1
|
Nazarious MI, Becker L, Zorzano MP, Martin-Torres J. Autonomous Planetary Liquid Sampler (APLS) for In Situ Sample Acquisition and Handling from Liquid Environments. SENSORS (BASEL, SWITZERLAND) 2024; 24:6107. [PMID: 39338852 PMCID: PMC11435854 DOI: 10.3390/s24186107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Many natural and artificial liquid environments, such as rivers, oceans, lakes, water storage tanks, aquariums, and urban water distribution systems, are difficult to access. As a result, technology is needed to enable autonomous liquid sampling to monitor water quality and ecosystems. Existing in situ sample acquisition and handling systems for liquid environments are currently limited to a single use and are semi-autonomous, relying on an operator. Liquid sampling systems should be robust and light and withstand long-term operation in remote locations. The system components involved in liquid sampling should be sterilisable to ensure reusability. Here, we introduce a prototype of a liquid sampler that can be used in various liquid environments and may be valuable for the scientific characterisation of different natural, remote, and planetary settings. The Autonomous Planetary Liquid Sampler (APLS) is equipped with pre-programmed, fully autonomous extraction, cleaning, and sterilisation functionalities. It can operate in temperatures between -10 °C and 60 °C and pressure of up to 0.24 MPa (~24 m depth below mean sea level on Earth). As part of the control experiment, we demonstrate its safe and robust autonomous operation in a laboratory environment using a liquid media with Bacillus subtilis. A typical sampling procedure required 28 s to extract 250 mL of liquid, 5 s to fill the MilliQ water, 25 s for circulation within the system for cleaning and disposal, and 200 s to raise the system temperature from ~30 °C ambient laboratory temperature to 150 °C. The temperature is then maintained for another 3.2 h to sterilise the critical parts, allowing a setup reset for a new experiment. In the future, the liquid sampler will be combined with various existing analytical instruments to characterise the liquid solution and enable the autonomous, systematic monitoring of liquid environments on Earth.
Collapse
Affiliation(s)
| | - Leonie Becker
- Institute of Space Systems (IRS), University of Stuttgart, 70569 Stuttgart, Germany
| | - Maria-Paz Zorzano
- Centro de Astrobiología (CSIC-INTA), Torrejon de Ardoz, 28850 Madrid, Spain
| | - Javier Martin-Torres
- School of Geosciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), 18100 Granada, Spain
| |
Collapse
|
2
|
Böhnke S, Perner M. Approaches to Unmask Functioning of the Uncultured Microbial Majority From Extreme Habitats on the Seafloor. Front Microbiol 2022; 13:845562. [PMID: 35422772 PMCID: PMC9002263 DOI: 10.3389/fmicb.2022.845562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Researchers have recognized the potential of enzymes and metabolic pathways hidden among the unseen majority of Earth's microorganisms for decades now. Most of the microbes expected to colonize the seafloor and its subsurface are currently uncultured. Thus, their ability and contribution to element cycling remain enigmatic. Given that the seafloor covers ∼70% of our planet, this amounts to an uncalled potential of unrecognized metabolic properties and interconnections catalyzed by this microbial dark matter. Consequently, a tremendous black box awaits discovery of novel enzymes, catalytic abilities, and metabolic properties in one of the largest habitats on Earth. This mini review summarizes the current knowledge of cultivation-dependent and -independent techniques applied to seafloor habitats to unravel the role of the microbial dark matter. It highlights the great potential that combining microbiological and biogeochemical data from in situ experiments with molecular tools has for providing a holistic understanding of bio-geo-coupling in seafloor habitats and uses hydrothermal vent systems as a case example.
