1
|
Song Y, Du W, Hu J. Association of per-and polyfluoroalkyl substances with thyroid hormones in the umbilical cord blood of neonates born by spontaneous delivery. Front Public Health 2025; 13:1528588. [PMID: 40241969 PMCID: PMC12000041 DOI: 10.3389/fpubh.2025.1528588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Objective Per-and polyfluoroalkyl substances (PFASs) affect thyroid function, impairing neonatal development and growth. This study aims to explore the association between PFASs and thyroid hormones in the umbilical cord blood of neonates delivered spontaneously. Methods A total of 119 puerperae who delivered vaginally were included. Twenty-nine PFASs were quantified in the umbilical cord plasma using a Waters ACQUITY ultra-performance liquid chromatography (UPLC) system coupled with a Waters Quattro Premier XE triple quadrupole mass spectrometer. Five thyroid hormones were quantified in umbilical cord plasma using a Roche Analytics E170 modular analyzer. Results Perfluorooctanoic acid (PFOA), 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA), and linear perfluorooctane sulfonic acid (L-PFOS) were present in the highest levels in the umbilical cord blood with median (quartile 1-quartile 3) levels of 3.23 (2.32-4.32), 1.35 (0.84-2.01), and 0.94 (0.63-1.41) ng/mL, respectively. The linear regression analysis revealed that linear perfluorohexane sulfonic acid (L-PFHxS) (β = 0.557, p = 0.038) and perfluorononanoic acid (PFNA) (β = 0.613, p = 0.045) were independently and positively associated with free triiodothyronine (T3), but PFOA exhibited an inverse trend (β = -0.040, p = 0.002). The sum of 3,4,5 monohydroperfluorooctane sulfonates (Σ3,4,5 m-PFOS) was independently and negatively associated with total T3 (β = -0.349, p = 0.007). Perfluorododecanoic acid (PFDoA) was found to have a positively correlation with total T3 (β = 2.107, p = 0.027) and free T3 (β = 5.254, p = 0.008). Conclusion L-PFHxS, PFNA, PFOA, Σ3,4,5 m-PFOS, and PFDoA are associated with thyroid hormones in the umbilical cord blood of neonates delivered spontaneously.
Collapse
Affiliation(s)
| | | | - Jufeng Hu
- Department of Obstetrics, Women and Children Health Care Hospital of Linyi, Linyi, China
| |
Collapse
|
2
|
Lejeune N, Rouxel E, Monfort C, Tillaut H, Rouget F, Costet N, Giton F, Gaudreau É, Lainé F, Garlantézec R, Cordier S, Chevrier C, Warembourg C. Associations between prenatal exposure to PFAS and cardiometabolic health in preadolescents. ENVIRONMENTAL RESEARCH 2025; 266:120607. [PMID: 39672492 DOI: 10.1016/j.envres.2024.120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION While a number of studies have examined the effects of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on childhood obesity, the results reported have been inconsistent and few studies have integrated biological markers. The aim of this study was to investigate the associations between prenatal exposure to PFAS and cardiometabolic health parameters at age 12, taking pubertal stage into consideration. METHOD This study included 394 mother-child pairs enrolled in the PELAGIE mother-child cohort (France). Nine PFAS were measured in umbilical cord blood, and the children attended a clinical examination at age 12. Anthropometry, blood metabolic markers, and blood pressure were measured and used to build an internal cardiometabolic score. Linear regression and Quantile G-computation models were used to evaluate individual and mixture PFAS effects, adjusting for confounders and stratifying by sex and pubertal stage. RESULTS No statistically significant association was observed between prenatal exposure to PFAS and cardiometabolic score at age 12. In post-menarche girls, perfluorohexane sulfonate (PFHxS) and perfluorodecanoic acid (PFDA) were statistically significantly associated with a decrease in a number of adiposity parameters (e.g., Body mass index z-score: beta [95%CI] = -0.37 [-0.67; -0.07]), as well as a decrease in low-density lipoproteins (LDL) and leptin levels. Similar results were observed with PFAS mixture, with statistically significantly decreased tricipital skinfolds (beta [95%CI] = -1.30 [(-2.54;-0.06)]). Isolated associations, including higher systolic blood pressure, changes in cholesterol levels, and lower adiponectin levels were observed in specific subgroups. CONCLUSION There is no clear evidence of an association between prenatal exposure to PFAS and the cardiometabolic health at earlier stage of pubertal development. However, inverse associations between PFAS and anthropometric measures have been observed in post-menarche girls. While the literature on this topic is scarce in pre-adolescents, these results suggest the importance of considering sex and pubertal stage in these associations.
Collapse
Affiliation(s)
- Naomi Lejeune
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Elke Rouxel
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Christine Monfort
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Hélène Tillaut
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Florence Rouget
- Université de Rennes, CHU Rennes, Inserm UMR S 1085, Irset, France
| | - Nathalie Costet
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Inserm, IMRB, 1 rue Gustave Eiffel, 94000, Créteil, France
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Av. Wolfe, G1V 5B3, Québec, QC, Canada
| | - Fabrice Lainé
- Centre d'Investigation Clinique CHU-Rennes (CIC 1414), CHU Rennes, Institut National de la Santé et de la Recherche Médicale, Inserm, 2 rue Henri Le Guilloux 35033, Rennes, France
| | | | - Sylvaine Cordier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Cécile Chevrier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Charline Warembourg
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France.
| |
Collapse
|
3
|
Saha T, Gbemavo MCJ, Booij L, Arbuckle TE, Ashley-Martin J, Fisher M, Muckle G, Lanphear B, Asztalos E, Séguin J, Bouchard MF. Prenatal exposure to PFAS and the association with neurobehavioral and social development during childhood. Int J Hyg Environ Health 2025; 263:114469. [PMID: 39326240 DOI: 10.1016/j.ijheh.2024.114469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) is ubiquitous and may be associated with neurodevelopmental toxicity. However, epidemiological studies report mixed results on the risks of gestational PFAS exposure for children's neurobehavioral impairment. We aimed to examine the associations between prenatal PFAS exposure and children's neurobehavioral and social problems. We measured plasma concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexane sulphonate (PFHxS) in first-trimester blood from 757 women from the Canadian Maternal-Infant Research on Environmental Chemicals (MIREC) study. Children were assessed at 3-4 years with the Behavior Assessment System for Children-2 (BASC-2) and the Social Responsiveness Scale-2 (SRS-2) (n = 756 and 496, respectively). We used multivariable linear regression to examine associations between individual and summed log2-transformed PFAS and scores on these assessments. Effect modification by sex was evaluated through interaction terms and stratified analyses. In the sample combining both sexes, a doubling of maternal PFOA was significantly associated with lower T-scores on the following SRS-2 scales: Social Motivation, DSM-Social Communication, and SRS Total score (B ranging from -1.08 to -0.78), suggesting lesser impairments with higher exposure. In sex-stratified analysis, PFOA was related to significantly lower T-scores in boys for these BASC-2 scales: Behavioral Symptoms Index, Externalizing Problems, Aggression, and Hyperactivity (B ranging from -1.32 to -1.03). In girls, however, PFAS were associated with more problem behaviors, but most associations were small and the CIs included the null, with the exception of PFOA being significantly associated with higher T-scores for the BASC-2Anxiety scale (B = 1.84, 95% CI: 0.36, 3.32). In conclusion, we did not observe strong associations between prenatal exposure to the PFAS evaluated and children's neurobehavioral and social development in this population with low exposure levels. The results show mixed findings, depending on children's sex, neurodevelopmental outcome, and specific PFAS.
Collapse
Affiliation(s)
- Trisha Saha
- Institut national de la recherche scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 des Prairies Blvd, Laval, QC, H7V 1B7, Canada; CHU Sainte-Justine Research Centre, 3175 Chemin Côte-Sainte-Catherine, Montreal, QC, Canada, H3T 1C5.
| | - M Corinaud J Gbemavo
- CHU Sainte-Justine Research Centre, 3175 Chemin Côte-Sainte-Catherine, Montreal, QC, Canada, H3T 1C5; Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, 7101 Avenue Du Parc, Montreal, QC, Canada, H3N 1X9.
| | - Linda Booij
- CHU Sainte-Justine Research Centre, 3175 Chemin Côte-Sainte-Catherine, Montreal, QC, Canada, H3T 1C5; Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC, Canada, H3A 1A1; Douglas Mental Health University Institute, 6875 LaSalle Blvd, Montreal, QC, H4H 1R3, Canada.
| | - Tye E Arbuckle
- Environmental Health Sciences and Research Bureau, Health Canada, 269 Laurier Ave. W., Ottawa, ON, Canada, K1A 0K9.
| | - Jillian Ashley-Martin
- Environmental Health Sciences and Research Bureau, Health Canada, 269 Laurier Ave. W., Ottawa, ON, Canada, K1A 0K9.
| | - Mandy Fisher
- Environmental Health Sciences and Research Bureau, Health Canada, 269 Laurier Ave. W., Ottawa, ON, Canada, K1A 0K9.
| | - Gina Muckle
- CHU de Québec Research Centre, Université Laval, 2400 Av. D'Estimauville, Quebec, QC, Canada, G1E 6W2; School of Psychology, Université Laval, 2325 Rue des Bibliothèques, Quebec, QC, Canada, G1V 0A6.
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, B.C., Canada, V5A 1S6.
| | - Elizabeth Asztalos
- Department of Newborn & Developmental Paediatrics, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada, M4N 3M5.
| | - Jean Séguin
- CHU Sainte-Justine Research Centre, 3175 Chemin Côte-Sainte-Catherine, Montreal, QC, Canada, H3T 1C5; Department of Psychiatry, School of Medicine, Université de Montréal, Montreal, QC, Canada, H3T 1C5.
| | - Maryse F Bouchard
- Institut national de la recherche scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 des Prairies Blvd, Laval, QC, H7V 1B7, Canada; CHU Sainte-Justine Research Centre, 3175 Chemin Côte-Sainte-Catherine, Montreal, QC, Canada, H3T 1C5.
| |
Collapse
|
4
|
Kishi R, Ikeda A, Ketema RM. The potential health risks of exposure to environmental chemicals - Global implications for future generations. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:197-215. [PMID: 40222897 DOI: 10.2183/pjab.101.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
In 2001, we launched the Hokkaido Study, the first prospective birth cohort study in Japan. We are currently tracking the effects of environmental chemicals, using a life course approach. The study examines life circumstances after birth, and the longest follow-up to date is 20 years of age. We have measured prenatal exposure to dioxins, organochlorine pesticides, per- and polyfluoroalkyl substances, plasticizers such as di(2-ethylhexyl) phthalate, and bisphenol A. Our findings have mostly revealed that increased exposure to these environmental chemicals is linked to increased risk of lower birth size, effects on thyroid and steroid hormones, adipokine levels, as well as disruption of neurodevelopment, including causing asthma and respiratory symptoms. However, it should be noted that our findings also include protective or null findings, which may be due to low chemical concentrations or differences in prenatal or postnatal exposure. We would like to emphasize the importance of long-term continuation of the cohort, effective utilization of the data, and application of the results to environmental and health policies.
Collapse
Affiliation(s)
- Reiko Kishi
- Distinguished Professor, Center for Environmental and Health Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
- WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Kita-ku, Sapporo, Hokkaido, Japan
| | - Atsuko Ikeda
- WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Kita-ku, Sapporo, Hokkaido, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Rahel Mesfin Ketema
- WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Kita-ku, Sapporo, Hokkaido, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Bharal B, Ruchitha C, Kumar P, Pandey R, Rachamalla M, Niyogi S, Naidu R, Kaundal RK. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176941. [PMID: 39454776 DOI: 10.1016/j.scitotenv.2024.176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in various products, including food packaging, textiles, and firefighting foam, owing to their unique properties such as amphiphilicity and strong CF bonds. Despite their widespread use, concerns have arisen due to their resistance to degradation and propensity for bioaccumulation in both environmental and human systems. Emerging evidence suggests a potential link between PFAS exposure and neurotoxic effects, spanning cognitive deficits, neurodevelopmental disorders, and neurodegenerative diseases. This review comprehensively synthesizes current knowledge on PFAS neurotoxicity, drawing insights from epidemiological studies, animal experiments, and mechanistic investigations. PFAS, known for their lipophilic nature, tend to accumulate in lipid-rich tissues, including the brain, breaching biological barriers such as the blood-brain barrier (BBB). The accumulation of PFAS within the central nervous system (CNS) has been implicated in a spectrum of neurological maladies. Neurotoxicity induced by PFAS manifests through a multitude of direct and indirect mechanisms. A growing body of research associated PFAS exposure with BBB disruption, calcium dysregulation, neurotransmitter alterations, neuroinflammation, oxidative stress, and mitochondrial dysfunction, all contributing to neuronal impairment. Despite notable strides in research, significant lacunae persist, necessitating further exploration to elucidate the full spectrum of PFAS-mediated neurotoxicity. Prospective research endeavors should prioritize developing biomarkers, delineating sensitive exposure windows, and exploring mitigation strategies aimed at safeguarding neurological integrity within populations vulnerable to PFAS exposure.
