics, and decomposing sludge flocs and the changing the extracellular polymeric substances (EPS) structure removed more organics and nitrogen. LTEM and local microbial communities (nitrifying and denitrifying bacteria) improved the ability of organic matter degradation and denitrification of the LTBS and formed a core microbial community dominated by LTEM (Bacillus and Pseudomonas). Finally, based on the functional enzymes and metabolic pathways of the LTBS, a low-temperature strengthening mechanism consisting of 6 cold stress responses and signal pathways under low temperatures was formed. This study demonstrated that the LTEM-dominated LTBS could provide an engineering alternative for future decentralized wastewater treatment in cold regions.
Collapse
Affiliation(s)
- Hongyu Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing, 100044, China
| | - Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing, 100044, China.
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Qianqian Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
5
|
Cao Y, Wang X, Misselbrook T, Wang R, Zheng X, Ma L. Quantification of N and C cycling during aerobic composting, including automated direct measurement of N 2, N 2O, NO, NH 3, CO 2 and CH 4 emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159177. [PMID: 36195138 DOI: 10.1016/j.scitotenv.2022.159177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Closing the carbon (C) and nitrogen (N) balance has yet to be achieved in aerobic bioprocess due to current methodological drawbacks in the frequency of sampling and detection and the challenge in direct measurement of instantaneous N2 emission. To address this issue, a novel system was developed enabling simultaneous and online determination of gaseous C and N species (N2, N2O, NO, NH3, CO2 and CH4) from aerobic composting at a high frequency of 120 times·d-1. A helium‑oxygen gas mixture was used to replace the air in the system to enable direct measurement of N2 emission, and three different gas exchange methods were assessed in their ability to minimize atmospheric background N2: 1) the N2-free gas purging method; 2) one cycle of the evacuation-refilling procedure; 3) one cycle of evacuating and refilling followed by N2-free gas purging. Method 3 was demonstrated as an optimum N2-removal method, and background N2 concentrations decreased to ~66 μmol·mol-1 within 11.6 h. During the N2-free gas purging period, low temperature incubation at 15 °C reduced CO2, CH4, NO, N2O and NH3 losses by 80.5 %, 41-fold, 10-fold, 11,403-fold and 61.4 %, respectively, compared with incubation at 30 °C. Therefore, a fast and low-perturbation N2 removal method was developed, namely the evacuating/refilling-low temperature purging method. Notably, all C and N gases exhibited large within-day variations during the peak emission period, which can be addressed by high-frequency measurement. Based on the developed method, up to 97.8 % of gaseous C and 95.6 % of gaseous N losses were quantified over a 43-day compost incubation, with N2 emission accounting (on average) for 5.8 % of the initial total N. This system for high frequency measurement of multiple gases (including N2) provides a novel tool for obtaining a deeper understanding of C and N turnover and more accurate estimation of reactive N and greenhouse gas emissions during composting.
Collapse
Affiliation(s)
- Yubo Cao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China; Xiongan Institute of Innovation, Chinese Academy of Sciences, Xiongan 071700, Hebei, China
| | - Tom Misselbrook
- Net-zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK
| | - Rui Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xunhua Zheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China.
| |
Collapse
|
6
|
Valiente N, Jirsa F, Hein T, Wanek W, Prommer J, Bonin P, Gómez-Alday JJ. The role of coupled DNRA-Anammox during nitrate removal in a highly saline lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150726. [PMID: 34606874 DOI: 10.1016/j.scitotenv.2021.150726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3-) removal from aquatic ecosystems involves several microbially mediated processes, including denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonium oxidation (anammox), controlled by slight changes in environmental gradients. In addition, some of these processes (i.e. denitrification) may involve the production of undesirable compounds such as nitrous oxide (N2O), an important greenhouse gas. Saline lakes are prone to the accumulation of anthropogenic contaminants, making them highly vulnerable environments to NO3- pollution. The aim of this paper was to investigate the effect of light and oxygen on the different NO3- removal pathways under highly saline conditions. For this purpose, mesocosm experiments were performed using lacustrine, undisturbed, organic-rich sediments from the Pétrola Lake (Spain), a highly saline waterbody subject to anthropogenic NO3- pollution. The revised 15N-isotope pairing technique (15N-IPT) was used to determine NO3- sink processes. Our results demonstrate for the first time the coexistence of denitrification, DNRA, and anammox processes in a highly saline lake, and how their contribution was determined by environmental conditions (oxygen and light). DNRA, and especially denitrification to N2O, were the dominant nitrogen (N) removal pathways when oxygen and/or light were present (up to 82%). In contrast, anoxia and darkness promoted NO3- reduction by DNRA (52%), combined with N loss by anammox (28%). Our results highlight the role of coupled DNRA-anammox, which has not yet been investigated in lacustrine sediments. We conclude that anoxia and darkness favored DNRA and anammox processes over denitrification and therefore to restrict N2O emissions to the atmosphere.