Collapse
Affiliation(s)
- Stefanie Böhnke
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mirjam Perner
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
3
|
Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, Callister SJ, Brewer H, Podar M, Brown SD, Palumbo AV, Brandt CC, Wymore AM, Brooks SC, Hwang C, Fields MW, Wall JD, Gilmour CC, Elias DA. Determining the Reliability of Measuring Mercury Cycling Gene Abundance with Correlations with Mercury and Methylmercury Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8649-8663. [PMID: 31260289 DOI: 10.1021/acs.est.8b06389] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Methylmercury (MeHg) is a bioaccumulative toxic contaminant in many ecosystems, but factors governing its production are poorly understood. Recent work has shown that the anaerobic microbial conversion of mercury (Hg) to MeHg requires the Hg-methylation genes hgcAB and that these genes can be used as biomarkers in PCR-based estimators of Hg-methylator abundance. In an effort to determine reliable methods for assessing hgcA abundance and diversity and linking them to MeHg concentrations, multiple approaches were compared including metagenomic shotgun sequencing, 16S rRNA gene pyrosequencing and cloning/sequencing hgcAB gene products. Hg-methylator abundance was also determined by quantitative hgcA qPCR amplification and metaproteomics for comparison to the above measurements. Samples from eight sites were examined covering a range of total Hg (HgT; 0.03-14 mg kg-1 dry wt. soil) and MeHg (0.05-27 μg kg-1 dry wt. soil) concentrations. In the metagenome and amplicon sequencing of hgcAB diversity, the Deltaproteobacteria were the dominant Hg-methylators while Firmicutes and methanogenic Archaea were typically ∼50% less abundant. This was consistent with metaproteomics estimates where the Deltaproteobacteria were steadily higher. The 16S rRNA gene pyrosequencing did not have sufficient resolution to identify hgcAB+ species. Metagenomic and hgcAB results were similar for Hg-methylator diversity and clade-specific qPCR-based approaches for hgcA are only appropriate when comparing the abundance of a particular clade across various samples. Weak correlations between Hg-methylating bacteria and soil Hg concentrations were observed for similar environmental samples, but overall total Hg and MeHg concentrations poorly correlated with Hg-cycling genes.
Collapse
Affiliation(s)
- Geoff A Christensen
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Caitlin M Gionfriddo
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Andrew J King
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - James G Moberly
- College of Engineering , University of Idaho , Moscow , Idaho 83844 , United States
| | - Carrie L Miller
- School of Theoretical and Applied Science , Ramapo College of New Jersey , Mahwah , New Jersey 07430 , United States
| | - Anil C Somenahally
- Department of Soil and Crop Sciences , Texas A&M University , Overton , Texas 77843-2474 , United States
| | - Stephen J Callister
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Heather Brewer
- Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Mircea Podar
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Steven D Brown
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Anthony V Palumbo
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Craig C Brandt
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Ann M Wymore
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| | - Scott C Brooks
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Chiachi Hwang
- Center for Biofilm Engineering , Montana State University , Bozeman , Montana 59717 , United States
| | - Matthew W Fields
- Department of Microbiology and Immunology , Montana State University , Bozeman , Montana 59717 , United States
- Center for Biofilm Engineering , Montana State University , Bozeman , Montana 59717 , United States
| | - Judy D Wall
- Department of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center , Edgewater , Maryland 21037 , United States
| | - Dwayne A Elias
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831-6342 , United States
| |
Collapse
|
4
|
Identification of metabolite and protein explanatory variables governing microbiome establishment and re-establishment within a cellulose-degrading anaerobic bioreactor. PLoS One 2018; 13:e0204831. [PMID: 30289885 PMCID: PMC6173382 DOI: 10.1371/journal.pone.0204831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Proteins, metabolites, and 16S rRNA measurements were used to examine the community structure and functional relationships within a cellulose degrading anaerobic bioreactor. The bioreactor was seeded with bovine rumen fluid and operated with a 4 day hydraulic retention time on cellulose (avicel) as sole carbon and energy source. The reactor performance and microbial community structure was monitored during the establishment of the cellulose-degrading community. After stable operation was established in the bioreactor, the mixing intensity was increased in order to investigate the effect of a physical disruption of the microbial community structure. Finally, the original conditions were re-established to understand the stability of the microbial community after a perturbation. All factors measured were found to be inter-correlated during these three distinct phases of operation (establishment, perturbation and re-establishment). In particular, the return of community structure and function to pre-perturbed conditions suggests that propionate fermentation and acetate utilization were the explanatory factors for community establishment and re-establishment.