Collapse
Affiliation(s)
- Bhagyashree Bharal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Chanda Ruchitha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Paarth Kumar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravinder K Kaundal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
6
|
Xu L, Li Y, Chen L, Wang S, Ding X, Zhu P, Jiao J. Transplacental transfer of perfluorinated and poly-fluorinated substances in maternal-cord serum and association with birth weight: A birth cohort study, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124943. [PMID: 39260555 DOI: 10.1016/j.envpol.2024.124943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Although the effects of traditional perfluorinated and polyfluorinated substances (PFASs) exposure have been extensively explored, research on novel PFASs remains limited, and there is a lack of data regarding their placental transfer and fetal impact. Herein, we aimed to examine maternal and fetal PFASs exposure levels, placental transfer efficiency (TTE), and the consequences of prenatal exposure on birth weight. The study included 214 mother-child pairs recruited in Wuxi birth cohort from 2019 to 2021. Twenty-three PFASs were quantified in maternal serum during the second trimester and umbilical serum during delivery. Median concentrations of ∑23PFASs in maternal and cord sera were 9.34 and 6.88 ng/mL, respectively. The novel alternatives exhibited elevated levels of maternal and fetal exposure, such as perfluorovaleric acid (PFPeA, 2.00 ng/mL and 1.66 ng/mL, respectively) and perfluorohexane sulfonate (PFHxS, 1.77 and 1.14 ng/mL, respectively). With increasing carbon chain length, the TTE of perfluorocarbonic acid (PFCAs) displayed a pattern of initially decreasing before subsequently increasing, with novel alternatives exhibiting a relatively high TTE. Multiple linear regression showed that exposure to perfluorobutane sulfonate (PFBS) and PFPeA in cord serum positively correlated with the birth weight of female infants (β = 231.04 g, 95% confidence interval [CI]: 21.73-440.36; β = 121.26 g, 95% CI: 29.51-213.00). No nonlinear relationship was observed between cord serum PFASs and birth weight. The weighted quantile sum (WQS) regression analysis has reaffirmed that PFPeA and PFBS were predominant contributors to the positive correlation observed between the mixture of PFASs and birth weight. Our findings suggest that novel PFASs may exhibit a heightened susceptibility for transplacental transfer and that exposure to PFBS and PFPeA during pregnancy could be linked to increased birth weight.
Collapse
Affiliation(s)
- Lingling Xu
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Yao Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Limei Chen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Shunan Wang
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Pengfei Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Jiandong Jiao
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China.
| |
Collapse
|
7
|
Park NY, Cho SW, Seo YE, Chae H, Lee I, Lee YA, Jun JK, Kim EN, Oh JW, Choi K, Kho Y. Exposure to and Transplacental Transfer of Per- and Polyfluoroalkyl Substances in a Twin Pregnancy Cohort in Korea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39503683 DOI: 10.1021/acs.est.4c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Twin pregnancies involving assisted reproductive technology, particularly among older women, are considered to be high risk and vulnerable to chemical exposures. Per- and polyfluoroalkyl substances (PFAS) can cross the placenta and affect the fetus, but their transplacental transfer (TPT) is not well characterized for twin pregnancies. We employed a subset of twin pregnancies from the Ideal Breast Milk (IBM) cohort and measured the levels of PFAS and related chemicals in maternal (n = 78) and cord serum (n = 156) samples. L-PFOS and PFOA were detected at higher levels in maternal serum, with geometric means of 4.22 and 2.80 ng/mL, respectively, while the level of Br-PFHxS was higher in cord serum (0.29 ng/mL). Higher maternal PFAS levels were associated with the occurrence of maternal vascular malperfusion. Greater differences in cord PFAS levels between twin newborns were associated with higher maternal PFAS levels and an asymmetrical placental perfusion. The TPT ratio exhibited a U-shaped pattern with the number of carbons of PFAS, similar to a singleton pregnancy. Moreover, those with eight carbon atoms, i.e., 9Cl-PF3ONS, PFOA, and PFOS, showed different TPT efficiencies with respect to their structure and functional group. While the twin pregnancy does not appear to influence exposure levels or TPT efficiencies of PFAS and related chemicals, the consequences of the exposure warrant further investigations in this population.
Collapse
Affiliation(s)
- Na-Youn Park
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do 13135, South Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Ye Eun Seo
- Department of Food Technology & Service, Eulji University, Seongnam-si, Gyeonggi-do 13135, South Korea
| | - Heeyeon Chae
- Department of Environmental Health Sciences, School of Public Health, and Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Inae Lee
- Department of Environmental Health Sciences, School of Public Health, and Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Hospital and Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Eun Na Kim
- Department of Pathology, Seoul National University Hospital, Seoul 03080, South Korea
| | - Jeong-Won Oh
- Department of Obstetrics and Gynecology, Soonchunhyang University Seoul Hospital, Seoul 04401, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, and Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam-si, Gyeonggi-do 13135, South Korea
| |
Collapse
|
8
|
Tan Y, Eick SM, Dunlop AL, Barr DB, Taibl KR, Steenland K, Kannan K, Robinson M, Chang CJ, Panuwet P, Yakimavets V, Marsit CJ, Ryan PB, Liang D. A Prospective Analysis of Per- and Polyfluoroalkyl Substances from Early Pregnancy to Delivery in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117001. [PMID: 39504273 PMCID: PMC11540153 DOI: 10.1289/ehp14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Longitudinal trends in per- and polyfluoroalkyl substances (PFAS) serum concentrations across pregnancy have not been thoroughly examined, despite evidence linking prenatal PFAS exposures with adverse birth outcomes. OBJECTIVES We sought to characterize longitudinal PFAS concentrations across pregnancy and to examine the maternal-fetal transfer ratio among participants in a study of risk and protective factors for adverse birth outcomes among African Americans. METHODS In the Atlanta African American Maternal-Child cohort (2014-2020), we quantified serum concentrations of four PFAS in 376 participants and an additional eight PFAS in a subset of 301 participants during early (8-14 weeks gestation) and late pregnancy (24-30 weeks gestation). Among these, PFAS concentrations were also measured among 199 newborns with available dried blood spot (DBS) samples. We characterized the patterns, variability, and associations in PFAS concentrations at different time points across pregnancy using intraclass correlation coefficients (ICCs), maternal-newborn pairs transfer ratios, linear mixed effect models, and multivariable linear regression, adjusting for socioeconomic and prenatal predictors. RESULTS Perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were detected in > 95 % of maternal samples, with PFHxS and PFOS having the highest median concentrations. We observed high variability in PFAS concentrations across pregnancy time points (ICC = 0.03 - 0.59 ). All median PFAS concentrations increased from early to late pregnancy, except for PFOA and N-methyl perfluorooctane sulfonamido acetic acid (NMFOSAA), which decreased [paired t -test for all PFAS p < 0.05 except for PFOA and perfluorobutane sulfonic acid (PFBS)]. Prenatal serum PFAS were weakly to moderately correlated with newborn DBS PFAS (- 0.05 < rho < 0.49 ). The median maternal-fetal PFAS transfer ratio was lower for PFAS with longer carbon chains. After adjusting for socioeconomic and prenatal predictors, in linear mixed effect models, the adjusted mean PFAS concentrations significantly increased during pregnancy, except for PFOA. In multivariable linear regression, PFAS concentrations in early pregnancy significantly predicted the PFAS concentrations in late pregnancy and in newborns. DISCUSSION We found that the concentrations of most PFAS increased during pregnancy, and the magnitude of variability differed by individual PFAS. Future studies are needed to understand the influence of within-person PFAS variability during and after pregnancy on birth outcomes. https://doi.org/10.1289/EHP14334.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Bali SK, Martin R, Almeida NMS, Saunders C, Wilson AK. Per- and Polyfluoroalkyl (PFAS) Disruption of Thyroid Hormone Synthesis. ACS OMEGA 2024; 9:39554-39563. [PMID: 39346893 PMCID: PMC11425649 DOI: 10.1021/acsomega.4c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of environmental pollutants that have been linked to a variety of health problems in humans, including the disruption of thyroid functions. Herein, for the first time, the impact of PFAS on thyroid hormone synthesis is shown. Mid- to long-chain PFAS impact thyroid hormone synthesis by changing the local hydrogen bond network as well as the required orientation of hormonogenic residues, stopping the production of thyroxine (T4). Furthermore, the toxic effects of sulfonic PFAS are more prominent than those of carboxylic PFAS, highlighting that the exposure to these specific compounds can pose greater problems for thyroid homeostasis.
Collapse
Affiliation(s)
- Semiha Kevser Bali
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Rebecca Martin
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Nuno M S Almeida
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Catherine Saunders
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
10
|
Qu R, Wang J, Li X, Zhang Y, Yin T, Yang P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. TOXICS 2024; 12:678. [PMID: 39330606 PMCID: PMC11435644 DOI: 10.3390/toxics12090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
PFAS (per- and polyfluoroalkyl substances) have been extensively used across numerous industries and consumer goods. Due to their high persistence and mobility, they are ubiquitous in the environment. Exposure to PFAS occurs in people via multiple pathways such as dermal contact, water supply, air inhalation, and dietary intake. Even if some PFAS are being phased out because of their persistent presence in the environment and harmful impacts on human health, mixes of replacement and legacy PFAS will continue to pollute the ecosystem. Numerous toxicological investigations have revealed harmful effects of PFAS exposure on female reproductive health, e.g., polycystic ovaries syndrome, premature ovarian failure, endometriosis, reproductive system tumors, pregnancy complications, and adverse pregnancy outcomes. Despite extensive epidemiological studies on the reproductive toxicity of PFAS, research findings remain inconsistent, and the underlying mechanisms are not well understood. In this review, we give an in-depth description of the sources and pathways of PFAS, and then review the reproductive toxicity of PFAS and its possible mechanisms.
Collapse
Affiliation(s)
- Rui Qu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tailang Yin
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
11
|
Xu Y, Sui X, Li J, Zhang L, Wang P, Liu Y, Shi H, Zhang Y. Early-life exposure to per- and polyfluoroalkyl substances: Analysis of levels, health risk and binding abilities to transport proteins. ECO-ENVIRONMENT & HEALTH 2024; 3:308-316. [PMID: 39258237 PMCID: PMC11385757 DOI: 10.1016/j.eehl.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 04/14/2024] [Indexed: 09/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) can pass through the placenta and adversely affect fetal development. However, there is a lack of comparison of legacy and emerging PFAS levels among different biosamples in pregnant women and their offspring. This study, based on the Shanghai Maternal-Child Pairs Cohort, analyzed the concentrations of 16 PFAS in the maternal serum, cord serum, and breast milk samples from 1,076 mother-child pairs. The placental and breastfeeding transfer efficiencies of PFAS were determined in maternal-cord and maternal-milk pairs, respectively. The binding affinities of PFAS to five transporters were simulated using molecular docking. The results suggested that PFAS were frequently detected in different biosamples. The median concentration of perfluorooctane sulfonate (PFOS) was the highest at 8.85 ng/mL, followed by perfluorooctanoic acid (PFOA) at 7.13 ng/mL and 6:2 chlorinated polyfluorinated ether sulfonate at 5.59 ng/mL in maternal serum. The median concentrations of PFOA were highest in cord serum (4.23 ng/mL) and breast milk (1.08 ng/mL). PFAS demonstrated higher placental than breastfeeding transfer efficiencies. The transfer efficiencies and the binding affinities of most PFAS to proteins exhibited alkyl chain length-dependent patterns. Furthermore, we comprehensively assessed the estimated daily intakes (EDIs) of PFAS in breastfeeding infants of different age groups and used the hazard quotient (HQ) to characterize the potential health risk. EDIs decreased with infant age, and PFOS had higher HQs than PFOA. These findings highlight the significance of considering PFAS exposure, transfer mechanism, and health risks resulting from breast milk intake in early life.
Collapse
Affiliation(s)
- Yaqi Xu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyao Sui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Li Q, Zhang Y, Chen C, Lou J, Wang S, Hang JG, Nakayama SF, Kido T, Feng H, Sun XL, Shan J. Association Between Prenatal Exposure to Per- and Poly-Fluoroalkyl Substances From Electronic Waste Disassembly Areas and Steroid Hormones in Human Milk Samples. GEOHEALTH 2024; 8:e2024GH001142. [PMID: 39175507 PMCID: PMC11339319 DOI: 10.1029/2024gh001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS), which are long-lasting environmental contaminants that are released into the environment during the e-waste disassembly process, pose a threat to human health. Human milk is a complex and dynamic mixture of endogenous and exogenous substances, including steroid hormones and PFAS. Therefore, in this study, we aimed to investigate the association between PFAS and steroid hormones in human milk from women living close to an e-waste disassembly area. In 2021, we collected milk samples from 150 mothers within 4 weeks of delivery and analyzed them via liquid chromatography-tandem mass spectrometry to determine the levels of 21 perfluorinated compounds and five steroid hormones (estrone, estriol, testosterone, progesterone, and androstenedione [A-dione]). We also performed multiple linear regression analysis to clarify the association between maternal PFAS exposure and steroid hormone concentrations. Our results indicated that PFOA and PFOS were positively associated with estrone (β, 0.23; 95% CI, 0.08-0.39) and A-dione (β, 0.186; 95% CI, 0.016-0.357) concentrations in human milk, respectively. Further, the average estimated daily intake of PFOA and PFOS were 36.5 ng/kg bw/day (range, 0.52-291.7 ng/kg bw/day) and 5.21 ng/kg bw/day (range, 0.26-32.3 ng/kg bw/day), respectively. Of concern, the PFAS intake of breastfeeding infants in the study area was higher than the recommended threshold. These findings suggested that prenatal exposure to PFAS from the e-waste disassembly process can influence steroid hormones levels in human milk. Increased efforts to mitigate mother and infant exposure to environmental pollutants are also required.