Collapse
Affiliation(s)
- N Valiente
- Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway; Biotechnology and Natural Resources Section, Institute for Regional Development (IDR), University of Castilla-La Mancha (UCLM), Campus Universitario s/n, 02071 Albacete, Spain.
| | - F Jirsa
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
| | - T Hein
- Institute of Hydrobiology and Aquatic Ecosystem Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Gregor-Mendel-Str. 33, 1180 Vienna, Austria; WasserCluster Lunz - Inter-university Center for Aquatic Ecosystem Research, Lunz am See, Dr. Carl Kupelwieser Prom. 5, 3293 Lunz/See, Austria
| | - W Wanek
- Division of Terrestrial Ecosystem Research, Centre of Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - J Prommer
- Division of Terrestrial Ecosystem Research, Centre of Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - P Bonin
- Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO UMR 110, 13288 Marseille, France
| | - J J Gómez-Alday
- Biotechnology and Natural Resources Section, Institute for Regional Development (IDR), University of Castilla-La Mancha (UCLM), Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
7
|
Adoonsook D, Chia-Yuan C, Wongrueng A, Pumas C. A simple way to improve a conventional A/O-MBR for high simultaneous carbon and nutrient removal from synthetic municipal wastewater. PLoS One 2019; 14:e0214976. [PMID: 31756182 PMCID: PMC6913871 DOI: 10.1371/journal.pone.0214976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022] Open
Abstract
In this study, two anoxic-oxic membrane bioreactor (A/O-MBR) systems, i.e. conventional and biofilm anoxic-oxic-membrane bioreactors (C-A/O-MBR and BF-A/O-MBR, respectively), were operated in parallel under conditions of complete sludge retention for the purposes of comparing system performance and microbial community composition. Moreover, with the microbial communities, comparisons were made between the adhesive stage and the suspended stage. High average removal of COD, NH4+-N and TN was achieved in both systems. However, TP removal efficiency was remarkably higher in BF-A/O-MBR when compared with C-A/O-MBR. TP mass balance analysis suggested that under complete sludge retention, polyurethane sponges that were added into the anoxic tank played a key role in both phosphorus release and accumulation. The qPCR analysis showed that sponge biomass could maintain a higher level of abundance of total bacteria than the suspended sludge. Meanwhile, AOB and denitrifiers were enriched in the suspended sludge but not in the sponge biomass. Results of illumina sequencing reveal that the compacted sponge in BF-A/O-MBR could promote the growth of bacteria involved in nutrient removal and reduce the amount of filamentous and bacterial growth that is related to membrane fouling in the suspended sludge.
Collapse
Affiliation(s)
- Dome Adoonsook
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand
| | - Chang Chia-Yuan
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Aunnop Wongrueng
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand.,Research Program in Control of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
8
|
Loick N, Dixon E, Abalos D, Vallejo A, Matthews P, McGeough K, Watson C, Baggs EM, Cardenas LM. "Hot spots" of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil. GEODERMA 2017; 305:336-345. [PMID: 29104306 PMCID: PMC5555445 DOI: 10.1016/j.geoderma.2017.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/08/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Agricultural soils are a major source of nitric- (NO) and nitrous oxide (N2O), which are produced and consumed by biotic and abiotic soil processes. The dominant sources of NO and N2O are microbial nitrification and denitrification, and emissions of NO and N2O generally increase after fertiliser application. The present study investigated the impact of N-source distribution on emissions of NO and N2O from soil and the significance of denitrification, rather than nitrification, as a source of NO emissions. To eliminate spatial variability and changing environmental factors which impact processes and results, the experiment was conducted under highly controlled conditions. A laboratory incubation system (DENIS) was used, allowing simultaneous measurement of three N-gases (NO, N2O, N2) emitted from a repacked soil core, which was combined with 15N-enrichment isotopic techniques to determine the source of N emissions. It was found that the areal distribution of N and C significantly affected the quantity and timing of gaseous emissions and 15N-analysis showed that N2O emissions resulted almost exclusively from the added amendments. Localised higher concentrations, so-called hot spots, resulted in a delay in N2O and N2 emissions causing a longer residence time of the applied N-source in the soil, therefore minimising NO emissions while at the same time being potentially advantageous for plant-uptake of nutrients. If such effects are also observed for a wider range of soils and conditions, then this will have major implications for fertiliser application protocols to minimise gaseous N emissions while maintaining fertilisation efficiency.