Collapse
|
5
|
Otwell AE, Callister SJ, Sherwood RW, Zhang S, Goldman AR, Smith RD, Richardson RE. Physiological and proteomic analyses of Fe(III)-reducing co-cultures of Desulfotomaculum reducens MI-1 and Geobacter sulfurreducens PCA. GEOBIOLOGY 2018; 16:522-539. [PMID: 29905980 DOI: 10.1111/gbi.12295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
We established Fe(III)-reducing co-cultures of two species of metal-reducing bacteria, the Gram-positive Desulfotomaculum reducens MI-1 and the Gram-negative Geobacter sulfurreducens PCA. Co-cultures were given pyruvate, a substrate that D. reducens can ferment and use as electron donor for Fe(III) reduction. G. sulfurreducens relied upon products of pyruvate oxidation by D. reducens (acetate, hydrogen) for use as electron donor in the co-culture. Co-cultures reduced Fe(III) to Fe(II) robustly, and Fe(II) was consistently detected earlier in co-cultures than pure cultures. Notably, faster cell growth, and correspondingly faster pyruvate oxidation, was observed by D. reducens in co-cultures. Global comparative proteomic analysis was performed to observe differential protein abundance during co-culture vs. pure culture growth. Proteins previously associated with Fe(III) reduction in G. sulfurreducens, namely c-type cytochromes and type IV pili proteins, were significantly increased in abundance in co-cultures relative to pure cultures. D. reducens ribosomal proteins were significantly increased in co-cultures, likely a reflection of faster growth rates observed for D. reducens cells while in co-culture. Furthermore, we developed multiple reaction monitoring (MRM) assays to quantitate specific biomarker peptides. The assays were validated in pure and co-cultures, and protein abundance ratios from targeted MRM and global proteomic analysis correlate significantly.
Collapse
Affiliation(s)
- Anne E Otwell
- Department of Microbiology, Cornell University, Ithaca, New York
| | | | - Robert W Sherwood
- Proteomics and Mass Spectrometry Facility, Cornell University, Ithaca, New York
| | - Sheng Zhang
- Proteomics and Mass Spectrometry Facility, Cornell University, Ithaca, New York
| | - Abby R Goldman
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York
| | | | - Ruth E Richardson
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
6
|
Guo J, Wilken S, Jimenez V, Choi CJ, Ansong C, Dannebaum R, Sudek L, Milner DS, Bachy C, Reistetter EN, Elrod VA, Klimov D, Purvine SO, Wei CL, Kunde-Ramamoorthy G, Richards TA, Goodenough U, Smith RD, Callister SJ, Worden AZ. Specialized proteomic responses and an ancient photoprotection mechanism sustain marine green algal growth during phosphate limitation. Nat Microbiol 2018; 3:781-790. [PMID: 29946165 DOI: 10.1038/s41564-018-0178-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/16/2018] [Indexed: 01/05/2023]
Abstract
Marine algae perform approximately half of global carbon fixation, but their growth is often limited by the availability of phosphate or other nutrients1,2. As oceans warm, the area of phosphate-limited surface waters is predicted to increase, resulting in ocean desertification3,4. Understanding the responses of key eukaryotic phytoplankton to nutrient limitation is therefore critical5,6. We used advanced photo-bioreactors to investigate how the widespread marine green alga Micromonas commoda grows under transitions from replete nutrients to chronic phosphate limitation and subsequent relief, analysing photosystem changes and broad cellular responses using proteomics, transcriptomics and biophysical measurements. We find that physiological and protein expression responses previously attributed to stress are critical to supporting stable exponential growth when phosphate is limiting. Unexpectedly, the abundance of most proteins involved in light harvesting does not change, but an ancient light-harvesting-related protein, LHCSR, is induced and dissipates damaging excess absorbed light as heat throughout phosphate limitation. Concurrently, a suite of uncharacterized proteins with narrow phylogenetic distributions increase multifold. Notably, of the proteins that exhibit significant changes, 70% are not differentially expressed at the mRNA transcript level, highlighting the importance of post-transcriptional processes in microbial eukaryotes. Nevertheless, transcript-protein pairs with concordant changes were identified that will enable more robust interpretation of eukaryotic phytoplankton responses in the field from metatranscriptomic studies. Our results show that P-limited Micromonas responds quickly to a fresh pulse of phosphate by rapidly increasing replication, and that the protein network associated with this ability is composed of both conserved and phylogenetically recent proteome systems that promote dynamic phosphate homeostasis. That an ancient mechanism for mitigating light stress is central to sustaining growth during extended phosphate limitation highlights the possibility of interactive effects arising from combined stressors under ocean change, which could reduce the efficacy of algal strategies for optimizing marine photosynthesis.