Collapse
Affiliation(s)
- Qiyao Li
- School of MedicineThe First Affiliated HospitalHuzhou UniversityHuzhouChina
| | - Yan Zhang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Chen Chen
- School of MedicineThe First Affiliated HospitalHuzhou UniversityHuzhouChina
| | - Jianlin Lou
- School of MedicineThe First Affiliated HospitalHuzhou UniversityHuzhouChina
| | | | - Jin Guo Hang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Shoji F. Nakayama
- Japan Environment and Children's Study Programme OfficeNational Institute for Environmental StudiesTsukubaJapan
| | - Teruhiko Kido
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Hao Feng
- School of MedicineJiaxing UniversityJiaxingChina
| | - Xian Liang Sun
- School of MedicineThe First Affiliated HospitalHuzhou UniversityHuzhouChina
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Jiancong Shan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityTaizhouChina
| |
Collapse
|
13
|
Morales-Grahl E, Hilz EN, Gore AC. Regrettable Substitutes and the Brain: What Animal Models and Human Studies Tell Us about the Neurodevelopmental Effects of Bisphenol, Per- and Polyfluoroalkyl Substances, and Phthalate Replacements. Int J Mol Sci 2024; 25:6887. [PMID: 38999997 PMCID: PMC11241431 DOI: 10.3390/ijms25136887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In recent decades, emerging evidence has identified endocrine and neurologic health concerns related to exposure to endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), certain per- and polyfluoroalkyl compounds (PFASs), and phthalates. This has resulted in consumer pressure to remove these chemicals from the market, especially in food-contact materials and personal care products, driving their replacement with structurally or functionally similar substitutes. However, these "new-generation" chemicals may be just as or more harmful than their predecessors and some have not received adequate testing. This review discusses the research on early-life exposures to new-generation bisphenols, PFASs, and phthalates and their links to neurodevelopmental and behavioral alterations in zebrafish, rodents, and humans. As a whole, the evidence suggests that BPA alternatives, especially BPAF, and newer PFASs, such as GenX, can have significant effects on neurodevelopment. The need for further research, especially regarding phthalate replacements and bio-based alternatives, is briefly discussed.
Collapse
Affiliation(s)
| | | | - Andrea C. Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; (E.M.-G.); (E.N.H.)
| |
Collapse
|
14
|
Wang X, Wang K, Mao W, Fan Z, Liu T, Hong R, Chen H, Pan C. Emerging perfluoroalkyl substances retard skeletal growth by accelerating osteoblasts senescence via ferroptosis. ENVIRONMENTAL RESEARCH 2024; 258:119483. [PMID: 38914254 DOI: 10.1016/j.envres.2024.119483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Due to the persistent nature and significant negative impacts of perfluorooctanoic acid (PFOA) on human health and other organisms, the emergence of new PFOA alternatives, such as perfluoro (2-methyl-3-oxhexanoic) acid (GenX) and perfluoro-3,6,9-trioxyundecanoic acid (PFO3TDA), have drawn significant attention. However, the toxic effects of PFOA and its substitutes on bones remain limited. In this study, we administered different concentrations of PFOA, GenX, and PFO3TDA via gavage to 3-week-old male BALB/C mice for four weeks. X-ray and micro-CT scans revealed shortening of the femur and tibia and significant reduction in bone density. Additionally, PFOA, GenX, and PFO3TDA promoted osteoblast senescence and impaired osteogenic capabilities. This was characterized by a decrease in the expression of osteogenesis-related genes (OCN, ALP, Runx2, etc.) and an increase in the expression of aging and inflammation-related factors (p16INK4a, P21, MMP3, etc). Furthermore, RNA sequencing revealed activation of the ferroptosis pathway in PFOA-treated osteoblasts, characterized by notable lipid peroxidation and excessive iron accumulation. Finally, by inhibiting the ferroptosis pathway with ferrostatin-1 (Fer-1), we effectively alleviated the senescence of MC3T3-E1 cells treated with PFOA, GenX, and PFO3TDA, and improved their osteogenic capabilities. Therefore, our study provides a new therapeutic insight into the impact of PFOA and its substitutes on bone growth and development.
Collapse
Affiliation(s)
- Xinglong Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Kehan Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Wenwen Mao
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhencheng Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Runyang Hong
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| | - Chun Pan
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
15
|
He J, Xu J, Zheng M, Pan K, Yang L, Ma L, Wang C, Yu J. Thyroid dysfunction caused by exposure to environmental endocrine disruptors and the underlying mechanism: A review. Chem Biol Interact 2024; 391:110909. [PMID: 38340975 DOI: 10.1016/j.cbi.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Thyroid disease has been rapidly increasing, but its causes remain unclear. At present, many studies have focused on the relationship between environmental endocrine disruptors (EEDs) and the pathogenesis of thyroid disease. Herein, we summarize such studies exploring the effects of exposure to common EEDs on thyrotoxicosis, finding that EEDs appear to contribute to the pathogenesis of thyroid-related diseases such as thyroid cancer, goiter, thyroiditis, hyperthyroidism, and hypothyroidism. To explore this causative effect in detail, we have analyzed the following three aspects of how EEDs are believed to exert their impacts on the occurrence and development of thyroid disease: (1) damage to the thyroid tissue structure, including disrupted mitochondria and the stratification of thyroid follicular epithelial cells; (2) disruption of thyroid hormone signaling, including thyroid hormone synthesis and secretion disorders, destruction of normal function of the hypothalamus-pituitary-thyroid axis, disturbed estrogen signaling in the body, alterations to the level of thyroid-stimulating hormone, inhibition of the release of thyroglobulin from thyroid cells, and reductions in the levels of sodium iodide co-transporters, thyroid peroxidase, deiodinase, and transthyretin; and (3) molecular mechanisms underlying the disruption of thyroid function, including competitive binding to T3 and T4 receptors, disturbance of the hypothalamic-pituitary-thyroid axis, activation of the ERK and Akt pathways, oxidative stress, regulation of the expression of the proto-oncogene k-Ras, tumor suppressor gene PTEN, and thyroid TSHR gene, and induction of autophagy in thyroid cells. Overall, this article reviews how EEDs can affect the occurrence and development of thyroid disease via multiple routes, thus providing new ideas to intervene for the prevention, diagnosis, treatment, and prognosis of thyroid disease.
Collapse
Affiliation(s)
- Jie He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Mucong Zheng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kai Pan
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lina Ma
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Chuyang Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
16
|
Li S, Li G, Lin Y, Sun F, Zheng L, Yu Y, Xu H. Association between Perfluoroalkyl Substances in Follicular Fluid and Polycystic Ovary Syndrome in Infertile Women. TOXICS 2024; 12:104. [PMID: 38393199 PMCID: PMC10893032 DOI: 10.3390/toxics12020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
In recent years, perfluoroalkyl substances (PFASs), a family of fluorinated organic com pounds, have garnered much attention due to their reproductive and developmental toxicity in humans. Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease that affects women of reproductive age and is a significant contributor to female infertility. A previous study suggested that PFASs play a possible role in PCOS. We conducted a clinical study investigating the relationship between PCOS and PFAS in follicular fluid. A total of 73 infertile patients with PCOS and 218 controls were recruited from the International Peace Maternity and Child Health Hospital, affiliated with the Shanghai Jiao Tong University School of Medicine. The concentrations of 12 PFASs in follicular fluid samples and sex hormones in serum were measured. Correlation analysis and multiple linear regression revealed a positive relationship between perfluorooctanoic acid (PFOA) and testosterone (T) concentrations. The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for each PFAS were estimated using multivariable logistic regression and quantile-based g-computation (QGC). The PFOA concentrations in follicular fluid were correlated with increased odds of PCOS (second vs. first quartile: OR = 3.65, 95% CI: 1.47-9.05, p = 0.005; third vs. first quartile: OR = 2.91, 95% CI: 1.17-7.26, p = 0.022; fourth vs. first quartile: OR = 3.13, 95% CI: 1.21-8.09, p = 0.019; P for trend = 0.032). This association was confirmed with QGC. Mediation analysis suggested that the mediation effect of T in association with PFOA and PCOS was not statistically significant. Our study suggests that PFOA may be a risk factor for PCOS.
Collapse
Affiliation(s)
- Sen Li
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Guojing Li
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Feng Sun
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Liqiang Zheng
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Yingying Yu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| | - Hong Xu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (S.L.); (G.L.); (Y.L.); (F.S.)
- Shanghai Municipal Key Clinical Speciality, Shanghai 200030, China
| |
Collapse
|
17
|
Yuan B, Bignert A, Andersson PL, West CE, Domellöf M, Bergman Å. Polychlorinated alkanes in paired blood serum and breast milk in a Swedish cohort study: Matrix dependent partitioning differences compared to legacy POPs. ENVIRONMENT INTERNATIONAL 2024; 183:108440. [PMID: 38232504 DOI: 10.1016/j.envint.2024.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Polychlorinated alkanes (PCAs) constitute a large group of individual congeners originating from commercial chlorinated paraffin (CP) products with carbon chain lengths of PCAs-C10-13, PCAs-C14-17, and PCAs-C18-32, occasionally containing PCAs-C6-9 impurities. The extensive use of CPs has led to global environmental pollution of PCAs. This study aimed to quantify PCAs in paired serum and breast milk of lactating Swedish mothers, exploring their concentration relationship. METHODS Twenty-five paired samples of mothers' blood serum and breast milk were analysed and concentrations were determined for PCAs C6-32 and compared to 4,4'-DDE, the PCB congener 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153), and hexachlorobenzene (HCB). RESULTS The median concentrations of PCAs-C6-9, PCAs-C10-13, PCAs-C14-17, PCAs-C18-32 and ΣPCAs in serum were 14, 790, 520, 16 and 1350 ng/g lipid weight (lw), respectively, and in breast milk 0.84, 36, 63, 6.0 and 107 ng/g lw. Levels of 4,4'-DDE, CB-153 and HCB were comparable in the two matrices, serum and breast milk at 17, 12 and 4.9 ng/g lw. The results show significant differences of PCAs-C10-13 and PCAs-C14-17 in breast milk with 22- and 6.2-times lower lw-based concentrations than those measured in serum. On wet weight the differences serum/breast milk ratios of PCAs-C6-9, PCAs-C10-13, PCAs-C14-17, PCAs-C18-32 and ΣPCAs were 1.7, 3.2, 1.0, 0.4 and 1.6, respectively, while the ratio for 4,4'-DDE, CB-153 and HCB were each close to 0.1. CONCLUSION Swedish lactating mothers had high serum concentrations of PCAs-C10-13 and PCAs-C14-17, with the ΣPCAs median serum concentration of 1350 ng/g lw. The breast milk concentration, although considerably lower at 107 ng/g lw, still surpassed those of 4,4'-DDE, CB-153 and HCB, suggesting an exposure risk of infants to PCAs. The variation in blood and breast milk accumulation between PCAs and studied legacy POPs, is rarely discussed but warrants further studies on partitioning properties as well as associated toxicological implications.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Environmental Science (ACES), Stockholm University, SE-106 92, Stockholm, Sweden; Department of Chemistry, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway.
| | - Anders Bignert
- The Swedish Museum of Natural History, SE-104 01, Stockholm, Sweden.
| | | | - Christina E West
- Department of Clinical Sciences, Umeå University, SE-901 87, Umeå, Sweden.
| | - Magnus Domellöf
- Department of Clinical Sciences, Umeå University, SE-901 87, Umeå, Sweden.