Collapse
Affiliation(s)
- Nadine Loick
- Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
| | - Elizabeth Dixon
- Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
| | - Diego Abalos
- Technical University of Madrid, Chemistry and Agricultural Analysis, Madrid, Spain
| | - Antonio Vallejo
- Technical University of Madrid, Chemistry and Agricultural Analysis, Madrid, Spain
| | - Peter Matthews
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Davy Building, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Karen McGeough
- Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK
| | - Catherine Watson
- Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK
| | - Elizabeth M. Baggs
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | | |
Collapse
|
9
|
Liu J, Zhang H, Zhang P, Wu Y, Gou X, Song Y, Tian Z, Zeng G. Two-stage anoxic/oxic combined membrane bioreactor system for landfill leachate treatment: Pollutant removal performances and microbial community. BIORESOURCE TECHNOLOGY 2017; 243:738-746. [PMID: 28711802 DOI: 10.1016/j.biortech.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 05/22/2023]
Abstract
In this study, a laboratory-scale two-stage anoxic/oxic (A/O) combined membrane bioreactor (MBR) was operated for 113d for the treatment of landfill leachate. The average removal of chemical oxygen demand (COD), ammonia (NH4+-N) and total nitrogen (TN) achieved 80.60%, 99.04% and 74.87%, respectively. A mass balance evaluation suggested that the removal of COD, NH4+-N and TN occurred mainly in the second A/O process, and the total removal capacity of COD, NH4+-N and TN were 125.60g/d, 24.35g/d and 22.40g/d, respectively. High-throughput sequencing analysis indicated that the Proteobacteria (44.57-50.36%), Bacteroidetes (22.09-27.25%), Planctomycetes (6.94-8.47%), Firmicutes (3.31-4.53%) and Chloroflexi (3.13-4.80%) were the dominated phyla in the bacterial community during the operation period. At the genus level, Nitrosomonas, Nitrobacter, Planctomyces, Saprospiraceae and Pseudomonas showed relatively high abundance, which played an important role in the removal of pollutants.
Collapse
Affiliation(s)
- Jianbo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haibo Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yan Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiying Gou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yonghui Song
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiyong Tian
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Jochum T, Fastnacht A, Trumbore SE, Popp J, Frosch T. Direct Raman Spectroscopic Measurements of Biological Nitrogen Fixation under Natural Conditions: An Analytical Approach for Studying Nitrogenase Activity. Anal Chem 2016; 89:1117-1122. [PMID: 28043118 DOI: 10.1021/acs.analchem.6b03101] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)-1 h-1 of a Medicago sativa-Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.
Collapse
Affiliation(s)
- Tobias Jochum
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany
| | - Agnes Fastnacht
- Max Planck Institute for Biogeochemistry , 07745 Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , 07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology , 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics , 07745 Jena, Germany
| |
Collapse
|
11
|
Wen Y, Chen Z, Dannenmann M, Carminati A, Willibald G, Kiese R, Wolf B, Veldkamp E, Butterbach-Bahl K, Corre MD. Disentangling gross N 2O production and consumption in soil. Sci Rep 2016; 6:36517. [PMID: 27812012 PMCID: PMC5109911 DOI: 10.1038/srep36517] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
The difficulty of measuring gross N2O production and consumption in soil impedes our ability to predict N2O dynamics across the soil-atmosphere interface. Our study aimed to disentangle these processes by comparing measurements from gas-flow soil core (GFSC) and 15N2O pool dilution (15N2OPD) methods. GFSC directly measures soil N2O and N2 fluxes, with their sum as the gross N2O production, whereas 15N2OPD involves addition of 15N2O into a chamber headspace and measuring its isotopic dilution over time. Measurements were conducted on intact soil cores from grassland, cropland, beech and pine forests. Across sites, gross N2O production and consumption measured by 15N2OPD were only 10% and 6%, respectively, of those measured by GFSC. However, 15N2OPD remains the only method that can be used under field conditions to measure atmospheric N2O uptake in soil. We propose to use different terminologies for the gross N2O fluxes that these two methods quantified. For 15N2OPD, we suggest using 'gross N2O emission and uptake', which encompass gas exchange within the 15N2O-labelled, soil air-filled pores. For GFSC, 'gross N2O production and consumption' can be used, which includes both N2O emitted into the soil air-filled pores and N2O directly consumed, forming N2, in soil anaerobic microsites.