Collapse
Affiliation(s)
- Jian Guo
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Susanne Wilken
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, the Netherlands
| | - Valeria Jimenez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chang Jae Choi
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard Dannebaum
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, USA
| | - Lisa Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Charles Bachy
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Denis Klimov
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Chia-Lin Wei
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, USA.,The Jackson Laboratory, Farmington, CT, USA
| | - Govindarajan Kunde-Ramamoorthy
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA, USA.,The Jackson Laboratory, Farmington, CT, USA
| | | | | | | | | | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA. .,Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
7
|
McQuillan JS, Robidart JC. Molecular-biological sensing in aquatic environments: recent developments and emerging capabilities. Curr Opin Biotechnol 2017; 45:43-50. [DOI: 10.1016/j.copbio.2016.11.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022]
|
8
|
Waltman PH, Guo J, Reistetter EN, Purvine S, Ansong CK, van Baren MJ, Wong CH, Wei CL, Smith RD, Callister SJ, Stuart JM, Worden AZ. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla. PLoS One 2016; 11:e0155839. [PMID: 27434306 PMCID: PMC4951065 DOI: 10.1371/journal.pone.0155839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/05/2016] [Indexed: 11/18/2022] Open
Abstract
Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (<2 μm diameter) is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3’ UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas.
Collapse
Affiliation(s)
- Peter H. Waltman
- University of California at Santa Cruz, Baskin School of Engineering, Santa Cruz, California, 95064, United States of America
| | - Jian Guo
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Emily Nahas Reistetter
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Samuel Purvine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Charles K. Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Marijke J. van Baren
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Chee-Hong Wong
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, 94598, United States of America
| | - Chia-Lin Wei
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, 94598, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
- * E-mail: (SJC); (JMS); (AZW)
| | - Joshua M. Stuart
- University of California at Santa Cruz, Baskin School of Engineering, Santa Cruz, California, 95064, United States of America
- * E-mail: (SJC); (JMS); (AZW)
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
- University of California Santa Cruz, Department of Ocean Sciences, Santa Cruz, California, 95064, United States of America
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Canada, M5G 1Z8
- * E-mail: (SJC); (JMS); (AZW)
| |
Collapse
|
9
|
Ottesen EA. Probing the living ocean with ecogenomic sensors. Curr Opin Microbiol 2016; 31:132-139. [PMID: 27060777 DOI: 10.1016/j.mib.2016.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/30/2023]
Abstract
This review discusses the role of ecogenomic sensors in biological oceanography. Ecogenomic sensors are instruments that can autonomously collect biological samples and perform molecular analyses. This technology reduces logistical constraints on the length and duration of biological data collection. Autonomous, robotic performance of molecular assays shows particular promise in the field of public health. Recent applications include simultaneous detection of harmful algal species and fecal markers paired with same-day remote reporting of test results. Ecogenomic instruments are also showing promise for molecular ecological studies. Autonomous collection and preservation of biological samples is facilitating high-resolution ecological studies that are expanding our understanding of marine microbial ecology and dynamics. This review discusses recent applications of these instruments and makes recommendations for future developments.
Collapse
Affiliation(s)
- Elizabeth A Ottesen
- University of Georgia Department of Microbiology, Rm. 550 Biological Sciences, Athens, GA 30602, United States.