| | - Åke Bergman
- Department of Environmental Science (ACES), Stockholm University, SE-106 92, Stockholm, Sweden; Department of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
18
|
Fan Y, Guo L, Wang R, Xu J, Fang Y, Wang W, Lv J, Tang W, Wang H, Xu DX, Tao L, Huang Y. Low transplacental transfer of PFASs in the small-for-gestational-age (SGA) new-borns: Evidence from a Chinese birth cohort. CHEMOSPHERE 2023; 340:139964. [PMID: 37633609 DOI: 10.1016/j.chemosphere.2023.139964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Early life in utero exposure to per- and polyfluoroalkyl substances (PFASs) and infiltration through the placenta into cord blood pose significant risk to fetal development. Accumulating knowledge suggests that PFASs pass through the placenta in multiple transportation ways, not limiting to passive transport but also active transport or facilitated diffusion. Therefore, we propose that the transplacental transfer efficiency (TTE) could be re-evaluated as traditional cord to maternal ratio-based method might overlook certain biological or health information from the mother and fetus. In this study, we investigated 30 PFAS chemicals in paired maternal and cord serum from 195 births classified as small-for-gestational-age (SGA) and matched appropriate-for-gestational-age (AGA). PFASs were ubiquitously detected in the maternal and serum samples, with PFOA, PFOS, 6:2 Cl-PFESA and other dominant compounds. We adopted a modified TTE estimation method (TTEm), taking into consideration of the total burden mass of PFASs in the blood from mother to fetus. Using the modified TTEm, a significant (p < 0.05) decrease was observed in the PFAS transplacental transfer potential in SGA (1.6%-11.3%) compared to AGA (2.3%-21.1%), suggesting a reverse association between TTE and SGA birth risk. This is the first study attempted to re-evaluate the TTE of PFAS and indicates that TTEm might be more advantageous to reflect the transplacental transfer potency of chemicals particularly when transportation mechanisms are multi-faceted.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liyan Guo
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Ruolan Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yuanyuan Fang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenxin Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China; Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Lin Tao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Yichao Huang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
19
|
Huang S, Li X, Deng L, Xie J, Huang G, Zeng C, Wu N, Zhu S, Liu C, Mei H, Xiao H, Chen D, Yang P. Exposure to per- and polyfluoroalkyl substances in women with twin pregnancies: Patterns and variability, transplacental transfer, and predictors. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132432. [PMID: 37688869 DOI: 10.1016/j.jhazmat.2023.132432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
The extensive exposure to per- and polyfluoroalkyl substances (PFASs) has raised public health concerns. The issue of PFAS exposures in women with twin pregnancies remains unresolved. To determine exposure profiles, the transplacental transfer efficiencies (TTEs) of PFASs and predictors were estimated. We found that serum PFASs were widely detected, with detection rates of over 50% for 12 PFASs in maternal serum throughout pregnancy. The majority of PFAS levels exhibited fair to good reproducibility (ICCs > 0.40). Moderate to low correlations were observed for most PFASs between twin cord serum and maternal serum at three trimesters (rs = 0.13-0.77, p values < 0.01). We first presented a U-shaped trend for TTEs with increasing chain length for perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in twins, even in twin sex subgroups. Further, we found that PC4 and PC5 (indicators of exposure to PFHxS and 6:2 Cl-PFESA) were positively associated with age (β = 0.85, 1.30, and 1.36, respectively). Our findings suggested that there is moderate variability among certain PFASs and that these PFASs have the ability to cross the placental barrier. Exposure patterns were found to be associated with maternal age.
Collapse
Affiliation(s)
- Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Chenyan Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Nanxin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
20
|
Ren J, Jin T, Li R, Zhong YY, Xuan YX, Wang YL, Yao W, Yu SL, Yuan JT. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:847-866. [PMID: 37920972 DOI: 10.1080/1062936x.2023.2269855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Diet is an important exposure route of endocrine-disrupting chemicals (EDCs), but many unfiltered potential EDCs remain in food. The in silico prediction of EDCs is a popular method for preliminary screening. Potential EDCs in food were screened using Endocrine Disruptome, an open-source platform for inverse docking, to predict the binding probabilities of 587 food chemical contaminants with 18 human nuclear hormone receptor (NHR) conformations. In total, 25 contaminants were bound to multiple NHRs such as oestrogen receptor α/β and androgen receptor. These 25 compounds mainly include pesticides and per- and polyfluoroalkyl substances (PFASs). The prediction results were validated with the in vitro data. The structural features and the crucial amino acid residues of the four NHRs were also validated based on previous literature. The findings indicate that the screening has good prediction efficiency. In addition, the epidemic evidence about endocrine interference of PFASs in food on children was further validated through this screening. This study provides preliminary screening results for EDCs in food and a priority list for in vitro and in vivo research.
Collapse
Affiliation(s)
- J Ren
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - T Jin
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - R Li
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y Y Zhong
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y X Xuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y L Wang
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - W Yao
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - S L Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China
| | - J T Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
21
|
Beck IH, Bilenberg N, Möller S, Nielsen F, Grandjean P, Højsager FD, Halldorsson TI, Nielsen C, Jensen TK. Association Between Prenatal and Early Postnatal Exposure to Perfluoroalkyl Substances and IQ Score in 7-Year-Old Children From the Odense Child Cohort. Am J Epidemiol 2023; 192:1522-1535. [PMID: 37119029 DOI: 10.1093/aje/kwad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
Perfluoroalkyl substances (PFAS) are persistent chemicals capable of crossing the placenta and passing into breast milk. Evidence suggests that PFAS exposure may affect brain development. We investigated whether prenatal or early postnatal PFAS exposure was associated with intelligence quotient (IQ) scores in schoolchildren from the Odense Child Cohort (Denmark, 2010-2020). We assessed concentrations of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) in maternal serum collected during the first trimester of pregnancy and in child serum at age 18 months. At 7 years of age, children completed an abbreviated version of the Wechsler Intelligence Scale for Children, Fifth Edition, from which Full Scale Intelligence Quotient (FSIQ) and Verbal Comprehension Index scores were estimated. In multiple linear regression analyses conducted among 967 mother-child pairs, a doubling in maternal PFOS and PFNA concentrations was associated with a lower FSIQ score, while no significant associations were observed for PFOA, PFHxS, or PFDA. PFAS concentrations at age 18 months and duration of breastfeeding were strongly correlated, and even in structural equation models it was not possible to differentiate between the opposite effects of PFAS exposure and duration of breastfeeding on FSIQ. PFAS exposure is ubiquitous; therefore, an association with even a small reduction in IQ is of public health concern.
Collapse
|
22
|
Peritore AF, Gugliandolo E, Cuzzocrea S, Crupi R, Britti D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int J Mol Sci 2023; 24:11707. [PMID: 37511474 PMCID: PMC10380748 DOI: 10.3390/ijms241411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Perfluorinated and polyfluorinated alkyl substances (PFAS), more than 4700 in number, are a group of widely used man-made chemicals that accumulate in living things and the environment over time. They are known as "forever chemicals" because they are extremely persistent in our environment and body. Because PFAS have been widely used for many decades, their presence is evident globally, and their persistence and potential toxicity create concern for animals, humans and environmental health. They can have multiple adverse health effects, such as liver damage, thyroid disease, obesity, fertility problems, and cancer. The most significant source of living exposure to PFAS is dietary intake (food and water), but given massive industrial and domestic use, these substances are now punctually present not only domestically but also in the outdoor environment. For example, livestock and wildlife can be exposed to PFAS through contaminated water, soil, substrate, air, or food. In this review, we have analyzed and exposed the characteristics of PFAS and their various uses and reported data on their presence in the environment, from industrialized to less populated areas. In several areas of the planet, even in areas far from large population centers, the presence of PFAS was confirmed, both in marine and terrestrial animals (organisms). Among the most common PFAS identified are undoubtedly perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), two of the most widely used and, to date, among the most studied in terms of toxicokinetics and toxicodynamics. The objective of this review is to provide insights into the toxic potential of PFAS, their exposure, and related mechanisms.
Collapse
Affiliation(s)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, "Magna Græcia University" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Wu Y, Bao J, Liu Y, Wang X, Qu W. A Review on Per- and Polyfluoroalkyl Substances in Pregnant Women: Maternal Exposure, Placental Transfer, and Relevant Model Simulation. TOXICS 2023; 11:430. [PMID: 37235245 PMCID: PMC10224256 DOI: 10.3390/toxics11050430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are important and ubiquitous environmental contaminants worldwide. These novel contaminants can enter human bodies via various pathways, subsequently posing risks to the ecosystem and human health. The exposure of pregnant women to PFASs might pose risks to the health of mothers and the growth and development of fetuses. However, little information is available about the placental transfer of PFASs from mothers to fetuses and the related mechanisms through model simulation. In the present study, based upon a review of previously published literature, we initially summarized the exposure pathways of PFASs in pregnant women, factors affecting the efficiency of placental transfer, and mechanisms associated with placental transfer; outlined simulation analysis approaches using molecular docking and machine learning to reveal the mechanisms of placental transfer; and finally highlighted future research emphases that need to be focused on. Consequently, it was notable that the binding of PFASs to proteins during placental transfer could be simulated by molecular docking and that the placental transfer efficiency of PFASs could also be predicted by machine learning. Therefore, future research on the maternal-fetal transfer mechanisms of PFASs with the benefit of simulation analysis approaches is warranted to provide a scientific basis for the health effects of PFASs on newborns.
Collapse
Affiliation(s)
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | | | | |
Collapse
|
24
|
Bowers BB, Lou Z, Xu J, De Silva AO, Xu X, Lowry GV, Sullivan RC. Nontarget analysis and fluorine atom balances of transformation products from UV/sulfite degradation of perfluoroalkyl contaminants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:472-483. [PMID: 36722905 DOI: 10.1039/d2em00425a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of highly fluorinated, anthropogenic compounds that are used in a wide variety of consumer applications. Due to their widespread use and high persistence, PFAS are ubiquitous in drinking water, which is of concern due to the threats these compounds pose to human health. Reduction via the hydrated electron is a promising technology for PFAS remediation and has been well-studied. However, since previous work rarely reports fluorine atom balances and often relies on suspect screening, some transformation products are likely unaccounted for. Therefore, we performed non-target analysis using high-resolution mass spectrometry on solutions of perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), perfluorooctanoate (PFOA), and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate (GenX) that had been treated with UV/sulfite to produce hydrated electrons. We determined fluorine atom balances for all compounds studied, finding high fluorine atom balances for PFOS and PFBS. PFOA and GenX had lower overall fluorine atom balances, likely due to the production of volatile or very polar transformation products that were not measured by our methods. Transformation products identified by our analysis were consistent with literature, with a few exceptions. Namely, shorter-chain perfluorosulfonates (PFSA) and their H/F substituted counterparts were also detected from PFOS. This is an unexpected result based on literature, as no documented pathway exists for the formation of shorter-chain PFSA during UV/sulfite treatment. Furthermore, the nontarget approach we employed allowed for identification of novel, unsaturated products from the hydrated electron treatment of perfluorooctanesulfonate (PFOS) that warrant further investigation.
Collapse
Affiliation(s)
- Bailey B Bowers
- Institute for Green Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Zimo Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Amila O De Silva
- Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ryan C Sullivan
- Institute for Green Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
25
|
Zhou Y, Li Q, Wang P, Li J, Zhao W, Zhang L, Wang H, Cheng Y, Shi H, Li J, Zhang Y. Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai Maternal-Child Pairs Cohort. ENVIRONMENT INTERNATIONAL 2023; 173:107850. [PMID: 36857906 DOI: 10.1016/j.envint.2023.107850] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data on the effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on infant neurodevelopment trajectories are far from being sufficiently addressed. In this study, 1285 mother-child pairs were recruited during 2016-2017. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure 16 PFAS levels in cord serum. Ages and Stages Questionnaires were used to examine children's neurodevelopment at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Children with relatively low scores from 2 to 24 months were classified into a low-score group and were used as a risk group in each domain. Multiple linear regression, logistic regression, and quantile-based g-computation were performed to assess associations of single or mixture PFAS exposures with neurodevelopment and trajectories. Perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and 6:2 chlorinated polyfluorooctane ether sulfonate (6:2Cl-PFESA) were detected in over 90 % samples. PFOA had the highest concentration (median: 4.61 μg/L). Each ln-unit (μg/L) increase of PFAS (e.g., PFOA, PFOS, PFHxS, 6:2Cl-PFESA) was associated with poor scores of communication domain at 6 months, with the effect size ranging from -0.69 to -0.44. PFOS (OR: 1.14, (1.03, 1.26), PFDA (OR:1.08, (1.02, 1.15)), PFHxS (OR:1.31, (1.12, 1.56)), and 6:2Cl-PFESA (OR:1.08, (1.00, 1.16)) were associated with an increased risk of being in the low-score group in the early childhood communication domain's trajectory. Each mixture quartile increment was associated with a 1.60 (-2.76, -0.45) decrease in communication domain scores of 6-month-old infants, and the mixture effect was mainly attributed to PFOS. Each mixture quartile increase was associated with a 1.23-fold (1.03, 1.46) risk of being in the low-score group of the communication domain, and the mixture effect was mainly attributed to PFOS. In conclusion, PFAS and their mixtures might adversely affect childhood neurodevelopment. The gender-specific associations existed in the above associations.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenxuan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| | - Jiufeng Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Ehrlich V, Bil W, Vandebriel R, Granum B, Luijten M, Lindeman B, Grandjean P, Kaiser AM, Hauzenberger I, Hartmann C, Gundacker C, Uhl M. Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environ Health 2023; 22:19. [PMID: 36814257 PMCID: PMC9944481 DOI: 10.1186/s12940-022-00958-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/30/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are of public health concern, because of their ubiquitous and extremely persistent occurrence, and depending on their structure, their bio-accumulative, mobile and toxic properties. Human health effects associated with exposure to PFAS include adverse effects on the immune system. In 2020, EFSA (the European Food Safety Authority) defined adverse effects on the immune system as the most critical effect for human health risk assessment, based on reduced antibody responses to childhood vaccines and similar effects observed in experimental animal studies. Likewise, the U.S. EPA (Environmental Protection Agency) considers PFAS-induced immunotoxicity, especially in children, as the critical effect for risk assessment. However, the mechanisms by which antibody concentrations are impacted are not completely understood. Furthermore, other targets of the immune system functions have been reported in the literature. OBJECTIVE The aim of this review is to explore PFAS-associated immune-related effects. This includes, relevant mechanisms that may underlie the observed effects on the immune system, immunosuppression as well as immunoenhancement, such as i) modulation of cell signalling and nuclear receptors, such as NF-κB and PPARs; ii) alteration of calcium signalling and homoeostasis in immune cells; iii) modulation of immune cell populations; iv) oxidative stress and v) impact on fatty acid metabolism & secondary effects on the immune system. METHODS A literature research was conducted using three databases (Web of Science, PubMed, and Scopus), which were searched in July 2021 for relevant studies published in the time frame from 2018 to 2021. In total, 487 publications were identified as potentially eligible and following expert-based judgement, articles relevant for mechanisms of PFAS induced immunotoxicity are discussed. CONCLUSIONS Taken together, we show that there is substantial evidence from both in vitro and in vivo experimental as well as epidemiological studies, supporting that various PFAS, not only PFOA and PFOS, affect multiple aspects of the immune system. Timing of exposure is critical, because the developing immune system is especially vulnerable to toxic insults, resulting in a higher risk of particularly adverse immune effects but also other organs later in life.