Collapse
Affiliation(s)
- Yuan Wen
- Buesgen Institute - Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Zhe Chen
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Michael Dannenmann
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Andrea Carminati
- Department of Crop Sciences - Soil Hydrology Division, Faculty of Agricultural Sciences, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Georg Willibald
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Ralf Kiese
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Benjamin Wolf
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Edzo Veldkamp
- Buesgen Institute - Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Klaus Butterbach-Bahl
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Marife D. Corre
- Buesgen Institute - Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Shakoor A, Abdullah M, Yousaf B, Amina, Ma Y. Atmospheric emission of nitric oxide and processes involved in its biogeochemical transformation in terrestrial environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016:10.1007/s11356-016-7823-6. [PMID: 27771880 DOI: 10.1007/s11356-016-7823-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Nitric oxide (NO) is an intra- and intercellular gaseous signaling molecule with a broad spectrum of regulatory functions in biological system. Its emissions are produced by both natural and anthropogenic sources; however, soils are among the most important sources of NO. Nitric oxide plays a decisive role in environmental-atmospheric chemistry by controlling the tropospheric photochemical production of ozone and regulates formation of various oxidizing agents such as hydroxyl radical (OH), which contributes to the formation of acid of precipitates. Consequently, for developing strategies to overcome the deleterious impact of NO on terrestrial ecosystem, it is mandatory to have reliable information about the exact emission mechanism and processes involved in its transformation in soil-atmospheric system. Although the formation process of NO is a complex phenomenon and depends on many physicochemical characteristics, such as organic matter, soil pH, soil moisture, soil temperature, etc., this review provides comprehensive updates about the emission characteristics and biogeochemical transformation mechanism of NO. Moreover, this article will also be helpful to understand the processes involved in the consumption of NO in soils. Further studies describing the functions of NO in biological system are also discussed.
Collapse
Affiliation(s)
- Awais Shakoor
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Abdullah
- State-Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Amina
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Ma
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
Scheer C, Meier R, Brüggemann N, Grace PR, Dannenmann M. An improved (15) N tracer approach to study denitrification and nitrogen turnover in soil incubations. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2017-2026. [PMID: 27470312 DOI: 10.1002/rcm.7689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Denitrification (the reduction of oxidized forms of inorganic nitrogen (N) to N2 O and N2 ) from upland soils is considered to be the least well-understood process in the global N cycle. The main reason for this lack of understanding is that the terminal product (N2 ) of denitrification is extremely difficult to measure against the large atmospheric background. METHODS We describe a system that combines the (15) N-tracer technique with a 40-fold reduced N2 (2% v/v) atmosphere in a fully automated incubation setup for direct quantification of N2 and N2 O emissions. The δ(15) N values of the emitted N2 and N2 O were determined using a custom-built gas preparation unit that was connected to a DELTA V Plus isotope ratio mass spectrometer. The system was tested on a pasture soil from sub-tropical Australia under different soil moisture conditions and combined with (15) N tracing in extractable soil N pools to establish a full N balance. RESULTS The method proved to be highly sensitive for detecting N2 (1.12 μg N h(-1) kg(-1) dry soil (ds)) and N2 O (0.36 μg N h(-1) kg(-1) ds) emissions. The main end product of denitrification in the investigated soil was N2 O for both water contents, with N2 accounting for only 3% to 13% of the total denitrification losses. Between 90 and 95% of the added (15) N fertiliser could be recovered in N gases and extractable soil N pools. CONCLUSIONS The high and N2 O-dominated denitrification rates found in this study are pointing at both the high ecological and the agronomic importance of denitrification in subtropical pasture soils. The new system allows for a direct and highly sensitive detection of N2 and N2 O fluxes from soils and may help to significantly improve our mechanistic understanding of N cycling and denitrification in terrestrial agro-ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Clemens Scheer