| |
Collapse
|
10
|
van Baren MJ, Bachy C, Reistetter EN, Purvine SO, Grimwood J, Sudek S, Yu H, Poirier C, Deerinck TJ, Kuo A, Grigoriev IV, Wong CH, Smith RD, Callister SJ, Wei CL, Schmutz J, Worden AZ. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics 2016; 17:267. [PMID: 27029936 PMCID: PMC4815162 DOI: 10.1186/s12864-016-2585-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/11/2016] [Indexed: 01/26/2023] Open
Abstract
Background Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. Results We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Conclusions Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2585-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marijke J van Baren
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Charles Bachy
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Emily Nahas Reistetter
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Samuel O Purvine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jane Grimwood
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Hudson Alpha, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Hang Yu
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA.,Now at: Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Camille Poirier
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Thomas J Deerinck
- Center for Research in Biological Systems and the National Center for Microscopy and Imaging Research, University of California, La Jolla, San Diego, California, 92093, USA
| | - Alan Kuo
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Chee-Hong Wong
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Stephen J Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Chia-Lin Wei
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA.,Hudson Alpha, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA. .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada.
| |
Collapse
|
11
|
Otwell AE, Callister SJ, Zink EM, Smith RD, Richardson RE. Comparative Proteomic Analysis of Desulfotomaculum reducens MI-1: Insights into the Metabolic Versatility of a Gram-Positive Sulfate- and Metal-Reducing Bacterium. Front Microbiol 2016; 7:191. [PMID: 26925055 PMCID: PMC4759654 DOI: 10.3389/fmicb.2016.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/03/2016] [Indexed: 11/30/2022] Open
Abstract
The proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase (hdr)-containing loci were upregulated on either sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.
Collapse
Affiliation(s)
- Anne E Otwell
- Department of Microbiology, Cornell University Ithaca, NY, USA
| | - Stephen J Callister
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Erika M Zink
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Richard D Smith
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Ruth E Richardson
- Department of Civil and Environmental Engineering, Cornell University Ithaca, NY, USA
| |
Collapse
|
12
|
Burnet MC, Dohnalkova AC, Neumann AP, Lipton MS, Smith RD, Suen G, Callister SJ. Evaluating Models of Cellulose Degradation by Fibrobacter succinogenes S85. PLoS One 2015; 10:e0143809. [PMID: 26629814 PMCID: PMC4668043 DOI: 10.1371/journal.pone.0143809] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.
Collapse
Affiliation(s)
- Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Alice C. Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Anthony P. Neumann
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
| | - Mary S. Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States of America
- * E-mail: (SJC); (GS)
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
- * E-mail: (SJC); (GS)
| |
Collapse
|
13
|
Burrell TJ, Maas EW, Hulston DA, Law CS. Bacterial abundance, processes and diversity responses to acidification at a coastal CO2 vent. FEMS Microbiol Lett 2015; 362:fnv154. [PMID: 26337149 DOI: 10.1093/femsle/fnv154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/12/2022] Open
Abstract
Shallow CO2 vents are used as natural laboratories to study biological responses to ocean acidification, and so it is important to determine whether pH is the primary driver of bacterial processes and community composition, or whether other variables associated with vent water have a significant influence. Water from a CO2 vent (46 m, Bay of Plenty, New Zealand) was compared to reference water from an upstream control site, and also to control water acidified to the same pH as the vent water. After 84 h, both vent and acidified water exhibited higher potential bulk water and cell-specific glucosidase activity relative to control water, whereas cell-specific protease activities were similar. However, bulk vent water glucosidase activity was double that of the acidified water, as was bacterial secondary production in one experiment, suggesting that pH was not the only factor affecting carbohydrate hydrolysis. In addition, there were significant differences in bacterial community composition in the vent water relative to the control and acidified water after 84 h, including the presence of extremophiles which may influence carbohydrate degradation. This highlights the importance of characterizing microbial processes and community composition in CO2 vent emissions, to confirm that they represent robust analogues for the future acidified ocean.
Collapse
Affiliation(s)
- Tim J Burrell
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand Victoria University of Wellington, School of Biological Sciences, Wellington 6140, New Zealand
| | - Elizabeth W Maas
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand Now at; Ministry for Primary Industry, PO Box 12034, Ahuriri, Napier 4144, New Zealand
| | - Debbie A Hulston
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand
| | - Cliff S Law
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
14
|
Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, Beatty JT, Lang AS. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics 2014; 15:730. [PMID: 25164283 PMCID: PMC4158056 DOI: 10.1186/1471-2164-15-730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-730) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St, John's, NL A1B 3X5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|