Collapse
Affiliation(s)
- Veronika Ehrlich
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Berit Granum
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Birgitte Lindeman
- Division of Climate and Environment Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Philippe Grandjean
- Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Andreas-Marius Kaiser
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Ingrid Hauzenberger
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria.
| |
Collapse
|
27
|
Fábelová L, Beneito A, Casas M, Colles A, Dalsager L, Den Hond E, Dereumeaux C, Ferguson K, Gilles L, Govarts E, Irizar A, Lopez Espinosa MJ, Montazeri P, Morrens B, Patayová H, Rausová K, Richterová D, Rodriguez Martin L, Santa-Marina L, Schettgen T, Schoeters G, Haug LS, Uhl M, Villanger GD, Vrijheid M, Zaros C, Palkovičová Murínová Ľ. PFAS levels and exposure determinants in sensitive population groups. CHEMOSPHERE 2023; 313:137530. [PMID: 36509187 PMCID: PMC9846180 DOI: 10.1016/j.chemosphere.2022.137530] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants. The first exposure to PFAS occurs in utero, after birth it continues via breast milk, food intake, environment, and consumer products that contain these chemicals. Our aim was to identify determinants of PFAS concentrations in sensitive population subgroups- pregnant women and newborns. METHODS Nine European birth cohorts provided exposure data on PFAS in pregnant women (INMA-Gipuzkoa, Sabadell, Valencia, ELFE and MoBa; total N = 5897) or newborns (3xG study, FLEHS 2, FLEHS 3 and PRENATAL; total N = 940). PFOS, PFOA, PFHxS and PFNA concentrations were measured in maternal or cord blood, depending on the cohort (FLEHS 2 measured only PFOS and PFOA). PFAS concentrations were analysed according to maternal characteristics (age, BMI, parity, previous breastfeeding, smoking, and food consumption during pregnancy) and parental educational level. The association between potential determinants and PFAS concentrations was evaluated using multiple linear regression models. RESULTS We observed significant variations in PFAS concentrations among cohorts. Higher PFAS concentrations were associated with higher maternal age, primipara birth, and educational level, both for maternal blood and cord blood. Higher PFAS concentrations in maternal blood were associated with higher consumption of fish and seafood, meat, offal and eggs. In cord blood, higher PFHxS concentrations were associated with daily meat consumption and higher PFNA with offal consumption. Daily milk and dairy consumption were associated with lower concentrations of PFAS in both, pregnant women and newborns. CONCLUSION High detection rates of the four most abundant PFAS demonstrate ubiquitous exposure of sensitive populations, which is of concern. This study identified several determinants of PFAS exposure in pregnant women and newborns, including dietary factors, and these findings can be used for proposing measures to reduce PFAS exposure, particularly from dietary sources.
Collapse
Affiliation(s)
- L Fábelová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - A Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - M Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Dalsager
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - E Den Hond
- Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - K Ferguson
- National Institute of Environmental Health Sciences (NIEHS), North Carolina, USA
| | - L Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - A Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain
| | - M J Lopez Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | | | - B Morrens
- Faculty of Social Sciences, University of Antwerp, Belgium
| | - H Patayová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - K Rausová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - D Richterová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - L Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain
| | - T Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L S Haug
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - M Uhl
- Umweltbundesamt, Vienna, Austria
| | - G D Villanger
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - M Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain
| | - C Zaros
- Institut national d'études démographiques (INED), Aubervilliers, France
| | - Ľ Palkovičová Murínová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia.
| |
Collapse
|
28
|
Yao H, Fu Y, Weng X, Zeng Z, Tan Y, Wu X, Zeng H, Yang Z, Li Y, Liang H, Wu Y, Wen L, Jing C. The Association between Prenatal Per- and Polyfluoroalkyl Substances Exposure and Neurobehavioral Problems in Offspring: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031668. [PMID: 36767045 PMCID: PMC9914055 DOI: 10.3390/ijerph20031668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 05/30/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy has been suggested to be associated with neurobehavioral problems in offspring. However, current epidemiological studies on the association between prenatal PFAS exposure and neurobehavioral problems among offspring, especially attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), are inconsistent. Therefore, we aimed to study the relationship between PFAS exposure during pregnancy and ADHD and ASD in offspring based on meta-analyses. Online databases, including PubMed, EMBASE, and Web of Science, were searched comprehensively for eligible studies conducted before July 2021. Eleven studies (up to 8493 participants) were included in this analysis. The pooled results demonstrated that exposure to perfluorooctanoate (PFOA) was positively associated with ADHD in the highest quartile group. Negative associations were observed between perfluorooctane sulfonate (PFOS) and ADHD/ASD, including between perfluorononanoate (PFNA) and ASD. There were no associations found between total PFAS concentration groups and neurobehavioral problems. The trial sequential analyses showed unstable results. Our findings indicated that PFOA and PFOS exposure during pregnancy might be associated with ADHD in offspring and that prenatal PFOS and PFNA exposure might be associated with ASD in offspring. According to the limited evidence obtained for most associations, additional studies are required to validate these findings.
Collapse
Affiliation(s)
- Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingyin Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xueqiong Weng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zurui Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Huixian Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhiyu Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Xia Y, Hao L, Li Y, Li Y, Chen J, Li L, Han X, Liu Y, Wang X, Li D. Embryonic 6:2 FTOH exposure causes reproductive toxicity by disrupting the formation of the blood-testis barrier in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114497. [PMID: 36608565 DOI: 10.1016/j.ecoenv.2023.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have revealed nephrotoxicity, hepatotoxicity, subchronic developmental and reproductive toxicity in rats exposed to fluorotelomer alcohol (FTOH). However, the effects of embryonic 6:2 FTOH exposure on the reproductive system of offspring mice remain unclear. The purpose of this study is to explore the reproductive toxic effects of embryonic 6:2 FTOH exposure on offspring male mice and the related molecular mechanisms. Therefore, the pregnant mice were given corn oil or 6:2 FTOH by gavage from gestational days 12.5-21.5. The results demonstrated that embryonic 6:2 FTOH exposure resulted in disrupted testicular structure, low expression of tight junction protein between Sertoli cells (SCs), impaired blood-testis barrier (BTB) formation and maturation, reduced sperm viability and increased malformation, and induced testicular inflammation in the offspring of mice. Further in vitro studies showed that 6:2 FTOH treatment upregulated MMP-8 expression by activating AKT/NF-κB signaling pathway, which in turn enhanced occludin cleavage leading to the disruption of SCs barrier integrity. In summary, this study demonstrated that 6:2 FTOH exposure caused reproductive dysfunction in male offspring through disruption of BTB, which provided new insights into the effects of 6:2 FTOH exposure on the offspring.
Collapse
Affiliation(s)
- Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lanxiang Hao
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Yueyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yifan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Junhan Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Li
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yanmei Liu
- Endocrinology Department, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School; The First people's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
30
|
Aker A, Ayotte P, Caron-Beaudoin E, De Silva A, Ricard S, Gaudreau É, Lemire M. Plasma concentrations of perfluoroalkyl acids and their determinants in youth and adults from Nunavik, Canada. CHEMOSPHERE 2023; 310:136797. [PMID: 36244416 DOI: 10.1016/j.chemosphere.2022.136797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs), a subset of per- and poly-fluoroalkyl substances (PFAS), are environmentally stable, mobile and bioaccumulative compounds. This leads to high concentrations in wildlife species essential to the cultural identity and subsistence of Arctic populations. Our objective was to characterize the distribution and exposure determinants of PFAAs among Nunavik Inuit adults. The study included up to 1322 Nunavik residents aged 16-80 years who participated in the Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017). Plasma concentrations were compared to those the general Canadian population using data from the Canadian Health Measures Survey Cycle 5 (2016-2017). Associations between plasma concentrations of nine PFAAs, determined by liquid chromatography-tandem mass spectrometry, and sociodemographic factors and traditional activity participation were examined using multiple linear regression models. Overall exposure to PFAAs was twice as high compared to the general Canadian population and less regulated perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) concentrations were 7-fold higher, and perfluorodecanoic acid (PFDA) concentrations were 4-fold higher. Males had higher concentrations of perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS), whereas females had higher concentrations of PFDA and PFUnDA. PFAAs concentrations increased with age and were highest among those aged 60+ years. PFNA and PFOA concentrations followed a J-shaped pattern: those aged 16-29 years had higher concentrations than those aged 20-29 and 30-39 years. Ungava Bay generally had lower concentrations of all PFAAs congeners compared to Hudson Bay and Hudson Strait, with the exception of PFNA, which tended to have the lowest concentration in Hudson Strait. PFAAs concentrations were highly associated with hunting activity, omega-3 polyunsaturated fatty acids, and drinking water from environmental sources. The results highlight the importance of characterizing PFAAs exposure sources in Arctic communities and provide further evidence for the long-range transport of long-chain PFAAs and their precursors that necessitate international action.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Melanie Lemire
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada; Institut de Biologie Intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
31
|
Hassan HF, Bou Ghanem H, Abi Kharma J, Abiad MG, Elaridi J, Bassil M. Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Human Milk: First Survey from Lebanon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:821. [PMID: 36613141 PMCID: PMC9819430 DOI: 10.3390/ijerph20010821] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 05/15/2023]
Abstract
Human milk is the primary source of nutrition for infants in their first year of life. Its potential contamination with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), a group of toxic man-made chemicals, is a health concern that may threatens infants' health. Our study aims to assess the levels of PFOA and PFOS in the breast milk of Lebanese lactating mothers and the maternal factors associated with their presence. High-performance liquid chromatography (HPLC) coupled with a Micromass Quattro micro API triple quadrupole mass spectrometer was used to detect the level of contamination in 57 collected human milk samples. PFOA and PFOS were present in 82.5% and 85.7% of the samples, respectively, while PFOA levels ranged between 120 and 247 pg/mL with a median of 147 pg/mL, and those of PFOS ranged between 12 and 86 pg/mL with a median of 27.5 pg/mL. The median contamination for PFOA exceeded the threshold set by the European Food Safety Authority (EFSA) (60 pg/mL); however, that of PFOS was below the threshold (73 pg/mL). The consumption of bread, pasta, meat, and chicken more than twice per week and that of white tubers and roots at least once per week was significantly associated with higher levels of PFOA (p < 0.05). No significant association was found between maternal age, BMI, parity, level of education, place of residence, source of water used, and smoking with the levels of PFOA and PFOS in the human milk. Additionally, the consumption of cereals at least twice per week was significantly associated with higher levels of PFOS. These findings call for actions to improve the local environmental and agricultural practices, and the regulations and standards for inspecting imported food. It is important to highlight that the benefits of breastfeeding outweigh the reported contamination with PFOS and PFOA in our study.