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Rudolf Meier
- Karlsruhe Institute of Technology - Institute of Meteorology and Climate Research, Kreuzeckbahnstraße 19, 82467, Garmisch-Partenkirchen, Germany
| | - Nicolas Brüggemann
- Forschungszentrum Jülich, Institute of Bio- and Geosciences - Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Peter R Grace
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Michael Dannenmann
- Karlsruhe Institute of Technology - Institute of Meteorology and Climate Research, Kreuzeckbahnstraße 19, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
14
|
Sgouridis F, Ullah S. Relative Magnitude and Controls of in Situ N2 and N2O Fluxes due to Denitrification in Natural and Seminatural Terrestrial Ecosystems Using (15)N Tracers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14110-14119. [PMID: 26509488 DOI: 10.1021/acs.est.5b03513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Denitrification is the most uncertain component of the nitrogen (N) cycle, hampering our ability to assess its contribution to reactive N (Nr) removal. This uncertainty emanates from the difficulty in measuring in situ soil N2 production and from the high spatiotemporal variability of the process itself. In situ denitrification was measured monthly between April 2013 and October 2014 in natural (organic and forest) and seminatural ecosystems (semi-improved and improved grasslands) in two UK catchments. Using the (15)N-gas flux method with low additions of (15)NO3(-) tracer, a minimum detectable flux rate of 4 μg N m(-2) h(-1) and 0.2 ng N m(-2) h(-1) for N2 and N2O, respectively, was achieved. Denitrification rates were lower in organic and forest (8 and 10 kg N ha(-1) y(-1), respectively) than in semi-improved and improved grassland soils (13 and 25 kg N ha(-1) y(-1), respectively). The ratio of N2O/N2 + N2O was low and ranged from <1% to 7% across the sites. Variation in denitrification was driven by differences in soil respiration, nitrate, C:N ratio, bulk density, moisture, and pH across the sites. Overall, the contribution of denitrification to Nr removal in natural ecosystems was ~50% of the annual atmospheric Nr deposition, making these ecosystems vulnerable to chronic N saturation.
Collapse
Affiliation(s)
- Fotis Sgouridis
- School of Physical and Geographical Sciences, Keele University , Staffordshire ST5 5BG, United Kingdom
| | - Sami Ullah
- School of Physical and Geographical Sciences, Keele University , Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
15
|
Morse JL, Durán J, Groffman PM. Soil Denitrification Fluxes in a Northern Hardwood Forest: The Importance of Snowmelt and Implications for Ecosystem N Budgets. Ecosystems 2015. [DOI: 10.1007/s10021-015-9844-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Microbial denitrification dominates nitrate losses from forest ecosystems. Proc Natl Acad Sci U S A 2015; 112:1470-4. [PMID: 25605898 DOI: 10.1073/pnas.1416776112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Denitrification removes fixed nitrogen (N) from the biosphere, thereby restricting the availability of this key limiting nutrient for terrestrial plant productivity. This microbially driven process has been exceedingly difficult to measure, however, given the large background of nitrogen gas (N2) in the atmosphere and vexing scaling issues associated with heterogeneous soil systems. Here, we use natural abundance of N and oxygen isotopes in nitrate (NO3 (-)) to examine dentrification rates across six forest sites in southern China and central Japan, which span temperate to tropical climates, as well as various stand ages and N deposition regimes. Our multiple stable isotope approach across soil to watershed scales shows that traditional techniques underestimate terrestrial denitrification fluxes by up to 98%, with annual losses of 5.6-30.1 kg of N per hectare via this gaseous pathway. These N export fluxes are up to sixfold higher than NO3 (-) leaching, pointing to widespread dominance of denitrification in removing NO3 (-) from forest ecosystems across a range of conditions. Further, we report that the loss of NO3 (-) to denitrification decreased in comparison to leaching pathways in sites with the highest rates of anthropogenic N deposition.