Collapse
Affiliation(s)
- Hussein F. Hassan
- Nutrition Program, Natural Sciences Department, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Haneen Bou Ghanem
- Nutrition Program, Natural Sciences Department, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Joelle Abi Kharma
- Nutrition Program, Natural Sciences Department, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Mohamad G. Abiad
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
- LEAF—The Laboratories for the Environment, Agriculture and Food, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jomana Elaridi
- Chemistry Program, Natural Sciences Department, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Maya Bassil
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
32
|
Wasel O, Thompson KM, Freeman JL. Assessment of unique behavioral, morphological, and molecular alterations in the comparative developmental toxicity profiles of PFOA, PFHxA, and PFBA using the zebrafish model system. ENVIRONMENT INTERNATIONAL 2022; 170:107642. [PMID: 36410238 PMCID: PMC9744091 DOI: 10.1016/j.envint.2022.107642] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Perfluoroalkyl substances (PFAS) are a class of synthetic chemicals that are persistent in the environment. Due to adverse health outcomes associated with longer chain PFAS, shorter chain chemicals were used as replacements, but developmental toxicity assessments of the shorter chain chemicals are limited. Toxicity of three perfluoroalkyl acids (PFAAs) [perfluorooctanoic acid (PFOA), composed of 8 carbon (C8), perfluorohexanoic acid (PFHxA, C6), and perfluorobutanoic acid (PFBA, C4)] was compared in developing zebrafish (Danio rerio). LC50s at 120 h post fertilization (hpf) assessed potency of each PFAA by exposing developing zebrafish (1-120 hpf) to range of concentrations. Zebrafish were then exposed to sublethal concentrations (0.4-4000 ppb, µg/L) throughout embryogenesis (1-72 hpf). Effects of the embryonic exposure on locomotor activities was completed with the visual motor response test at 120 hpf. At 72 hpf, morphological changes (total body length, head length, head width) and transcriptome profiles to compare altered molecular and disease pathways were determined. The LC50 ranking followed trend as expected based on chain length. PFOA caused hyperactivity and PFBA hypoactivity, while PFHxA did not change behavior. PFOA, PFHxA, and PFBA caused morphological and transcriptomic alterations that were unique for each chemical and were concentration-dependent indicating different toxicity mechanisms. Cancer was a top disease for PFOA and FXR/RXR activation was a top canonical pathway for PFBA. Furthermore, comparison of altered biological and molecular pathways in zebrafish exposed to PFOA matched findings reported in prior epidemiological studies and other animal models, supporting the predictive value of the transcriptome approach and for predicting adverse health outcomes associated with PFHxA or PFBA exposure.
Collapse
Affiliation(s)
- Ola Wasel
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kathryn M Thompson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
33
|
Shin HM, Oh J, J. Schmidt R, N. Pearce E. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Maternal Thyroid Dysfunction, and Child Autism Spectrum Disorder. Endocrinol Metab (Seoul) 2022; 37:819-829. [PMID: 36415960 PMCID: PMC9816503 DOI: 10.3803/enm.2022.1598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorder (ASD), with its high economic and societal costs, is a growing public health concern whose prevalence has risen steadily over the last two decades. Although actual increased incidence versus improved diagnosis remains controversial, the increased prevalence of ASD suggests non-inherited factors as likely contributors. There is increasing epidemiologic evidence that abnormal maternal thyroid function during pregnancy is associated with increased risk of child ASD and other neurodevelopmental disorders. Prenatal exposure to endocrine-disrupting chemicals such as per- and polyfluoroalkyl substances (PFAS) is known to disrupt thyroid function and can affect early brain development; thus, thyroid dysfunction is hypothesized to mediate this relationship. The concept of a potential pathway from prenatal PFAS exposure through thyroid dysfunction to ASD etiology is not new; however, the extant literature on this topic is scant. The aim of this review is to evaluate and summarize reports with regard to potential mechanisms in this pathway.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Corresponding author: Hyeong-Moo Shin. Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA Tel: +1-254-710-7627, Fax: +1-254-710-3409 E-mail:
| | - Jiwon Oh
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Elizabeth N. Pearce
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Bach CC, Liew Z, Matthiesen NB, Henriksen TB, Bech BH, Nøhr EA, Bonefeld-Jørgensen EC, Olsen J. In utero exposure to perfluoroalkyl and polyfluoroalkyl substances and attention and executive function in the offspring: A study in the Danish National Birth Cohort. ENVIRONMENTAL RESEARCH 2022; 212:113262. [PMID: 35405133 DOI: 10.1016/j.envres.2022.113262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and accumulate in humans. PFAS are suspected to affect the neuropsychological function of children, but only few studies have evaluated the association with childhood attention and executive function. OBJECTIVES To investigate the association between intrauterine exposure to PFAS and offspring attention and executive function. METHODS A total of 1593 children from the Danish National Birth Cohort, born 1996-2003, were included. The levels of 16 PFAS were measured in maternal plasma during pregnancy. At 5 years of age, the Test of Everyday Attention for Children at Five (TEACh-5) and the Behavior Rating Inventory of Executive Function (BRIEF) were performed. TEACh-5 scores were standardized to a mean of 0 and standard deviation (SD) of 1. BRIEF scores were standardized to a mean of 50 and a SD of 10. The associations between levels of seven PFAS and TEACh-5 and BRIEF were examined by multivariable linear regression adjusted for potential confounders. RESULTS Perfluorooctane sulfonamide (PFOSA) was associated with poorer selective attention [standardized mean difference (95% confidence interval) -0.5 (-0.7, -0.3), highest versus lowest quartile]. Other PFAS were not clearly associated with selective attention, and we found no clear associations between PFAS exposure and sustained attention. For parent rated executive function, perfluorooctanoate (PFOA) was associated with poorer scores, standardized mean difference 3.8 (95% confidence interval 1.6, 6.0), highest versus lowest quartile. Regarding other PFAS, the associations were less clear. We found no clear associations between any PFAS and executive function rated by preschool teachers. CONCLUSION Intrauterine exposure to PFOSA was associated with poorer selective attention, while PFOA was associated with poorer executive function. Given the widespread nature of PFAS exposure, these findings may have public health implications, warranting further investigation.
Collapse
Affiliation(s)
- Cathrine Carlsen Bach
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Perinatal Epidemiology Research Unit, Aarhus University Hospital, Aarhus, Denmark; Department of Pediatrics and Adolescent Medicine, Viborg Regional Hospital, Viborg, Denmark.
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Niels Bjerregård Matthiesen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Perinatal Epidemiology Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Tine Brink Henriksen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Perinatal Epidemiology Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Bodil Hammer Bech
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ellen Aagaard Nøhr
- Research Unit for Gynaecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark; Greenland Center for Health Research, University of Greenland, Nuuk, Greenland
| | - Jørn Olsen
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Oh J, Bennett DH, Tancredi DJ, Calafat AM, Schmidt RJ, Hertz-Picciotto I, Shin HM. Longitudinal Changes in Maternal Serum Concentrations of Per- and Polyfluoroalkyl Substances from Pregnancy to Two Years Postpartum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11449-11459. [PMID: 35904360 PMCID: PMC9798824 DOI: 10.1021/acs.est.1c07970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy and lactation is of increasing public health concern, but little is known about longitudinal changes in maternal PFAS concentrations from pregnancy to a few years postpartum. We quantified 11 PFAS in 251 serum samples prospectively collected from 42 Northern California mothers during the first, second, and third trimesters of pregnancy and at 3, 6, and 24 months after delivery over 2009-2017. We fit separate linear mixed models during pregnancy, early postpartum, and late postpartum to estimate percent changes of PFAS for each subperiod. Among five PFAS detected in more than 99% of samples, linear and branched perfluorooctanesulfonate (n- and Sm-PFOS), linear perfluorooctanoate (n-PFOA), and perfluorononanoate (PFNA) concentrations changed -4% to -3% per month during pregnancy. During early postpartum, perfluorohexanesulfonate (PFHxS) and n-PFOA concentrations changed -6% and -5%, respectively, per month, and Sm-PFOS and PFNA concentrations changed -1% per month. During late postpartum, n-PFOS, Sm-PFOS, and PFNA concentrations changed -1% per month. Breastfeeding duration was the primary determinant of n-PFOA and PFNA concentrations during late postpartum, showing negative associations. Our findings might be useful for reconstructing reliable prenatal or early life PFAS exposures for offspring.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas 76019, USA
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
| | - Daniel J. Tancredi
- Department of Pediatrics, University of California, Davis, California 95817, USA
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, California 95817, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, California 95616, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, California 95817, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas 76019, USA
- Department of Environmental Science, Baylor University, Waco, Texas 76798, USA
| |
Collapse
|
36
|
Xie Z, Tan J, Fang G, Ji H, Miao M, Tian Y, Hu H, Cao W, Liang H, Yuan W. Associations between prenatal exposure to perfluoroalkyl substances and neurobehavioral development in early childhood: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113818. [PMID: 35777342 DOI: 10.1016/j.ecoenv.2022.113818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Findings from epidemiological studies on the associations between prenatal perfluoroalkyl substances (PFASs) exposure and children's neurodevelopment were inconclusive, and most studies did not account for the co-exposure to multiple PFASs with strong inter-correlations. The present study aimed to assess the effects of prenatal multiple PFAS exposure on children's neurobehavioral development based on 614 mother-infant pairs in the Shanghai-Minhang Birth Cohort Study. Eight PFAS concentrations were measured in maternal plasma at 12-16 weeks of gestation. Children's neurobehavioral development at 2 and 4 years of age was assessed by the Child Behavior Checklist for Ages 1.5-5. In Bayesian kernel machine regression (BKMR) analyses that could address the inter-correlations between multiple PFASs, PFAS mixture appeared to be associated with fewer Somatic Complaints and more Externalizing Problems in boys, but more Somatic Complaints and Sleep Problems in girls. There were suggestive associations of PFNA and PFOS with decreased risk of Somatic Complaints and of PFUdA and PFTrDA with increased risk of Externalizing Problems in boys; trends of increased risk in girls were observed between PFUdA and Somatic Complaints and between PFTrDA and Sleep Problems. Overall, we found no clear evidence that prenatal exposure to PFASs had negative effects on neurobehavioral development in children. However, the modest associations still suggested the potential developmental neurotoxicity of prenatal PFAS exposure.
Collapse
Affiliation(s)
- Zhenzhen Xie
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Jing Tan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guanghong Fang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yuan Tian
- Department of Health Management, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hui Hu
- Harvard Medical School, Brigham and Women's Hospital, Channing Division of Network Medicine, USA
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
37
|
Ma D, Lu Y, Liang Y, Ruan T, Li J, Zhao C, Wang Y, Jiang G. A Critical Review on Transplacental Transfer of Per- and Polyfluoroalkyl Substances: Prenatal Exposure Levels, Characteristics, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6014-6026. [PMID: 34142548 DOI: 10.1021/acs.est.1c01057] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) has aroused public concerns as it can pose multiple health threats to pregnant women and cause adverse birth outcomes for fetuses. In previous studies, the prenatal exposure levels and transplacental transfer efficiencies (TTE) of PFASs have been reported and discussed. Specifically, the binding affinities between PFASs and some transporters were determined, demonstrating that the TTE values of PFASs are highly dependent on their binding behaviors. To summarize primary findings of previous studies and propose potential guidance for future research, this article provides a systematic overview on levels and characteristics of prenatal exposure to PFASs worldwide, summarizes relationships between TTE values and structures of PFASs, and discusses possible transplacental transfer mechanisms, especially for the combination between PFASs and transporters. Given the critical roles of transporters in the transplacental transfer of PFASs, we conducted molecular docking to further clarify the binding behaviors between PFASs and the selected transporters. We proposed that the machine learning can be a superior method to predict and reveal behaviors and mechanisms of the transplacental transfer of PFASs. In total, this is the first review providing a comprehensive overview on the prenatal exposure levels and transplacental transfer mechanisms of PFASs.
Collapse
Affiliation(s)
- Donghui Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Fan X, Tang S, Wang Y, Fan W, Ben Y, Naidu R, Dong Z. Global Exposure to Per- and Polyfluoroalkyl Substances and Associated Burden of Low Birthweight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4282-4294. [PMID: 35293723 DOI: 10.1021/acs.est.1c08669] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Low birthweight (LBW) is a worldwide public health concern, while the global burden of LBW attributable to endocrine-disrupting chemicals, such as per- and polyfluoroalkyl substances (PFAS), has not yet been evaluated. Here, we established a large dataset for the biomonitoring of seven representative congeners of PFAS by examining data from 2325 publications. Global exposure to perfluorooctanesulfonic acid (PFOS) was the highest, followed by perfluorohexanesulfonic acid (PFHxS) and perfluorooctanoic acid (PFOA). Spatiotemporal exposure to PFAS varied considerably, with daily intake estimated in the range of 0.01-1.7 ng/kg/day. Moreover, decreasing trends in PFOS, PFHxS, and PFOA exposure were noted in most regions of the world over the past two decades, but such trends were not observed for other PFAS with long carbon chains, especially in East Asia. Furthermore, we estimated that human exposure to PFOA contributed to approximately 461,635 (95% confidence interval: 57,418 to 854,645) cases per year of LBW during the past two decades, predominantly from Asian regions. Although our estimation may be constrained by uncertainties from the dose-response curve and data availability, this study has unveiled that PFAS might be a contributor to global LBW prevalence during 2000-2019, supporting continuous actions to mitigate PFAS contamination.