Collapse
|
17
|
Mander U, Well R, Weymann D, Soosaar K, Maddison M, Kanal A, Lõhmus K, Truu J, Augustin J, Tournebize J. Isotopologue ratios of N2O and N2 measurements underpin the importance of denitrification in differently N-loaded riparian alder forests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11910-11918. [PMID: 25264900 DOI: 10.1021/es501727h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Known as biogeochemical hotspots in landscapes, riparian buffer zones exhibit considerable potential concerning mitigation of groundwater contaminants such as nitrate, but may in return enhance the risk for indirect N2O emission. Here we aim to assess and to compare two riparian gray alder forests in terms of gaseous N2O and N2 fluxes and dissolved N2O, N2, and NO3(-) in the near-surface groundwater. We further determine for the first time isotopologue ratios of N2O dissolved in the riparian groundwater in order to support our assumption that it mainly originated from denitrification. The study sites, both situated in Estonia, northeastern Europe, receive contrasting N loads from adjacent uphill arable land. Whereas N2O emissions were rather small at both sites, average gaseous N2-to-N2O ratios inferred from closed-chamber measurements and He-O laboratory incubations were almost four times smaller for the heavily loaded site. In contrast, groundwater parameters were less variable among sites and between landscape positions. Campaign-based average (15)N site preferences of N2O (SP) in riparian groundwater ranged between 11 and 44 ‰. Besides the strong prevalence of N2 emission over N2O fluxes and the correlation pattern between isotopologue and water quality data, this comparatively large range highlights the importance of denitrification and N2O reduction in both riparian gray alder stands.
Collapse
Affiliation(s)
- Ulo Mander
- Institute of Ecology and Earth Sciences, University of Tartu , 51014 Tartu, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liao T, Wang R, Zheng X, Sun Y, Butterbach-Bahl K, Chen N. Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique. CHEMOSPHERE 2013; 93:2848-2853. [PMID: 24184044 DOI: 10.1016/j.chemosphere.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 06/02/2023]
Abstract
The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2μgN or Ch(-1)kg(-1)ds, or 17, 0.3, 1.8, 82, and 6μgN or Cm(-2)h(-1), for N2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification.
Collapse
Affiliation(s)
- Tingting Liao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | |
Collapse
|
19
|
Yanai RD, Vadeboncoeur M, Hamburg SP, Arthur MA, Fuss CB, Groffman PM, Siccama TG, Driscoll CT. From missing source to missing sink: long-term changes in the nitrogen budget of a northern hardwood forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11440-8. [PMID: 24050261 PMCID: PMC3805315 DOI: 10.1021/es4025723] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 05/13/2023]
Abstract
Biogeochemical monitoring for 45 years at the Hubbard Brook Experimental Forest in New Hampshire has revealed multiple surprises, seeming contradictions, and unresolved questions in the long-term record of ecosystem nitrogen dynamics. From 1965 to 1977, more N was accumulating in living biomass than was deposited from the atmosphere; the "missing" N source was attributed to biological fixation. Since 1992, biomass accumulation has been negligible or even negative, and streamwater export of dissolved inorganic N has decreased from ~4 to ~1 kg of N ha(-1) year(-1), despite chronically elevated atmospheric N deposition (~7 kg of N ha(-1) year(-1)) and predictions of N saturation. Here we show that the ecosystem has shifted to a net N sink, either storing or denitrifying ~8 kg of N ha(-1) year(-1). Repeated sampling over 25 years shows that the forest floor is not detectably accumulating N, but the C:N ratio is increasing. Mineral soil N has decreased nonsignificantly in recent decades, but the variability of these measurements prevents detection of a change of <700 kg of N ha(-1). Whether the excess N is accumulating in the ecosystem or lost through denitrification will be difficult to determine, but the distinction has important implications for the local ecosystem and global climate.
Collapse
Affiliation(s)
- Ruth D. Yanai
- College
of Environmental Science and Forestry, State
University of New York, Syracuse, New York 13210, United States
| | - Matthew
A. Vadeboncoeur
- Earth
Systems Research Center, University of New
Hampshire, Durham, New Hampshire 03824, United States
| | - Steven P. Hamburg
- Environmental
Defense Fund, Boston, Massachusetts 02108, United States
| | - Mary A. Arthur
- Department
of Forestry, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Colin B. Fuss
- Department
of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Peter M. Groffman
- Cary Institute
of Ecosystem Studies, Millbrook, New York 12545, United States
| | - Thomas G. Siccama
- School of
Forestry and Environmental Studies, Yale
University, New Haven, Connecticut 06511, United States
| | - Charles T. Driscoll
- Department
of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|