Collapse
Affiliation(s)
- Xiarui Fan
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Yujie Ben
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
39
|
Engström K, Axmon A, Nielsen C, Rignell-Hydbom A. High in Utero Exposure to Perfluoroalkyl Substances from Drinking Water and Birth Weight: A Cohort Study among Infants in Ronneby, Sweden. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042385. [PMID: 35206572 PMCID: PMC8871928 DOI: 10.3390/ijerph19042385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022]
Abstract
In 2013, the drinking water for one-third of the households in Ronneby, Sweden, was found to be contaminated by perfluorinated alkyl substances (PFAS, >10,000 ng/L) from Aqueous Film Forming Foam (AFFF). In utero PFAS exposure can influence birth weight, but little is known about the effects at very high levels. This study aimed to examine the association between in utero PFAS exposure and birth weight. Infants with mothers from Ronneby exposed to contaminated water at home (high exposure) and infants with mothers from Ronneby not exposed to contaminated water at home (low exposure) were compared to infants with mothers from Blekinge county excluding Ronneby (referents). All infants born in Blekinge county 1995–2013 were included (n = 30,360). Differences in birth weight were only seen among infants born after 2005. For boys, Ronneby high exposure had a lower mean birth weight than referents (−54 g, 95% CI −97; −11). For girls, Ronneby high exposure had a higher mean birth weight than referents (47 g, 95% CI 4; 90). There were no differences in birth weight between referents and Ronneby low exposure. In conclusion, high exposure to PFAS may influence birth weight in a sex-specific way, although the effect estimates were relatively small.
Collapse
Affiliation(s)
- Karin Engström
- EPI@LUND (Epidemiology, Population Studies, and Infrastructures at Lund University), Division of Occupational and Environmental Medicine, Lund University, 223 62 Lund, Sweden; (A.A.); (A.R.-H.)
- Correspondence:
| | - Anna Axmon
- EPI@LUND (Epidemiology, Population Studies, and Infrastructures at Lund University), Division of Occupational and Environmental Medicine, Lund University, 223 62 Lund, Sweden; (A.A.); (A.R.-H.)
| | - Christel Nielsen
- Epidemiology, Division of Occupational and Environmental Medicine, Lund University, 223 63 Lund, Sweden;
| | - Anna Rignell-Hydbom
- EPI@LUND (Epidemiology, Population Studies, and Infrastructures at Lund University), Division of Occupational and Environmental Medicine, Lund University, 223 62 Lund, Sweden; (A.A.); (A.R.-H.)
| |
Collapse
|
40
|
Itoh S, Yamazaki K, Suyama S, Ikeda-Araki A, Miyashita C, Ait Bamai Y, Kobayashi S, Masuda H, Yamaguchi T, Goudarzi H, Okada E, Kashino I, Saito T, Kishi R. The association between prenatal perfluoroalkyl substance exposure and symptoms of attention-deficit/hyperactivity disorder in 8-year-old children and the mediating role of thyroid hormones in the Hokkaido study. ENVIRONMENT INTERNATIONAL 2022; 159:107026. [PMID: 34890903 DOI: 10.1016/j.envint.2021.107026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Disruption of thyroid hormone (TH) levels during pregnancy contributes to attention deficit hyperactivity disorder (ADHD). Exposure to perfluoroalkyl substances (PFAS) during gestation may affect levels of maternal and neonatal TH; however, little is known about the effect of PFAS on ADHD mediated by TH. OBJECTIVES We investigated the impact of maternal PFAS exposure on children's ADHD symptoms with the mediating effect of TH. METHODS In a prospective birth cohort (the Hokkaido study), we included 770 mother-child pairs recruited between 2002 and 2005 for whom both prenatal maternal and cord blood samples were available. Eleven PFAS were measured in maternal serum obtained at 28-32 weeks of gestation using ultra-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. TH and thyroid antibody, including thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TgAb) were measured in maternal blood during early pregnancy (median 11 gestational weeks) and in cord blood at birth. ADHD symptoms in the children at 8 years of age were rated by their parents using the ADHD-Rating Scale (ADHD-RS). The cut-off value was set at the 80th percentile for each sex. RESULTS Significant inverse associations were found between some PFAS in maternal serum and ADHD symptoms among first-born children. Assuming causality, we found only one significant association: maternal FT4 mediated 17.6% of the estimated effect of perfluoroundecanoic acid exposure on hyperactivity-impulsivity among first-born children. DISCUSSION Higher PFAS levels in maternal serum during pregnancy were associated with lower risks of ADHD symptoms at 8 years of age. The association was stronger among first-born children in relation to hyperactivity-impulsivity than with regard to inattention. There was little mediating role of TH during pregnancy in the association between maternal exposure to PFAS and reduced ADHD symptoms at 8 years of age.
Collapse
Affiliation(s)
- Sachiko Itoh
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Satoshi Suyama
- Funded Research Division of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyuki Masuda
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Houman Goudarzi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan; Center for Medical Education and International Relations, Hokkaido University, Sapporo, Japan
| | - Emiko Okada
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ikuko Kashino
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Saito
- Funded Research Division of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
41
|
Appel M, Forsthuber M, Ramos R, Widhalm R, Granitzer S, Uhl M, Hengstschläger M, Stamm T, Gundacker C. The transplacental transfer efficiency of per- and polyfluoroalkyl substances (PFAS): a first meta-analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:23-42. [PMID: 34930098 DOI: 10.1080/10937404.2021.2009946] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluorinated substances (PFAS), ubiquitously present in the environment and biota, are transferred to the fetus via the placenta. PFAS can be distinguished, among other things, by their different carbon chain lengths and functional groups. The aim of this study was to provide comprehensive evidence on PFAS transfer rates across the human placental barrier by means of a meta-analysis based upon a systematic review. The available literature up to April 2021 was reviewed and transplacental transfer efficiencies (TTEs) of PFAS assessed. A total of 39 studies reporting data on 20 PFAS were included in the systematic review. Of these, 20 studies with data on 19 compounds were included in the meta-analysis. Comprehensive Meta-Analysis (CMA v3.0) was used for quantitative, statistical analyses with random effects models. A curvilinear relationship was found with short and long chains of perfluorocarboxylic acids (PFCAs) exhibiting higher TTE than compounds with intermediate chain length. Among the less well studied PFAS, perfluorohexanoic acid (PFHxA), 6:2 fluorotelomersulfonic acid (6:2 FTS) and perfluorobutanoic acid (PFBA) stood out the most with a high TEEs. The dependence of TTEs on chain length and functional group is clearly shown in this first meta-analysis on PFAS transfer across the human placenta. More data on effects of less well studied PFAS in pregnant women and neonates are needed to assess the potential risk for fetal exposure.
Collapse
Affiliation(s)
- Mareike Appel
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Martin Forsthuber
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- Department of Environmental Health, Medical University of Vienna, Center for Public Health, Vienna, Austria
| | - Romualdo Ramos
- Centre for Medical Statistic, Informatics and Intelligent Systems, Institute of Outcomes Research, Medical University of Vienna, Vienna, Austria
| | - Raimund Widhalm
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- Karl-Landsteiner Private University for Health Sciences, Krems an der Donau, Austria
| | - Sebastian Granitzer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- Karl-Landsteiner Private University for Health Sciences, Krems an der Donau, Austria
| | - Maria Uhl
- Environment Agency Austria, Vienna, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Tanja Stamm
- Centre for Medical Statistic, Informatics and Intelligent Systems, Institute of Outcomes Research, Medical University of Vienna, Vienna, Austria
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Harris MH, Oken E, Rifas-Shiman SL, Calafat AM, Bellinger DC, Webster TF, White RF, Sagiv SK. Prenatal and childhood exposure to per- and polyfluoroalkyl substances (PFAS) and child executive function and behavioral problems. ENVIRONMENTAL RESEARCH 2021; 202:111621. [PMID: 34237332 PMCID: PMC11318511 DOI: 10.1016/j.envres.2021.111621] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Early life exposure to per- and polyfluoroalkyl substances (PFAS) may adversely impact neurodevelopment, but epidemiological findings are inconsistent. In the Project Viva pre-birth cohort, we examined associations of prenatal and childhood PFAS plasma concentrations with parent and teacher assessments of children's behavior problems [Strengths and Difficulties Questionnaire (SDQ)] and executive function abilities [Behavior Rating Inventory of Executive Function (BRIEF)] at age 6-10 years (sample sizes 485-933). PFAS concentrations in pregnant Project Viva mothers (in 1999-2002) and children at ages 6-10 (in 2007-10) were similar to concentrations at similar time points in women and children in the nationally representative U.S. National Health and Nutrition Examination Survey. We observed no consistent associations of prenatal PFAS concentrations with behavior or executive function. Childhood concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) were associated with higher parent-rated SDQ Total Difficulties scores (mean = 6.7, standard deviation (SD) = 4.9), suggesting greater behavioral problems (top (Q4) versus bottom (Q1) quartile PFOA: 1.5, 95% confidence interval (CI): 0.3, 2.7; PFOS: 1.4, 95% CI: 0.3, 2.5; PFHxS: 1.2, 95% CI: 0.1, 2.3; PFNA: 1.2, 95% CI: 0.1, 2.2; PFDA: 1.1, 95% CI: 0.0, 1.1); teacher-rated SDQ scores did not show associations. Higher childhood PFOS was associated with higher (indicating more problems) parent-rated BRIEF General Executive Composite (GEC) scores (standardized to mean = 50, SD = 10) (Q4 vs. Q1: 2.4, 95% CI: 0.2, 4.6), while teacher BRIEF GEC scores indicated more problems among children with higher PFHxS (Q4 vs. Q1: 3.5, 95% CI: -0.8, 6.3). There were no consistent patterns of sexual dimorphism in associations. In a cohort of U.S. children, we observed cross-sectional associations of childhood PFAS concentrations with greater behavioral and executive function problems, but no consistent associations with prenatal PFAS.
Collapse
Affiliation(s)
- Maria H Harris
- Center for Environmental Research and Children's Health, University of California, Berkeley School of Public Health, Berkeley, CA, USA.
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health, University of California, Berkeley School of Public Health, Berkeley, CA, USA; Division of Epidemiology, University of California, Berkeley School of Public Health, Berkeley, CA, USA
| |
Collapse
|
43
|
Deji Z, Liu P, Wang X, Zhang X, Luo Y, Huang Z. Association between maternal exposure to perfluoroalkyl and polyfluoroalkyl substances and risks of adverse pregnancy outcomes: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146984. [PMID: 34088118 DOI: 10.1016/j.scitotenv.2021.146984] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), a class of persistent endocrine-disrupting chemicals, are widely used in consumer products due to their unique amphiphilic properties. Previous epidemiological studies suggest association of maternal PFASs exposure and adverse pregnancy outcomes, while evidences about the association are inconsistent. The aim of this systematic review and meta-analysis is to assess the relationship of maternal PFASs exposure and adverse pregnancy outcomes. Twenty-one relevant studies were identified from three databases before 2020. The quality, heterogeneity and possibility of publication bias of included studies were evaluated by Newcastle-Ottawa Scale, Q-statistic and Begg's test, respectively. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were obtained by means of random-effects meta-analysis models. Meta-analysis results revealed that maternal exposure to perfluorooctane sulfonic acid (PFOS) may have a positive association with preterm birth (OR = 1.20, 95% CI: 1.04, 1.38). The pooled estimates also showed limited evidence of association between maternal perfluorononanoic acid (PFNA) exposure and miscarriage (OR = 1.48, 95% CI: 0.92, 2.38) with obvious heterogeneity (I2 = 93.9, p < 0.01). However, no such significant associations were found between the other PFASs and miscarriage, stillbirth and preterm birth. In addition, the subgroup analyses showed that studies on the relationship of maternal PFASs exposure and miscarriage were mainly contributed by developed countries. The meta-analysis results indicated maternal exposure to PFOS can increase the risk of preterm birth. The results of the included studies are inconsistent and the effects of PFASs on human health are complex. Further studies with enough samples are required to verify these findings.
Collapse
Affiliation(s)
- Zhuoma Deji
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xin Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Yuehua Luo
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China
| | - Zhenzhen Huang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
44
|
Drew R, Hagen TG, Champness D. Accumulation of PFAS by livestock - determination of transfer factors from water to serum for cattle and sheep in Australia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1897-1913. [PMID: 34323170 DOI: 10.1080/19440049.2021.1942562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study accumulation has been determined of several per- and polyfluoroalkyl substances (PFAS) from ingested water to steady state serum concentration for adult beef cattle and sheep raised on a hobby farm impacted by PFAS contamination. PFAS concentrations in stock water were stable for more than a year, they were non-measurable in grass but present at very low levels in soil which equated to just 1% of the intake from water. Prior to quantifying PFAS in cattle serum there had been no breeding for 18 months. Although there were high concentrations of several PFAS in the water, only perfluorooctane sulphonate (PFOS) and perfluorohexane sulphonate (PFHxS) were in cattle serum in appreciable amounts; perfluoroheptane sulphonate (PFHpS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were much lower. Transfer factors (TFs) for cattle were calculated by dividing steady state serum concentration (ng PFAS/mL) by water concentration (µg PFAS/L). Average and upper estimate TF values for cattle were calculated; the former were 140 (total PFOS, i.e. tPFOS), 130 (PFHpS), 65 (PFHxS), 170 (PFNA), and 120 (PFDA). Previous investigation campaigns at the farm provided relative steady state serum PFAS concentrations for sheep and cattle that allowed adjustment of the cattle TFs. The resulting average estimate TFs for ewes (non-pregnant and not lactating) were 20 (tPFOS) and 30 (PFHxS), other PFAS were not measurable in sheep serum. Discussion on using these TFs in human health risk assessments is provided. With certain assumptions/caveats the TFs allow estimations of PFAS steady state serum concentrations for use in preliminary human health risk assessments (HHRAs) when only PFAS in stock water is known.
Collapse
Affiliation(s)
- Roger Drew
- ToxConsult Pty Ltd., Darling South, Australia
| | | | - David Champness
- Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources (Now Known as the Department of Jobs, Precincts and Regions), Hamilton, Australia
| |
Collapse
|
45
|
Placental Transfer and Composition of Perfluoroalkyl Substances (PFASs): A Korean Birth Panel of Parent-Infant Triads. TOXICS 2021; 9:toxics9070168. [PMID: 34357911 PMCID: PMC8309930 DOI: 10.3390/toxics9070168] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Exposure to perfluoroalkyl substances (PFASs) is of public concern due to their persistent exposure and adverse health effects. Placental transfer of PFASs is an important excretion pathway of these chemicals in pregnant women and exposure route in fetuses. We measured PFAS concentrations in maternal, paternal, and umbilical cord serum collected from 62 pregnant Korean women and matched biological fathers of the fetuses. Placental transfer rates (cord to maternal serum ratio) of PFASs were also calculated. Demographics and pregnancy-related factors determining the placental transfer rates were identified using linear regression models. Maternal, paternal, and cord serum showed different PFASs compositions. Among the PFASs, perfluorooctane sulfonate (PFOS) showed the highest concentrations in maternal and paternal serum, while perfluorooctanoic acid (PFOA) showed the highest concentration in cord serum. There was a higher proportion of perfluoroalkyl carboxylic acids (PFCAs) with 9–12 carbon chains than those with 13–14 carbon chains in maternal and paternal serum, but this proportion was in the opposite direction in cord serum. PFOA and perfluorohexane sulfonate (PFHxS) had higher placental transfer rates (means of 0.32 and 0.36, respectively) than PFOS (mean of 0.12), which is in line with the results of previous studies. Gestational age and birth weight were positively associated with placental transfer rate of PFOA, PFHxS, and PFOS, while pre-pregnant BMI and weight were inversely associated with PFOS. This study showed that placental transfer of PFASs differs by compounds and is associated with pregnancy-related factors. Further studies on novel PFASs are warranted for Korean pregnant women.
Collapse
|
46
|
Zou C, Yan H, Wen Z, Li C, Zhang S, Ying Y, Pan P, Li Y, Li H, Li X, Wang Y, Zhong Y, Ge RS, Rao D. Perfluorotridecanoic Acid Inhibits Leydig Cell Maturation in Male Rats in Late Puberty via Changing Testicular Lipid Component. Chem Res Toxicol 2021; 34:1542-1555. [PMID: 34081457 DOI: 10.1021/acs.chemrestox.0c00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorotridecanoic acid (PFTrDA) is a long-chain (C13) perfluoroalkyl carboxylic acid. Here, we report the influence of PFTrDA exposure on the maturation of rat Leydig cells in late puberty in vivo. Male Sprague-Dawley rats were administered PFTrDA by gavage of 0, 1, 5, and 10 mg/kg/day from 35 days to 56 days postpartum. PFTrDA had no effect on body weight, testis weight, and epididymis weight. It significantly decreased the serum testosterone level after 5 and 10 mg/kg exposure, while it did not alter the serum estradiol level. The serum luteinizing hormone level was markedly reduced after 10 mg/kg PFTrDA exposure, while the follicle-stimulating hormone level was unchanged. Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3 transcript levels in the testis were markedly lowered in the 1-5 mg/kg PFTrDA group and the Lhb transcript level in the pituitary in the 10 mg/kg group. CYP11A1 and HSD11B1-positive Leydig cell numbers were markedly reduced after 10 mg/kg PFTrDA exposure. Testicular triglyceride and free fatty acid (palmitic acid, oleic acid, and linoleic acid) levels were significantly reduced by PFTrDA, while Mgll (up-regulation) and Scarb1 and Elovl5 (down-regulation) expression were altered. AKT1 and AMPK phosphorylation was stimulated after 10 PFTrDA mg/kg exposure. In conclusion, PFTrDA delays the maturation of Leydig cells in late puberty mainly by altering the free fatty acid profile.
Collapse
Affiliation(s)
- Cheng Zou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Haoni Yan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zina Wen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Chengdu Xi'nan Gynecological Hospital, Chengdu 610066, Sichuan, China
| | - Changchang Li
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yang Li
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecological Hospital, Chengdu 610066, Sichuan, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Dapang Rao
- Department of Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
47
|
Guo J, Zhang J, Wang Z, Zhang L, Qi X, Zhang Y, Chang X, Wu C, Zhou Z. Umbilical cord serum perfluoroalkyl substance mixtures in relation to thyroid function of newborns: Findings from Sheyang Mini Birth Cohort Study. CHEMOSPHERE 2021; 273:129664. [PMID: 33493812 DOI: 10.1016/j.chemosphere.2021.129664] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The epidemiological evidence on the associations between prenatal exposure to perfluoroalkyl substances (PFAS) and thyroid hormones in newborns was inconclusive. OBJECTIVES We aimed to estimate associations of fetal exposure to PFAS individually and in mixtures with thyroid function of newborns. METHODS A total of 490 mother-newborn pairs were included from Sheyang Mini Birth Cohort Study (SMBCS), a prospective cohort that recruited between June 2009 and January 2010. 12 PFAS and 7 thyroid function indicators were quantified in umbilical cord serum. We examined associations of prenatal exposure to individual and a mixture of PFAS with thyroid function indicators using multivariable linear regression and weighted quantile sum (WQS) regression models with adjustment for potential confounders, respectively. RESULTS Higher cord serum concentrations of PFAS mixtures were related to increases in TT4 and FT4 levels, and reductions in TSH concentrations of newborns. Combining single-chemical models with multiple-chemical models, PFOS, PFNA and PFUnDA were associated with increased TT4 levels with contributing to the mixture effects of 46.4%, 22.8%, and 16.7%, respectively. PFOS exposure was in positive association with cord serum FT4 concentrations and contributed 28.9% to the joint effects of mixtures. PFNA and PFHpA were the most important contributors to the decreases of TSH levels of newborns with 46.3% and 45.0% among the mixtures, respectively. CONCLUSIONS The current findings indicated the thyroid disruption of individual PFAS and their mixtures in cord serum. Additional studies are warranted to explore the underlying biological mechanisms, particularly for PFAS mixtures.
Collapse
Affiliation(s)
- Jianqiu Guo
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Yubin Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
48
|
Li Y, Xu Y, Fletcher T, Scott K, Nielsen C, Pineda D, Lindh CH, Olsson DS, Andersson EM, Jakobsson K. Associations between perfluoroalkyl substances and thyroid hormones after high exposure through drinking water. ENVIRONMENTAL RESEARCH 2021; 194:110647. [PMID: 33358873 DOI: 10.1016/j.envres.2020.110647] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The reported associations for several per- and polyfluoroalkyl substance (PFAS) with thyroid hormones are inconsistent in epidemiological studies. The purpose of the current study was to investigate the possible association of thyroid hormones in relation to serum levels of perfluorohexane sulfonate, perfluorooctane sulfonate and perfluorooctanoic acid, in a Swedish general population, highly exposed through contaminated drinking water, and if the associations with PFAS remained in a comparison to a reference group based only on residency in areas with contrasting PFAS levels. METHOD 3297 participants from Ronneby, a municipality with drinking water highly contaminated by PFAS (exposed group), and a reference group (N = 226) from a nearby municipality with non-contaminated drinking water supply were included. Regression analysis was used to investigate the associations between PFAS exposure, assessed as exposure groups (Ronneby and reference groups) and measured serum PFAS levels, and thyroid hormone levels, with adjustments for age, sex and BMI. RESULT No cross-sectional associations were found between PFAS and thyroid hormones in adults and seniors except for a positive association between PFAS and fT4 in males over 50. Higher thyroid hormone levels were found in the preteen children from Ronneby compared to the reference group. In contrast, within Ronneby, there was weak evidence of associations between increased PFAS levels and decreased fT3 in preteen boys, and decreased TSH in teenage males. No such pattern was found in preteen and teenage girls. CONCLUSION The present study found no consistent evidence to support association of PFAS with thyroid hormones.
Collapse
Affiliation(s)
- Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, UK
| | - Kristin Scott
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christel Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel S Olsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva M Andersson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
49
|
Mokra K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)-A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int J Mol Sci 2021; 22:2148. [PMID: 33670069 PMCID: PMC7926449 DOI: 10.3390/ijms22042148] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Endocrine disruptors are a group of chemical compounds that, even in low concentrations, cause a hormonal imbalance in the body, contributing to the development of various harmful health disorders. Many industry compounds, due to their important commercial value and numerous applications, are produced on a global scale, while the mechanism of their endocrine action has not been fully understood. In recent years, per- and polyfluoroalkyl substances (PFASs) have gained the interest of major international health organizations, and thus more and more studies have been aimed to explain the toxicity of these compounds. PFASs were firstly synthesized in the 1950s and broadly used in the industry in the production of firefighting agents, cosmetics and herbicides. The numerous industrial applications of PFASs, combined with the exceptionally long half-life of these substances in the human body and extreme environmental persistence, result in a common and chronic exposure of the general population to their action. Available data have suggested that human exposure to PFASs can occur during different stages of development and may cause short- or/and long-term health effects. This paper synthetizes the current literature reports on the presence, bioaccumulation and, particularly, endocrine toxicity of selected long- and short-chain PFASs, with a special emphasis on the mechanisms underlying their endocrine actions.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236 Lodz, Poland
| |
Collapse
|
50
|
Liu Y, Liu K, Zheng P, Yin S, Jin H, Bai X, Li Y, Zheng J, Dai Y, Zhao M, Liu W. Prenatal exposure and transplacental transfer of perfluoroalkyl substance isomers in participants from the upper and lower reaches of the Yangtze River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116202. [PMID: 33333405 DOI: 10.1016/j.envpol.2020.116202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Data on gestational exposure characteristics and transplacental transfer are quite limited for perfluoroalkyl substance (PFAS) isomers, especially those from large-scale comparative studies. To fill this gap, we examined isomers of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS) in matched maternal and cord serum from Mianyang and Hangzhou, which are located in the upper and lower reaches of the Yangtze River, China, respectively. These data were compared with those from our previous study on Wuhan in the middle reach. The average ΣPFAS concentration increased from upstream to downstream (Mianyang (4.44 ng/mL) < Wuhan (9.88 ng/mL) < Hangzhou (19.72 ng/mL)) and may be related to the per capita consumption expenditure of each city. The ln-transformed PFAS concentrations showed significant differences between Mianyang and Hangzhou after adjusting confounding factors (p < 0.05). The percentages of linear PFOS and PFOA in maternal and cord serum from these cities all exceeded those in electrochemical fluorination products. The isomer profiles of PFASs in maternal and cord serum might be greatly influenced by local production processes of PFASs and residents' dietary habits. The transplacental transfer efficiencies decreased significantly with increasing concentrations in maternal serum for ΣPFAS, ΣPFOS, ΣPFOA, ΣPFHxS, n-PFOS, iso-PFOS, 4m-PFOS, 1m-PFOS, n-PFOA, n-PFHxS, and br-PFHxS (Spearman rank correlation coefficients (r) = 0.373-0.687, p < 0.01). These findings support an understanding of the regional characteristics in maternal exposure to PFASs along the Yangtze River, isomeric profiles of PFASs in these regions, and the transplacental transfer processes of PFAS isomers.
Collapse
Affiliation(s)
- Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Kai Liu
- Division of Engineering and Applied Science, W. M. Keck Laboratories, California Institute of Technology, 1200 East California Blvd., Pasadena, CA, 91125, USA
| | - Ping Zheng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Yin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310058, China
| | - Xiaoxia Bai
- Women Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yongqing Li
- Mianyang Municipal Center for Disease Control and Prevention, Mianyang, 621000, China
| | - Jingxian Zheng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Yishuang Dai
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310058, China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|